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Abstract: We present an extended version of the Conformal Standard Model (character-

ized by the absence of any new intermediate scales between the electroweak scale and the

Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar

potential and the Yukawa couplings involving only right-chiral neutrinos are invariant un-

der a new global symmetry SU(3)N that complements the standard U(1)B−L symmetry,

and is broken explicitly only by the Yukawa interaction, of order O(10−6), coupling right-

chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of

this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model,

and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the

RG improved one-loop effective potential is everywhere positive with a stable global min-

imum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the

pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3)N symmetry

are natural Dark Matter candidates with calculable small masses and couplings; and (4)

the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis.

The model is made perturbatively consistent up to the Planck scale by imposing the van-

ishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’).

Observable consequences of the model occur mainly via the mixing of the new scalars and

the standard model Higgs boson.
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1 Introduction

Experimental searches at LHC have so far not revealed any evidence of ‘new physics’

beyond the Standard Model (SM), and in particular no signs of low energy supersymmetry,

technicolor or large extra dimensions [1]. Of course, this state of affairs may change in the

near future with new data, but the possibility that there is in fact not much new structure

beyond the SM is by no means excluded. There thus remains the distinct possibility that

— apart from ‘small’ modifications of the type suggested by the present work — the SM

may survive essentially as is all the way to the Planck scale. This prospect is further

strengthened by the excellent quantitative agreement between the SM predictions and

several precision experiments that has emerged over the past decades, and which so far

has not shown any deviation from SM predictions. In our view all this indicates that any

‘beyond the standard model’ (BSM) scenario must stay as close as possible to the SM as

presently understood.
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The present work takes up this point of view, in an attempt to formulate a more

comprehensive and coherent scheme beyond the SM, within the general framework proposed

in [2]. More specifically, this is to be done in such a way that, on the one hand, the economy

of the SM is maintained as much as possible, by extending it only in a very minimal way, but

on the other hand, such that — besides explaining the observed structure — the extension

solves all outstanding problems that belong to particle physics proper. The latter comprise

in particular the explanation of the neutrino sector (with light and heavy neutrinos), the

explanation of the origin of Dark Matter with suitable dark matter candidates, and finally

leptogenesis. Whereas the solution of these problems is usually assumed to involve large

intermediate scales and new heavy degrees of freedom (GUT-scale Majorana masses, new

heavy quarks to generate axion gluon couplings, and the like) that will be difficult, if not

impossible, to observe, the important point here is that we try to make do without such

large scales between the electroweak and the Planck scale. This postulate entails strong

restrictions that we will analyze in this work and that may be falsified by observation.

By contrast, we do not consider to belong to the realm of particle physics the problems

of the cosmological constant, the origin of Dark Energy and the ultimate explanation of

inflation. Beyond their effective description in terms of scalar fields, these are here assumed

to involve quantum gravity in an essential way, whence their solution must await the advent

of a proper theory of quantum gravity.

The crucial assumption underlying the present work, and the defining property of

the term ‘Conformal Standard Model’ (CSM),1 is conformal symmetry, albeit in a ‘softly

broken’ form, and consequently the absence of any new scales intermediate between the

electroweak scale and the Planck scale. This basic assumption is motivated on the one

hand by the absence of any direct evidence of such intermediate mass scales, and on the

other hand by the ‘near conformality’ of the SM, that is, the fact that the SM is classically

conformally invariant, except for the the explicit mass term in the scalar potential intro-

duced to trigger spontaneous symmetry breaking. In previous work we have formulated

a scenario which attempts to exploit this fact, and thus to explain the stability of the

electroweak scale as well as the supposed absence of large intermediate scales, by impos-

ing classical conformal symmetry as a basic symmetry. Importantly, we thus do not rely

on low energy supersymmetry to explain the stability of the electroweak scale. In [2] the

Coleman-Weinberg mechanism [3] was invoked to provide a quantum mechanical source of

conformal symmetry breaking, but more recently we have adopted a variant of this scheme,

by allowing for explicit mass terms, but with the extra restriction of vanishing quadratic

divergences in terms of bare parameters at the Planck scale, in a realization of what we

call ‘softly broken conformal symmetry’ [4]. With either realization there is then only one

scale other than the Planck scale in the game; this scale, which should be tiny in com-

parison with the Planck scale, is here assumed to be O(1) TeV. The challenge, then, is to

accommodate within such a scenario all observed SM phenomena and, in particular, the

considerable differences in scales observed in the SM. To these requirements we add the

1In order to avoid an unnecessary proliferation of names, we have decided to use this name for the whole

class of models satisfying the stated requirements.
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triple conditions of perturbative consistency (absence of Landau poles up to the Planck

scale MPl), of lower boundedness of the RG improved one-loop effective potential VRGI
eff (ϕ),

and finally, of vacuum stability (the electroweak vacuum should remain the global mini-

mum of VRGI
eff (ϕ) in the region ||ϕ|| . MPl). It is a non-trivial check on our assumptions

that there do exist parameter values satisfying all of these constraints.

Accordingly, we present in this paper a slightly modified version of the model pro-

posed in [2, 4], with the aim of working towards a more comprehensive scenario of BSM

physics. The modification consists in an enlargement of the scalar sector that couples to

the right-chiral neutrinos, and the introduction of a new global SU(3)N symmetry acting

only on the right-chiral neutrinos and the new scalar fields. This symmetry is assumed to

be spontaneously broken, giving rise to several Goldstone bosons. The latter are converted

to pseudo-Goldstone bosons by the one-loop corrections induced by the Yukawa interac-

tion coupling right-chiral neutrinos and the electroweak lepton doublets, which is the only

term in the Lagrangian that breaks SU(3)N explicitly. Besides preserving the economy

of the (non-supersymmetric) SM, this version of the CSM comes in particular with the

following advantages: (1) the pseudo-Goldstone bosons resulting from spontaneous sym-

metry breaking can in principle serve as Dark Matter candidates with calculable small

masses and couplings, and (2) the Majorana Yukawa coupling matrix dynamically acquires

a form naturally adapted to leptogenesis via the mechanism proposed and investigated

in [5]. Furthermore, there remains the possibility that a certain linear combination of the

pseudo-Goldstone bosons may be identified with the axion required for the solution of the

strong CP problem.2

Finally, we briefly discuss two natural extensions of our main model, namely first, the

possibility of gauging U(1)B−L, and secondly a further enlargement of the scalar sector

that changes the breaking pattern of the SU(3)N symmetry. We also comment on the issue

of the compatibility of global symmetries with quantum gravity in section 5.

Related and previous work. We should note that there is a substantial body of work

along similar lines as proposed here, and we therefore briefly recall and comment on some

related proposals. The idea of exploiting the possible or postulated absence of intermediate

scales in order to arrive at predictions for the Higgs and top quark masses was already

considered in [8]. However, it appears that the actual values of the SM parameters with

only the standard scalar doublet cannot be reconciled with the stability of the electroweak

vacuum over the whole range of energies up to the Planck mass (see [9] and [10] for a more

recent re-assessment of this scenario). The possible importance of conformal symmetry

in explaining the electroweak hierarchy was already emphasized in [11]. More recently,

there have been a number of approaches proceeding from the assumption of conformal

symmetry, in part based on the Coleman-Weinberg mechanism, as in [12, 13] and [14, 15].

2In our previous work [6] it was wrongly claimed that the Majoron can become a pseudo-Goldstone

boson. The error in that argument, which was based on a rather involved three-loop calculation, was

uncovered thanks to the new technology developed in [7], which shows that only fields orthogonal to the

identity in the matrix of Goldstone fields can become pseudo-Goldstone bosons, cf. (2.40) and section 2.4

for details.
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The latter papers discuss in particular aspects of neutrino physics in conformal theories;

see also [16–19] for a discussion of the phenomenology of such models. The idea that

radiative electroweak symmetry breaking is triggered by a new U(1)X gauge boson without

direct couplings to SM particles was introduced in [20] and reconsidered more recently

in [21, 22]. An extension to the case of an SU(2)X gauge group was proposed in [23], raising

the interesting possibility of a (non-abelian) spin-1 Dark Matter particle [24]. Conformal

models with local (B−L) symmetry have been investigated in [25, 26], exploiting the same

mechanism as in [3] to stabilise the radiatively generated vacuum. For these gauge groups

the phenomenology was recently reanalyzed in [27]. The unavoidable mixing between

multiple U(1) factors [28] was included in the study of the U(1)B−L case [29], which also

addresses the issue of vacuum stability with U(1)B−L gauging. RG improved effective

potentials and their applications in the conformal context were considered in [30–32]. The

possibility that all scales are generated dynamically was also considered from another

point of view in [33, 34]. Furthermore it has been pointed out in [35] that the vanishing

of the SM scalar self-coupling and the associated β-function at the Planck scale could

be interpreted as evidence for a hidden conformal symmetry at that scale (and also for

asymptotic safety); this proposal is in some sense the opposite of the present scenario,

where conformal symmetry is assumed to be relevant below the Planck scale. Among the

non-supersymmetric attempts at a comprehensive approach to BSM physics the so-called

νMSM model of [36] has been widely discussed; this model is somewhat related to the

present work in that it is also based on a minimal extension of the SM, but differs in

other aspects (for instance, in trying to incorporate inflation, with the Higgs boson as the

inflaton). Other non-supersymmetric proposals with ‘new physics’ in the range accessible

to LHC include the twin Higgs models [37], minimal models with fermionic [38–40] or scalar

Dark Matter [41], as well as other interesting possibilities, e.g. [42–48]. Here we will have

nothing to say about supersymmetric models, which are characterised by more than just

minimal additions to the SM, and where there is a vast literature, see e.g. [49] for a recent

overview and bibliography.

2 Basic features of the model

To present our point of view in as clear a manner as possible this paper is structured in

line with our basic assumptions, which concern in particular

• Scalar sector

• Fermionic sector

• Pseudo-Goldstone bosons and their couplings

and which we will discuss in this section. In the following section we will discuss the

constraints that self-consistency and compatibility with the SM and other data impose on

the model and its parameters. Possible checks (that could in principle falsify our approach)

are also discussed there, as well as possible signatures that may discriminate the present

proposal from other proposals.
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2.1 Scalar sector

Although full confirmation is still pending, there is good evidence that the SM Higgs boson

does not distinguish between different families (generations) [1]. Consequently, its different

couplings to the SM fermions are entirely due to the different Yukawa coupling matrices,

implying for instance that the Higgs couplings to quarks and leptons are directly propor-

tional to their masses. It would therefore seem natural to assume that possible extensions

of the scalar sector to include Majorana-like couplings to the right-chiral neutrinos should

also proceed through a ‘family blind’ electroweak singlet scalar φ whose vacuum expecta-

tion value generates the usual Majorana mass term required for the seesaw mechanism,

with an appropriate Majorana-type Yukawa coupling matrix YM
ij , and this path has been

followed mostly in past work. By contrast, we here wish to explore an alternative scenario

relaxing this assumption, and to point out several advantages that come with making the

extended scalar sector sensitive to the family structure of right-chiral neutrinos. These

concern in particular the appearance of pseudo-Goldstone bosons that are natural Dark

Matter candidates, with calculable small masses and couplings. Furthermore, thanks to the

new scalar fields, the much advertised instability of the Higgs coupling and the one-loop

effective potential in the (un-extended) SM (see e.g. [50–54] for a recent discussion) can be

avoided without great effort.

Accordingly, the main new feature of our model in comparison with the SM is its

enlarged scalar sector, while there is no corresponding enlargement in the fermionic sector,

other than the ab initio incorporation of right-chiral neutrinos (see below). The scalar

sector is assumed, on the one hand, to allow for a Majorana mass matrix for the right-chiral

neutrinos to be generated by spontaneous symmetry breaking, and with a breaking pattern

adapted to leptogenesis, and on the other to allow for the existence of very light pseudo-

Goldstone bosons that can serve as natural dark matter candidates. The appearance of

extra scalar degrees of freedom is a common feature of many proposed extensions of the SM,

and in particular, of supergravity and superstring scenarios. A distinctive feature of the

present scheme is that the new scalars, while carrying family indices, are otherwise ‘sterile’,

except for those scalars that mix with the standard Higgs boson; as we will explain below

this can lead to new experimental signatures, different from low energy supersymmetry

and other scenarios where extra scalars carry electroweak or strong charges. The assumed

sterility safeguards principal successes of the SM, in particular the absence of FCNC. While

it might appear desirable to also extend the family structure of the scalars to the quark and

lepton sector, our assumption of ‘near conformality’ seems difficult to reconcile with the

existence of scalars relating different generations of quarks and leptons: by softly broken

conformal invariance these would have to have relatively low masses, and thus conflicts

with SM data would be inevitable. In this respect, the situation is different in GUT-type

scenarios, where such extra scalars can in principle be made sufficiently heavy so as to

avoid any direct conflict with observation. However, even in that context, fully consistent

models with family sensitive scalars seem hard to come by, and we are not aware of a single

example of a model of this type that works all the way (see, however, [55] and references

therein for a recent attempt to explain the observed hierarchy of quark masses in terms of

discrete subgroups of a family symmetry SU(3)).
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A new feature in comparison with [2] is thus that the scalars coupling to the right-chiral

neutrinos are assumed to admit a family-type symmetry SU(3)N that complements the

standard U(1)B−L symmetry. This new symmetry is broken explicitly by the Dirac-Yukawa

couplings Y ν ; importantly, the latter are very small (of order O(10−6)). Accordingly, we

introduce a complex scalar sextet φij = φji (with family indices i, j, . . .) which are ‘blind’

to the SM gauge symmetry, hence sterile. This sextet replaces the standard Majorana mass

term triggered by a family singlet scalar φ according to

〈φ〉YM
ij −→ yM 〈φij〉, (2.1)

and similarly for the associated Majorana-type Yukawa couplings. With the usual Higgs

doublet H the scalar field Lagrangian is

Lscalar = −(DµH)†(DµH)− Tr(∂µφ
∗∂µφ)− V(H,φ). (2.2)

The potential is

V(H,φ) = m2
1H
†H +m2

2 Tr(φφ∗) + λ1 (H†H)2 (2.3)

+ 2λ3 (H†H)Tr(φφ∗) + λ2 [Tr(φφ∗)]2 + λ4 Tr(φφ∗φφ∗),

where all coefficient are real (traces are over family indices). This potential is manifestly

invariant under

φ(x) → Uφ(x)UT , U ∈ U(3). (2.4)

The scalar fields φij are inert under the usual SM symmetries, unlike the Higgs doublet H.

There are three different cases that ensure positive definiteness of the quartic part of

the classical potential

• λ1, λ2, λ4 > 0, λ3 > −
√
λ1(λ2 + λ4/3);

• λ4 < 0, λ1 > 0, λ2 > −λ4, λ3 > −
√
λ1(λ2 + λ4);

• λ2 < 0, λ1 > 0, λ4 > −3λ2, λ3 > −
√
λ1(λ2 + λ4/3).

One of these conditions has to hold for all scales between the electroweak and the

Planck scales to avoid the problem of vacuum instability, and thus to overcome one of the

main open problems of the SM in its current form. More concretely, we will require them

to hold for the running couplings λi(µ) over this whole range when these are evolved with

the β-functions (3.2).

Assuming the following values of the mass parameters

m2
1 = −2λ1v

2
H − 6λ3v

2
φ, m2

2 = −2λ3v
2
H − (6λ2 + 2λ4) v2

φ, (2.5)

(and thus parametrising them directly in terms of the positive parameters vH and vφ) it is

straightforward to show that the global minimum of the potential takes the form3

〈H〉 =

(
0

vH

)
, 〈φ〉 = U0

 vφ 0 0

0 vφ 0

0 0 vφ

UT0 , U0 ∈ U(3), (2.6)

3Thus, vH and vφ are the expectation values of the complex fields (we here drop the customary fac-

tor 1/
√

2).
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provided that (in addition to the above positivity conditions) the following inequalities are

also satisfied

λ1

{
λ2 +

λ4

3

}
− λ2

3 > 0, λ4 > 0.

At the classical level the U(3) matrix U0 remains undetermined. The explicit breaking of

SU(3)N symmetry to be discussed below will, however, lift this degeneracy and produce

a ‘vacuum alignment’ with U0 6= 1 according to [56], and also introduce small corrections

that will lift the degeneracy of eigenvalues in 〈φij〉.
A second motivation for the replacement of a single complex scalar by a sextet is

the following. Because the SU(3)N invariance is assumed to be broken both sponta-

neously and explicitly (by the Yukawa interaction coupling right-chiral neutrinos to the

lepton doublets via the matrix Y ν
ij , see (2.19) below) there exist various light particles, i.e.

(pseudo-)Goldstone bosons. It is a general result that the manifold of Goldstone bosons

M is the quotient of the symmetry group by the symmetry of the vacuum. For (2.6) the

residual symmetry is SO(3), and therefore

M = U(3)
/

SO(3) ≡ U(1)B−L × SU(3)N
/

SO(3), (2.7)

whence there are altogether six (pseudo-)Goldstone bosons in our model. One of them is

the genuine Goldstone boson associated with the exact U(1)B−L symmetry (so we can take

out the U(1) factor).

After the symmetry breaking we have as usual the real Higgs field H0

H(x) =

(
0

vH + 1√
2
H0(x)

)
, (2.8)

(in the unitary gauge) while a convenient parametrisation of the coset space M is given by

φ(x) = U0 e
iÃ(x) (vφ + R̃(x)) eiÃ(x) UT

0 , (2.9)

where Ãij and R̃ij are real symmetric matrices. The trace part of

G(x) ≡ U0Ã(x)U†0 , (2.10)

is the (B − L) Goldstone boson a(x) that remains a Goldstone boson even when the U(3)

symmetry is broken, while the traceless part of G(x) yields the five Goldstone bosons

that will be converted to pseudo-Goldstone bosons. In accordance with the decomposition

6→1⊕ 5 under the residual SO(3) symmetry we can thus write

Ãij(x) =
1

2
√

6vφ
a(x)δij + Aij(x) , TrA(x) = 0, (2.11)

with

Aij ≡
1

vφ
G(x) ≡ 1

4vφ

∑
a

′
Gaλ

a
ij , (2.12)

where the restricted sum is only over the five symmetric Gell-Mann matrices (with the

standard normalization Tr (λaλb) = 2δab) and where the real fields a(x) and Ga(x) are

– 7 –
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canonically normalized. The matrix R̃ij(x) likewise can be split into a trace and a traceless

part, viz.

R̃ij(x) =
1√
6
r(x)δij +

1

2

∑
a

′
Raλ

a
ij(x). (2.13)

Because the new scalars are thus only very weakly coupled to the remaining SM fields,

the main observable effects are due to the mixing between the standard Higgs boson and

the new scalars. In fact, the five modes Ra are already the proper mass eigenstates with

eigenvalues

M2
R = 4λ4v

2
φ, (2.14)

The field r can mix with H0 and the combined mass matrix for the fields (H0, r) reads

M2 =

(
4λ1v

2
H 4

√
3λ3vHvφ

4
√

3λ3vHvφ 4(3λ2 + λ4)v2
φ

)
, (2.15)

and determines the mass eigenstates h0 and h′

h0 = cosβ H0 + sinβ r , h′ = − sinβ H0 + cosβ r, (2.16)

with the mixing angle β. We identify the lighter of the two mass eigenstates h0 with the

observed Higgs boson, with Mh0 ≈ 125GeV. The mixing will lead to a second resonance

associated with h′, which is one of the main predictions of the present model. This res-

onance should be rather narrow because of the factor sin2 β [57]. It will have the same

decay channels to the SM particles as the standard Higgs boson (hence look like a ‘shadow

Higgs’), but depending on the actual mass of h′, there may also be other decay channels

which could broaden the resonance. We will return to this point below.

The possibility of further extension of the Higgs sector in the framework of a U(3)

symmetric scalar sector is considered in the appendix.

2.2 Fermionic sector

With right-chiral neutrinos, the SM comprises altogether 48 fundamental spin- 1
2 degrees

of freedom, in three generations (families) of 16 fermions each. It is one of our basic

assumptions that there are no other spin- 1
2 degrees of freedom.4 This assumption is mainly

motivated by observation, that is, the complete lack of evidence so far of such new fermionic

degrees of freedom at LHC. In fact, already the LEP experiment had produced strong

evidence that there exist only three generations, so any extra spin- 1
2 fermions beyond the

known quarks and leptons would have to be either sterile, or otherwise appear as heavy

fermionic superpartners of the known SM bosons (thus not implying the existence of new

families of fermions).

4The occurrence of 16 fermions in one generation is often interpreted as strong evidence for an under-

lying SO(10) GUT symmetry. However, apart from the fact that SO(10) cannot explain the origin of the

family replication, there may be alternative explanations. In particular, 48 = 3× 16 is also the number of

physical spin- 1
2

fermions in maximally extended (N = 8) supergravity remaining after complete breaking

of supersymmetry. See [61] for a fresh look at this coincidence.
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We here concentrate on the Yukawa part of the extended CSM Lagrangian, referring

to [58–60] for the complete SM Lagrangian and its properties. With the above assumptions

concerning the fermionic sector and the new scalar sextet introduced in the foregoing

section, we can write down right away the most general Yukawa couplings: the Higgs

doublet couples in the usual way, while φij couples only to the right-chiral neutrinos.

Accordingly, the complete Yukawa part of the Lagrangian is5

LY =

{
− Y E

ij H
†LiαEjα − Y D

ij H
†QiαDj

α − Y U
ij H

TεQiαU jα

−Y ν
ijH

TεLiαN j
α −

1

2
yMφijN

iαN j
α

}
+ h.c. (2.17)

Here Qiα and Liα are the left-chiral quark and lepton doublets, Ū iα̇ and D̄iα̇ are the

right-chiral up- and down-like quarks, while Ēiα̇ are the right-chiral electron-like leptons,

and N̄ iα̇ the right-chiral neutrinos; the family indices i, j = 1, 2, 3 as well as SL(2,C)

indices are written out explicitly. Classically, the full SM Lagrangian is invariant under

lepton number symmetry U(1)L as well as under the usual baryon number symmetry U(1)B;

these two U(1) symmetries combine to the anomaly free U(1)B−L symmetry which is hence

preserved to all orders.

The main new feature of our model is that the right-chiral neutrinos transform under

the previously introduced symmetry SU(3)N according to

N i(x) → (U∗)ijN
j(x), (2.18)

whereas all other SM fermions are inert under this symmetry.6 This reflects the essential

difference in our model between the quarks and leptons on the one hand, where the Yukawa

couplings are given by numerical matrices, and the right-chiral neutrinos on the other,

where the effective couplings are to be determined as vacuum expectation values of sterile

scalar fields. The SU(3)N symmetry is thus broken explicitly only by one term in (2.17),

namely the interaction

L′Y = −Y ν
ijH

TεLiαN j
α + h.c., (2.19)

coupling the lepton doublet and the right-chiral neutrinos. Consequently, (2.19) is the only

term in the SM Lagrangian by which right-chiral neutrinos communicate with the rest of

the SM, and hence will play a key role in the remainder. We repeat that this interaction

does preserve U(1)B−L. The numerical matrix Y ν
ij here must be assumed very small [with

entries of order O(10−6)], in order to explain the smallness of light neutrino masses via the

see-saw mechanism [62–65] with TeV scale heavy neutrinos.

The neutrino masses emerge upon spontaneous symmetry breaking in the usual way,

and thus depend on the matrices mij and Mij defined by the vacuum expectation values

5We will make consistent use of Weyl (two-component) spinors throughout, see e.g. [6] for our conven-

tions, as we have found them much more convenient than 4-spinors in dealing with the intricacies of the

neutrino sector.
6Strictly speaking, we should therefore use two different kinds of family indices, one for the usual quarks

and leptons, the other for the right-chiral neutrinos. We will refrain from doing so in order to keep the

notation simple.
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of the corresponding scalar fields, viz.

Mij = yM 〈φij〉, (2.20)

and

mij = Y ν
ij vH . (2.21)

Given these matrices, the (squared) masses of the light neutrinos are then determined as

the eigenvalues of the following matrices (see e.g. [6] for a derivation), namely

m2
ν = m†m , with m ≡ mM−1mT + . . ., (2.22)

for the light neutrinos, and

M2
N = M †M , with M ≡M +

1

2
mTm∗M−1 +

1

2
M−1m†m+ . . ., (2.23)

for the heavy neutrinos. These formulas generalize the well-known seesaw mass formu-

las [62–65]. Assuming m ∼ 100 keV and M ∼ 1 TeV we get light neutrinos with masses of

order 0.01 eV, and heavy neutrinos with masses of order 1 TeV. The mass eigenvalues are

furthermore constrained by the known mass differences δm2
ν .

We conclude this section by giving the neutrino propagators derived in [6] for the case

when Mij is given by (2.20) with (2.6). With a proper change of basis in the space of

right-chiral neutrinos we can assume, that Mij = Mδij with a positive parameter M (this

change will also modify m, see below). Moreover, because the effects we are looking for

depend on the small matrix mij we can simplify the expressions further by expanding in

powers of mij . Up to and including terms O(m3) this gives (suppressing family indices)

〈ναν̄β̇〉 = −i
6pαβ̇
p2

(
1−m∗D(p)∗(p2 +m†m)mT

)
= −i 6pαβ̇

(
1

p2
− m∗mT

p2(p2 +M2)
+ . . .

)
,

〈NαN̄β̇〉 = −i 6pαβ̇D(p)(p2 +mTm∗)

= −i 6pαβ̇

(
1

p2 +M2
− m†m

(p2 +M2)2
+

M2mTm∗

p2(p2 +M2)2
+ . . .

)
,

〈νανβ〉 = iεαβMm∗D(p)∗m†

= iεαβ

(
Mm∗m†

p2(p2 +M2)
+ . . .

)
,

〈NαNβ〉 = −iεαβMp2D(p)

= −iεαβ

(
M

p2 +M2
− M(m†m+mTm∗)

(p2 +M2)2
+ . . .

)
,

〈ναN̄β̇〉 = i 6pαβ̇Mm∗D(p)∗

= i 6pαβ̇

(
Mm∗

p2(p2 +M2)
− Mm∗(mTm∗ +m†m)

p2(p2 +M2)2
+ . . .

)
,
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〈ναNβ〉 = −iεαβm
∗D(p)∗(p2 +m†m)

= −iεαβ

(
m∗

p2 +M2
− m∗mTm∗

(p2 +M2)2
+

M2m∗m†m

p2(p2 +M2)2
+ . . .

)
, (2.24)

where

6pαβ̇ = pµσ
µ

αβ̇
, σµ = (1, σi),

D(p) ≡
[
(p2 +mTm∗)(p2 +m†m) + p2M2

]−1
= D(p)T . (2.25)

In evaluating the Feynman integrals we should keep in mind that expressions containing

the matrix mij can originate both from this expansion as well as from the interaction

vertex (2.27) below.

2.3 Pseudo-Goldstone bosons

As we already pointed out, besides the Majoron, there appear five Goldstone bosons. The

latter are converted to pseudo-Goldstone bosons via radiative corrections that originate

from the Yukawa term (2.19). To make all this more explicit we need to parametrize the

Goldstone manifold M in (2.7). To this aim, we first separate off the (pseudo-)Goldstone

modes by means of the formula (2.9). According to (2.11) we can then split Ãij(x) into a

trace part and the rest. As we will see below, because of the explicit breaking of SU(3)N ,

and hence also its SO(3) subgroup, induced by the Yukawa couplings Y ν
ij , the five Goldstone

fields contained in Aij(x) will actually acquire very small masses, and thus metamorphose

into pseudo-Goldstone bosons.

To proceed it is convenient to eliminate the pseudo-Goldstone boson fields from the Ma-

jorana Yukawa coupling ∝ φNN by absorbing them into the right-chiral neutrino spinors

N i
α(x) = (U∗0 e−iÃ(x)UT0 )ijÑ

j
α(x), (2.26)

where we have included the (constant) ‘vacuum realignment matrix’ U0 that is implicitly

determined by requiring absence of tadpoles (or equivalently, 〈A〉 = 0 for the vacuum of the

one-loop corrected effective potential, see below). For the remaining SM fermions there is a

similar redefinition only involving the Majoron a(x). After this redefinition the Goldstone

modes only appear in the Dirac-Yukawa coupling (2.19) and via derivative couplings of the

type ∂µAf̄γ
µ 1+γ5

2 f . The only non-derivative couplings of the pseudo-Goldstone fields are

thus given by

L′Y = −(Y ν U∗0 e−iA(x)UT0 )ijH
TεL̃iαÑ j

α + h.c.

= − vH(Y ν U∗0 e−iA(x)UT0 )ij ν̃
iαÑ j

α + h.c. + · · · . (2.27)

The Majoron a(x) has disappeared from the above interaction term because of the accom-

panying redefinitions of the left-chiral leptons, in accordance with exact U(1)B−L symmetry

(thus, a(x) has only derivative couplings). Even though the interaction (2.27) now looks

non-renormalizable, it is, of course, not. However, in order to recover renormalizability in

this ‘picture’ one must expand the exponential as appropriate. For instance, at one loop

– 11 –



J
H
E
P
1
0
(
2
0
1
5
)
1
7
0

we will have to take into account both linear and quadratic terms in Ã(x) when computing

mass corrections, see below.

At this point we can also absorb the vacuum realignment matrix U0 into a redefinition

of the Yukawa couplings. For this purpose we redefine the right-chiral neutrino fields

once again

Ñ j
α(x) ≡

(
y∗M
|yM |

)1/2

(U∗0 )jiN̂
i
α(x) , (2.28)

so that, in terms of new fermion fields, the vertex (2.27) reads

L′Y = −vH(Ŷ ν e−iA(x))ij ν̃
iαN̂ j

α + h.c. + · · · , (2.29)

with the redefined Yukawa coupling matrix

Ŷ ν =

(
y∗M
|yM |

)1/2

Y νU∗0 . (2.30)

The presence of a non-trivial vacuum realignment matrix U0 entails the following redefini-

tion of the Dirac and Majorana mass matrices

m̂ = Ŷ ν vH , M̂ = |yM |vφ1. (2.31)

so the redefined Majorana mass matrix is diagonal.

For the calculation of the radiative correction we employ the neutrino matrix propa-

gators listed in (2.24), with M ≡ |yM |vφ and the replacement m 7→ m̂. While the original

potential did not depend on A(x) at all, this vacuum degeneracy is lifted at one loop due

to the interactions induced by the term (2.27) in the effective potential. The result can

be expanded in powers of A, but we are interested here only in the linear and quadratic

terms. There is a finite contribution to the term linear in Aij , which is proportional to∫
d4p

(2π)4

M2

p2(p2 +M2)2
Tr
([
m̂†m̂ , m̂T m̂∗

]
A
)
, (2.32)

and comes from the tadpole diagram, using the 〈ναNβ〉 and 〈ν̄α̇N̄β̇〉 propagators from (2.24),

with one factor m from the vertex and the other factors containing m from the propagators.

Importantly, there are neither quadratic nor logarithmic divergences. To identify the true

vacuum we now require absence of tadpoles [56], or equivalently, the vanishing of the linear

term above. This amounts to choosing the vacuum realignment matrix U0 in such a way

that the commutator in (2.32) vanishes. Equivalently, we demand the matrix

m̂†m̂ = UT0 (m†m)U∗0 , (2.33)

to be real; the requisite re-alignment matrix U0 always exists because m†m is hermitean.

Consequently, [
m̂†m̂ , m̂T m̂∗

]
= 0. (2.34)

whence (2.32) vanishes with this choice of U0. We emphasize that (2.34) does not restrict

the parameters of the Lagrangian in any way, but simply tells us how the matrix U0 is
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Figure 1. Two types of diagrams that contribute to the quadratic terms in the potential for

A. Every vertex couples to either νiαN j
α or ν̄iα̇N̄

jα̇; solid lines represent neutrino propagators

from (2.24).

determined from Y ν in order to reach the true vacuum of the one-loop effective potential.

For notational simplicity we will drop the hats on the mass parameters in the remainder.

Remarkably, the explicit form of the matrix U0 is thus not needed, it is enough to simply

impose the condition (2.34). For instance, in the so-called Casas-Ibarra parametrization [66]

the redefined Ŷ ν matrix has the form

Ŷ ν =
1

vH
U∗ν
√
m̄νRCI

√
M̂, (2.35)

with a complex orthogonal RCI matrix and a unitary matrix Uν (sometimes called PMNS

matrix, being the neutrino analog of the CKM matrix); furthermore, the diagonal matrix

m̄ν of eigenmasses of light neutrinos

m̄ν = diag
(
m̄ν,1, m̄ν,2, m̄ν,3

)
. (2.36)

The general solution to (2.34) then requires (assuming det m̄ν 6= 0)

R∗CI = RCI . (2.37)

Thus all phases of Ŷ ν are contained in the PMNS matrix. To simplify the notation we will

from now on assume that the couplings have been appropriately redefined and drop the hats

in all formulas.

At quadratic order in A there are eight contributions from the usual loop diagrams

and two contributions from the tadpole diagrams with two external A legs which endow

the erstwhile Goldstone bosons with a (small) mass. At one loop the relevant contributions

come from the diagrams depicted in figure 1 below.

Up to and including O(m4) terms they are given by

(1) =

∫
d4p

(2π)4
Tr

{
−2

p2 +M2
m†mA2 +

2

(p2 +M2)2
(m†m)2A2

+
−2M2

p2(p2 +M2)2
m†mAmTm?A

+
−M2

p2(p2 +M2)2

([
m†m,A

][
mTm?, A

])}
, (2.38)
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and

(2) =

∫
d4p

(2π)4
Tr

{
2

p2 +M2
m†mA2 +

−2

(p2 +M2)2
(m†m)2A2

+
2M2

p2(p2 +M2)2
m†mAmTm?A

+
−M2

p2(p2 +M2)2

([
m†m,A

][
mTm?, A

])}
. (2.39)

Adding the two contributions we see that all the divergent terms cancel, so we are left

with a finite integral. Integrating over the momentum we arrive at the very simple and

suggestive formula (now in terms of the dimensionful fields G(x) introduced in (2.12))

Leff(A) 3 1

8π2v2
φ

Tr
([
m†m,G

][
mTm∗, G

])
. (2.40)

Since the terms of order O(m2) cancel at one loop, and only terms O(m4) remain, one can

worry that higher loop corrections can be more important than the contribution calculated

above. However, there is a very simple argument showing that the terms of order O(m2)

will always cancel. Namely, if we focus on terms that do not contain derivatives of A,

the only way A can appear in the formula is through the exponential factor in Yukawa

coupling (2.29). That means that the potential for A can be calculated from the contri-

butions to the vacuum energy by substituting m → me−iA in the formulae. Because the

only structures of order O(m2) that can appear with the breaking pattern (2.6) in the

vacuum diagram are mm† and m∗mT , which are invariant under this substitution, there

will be no O(m2) terms in the potential for A, at any loop order. Terms containing mmT

and m∗m† that potentially could provide contributions, will not appear because lepton

number is conserved in the SM. The terms of order O(m4) can only appear because the

allowed structure mmTm∗m† is not invariant under this substitution. This also shows why

commutator structures appear:

mmTm∗m† → me−2iAmTm∗e2iAm† (2.41)

= mmTm∗m† − 2im[A,mTm∗]m† − 2m[A, [A,mTm∗]]m† + . . .

If we had additional scalar fields like in (A.1), or any other mechanism for which Mij ∼ 〈φij〉
is not proportional to the identity matrix, then the structures that can appear are more

complicated. For example, instead of simple structure mm†, we could have mf(M)m†,

with f being some function of matrix M . Substituting m → me−iA now produces the

following terms:

mf(M)m† → me−iAf(M)eiAm† (2.42)

= mf(M)m† − im[A, f(M)]m† + . . .

Ultimately, those of the fields A that do not commute with matrix M will obtain mass

terms of order O(m2) = O((
√
mνM)2). For those that do commute however, this terms

will vanish, and the leading contribution to their mass will come from (2.40).
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The finiteness of the result (2.40) is crucial, and this is the sense in which the ap-

proximate SU(3)N symmetry ‘protects’ the pseudo-Goldstone bosons from acquiring large

masses. If there were divergences the pseudo-Goldstone masses would have to be fixed by

some renormalisation procedure, and we could no longer claim that they are ‘naturally’

small. We also note that (2.40) vanishes for diagonal G(x), hence two of the Goldstone

bosons remain massless at this order (but not beyond). As (2.40) shows, the mass values

are slightly smaller than the (light) neutrino masses. Likewise, the part in A proportional

to the unit matrix would drop out in this formula, and the associated Goldstone boson

would thus remain massless (but we note that this formula is anyway not directly applica-

ble to the Majoron a(x) as this field drops out from the vertex (2.27) after re-defining all

SM fermions).

2.4 Pseudo-Goldstone couplings

The pseudo-Goldstone particles couple, via the Yukawa interaction (2.19), to the usual

(‘non-sterile’) SM particles. Because these couplings receive non-vanishing contributions

only at higher orders in the loop expansion they are naturally small, with calculable coef-

ficients [6], and this fact makes them obvious Dark Matter candidates. In this subsection

we briefly discuss some of the possible couplings, in particular the couplings to neutri-

nos and photons. These are not only relevant to the question which pseudo-Goldstone

excitations can survive to the present epoch and hence serve as viable dark matter can-

didates, but also to the question whether their decays can be observed in principle. The

decays of these pseudo-Goldstone bosons into other lighter pseudo-Goldstone bosons are

strongly suppressed.

The first point to note is that our pseudo-Goldstone bosons cannot decay into light

neutrinos because by (2.40) their masses are generically below the light neutrino mass

values. This is crucial for them to be viable dark matter candidates, as otherwise they

would have decayed long ago! However, they can decay into photons, with a calculable

rate. This rate follows from an explicit calculation of the effective vertex

Leff ∼
1

vφM4

∑
i

gAγγ,i
(
m∗
[
m†m,A

]
mT
)
ii
FµνF

µν , (2.43)

where gAγγ,i is of the order of 10−4 for M ∼ 200 GeV. Observe that the coefficient gAγγ i
depends on the family index i via the mass of the associated lepton mi ≡ (me,mµ,mτ ), oth-

erwise this term would vanish altogether with our minimization condition from (2.34). As a

consequence the result depends on the differences between the contributions from different

leptons. Even without taking this into account the effective decay rate is extremely small

ΓAγγ ∼
g2
aγγm

2
ν

8πM2

m3
A

v2
φ

� 10−42eV. (2.44)

This is many orders of magnitude less than the Hubble parameter (H−1
0 ∼ 10−32 eV).

Therefore we conclude that these pseudo-Goldstone bosons are effectively stable.
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The result (2.43) may also be important for axion searches (see [67, 68]). However, for

the present model with only a sterile scalar sextet, the effective coupling is of the order of

1

fγ
∼ m2

ν

M3
∼ 10−24 GeV−1, (2.45)

and thus far beyond the reach of current experiments. However, this situation may well

change in the presence of more complicated scalar sectors, such as the one discussed in the

appendix: if the eigenvalues of the mass matrix M of the heavy neutrinos were different

from each other, the coupling would be of order of mν
M2 ∼ 10−13 GeV−1. This value would

still pose a challenge, but could be much closer to experimental verification.

We would also like to emphasize that the present model in principle allows not only

for couplings of the type (2.43), but also for axionic couplings ∝ AFF̃ , such that there can

appear effective couplings

Leff 3
1

2
aA0 (E2 −B2) + bA0 E ·B, (2.46)

with computable small coefficients a and b, and A0 ≡
∑

i,j cijAij a certain linear combina-

tion of the pseudo-Goldstone bosons.

In principle the pseudo-Goldstone bosons also couple to gluons, again with computable

coefficients. As before the coupling need not be purely axionic. Not unexpectedly, the

coupling turns out to be extremely small: for the present model it is proportional to

(see [7] for a derivation)

Leff 3
α2
W yM

8π2M4
W vφ

Tr
(
m
[
M †M,A

]
m†
)[αs

4π
Tr (GµνG̃µν)

]
, (2.47)

in lowest order (involving several three-loop diagrams as in [6]). This expression vanishes

if the matrix M †M is proportional to unity, in which case one would have to go to the next

order to obtain a non-vanishing result. However, it is possible to obtain a non-vanishing

result already at this order with a more complicated scalar sector.

3 Constraints and predictions

Any of the following three observations would immediately falsify the model:

• Discovery of a genuinely new mass scale (proton decay, WIMPs, etc.);

• Detection of new fundamental spin- 1
2 degrees of freedom;

• Detection of non-sterile charged scalar degrees of freedom, as predicted by two-

doublet models or all models of low energy supersymmetry (squarks, sleptons, etc.).

If none of the above shows up in the near future the model presented in this paper (or

some modified version thereof) can be considered as an alternative.

The first test of the proposed scenario is of course whether it is possible at all to arrange

the parameters such that all the conditions and constraints imposed by observations can
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be simultaneously satisfied in such a way that no large intermediate scales are needed, and

the subset of couplings already known from the SM agrees with the ones computed in our

model. We now list the conditions that will have to be met for our scenario to be consistent

and compatible with what has been observed so far.

3.1 Perturbative consistency

Scalar fields are usually accompanied by quadratic divergences, which are generally viewed

as posing a fine tuning challenge. With several new scalar fields beyond the SM scalar sector

we have to address this issue. The desired cancellation of quadratic divergences is one of

the main motivations for ‘going supersymmetric’, but we will here follow a different, and

more economical strategy, by imposing the cancellation of quadratic divergences directly in

terms of bare parameters at the Planck scale [4]. The underlying assumption here is that at

this scale a proper and finite theory of quantum gravity (not necessarily a space-time based

quantum field theory) ‘takes over’ that will explain the cancellation in terms of some as yet

unknown symmetry (different from low energy N = 1 supersymmetry). The corresponding

conditions were already evaluated for a simpler model in [4], where it was shown that a

realistic window could be found for the couplings. This analysis can be generalized to the

present case.

In addition we require that none of the couplings should exhibit Landau poles over

the whole range of energies from the electroweak scale to the Planck scale. Likewise, there

should be no instabilities (in the form of lower unboundedness) of the effective potential

over this range. Realizing this assumption in the concrete model at hand shows that

the putative instability of the Higgs potential in the (un-extended) SM (see e.g. [50–54])

can be avoided altogether. Obviously, these requirements lead to strong restrictions on

the couplings, and it is one of the main challenges whether these can be met with our

other assumptions.

As explained in [4] for each scalar we impose the vanishing of the quadratic divergence

associated with this scalar at the Planck mass, and then evolve back to the electroweak

scale, matching the couplings to the electroweak couplings as far as they are known. For the

investigations of the scale dependence of the couplings at one loop we need the coefficients

in front of the quadratic divergences; they read

fH =
9

4
g2
w +

3

4
g2
y + 6λ1 + 12λ3 − 6y2

t ,

fφ = 14λ2 + 4λ3 + 8λ4 − |yM |2. (3.1)

Non-zero values of Y ν do not produce additional quadratic divergences at one loop, except

for a negligible contribution to fH . At one loop the β-functions do not depend on the

renormalization scheme, and can be deduced from the general expressions given in [69];

they are (β̃ ≡ 16π2β)

β̃gw = − 19

6
g3
w , β̃gy =

41

6
g3
y , β̃gs = −7g3

s ,

β̃yt = yt

{
9

2
y2
t − 8g2

s −
9

4
g2
w −

17

12
g2
y

}
, β̃yM =

5

2
yM |yM |2,
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β̃λ1 =
3

8

(
3g4
w + 2g2

wg
2
y + g4

y

)
− 6y4

t − 3
(
3g2
w + g2

y − 4y2
t

)
λ1 + 12

(
2λ2

1 + 2λ2
3

)
,

β̃λ2 = 40λ2
2 + 8λ2

3 + 6λ2
4 + 32λ2λ4 + 2λ2|yM |2,

β̃λ3 = λ3

[
|yM |2 + 6y2

t −
9g2
w

2
−

3g2
y

2
+ 12λ1 + 28λ2 + 8λ3 + 16λ4

]
,

β̃λ4 = 22λ2
4 +

(
2|yM |2 + 24λ2

)
λ4 − |yM |4, (3.2)

and

β̃m2
1

= m2
1

(
12λ1 −

3

2

(
3g2
w + g2

y

)
+ 6y2

t

)
+ 24λ3m

2
2,

β̃m2
2

= 8λ3m
2
1 +m2

2

(
28λ2 + 16λ4 + |yM |2

)
. (3.3)

Anomalous dimensions (in the Landau gauge) can be derived from the above expressions

and the effective potential given below

γφ =
1

32π2
|yM |2, γH = − 3

64π2

(
3g2
w + g2

y − 4y2
t

)
. (3.4)

We also refer to [52] for an investigation of the scale dependence of fH in the (un-extended)

Standard Model.

3.2 Vacuum stability

One of the important open issues for the SM concerns the stability of the electroweak

vacuum. There are strong indications that this vacuum develops an instability around

∼ 1011 GeV when radiative corrections are taken into account [50–54]. More specifically,

the RG improved one-loop potential VRGI
eff (H) ∼ λ(µ = H)H4 becomes negative when the

running coupling λ(µ = H) dips below zero, as it does for large field values H ∼ 1011 GeV.

Remarkably, however, the potential fails to be positive by very little, so one might hope

that a ‘small’ modification of the theory might remedy the instability. We will now argue

that this is indeed the case for the present model.7

To confirm that the point (2.6) is indeed the global minimum of the full effective

potential we recall that we impose the conditions of positivity of the quartic potential

(listed in section 2.1) for all values of the RG scale µ between the electroweak and the

Planck scale. In order to investigate this issue more carefully we note that for Y ν = 0

the effective potential has an exact U(3) symmetry, and thus reaches all its values on a

submanifold parametrized by

H =
1√
2

(
0

ϕ4

)
, φ =

1√
2

ϕ1 0 0

0 ϕ2 0

0 0 ϕ3

 , (3.5)

7This stability requirement was already present in previous versions of the CSM [2, 4]. See also [71] for

an alternative proposal how to stabilize the electroweak vacuum.
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with nonnegative parameters ϕi. Its explicit form (in the Landau gauge and the MS

scheme of dimensional regularization) reads

Veff(ϕ) = V(H
(
ϕ), φ(ϕ)

)
+ ~V(1)(ϕ) + O(~2), (3.6)

with the tree-level potential given in (2.4) and (we follow the notation of [70])

64π2 V(1)(ϕ) =

13∑
i=1

S2
i

{
ln
Si
µ2
− 3

2

}
+ 3G2

{
ln

G
µ2
− 3

2

}

−2

3∑
i=1

N2
i

{
ln
Ni

µ2
− 3

2

}
− 12T 2

{
ln
T

µ2
− 3

2

}
+3Z2

{
ln
Z

µ2
− 5

6

}
+ 6W 2

{
ln
W

µ2
− 5

6

}
, (3.7)

where

W =
1

4
g2
wϕ

2
4, Z =

1

4
(g2
w + g2

y)ϕ
2
4, T =

1

2
y2
tϕ

2
4, Ni =

1

2
|yM |2ϕ2

i , (3.8)

G = λ1ϕ
2
4 + λ3

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)
+m2

1, (3.9)

and

Si = λ4ϕ
2
i + λ3ϕ

2
4 + λ2

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)
+m2

2, for i = 1, 2, 3, (3.10)

S4−9 = −λ4

(
ϕ2
k ± ϕlϕn

)
+ λ3ϕ

2
4 + (λ2 + λ4)

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)
+m2

2, (3.11)

with k, l, n = 1, 2, 3 and k 6= l 6= n 6= k. Finally S10-S13 are eigenvalues of the following

4× 4 matrix

S =


D1 2λ2ϕ1ϕ2 2λ2ϕ1ϕ3 2λ3ϕ1ϕ4

2λ2ϕ1ϕ2 D2 2λ2ϕ2ϕ3 2λ3ϕ2ϕ4

2λ2ϕ1ϕ3 2λ2ϕ2ϕ3 D3 2λ3ϕ3ϕ4

2λ3ϕ1ϕ4 2λ3ϕ2ϕ4 2λ3ϕ3ϕ4 E

 , (3.12)

where

Di = (2λ2 + 3λ4)ϕ2
i + λ3ϕ

2
4 + λ2

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)
+m2

2,

E = 3λ1ϕ
2
4 + λ3

(
ϕ2

1 + ϕ2
2 + ϕ2

3

)
+m2

1. (3.13)

Typically, the unimproved one-loop potential (3.6) with µ = Mt ≈ 173 GeV can exhibit

an instability below the Planck scale. However, this effect is spurious, as its origin is entirely

due to large logarithms. Although the method of RG improved effective potentials VRGI
eff

is not as powerful in the multifield case as in models with only one scalar field,8 we can

nevertheless formulate an RG improved version by taking the field dependent ‘radial norm’

µ2(H,φ) = 2
{
H†H + Tr (φ∗φ)

}
=

4∑
i=1

ϕ2
i ≡ ||ϕ||2, (3.14)

8In particular, for multifield models with classical conformal symmetry, instead of constructing VRGI
eff

one usually exploits the RG invariance to determine the ‘best’ value of the RG scale (i.e. the one for which

the tree-level potential has a flat direction), following Gildener and Weinberg [72].
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as the scale parameter in field space. Then one checks numerically that (the RG improved

version of) the potential (3.6) remains positive for large values of ||ϕ|| in the range

10TeV . ||ϕ|| . MPl,

(in particular this is true for all points in the table). This is a strong indication that the

electroweak vacuum (2.6) remains the global minimum over this whole range of energies.

The apparent discrepancy between the unimproved and the improved effective potential is

the same as for the SM, where the unimproved one-loop effective potential likewise reaches

the instability already for much smaller field values than the RG improved one.

3.3 Dark matter constraints

We have already pointed out that the pseudo-Goldstone bosons of our model are natural

Dark Matter candidates. However, in order to verify that they are really viable we need

to check (1) whether they can be non-relativistic, and (2) whether they can survive till

the present epoch [73]. As for the second requirement, we have already checked that the

pseudo-Goldstone cannot decay into light neutrinos. The decay rate into photons was

found to be very small, and many orders of magnitude smaller that the present Hubble

parameter. Hence the pseudo-Goldstone particles are indeed ‘stable’.

The first requirement can be satisfied if at the time of the electroweak phase transition,

i.e. for temperatures around 100 GeV, the causally connected region is smaller than the

inverse mass of the Dark Matter candidate. This requirement comes from the fact that

the potential for the scalar fields started to be nonvanishing at the time of the electroweak

transition. At that point, the phase fields start to oscillate coherently, and the fluctuations

of smaller wavelength than the causal region are suppressed. To get a rough estimate, we

note that the causally connected region at that time of the phase transition (∼ 10−10 s)

was about 0.01 m; expressed in mass units this corresponds to a mass bigger than about

10−4 eV. As we can see from the formula (2.40) the masses of the pseudo-Goldstone bosons

are not too much below the mass of the light neutrinos, so this requirement can be satisfied

and they are naturally in a (small) window between 10−4 eV and the light neutrinos masses.

An equally important point concerns the abundance with which the Dark Matter

particles are produced, so as to arrive at the desired value ΩDM ∼ 0.3. In order to

derive a very rough estimate we note that this requires (amongst other things) not only

a knowledge of the pseudo-Goldstone masses, but also of the effective potential Veff(G).

All we know is that the latter must be a single-valued function on the Goldstone manifold

SU(3)N/SO(3), cf. (2.7). It is also clear from our foregoing considerations this potential

is in principle calculable via the determination of the effective higher point vertices of the

pseudo-Goldstone fields. At one loop the effective potential in G derives from

Veff(G) ∝ Tr
(
me−iG/vφmTm∗eiG/vφm†

)
, (3.15)

which yields the estimate

V max
eff ∝ Tr (mmTm∗m†) ∼ m2

νM
2, (3.16)
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for the height of the potential. The contribution to Ω then follows from scaling down the

energy density of the pseudo-Goldstone particles to the present epoch by means of the factor

(R∗/R0)3 ∼ (T0/T∗)
3 where R0 (T0) is the present radius (temperature) of the universe,

and R∗ (T∗) the radius (temperature) of the universe when the abundance is produced.

To estimate the latter, we observe that for T > V max
eff we have thermal equilibrium, and

only for T < V max
eff can the pseudo-Goldstone particles start to be produced non-thermally

by coherent oscillations. Therefore setting T∗ = (V max
eff )1/4 seems a reasonable choice;

this gives

Ω ∼ ρ−1
critV

max
eff

(
T0

T∗

)3

∼ ρ−1
crit (V max

eff )1/4 T 3
0 ∼ ρ−1

crit

√
mνM T 3

0 . (3.17)

This is indeed an estimate that also gives about the right order of magnitude for standard

axions, with V max
eff = Λ4

QCD. In our case, the result comes out too small by two or three

orders of magnitude. However, the above estimate is fraught with several uncertainties,

apart from the precise details of the production mechanism, which may give rise to all

kinds of ‘fudge factors’. In particular, since there is a ‘collective’ of scalar fields involved in

this process it is not clear whether there cannot exist new enhancement effects, similar to

the resonant effects giving rise to leptogenesis as in [5, 74]. Furthermore, a modification of

the scalar sector along the lines of section 2.2 might change the value of V max
eff , for instance

replacing m2
νM

2 by mνM
3 in (3.16) which would give the desired number. So this issue

clearly requires further and more detailed study.

3.4 Leptogenesis

An important feature of the present model is that it can account for the observed matter-

antimatter asymmetry (∼ 10−10) in a fairly natural manner. Since the masses of right-

chiral neutrinos are smaller than the usually quoted bound (� 105 TeV) we have to assume

that the source of the asymmetry is resonant leptogenesis [5, 74]. One of the necessary

conditions for this mechanism to work is the approximate degeneracy of the masses of

right-chiral neutrinos — exactly as obtained in our model. The shift δM induced by the

Dirac-Yukawa term is naturally very small, and turns out to be exactly of the magnitude

required by the condition given in [5]:

δM ∼ Γ. (3.18)

This is because, on the one hand, the decay rate of a massive neutrino in our model is

Γ ∼ Y 2
νM . On the other hand, the mass splitting induced by the Dirac-Yukawa coupling

is δM ∼ Y 2
νM ; the latter is caused by two sources — the diagonalization of the neutrino

mass matrix in the presence of the Dirac Yukawa term (2.27) and the RGE running of

the Majorana-Yukawa couplings from MPL down to TeV scale of heavy neutrinos. It

is important to emphasize that the condition δM ∼ Γ is thus very natural in our model,

whereas it usually requires a certain amount of fine tuning, especially in GUT type models.

If we use the formula to estimate the baryonic asymmetry given in [74] we get the

correct asymmetry taking into account light neutrino data and assuming nonzero (but
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small) phases of the PMNS matrix in eq. (2.35). In our case, as we have already said

in (2.37), the Casas-Ibarra matrix has to be real, so that the PMNS phases are responsible

for the leptogenesis. For example, the points shown in table 1, give ηB ≈ 6 × 10−10 with

PMNS phases of order 10−3. We leave the details of this and other leptogenesis related

calculations to a future publication.

3.5 New scalar particles

Because much of the new structure of the model is sterile, not many dramatic new effects

are expected to be observable beyond the SM. Nevertheless, there are distinctive signatures

that are very specific to the present scenario, and that can be easily used to discriminate it

from other BSM scenarios. These are mainly due to the mixing of the new scalars with (the

H0 component of) the Higgs doublet induced by the potential (2.4) with (2.6). From (2.16)

we immediately get he decomposition of H0 in terms of the mass eigenstates h0 and h′

H0 = cosβ h0 − sinβ h′, (3.19)

whence the scattering amplitude would be well approximated by

A ∝ cos2 β

p2 +m2
h0

+ i cos2 β mh0 ΓSM (m2
h0

)
+

sin2 β

p2 +m2
h′ + i sin2 β mh′ ΓSM (m2

h′)
. (3.20)

The existing experimental data suggest that | cosβ| should be close to 1, if h0 is to mimic

the SM Higgs boson. The particle corresponding to h′ has not been observed yet. The

mixing will thus induce interactions of this new mass eigenstates with SM particles. In

particular the decay channels of the standard Higgs boson are also open to the new scalar

excitations, possibly leading to a kind of ‘shadow Higgs’ phenomenon, with decay am-

plitudes of approximately the same height but sharply reduced width [57]. In addition,

depending on the mass values of the new scalars there may be extra decay channels in-

volving new scalars, and possibly even heavy neutrinos, leading to a broadening of the

resonance curve.

The existence of new scalar degrees of freedom mixing with the standard Higgs boson

is the main generic prediction of the present model. It is a distinct signature that, though

perhaps not so easy to confirm, can serve to discriminate the present model from other

scenarios, in particular supersymmetric and two-doublet models which inevitably contain

non-sterile scalars, or the νMSM model of [36], which does have a sterile scalar (and also

keV range ‘heavy’ neutrinos), but absolutely nothing above mh0 in the TeV range. Thanks

to the mixing the new scalar(s) may eventually be seen at LHC, but the actual potential

for discovery depends, of course, on their masses, mixing angles etc. The mixing would

also lead to a slight diminution in the decay width of the SM Higgs boson that can be

measured in future precision tests at the Higgs resonance.

3.6 Numerical analysis

We conclude this section by giving some numerical data which show that there exists a

wide range of points in parameter space with the following properties:
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|yM | MN Mh′ MR tβ Γh′ BR(h′ → OP ) BR(h0 → OP )

0.56 545 378 424 -0.3 3.1 0.59 0.69

0.54 520 378 360 -0.3 3.1 0.59 0.68

0.75 1341 511 1550 0.25 6.2 0.73 0.91

0.75 2732 658 3170 -0.16 5.9 0.74 0.99

0.82 2500 834 2925 0.15 10.9 0.74 0.98

Table 1. Example points (all dimensional parameters are given in GeV).

• The quartic potential Vquart(H,φ, µ) is positive definite for all renormalization scales

µ between Mt and the MPl, while all dimensionless couplings c(µ) = (λ(µ), g(µ), y(µ))

remain perturbative in this range (i.e. |c(µ)| < 4 in our normalization conventions);

• the coefficients functions fi of the quadratic divergences defined in (3.1) vanish at

the Planck scale;

• For µ = Mt there exists a stationary point of the type (2.6), with vH ≈ 174 GeV,

which is the global minimum of the potential (2.4); moreover, the SM-like Higgs

particle can be arranged to have Mh0 = 125 GeV such that |tβ | < 0.3, cf. (3.19);

• There exists a matrix Y ν consistent with both Dashen’s conditions and light neutrino

data that yields ηB ≈ 6× 10−10 as well as a positive semi-definite pseudo-Goldstone

boson mass matrix corresponding to (2.40).

Some representative numerical examples are listed in table 1 with yM = yM (µ = Mt).

We also show there decay width of the ‘shadow Higgs’ h′ and the branching ratios of h0

and h′ into ‘old particles’ (≡ OP ), i.e. particles discovered prior to 2012. All points have

Mh0 = 125GeV and vH = 174GeV.

4 Gauging (B-L)

While the consistency of the model introduced in the previous sections does not require any

further modifications some of them seem self-evident. For instance, by further enlarging

the scalar sector, there can appear additional ‘shadow Higgs bosons’. In the appendix we

present one such example with a new scalar triplet ξ in the fundamental representation of

SU(3)N , which is also in complete agreement with our basic assumptions.

A more important (and perhaps also more plausible) possibility follows from the cancel-

lation of (B−L) anomalies, a fact that is widely viewed as an indication that this symmetry

should be gauged (see in particular [26, 29] for recent work in this direction in the context

of conformal invariance). Thus one can enquire under what conditions gauging U(1)B−L
would be consistent both with our assumptions and existing experimental bounds. The

associated U(1)B−L gauge boson (alias B′ boson) would then also appear in the scalar

kinetic terms

Lkin = −Tr
[
(∂µφ∗ + 2igxB

′µφ∗)(∂µφ− 2igxB
′
µφ)
]

+ · · · . (4.1)
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From these and the expectation values (2.6) we immediately deduce the mass of

the B′-boson

m2
B′ = 24g2

xv
2
φ . (4.2)

This simple picture is complicated by the kinetic mixing of B′ with U(1)Y gauge boson B.

The mixing can be equivalently described as a modification of covariant derivatives (with

standard, diagonal kinetic terms of gauge boson) [28]. For an arbitrary matter field we

have (with X ≡ B−L)

Dµ = ∂µ + i
[
gsTiGiµ + gwTaW

a
µ + gyY Bµ + (gxX + gmY )B′µ

]
,

with generators Ti, Ta for SU(3)C×SU(2)W . The above form is invariant under RGE with

non-standard ‘rotating’ anomalous dimensions of gauge fields [28]. However, the condition

gm = 0 is not — even if we start at the electroweak scale with pure (B−L) gauge theory,

an admixture of Y is always generated in the RG flow. A non-zero value of gm produces

non-diagonal elements of the (tree-level) mass matrix; in terms of mass-eigenstates we have

B′µ = sin ζ Zµ + cos ζ Z ′µ,

where Zµ is the SM-like Z boson. In the analogous decomposition of Bµ and W 3
µ the

photon field appears in addition to Zµ and Z ′µ. Preliminary checks show that one can find

a range in parameter space consistent with the counterparts of conditions summarized in

section 3.6, as well as the LEP limits [75, 76]

|ζ| . 10−3,
MZ′

gx
> 7 TeV. (4.3)

In our case typical values of the Z ′ mass are below 10 TeV. While the appearance of a Z ′

gauge boson in this range would seem difficult to reconcile with a GUT-type scenario, it

would constitute clear evidence for the present scheme! We also emphasize that the ‘pure

(B−L)’ model, defined by gm = 0 at the electroweak scale, is consistent with our conditions,

and in particular with the modified implementation of conformal symmetry (i.e. vanishing

of the coefficients in front of quadratic divergences at the Planck scale). By contrast, the

minimal ‘pure (B−L)’ model is incompatible with vacuum stability if the symmetry is

broken by means of the Coleman-Weinberg mechanism [29].

5 SU(3)N symmetry vs. quantum gravity?

Finally, we would like to comment on one issue that concerns the eventual embedding of the

present model into a UV complete theory of quantum gravity.9 Quantum gravity is widely

believed to be incompatible with global symmetries, whence only local (gauge) symmetries

are expected to survive in a ‘final’ theory, and one might therefore worry about possible

implications of this folklore theorem for the present model. The argument against global

symmetries is basically related to the evaporation of black holes. If there were conserved

9We would like to thank the anonymous referee for raising this point.
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charges associated to global symmetries, these charges, when dropped into a black hole,

would either ‘disappear’ in violation of charge conservation, or otherwise, if the charges

are really conserved, prevent black holes from decaying completely, necessarily leaving

charged remnants. Since the initial black hole can in principle have an infinite number of

charge quantum numbers, and since the associated objects would all look indistinguishably

like Schwarzschild black holes (this is where the absence or presence of gauge interactions

makes all the difference), one would thus run into a potential conflict with black hole

entropy bounds [77, 78]. However, apart from the fact that black hole evaporation, and

in particular its suspected unitary description, is still far from understood, we can proffer

the following ‘physics proof’ that the present model evades such putative trouble. First of

all, the SU(3)N is broken, both spontaneously and explicitly. Secondly, this symmetry is

very much in the spirit of the SU(3)L×SU(3)R flavor symmetry of the old quark model:

there as well, one has explicit as well as spontaneous symmetry breaking, with the pions

as the pseudo-Goldstone bosons. Just like our SU(3)N , the flavor symmetry looks like

an exact global symmetry when viewed from the Planck scale, but there is absolutely no

evidence from meson physics that quantum gravity effects or black hole evaporation modify

or invalidate the ‘naive’ predictions of the model.

In fact, this argument can be made slightly more quantitative if one invokes worm-

holes as the source of symmetry breaking (as wormholes may ‘swallow’ global charges).

While the relevant calculations are highly model dependent, one can safely assume that

symmetry breaking effects are generically suppressed in the gravitational path integral by

a factor e−S ∼ f0/MP , where f0 is the scale of symmetry breaking [79]. From this esti-

mate, effects of wormholes are indeed potentially relevant for axion phenomenology and

the role of the Peccei-Quinn U(1) symmetry [80] because the scale is f0 ≥ 1012 GeV, as

conventionally assumed. By contrast, for our SU(3)N , the symmetry breaking scale f0 is of

order 103 GeV. Assuming that the suppression factor equals f0/MP we can neglect effects

of gravity in comparison with those caused by Yν , whence the potential corrections from

quantum gravity to our predictions are completely negligible.

6 Conclusions

We have proposed an extension of the Standard Model based on a new approximate SU(3)N
symmetry acting only on right-chiral neutrinos and the new sterile scalars, under which all

SM fields are neutral. We have shown that SU(3)N symmetry breaking pattern naturally

leads to a degeneracy of heavy neutrino masses and thus to resonant leptogenesis. Moreover,

the masses and couplings of the resulting pseudo-Goldstone bosons make them viable Dark

Matter candidates. At the same time the model is perturbative up to the Planck scale and

the electroweak vacuum remains stable. The possibility of gauging B−L symmetry as well

as further extension of the scalar sector were also discussed.

The main message of this paper is therefore that there may exist a (potentially rich)

sector of ‘sterile’ scalar particles not far above the electroweak scale that would manifest

itself chiefly through the mixing with the SM Higgs boson and the appearance of narrow

resonances in the TeV range or below. This would be the main observable consequence of

the present work.
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A More sterile scalars?

Given the fact that many approaches to unification and quantum gravity come with an

abundance of scalar fields it is entirely conceivable that there exists an even larger sector

of scalar fields, and in this sense our model is just the simplest example. As one further

example, we briefly discuss in this appendix an extension of the model obtained by intro-

ducing a complex scalar triplet ξi transforming as a 3 under SU(3)N , and how the presence

of such an extra field would modify the vacuum structure and other aspects of the model.

One new feature here is that ξi is even ‘more sterile’ than φij in that not only it does not

directly couple to SM particles (like φij), but cannot even couple to right-chiral neutrinos

if we insist on renormalizability. As a consequence the associated new pseudo-Goldstone

excitations are even more weakly coupled to SM matter than those coming from φij .

With the extra triplet ξi, the most general renormalizable and U(3) symmetric scalar

field potential reads

V(H,φ, ξ) = m2
1H
†H +m2

2 Tr(φφ∗) +m2
3ξ
†ξ + (m4ξ

†φξ∗ + h.c.)

+λ1 (H†H)2 + 2λ3 (H†H)Tr(φφ∗) + λ2 [Tr(φφ∗)]2 + λ4 Tr(φφ∗φφ∗)

+λ5 ξ
†φφ∗ξ + 2λ6H

†H ξ†ξ + 2λ7 ξ
†ξTr(φφ∗) + λ8 (ξ†ξ)2, (A.1)

where all coefficients are real except for m4 (traces are over family indices). This potential

is manifestly invariant under

φ(x) → Uφ(x)UT , ξ(x) → Uξ(x), U ∈ U(3). (A.2)

One point to note is that with ξi one can easily arrange for ‘anisotropic’ expectation values

〈φij〉 not proportional to the unit matrix. As before there exists a range of parameters for

which the global minimum of the potential takes the form

〈ξ〉 = U0

 0

0

eiαvξ

 , 〈H〉 =

(
0

vH

)
, 〈φ〉 = U0

 v1 0 0

0 v1 0

0 0 v2

UT0 , (A.3)

with positive parameters vξ, vH , v1, v2 ( 6= v1), the phase α fixed by arg(m4) and the vacuum

alignment matrix U0 is of the same origin as before. The important new feature due to

the presence of ξi is the special form of the matrix 〈φij〉, with the equality of the first

two diagonal entries being due to the fact that the expectation value 〈ξi〉 singles out one

particular direction in family space, thus also lifting the degeneracy in the heavy neutrino

mass matrix obtained from (2.6).
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Because the residual symmetry of (A.3) is SO(2), and the manifold of Goldstone bosons

is the coset

M = U(3)
/

SO(2), (A.4)

whence there are now altogether eight (pseudo-)Goldstone bosons. These can be

parametrized as

φ(x) = U0 e
iA(x) φ̃(x) eiA(x)T UT0

ξ(x) = U0 e
iA(x) ξ̃(x), (A.5)

with

A(x) ≡
∑
a

′Aa(x)λa, (A.6)

and where the sum runs over those generators λa (now including λ9 ≡ 1) that are sponta-

neously broken by vacuum (A.3).

The analysis of the vacuum structure is now more cumbersome than before. Expanding

φ̃(x) and ξ̃(x) about the vacuum expectation values (A.3)

φ̃ij(x) = 〈φij〉+ φ′ij(x), ξ̃i(x) = 〈ξi〉+ ξ′i(x), (A.7)

we have to ensure that the quantum fluctuations φ′ij(x) and ξ′i(x) do not contain Goldstone

bosons, as the latter are to be absorbed into U(x). In other words, the fields φ′ij and ξ′i
should only contain the ten heavy non-Goldstone modes. This is ensured by imposing the

condition (see [58], chapter 19)

Im
{
ξ′(x)†λa〈ξ〉+ Tr

[
φ′(x)† {(λa ⊗ 1 + 1⊗ λa)〈φ〉}

]}
= 0, ∀a ∈ {1, . . . , 9}. (A.8)

As before the main observable effects are due to the mixing between the SM-like Higgs

boson and the additional scalars, but there now appear three narrow resonances above the

already discovered Higgs boson. Once again there exists a wide range of parameters for

which the analogs of the conditions listed in section 3.6 are obeyed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Particle Data Group collboration, K.A. Olive et al., Review of particle physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[2] K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B

648 (2007) 312 [hep-th/0612165] [INSPIRE].

[3] S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous

symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

– 27 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+Chin.Phys.,C38,090001
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://arxiv.org/abs/hep-th/0612165
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B648,312"
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D7,1888"


J
H
E
P
1
0
(
2
0
1
5
)
1
7
0

[4] P. Chankowski, A. Lewandowski, K.A. Meissner and H. Nicolai, Softly broken conformal

symmetry and the stability of the electroweak scale, Mod. Phys. Lett. A 30 (2015) 1550006

[arXiv:1404.0548] [INSPIRE].

[5] A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303

[hep-ph/0309342] [INSPIRE].

[6] A. Latosinski, K.A. Meissner and H. Nicolai, Neutrino mixing and the axion-gluon vertex,

Nucl. Phys. B 868 (2013) 596 [arXiv:1203.3886] [INSPIRE].

[7] A. Latosinski, Gauge covariant representation of scalar and fermion propagators,

arXiv:1509.01414 [INSPIRE].

[8] C.D. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173± 5 GeV

and Higgs mass 135± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

[9] H.B. Nielsen, PREdicted the Higgs mass, arXiv:1212.5716 [INSPIRE].

[10] I. Bars, P.J. Steinhardt and N. Turok, Cyclic cosmology, conformal symmetry and the

metastability of the Higgs, Phys. Lett. B 726 (2013) 50 [arXiv:1307.8106] [INSPIRE].

[11] W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

[12] R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from

hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005

[arXiv:1006.0131] [INSPIRE].

[13] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann,

Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys.

Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

[14] M. Holthausen, M. Lindner and M.A. Schmidt, Radiative symmetry breaking of the minimal

left-right symmetric model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].

[15] M. Lindner, S. Schmidt and J. Smirnov, Neutrino masses and conformal electro-weak

symmetry breaking, JHEP 10 (2014) 177 [arXiv:1405.6204] [INSPIRE].

[16] L. Alexander-Nunneley and A. Pilaftsis, The minimal scale invariant extension of the

standard model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

[17] A. Farzinnia, H.-J. He and J. Ren, Natural electroweak symmetry breaking from scale

invariant Higgs mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

[18] A. Farzinnia and J. Ren, Higgs partner searches and dark matter phenomenology in a

classically scale invariant Higgs boson sector, Phys. Rev. D 90 (2014) 015019

[arXiv:1405.0498] [INSPIRE].

[19] A. Farzinnia and J. Ren, Strongly first-order electroweak phase transition and classical scale

invariance, Phys. Rev. D 90 (2014) 075012 [arXiv:1408.3533] [INSPIRE].

[20] R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153

[hep-ph/9604278] [INSPIRE].

[21] W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)s

model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

[22] C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale

through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

– 28 –

http://dx.doi.org/10.1142/S0217732315500066
http://arxiv.org/abs/1404.0548
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0548
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://arxiv.org/abs/hep-ph/0309342
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B692,303"
http://dx.doi.org/10.1016/j.nuclphysb.2012.11.027
http://arxiv.org/abs/1203.3886
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B868,596"
http://arxiv.org/abs/1509.01414
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01414
http://dx.doi.org/10.1016/0370-2693(95)01480-2
http://arxiv.org/abs/hep-ph/9511371
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B368,96"
http://arxiv.org/abs/1212.5716
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5716
http://dx.doi.org/10.1016/j.physletb.2013.08.071
http://arxiv.org/abs/1307.8106
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B726,50"
http://cds.cern.ch/record/295811
http://dx.doi.org/10.1103/PhysRevD.82.035005
http://arxiv.org/abs/1006.0131
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D82,035005"
http://dx.doi.org/10.1103/PhysRevD.89.015017
http://dx.doi.org/10.1103/PhysRevD.89.015017
http://arxiv.org/abs/1309.6632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6632
http://dx.doi.org/10.1103/PhysRevD.82.055002
http://arxiv.org/abs/0911.0710
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D82,055002"
http://dx.doi.org/10.1007/JHEP10(2014)177
http://arxiv.org/abs/1405.6204
http://inspirehep.net/search?p=find+J+"JHEP,1410,177"
http://dx.doi.org/10.1007/JHEP09(2010)021
http://arxiv.org/abs/1006.5916
http://inspirehep.net/search?p=find+J+"JHEP,1009,021"
http://dx.doi.org/10.1016/j.physletb.2013.09.060
http://arxiv.org/abs/1308.0295
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0295
http://dx.doi.org/10.1103/PhysRevD.90.015019
http://arxiv.org/abs/1405.0498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0498
http://dx.doi.org/10.1103/PhysRevD.90.075012
http://arxiv.org/abs/1408.3533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3533
http://dx.doi.org/10.1016/0370-2693(96)00446-7
http://arxiv.org/abs/hep-ph/9604278
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9604278
http://dx.doi.org/10.1103/PhysRevD.75.115016
http://arxiv.org/abs/hep-ph/0701254
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0701254
http://dx.doi.org/10.1007/JHEP04(2013)060
http://arxiv.org/abs/1301.4224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.4224


J
H
E
P
1
0
(
2
0
1
5
)
1
7
0

[23] C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark

matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

[24] T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

[25] S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended standard model, Phys.

Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

[26] S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale,

Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].

[27] V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal,

JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].

[28] P.H. Chankowski, S. Pokorski and J. Wagner, Z-prime and the Appelquist-Carrazzone

decoupling, Eur. Phys. J. C 47 (2006) 187 [hep-ph/0601097] [INSPIRE].

[29] S. Oda, N. Okada and D.-s. Takahashi, Classically conformal U(1)′ extended standard model

and Higgs vacuum stability, Phys. Rev. D 92 (2015) 015026 [arXiv:1504.06291] [INSPIRE].

[30] V. Elias, R.B. Mann, D.G.C. McKeon and T.G. Steele, Radiative electroweak symmetry

breaking revisited, Phys. Rev. Lett. 91 (2003) 251601 [hep-ph/0304153] [INSPIRE].

[31] A.G. Dias and A.F. Ferrari, Renormalization group and conformal symmetry breaking in the

Chern-Simons theory coupled to matter, Phys. Rev. D 82 (2010) 085006 [arXiv:1006.5672]

[INSPIRE].

[32] A.G. Dias, A.F. Ferrari, J.D. Gomez, A.A. Natale and A.G. Quinto, Non-perturbative fixed

points and renormalization group improved effective potential, Phys. Lett. B 739 (2014) 8

[arXiv:1407.1879] [INSPIRE].

[33] F. Goertz, Electroweak symmetry breaking without the µ2 term, arXiv:1504.00355

[INSPIRE].

[34] M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical

naturalness and dynamical breaking of classical scale invariance, Mod. Phys. Lett. A 29

(2014) 1450077 [arXiv:1304.7006] [INSPIRE].

[35] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,

Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

[36] M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?,

arXiv:0708.3550 [INSPIRE].

[37] Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from

mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

[38] Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100

[arXiv:0803.2932] [INSPIRE].

[39] S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter

at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

[40] L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a

standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2014) 179 [arXiv:1203.2064]

[INSPIRE].

[41] S. Andreas, C. Arina, T. Hambye, F.-S. Ling and M.H.G. Tytgat, A light scalar WIMP

through the Higgs portal and CoGeNT, Phys. Rev. D 82 (2010) 043522 [arXiv:1003.2595]

[INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.88.055020
http://arxiv.org/abs/1307.8428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8428
http://dx.doi.org/10.1088/1126-6708/2009/01/028
http://arxiv.org/abs/0811.0172
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.0172
http://dx.doi.org/10.1016/j.physletb.2009.04.046
http://dx.doi.org/10.1016/j.physletb.2009.04.046
http://arxiv.org/abs/0902.4050
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4050
http://dx.doi.org/10.1103/PhysRevD.80.115007
http://arxiv.org/abs/0909.0128
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D80,115007"
http://dx.doi.org/10.1007/JHEP08(2014)026
http://arxiv.org/abs/1403.4953
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4953
http://dx.doi.org/10.1140/epjc/s2006-02537-3
http://arxiv.org/abs/hep-ph/0601097
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601097
http://dx.doi.org/10.1103/PhysRevD.92.015026
http://arxiv.org/abs/1504.06291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06291
http://dx.doi.org/10.1103/PhysRevLett.91.251601
http://arxiv.org/abs/hep-ph/0304153
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,91,251601"
http://dx.doi.org/10.1103/PhysRevD.82.085006
http://arxiv.org/abs/1006.5672
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D82,085006"
http://dx.doi.org/10.1016/j.physletb.2014.10.017
http://arxiv.org/abs/1407.1879
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B739,8"
http://arxiv.org/abs/1504.00355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00355
http://dx.doi.org/10.1142/S0217732314500771
http://dx.doi.org/10.1142/S0217732314500771
http://arxiv.org/abs/1304.7006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7006
http://dx.doi.org/10.1016/j.physletb.2009.12.022
http://arxiv.org/abs/0912.0208
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B683,196"
http://arxiv.org/abs/0708.3550
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3550
http://dx.doi.org/10.1103/PhysRevLett.96.231802
http://arxiv.org/abs/hep-ph/0506256
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,96,231802"
http://dx.doi.org/10.1088/1126-6708/2008/05/100
http://arxiv.org/abs/0803.2932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2932
http://dx.doi.org/10.1007/JHEP02(2012)047
http://arxiv.org/abs/1112.1847
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1847
http://dx.doi.org/10.1016/j.physletb.2012.07.017
http://arxiv.org/abs/1203.2064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2064
http://dx.doi.org/10.1103/PhysRevD.82.043522
http://arxiv.org/abs/1003.2595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2595


J
H
E
P
1
0
(
2
0
1
5
)
1
7
0

[42] S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged

U(1)B−L breaking, Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935] [INSPIRE].

[43] T. Basak and T. Mondal, Constraining minimal U(1)B−L model from dark matter

observations, Phys. Rev. D 89 (2014) 063527 [arXiv:1308.0023] [INSPIRE].

[44] Y. Kajiyama, H. Okada and T. Toma, Light dark matter candidate in B-L gauged radiative

inverse seesaw, Eur. Phys. J. C 73 (2013) 2381 [arXiv:1210.2305] [INSPIRE].

[45] S. Khalil, Low scale B-L extension of the standard model at the LHC, J. Phys. G 35 (2008)

055001 [hep-ph/0611205] [INSPIRE].

[46] A. El-Zant, S. Khalil and A. Sil, Warm dark matter in a B-L inverse seesaw scenario, Phys.

Rev. D 91 (2015) 035030 [arXiv:1308.0836] [INSPIRE].

[47] L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z ′

discovery potential at the LHC in the minimal B-L extension of the standard model, Eur.

Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].

[48] J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider

signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].

[49] W. Buchmüller, V. Domcke, K. Kamada and K. Schmitz, A minimal supersymmetric model

of particle physics and the early universe, arXiv:1309.7788 [CERN-Proceedings-2014-001]

[INSPIRE].

[50] G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP

08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

[51] D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089

[arXiv:1307.3536] [INSPIRE].

[52] Y. Hamada, H. Kawai and K.-Y. Oda, Bare Higgs mass at Planck scale, Phys. Rev. D 87

(2013) 053009 [arXiv:1210.2538] [INSPIRE].

[53] V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett.

111 (2013) 241801 [arXiv:1307.5193] [INSPIRE],

[54] V. Branchina and E. Messina, Stability and UV completion of the standard model,

arXiv:1507.08812 [INSPIRE].
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