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To determine the capacity ofwireless multiple access networks, the interference among the wireless linksmust be accuratelymodeled.
In this paper, we formalize the notion of the partial interference phenomenon observed in many recent wireless measurement
studies and establish analytical models with tractable solutions for various types of wireless multiple access networks. In particular,
we characterize the stability region of IEEE 802.11 networks under partial interference with two potentially unsaturated links
numerically. We also provide a closed-form solution for the stability region of slotted ALOHA networks under partial interference
with two potentially unsaturated links and obtain a partial characterization of the boundary of the stability region for the general
M-link case. Finally, we derive a closed-form approximated solution for the stability region for general M-link slotted ALOHA
system under partial interference effects. Based on our results, we demonstrate that it is important to model the partial interference
effects while analyzing wireless multiple access networks. This is because such considerations can result in not only significant
quantitative differences in the predicted system capacity but also fundamental qualitative changes in the shape of the stability
region of the systems.

1. Introduction

In a wireless network, all stations communicate with each
other through wireless links. A fundamental difference
between a wireless network and its wired counterpart is
that wireless links may interfere with each other, resulting
in performance degradation. Therefore in the study of
wireless networks, one important performance measure is
the capacity of the network when the effects of interlink
interference are considered.

In establishing the capacity of a wireless network, we
have to predict whether the wireless links interfere with
each other. Two most common interference models in
the wireless networking literature, namely, for example,
protocol model and physical model [1], were proposed to
predict whether transmissions in a wireless network are
successful. In these interference models, one key assumption
is that interference is a binary phenomenon, that is, either
the links mutually interfere with each other to result in
total loss of throughput of a target link, or there is no

link throughput degradation at all. In other words, these
models exclude the possibility that interfering links can be
active simultaneously and still realize their capacity partially.
However, recent empirical studies [2–6] have shown that
these binary interference models are not valid in practice.
Instead, measurement results have confirmed that there is
a nonbinary transitional region [2, 4] (also known as the
gray zone in some literature [3]) for the successful packet
reception rate (PRR) of a wireless link which changes from
zero, that is, 100% lossy, to almost 100%, that is, perfectly
reliable, as its signal-to-interference-plus-noise ratio (SINR)
increases. These studies have indicated that the range of the
transitional regional (in SINR) can exceed 10dB for various
types of practical networks including IEEE 802.11a wireless
mesh [3, 7] and other low-power multihop sensor networks
[2, 4]. More importantly, measurement studies on large-
scale wireless mesh testbeds [8, 9] found that a significant
number of links in those testbeds were indeed operating
at the SINR transitional region, that is, with intermediate
level of PRR between zero and 100%. In this paper, we
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call this phenomenon partial interference. From the physical
layer implementation perspective, the partial interference
phenomenon can be viewed as a consequence/manifestation
of the probabilistic nature of signal decoding in the
receiver, its interaction with the well-known capture effect
[10, 11], and the specific implementation of the frame
reception and capture algorithms in individual chipsets
[12].

While the phenomenon of partial interference in wireless
networks has been widely observed as mentioned above,
its incorporation in the performance modeling of such
networks is still in its infancy. Most of the efforts in this
direction so far ([2, 7, 12, 13]) have been limited to the
characterization of the nonbinary transitional region in the
PRR-versus-SINR curve based on measurement data [7, 12,
13] or some analytical means [2, 14]. However, once the
PRR-versus-SINR curve is obtained, they only resort to
simulations to evaluate the effects of partial interference on
the system performance.

In this paper, our focus is to develop analytical mod-
els with tractable solutions for various types of wireless
multiple access networks which can accurately capture the
performance impact of partial interference. Via analytical
and numerical results throughout this paper, we demonstrate
that it is important to model the partial interference effects
while analyzing wireless multiple access networks. This is
because such considerations can result in not only significant
quantitative differences in the predicted system capacity but
also fundamental qualitative changes in the shape of the
stability region of the systems (e.g., from a concave to a
convex region).

To quantify the impact of interference on multiple
access networks, we propose an analytical framework to
characterize partial interference for two representative types
of multiple access wireless networks, namely, the IEEE 802.11
Wireless LANs and the classical slotted ALOHA networks.
For IEEE 802.11Wireless LANs, we extend the single-channel
Markov model in [15] to take into account the unsaturated
traffic conditions, the SINR attained at the receivers, and the
modulation scheme employed. These modifications result
in a partial interference region, which cannot be captured
by the binary interference models used in previous works.
We also find out the stability (admissible) region of IEEE
802.11 networks with two interfering, potentially unsaturated
links numerically. For slotted ALOHA networks, we extend
the model in [16] to derive the exact stability region of
slotted ALOHA with two links while considering partial
interference. We show that as the link separation increases,
the stability region obtained expands gradually under partial
interference, as in the case of 802.11.

Despite the simplicity of slotted ALOHA, characterizing
its exact stability region with unsaturated links is extremely
difficult and has remained to be a key open problem for
decades when there are more than two, potentially unsatu-
rated links in the system [16–23]. However, by extending the
FRASA (Feedback Retransmission Approximation for Slotted
ALOHA) approach [24] to model the partial interference
effects, we obtain a closed-form approximation for the exact
stability region for any number of links.

In summary, this paper has made the following contribu-
tions.

(1) After reviewing related work in Section 2, we formal-
ize the notion of partial interference in Section 3 and
then demonstrate its significant performance impact
on different types of wireless networks via vari-
ous examples and their analytical/numerical results
throughout the rest of the paper. As an illustration,
we show in Section 4 that, by considering partial
interference effects while scheduling traffic in a
wireless network of regular topology, the gain in
network capacity across unit cut can be as high as 67%.

(2) In Section 5, we establish a model to analyze the
effects of partial interference on the throughput of
IEEE 802.11 networks with unsaturated links. Our
approach enables one to compute numerically the
stability region of any 2-link 802.11 system under
unsaturated traffic conditions.

(3) In Section 6, we investigate the effects of partial
interference on the capacity of a slotted ALOHA
system with unsaturated links by (i) establishing
the exact stability region in closed-form for the 2-
link case and (ii) providing a closed-form, partial
characterization of the stability region of the general
M-link case.

(4) In Section 7, we extend the FRASA approach in [24]
to yield a closed-form approximation for the stability
region of the general M-link slotted ALOHA system
while considering partial interference effects. The
capacity region derived by our approximation and
the corresponding simulation results are provided for
some sample cases. Again, this is to demonstrate the
potential qualitative and quantitative differences in
the system capacity region when the effect of partial
interference is taken into account. We then conclude
the paper in Section 8.

2. RelatedWork

In [1], two interference models, called the protocol model
and the physical model, were introduced. The protocol model
states that a transmission is successful if the corresponding
receiver is located inside the transmission range of the trans-
mitter, and all other active transmitters are located outside
the interference range of the receiver. In the physical model,
the transmissions from other transmitters are considered as
noise, and a transmission is successful if the SINR attained
at the receiver exceeds a certain threshold. Based on these
models, the capacities of a multihop wireless network under
random and optimal node placement were derived.

In [5], the authors measured the interference among
links in a single-channel, static 802.11 multihop wireless
network. They measured the interference between pairs of
links by the link interference ratio and observed that this
ratio exhibited a continuum between 0 and 1. In [6], two
interfering links were set up in a wireless network with
multiple partially overlapped channels to measure TCP and
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UDP throughputs of an individual link. It was found that
the throughputs increased smoothly when the separation
between the links increased. The throughputs increasedmore
rapidly as the channel separation between the links increased.
Such nonbinary transitional region in the link throughput
(or PRR equivalently) as the receiver SINR varies has also
been observed by numerous measurement studies including
[2–4]. These experimental results all confirmed that the
binary assumption in the protocol or physical interference
models are not valid in practice.

There has been some analytical work on finding the
relationship between the SINR attained at a receiver and
the throughput (or PRR equivalently) achieved by the
corresponding wireless link. In [14], a methodology for
estimating the packet error rate in the affected wireless
network due to the interference from the interfering wireless
network was presented. The throughput of the affected
wireless network was found to increase continuously with the
SINR attained at the corresponding receiver, which increased
with the separation between the networks. Similarly, [2]
derived expressions for the PRR as a function of distance,
radio channel parameters, and the modulation/encoding
scheme used by the radio. However, they did not provide
analytical model on how the PRR function would impact the
performance of the corresponding networks.

In [25], the throughput achieved by an M-link IEEE
802.11 network under physical layer capture was derived.
While their analysis can be viewed as another case study of
the effects of the partial interference over 802.11 networks,
their approach only works for the case where all of the
links are always saturated, that is, with infinite backlog at
the transmitter side. In contrast, the approach proposed in
Section 5 of this paper can handle unsaturated links and has
provided explicit numerical solutions for the stability region
of the 2-link case.

The study of the stability region ofM-user infinite-buffer
slotted ALOHA was initiated by the study in [17] decades
before and is still an ongoing research. The authors in [17]
obtained the exact stability region when M = 2 under the
collision channel (i.e., binary interference)model. References
[18, 19] used stochastic dominance and derived the same
result as in [17] for the case ofM = 2.

For general M, there were attempts to find the exact
stability region, but there was only limited success. Reference
[21] established the boundary of the stability region, but it
involves stationary joint queue statistics, which still do not
have closed form to date. Instead, many researchers focused
on finding bounds on the stability region for general M.
Reference [17] obtained separate sufficient and necessary
conditions for stability. References [18, 19] derived tighter
bounds on the stability region by using stochastic dominance
in different ways. Reference [22] introduced instability rank
and used it to improve the bounds on the stability region.
However, the bounds in [18, 22] are not always applicable.
Also, the bounds obtained may not be piecewise linear.

With the advances in multiuser detection, researchers
also studied this problem with the multipacket reception
(MPR) model. Reference [23] studied this problem in
the infinite-user, single-buffer, and symmetric MPR case.

Reference [16] considered the problem with finite users
and infinite buffer. They obtained the boundary for the
asymmetric MPR case with two users, and also the inner
bound on the stability region for generalM.

3. Partial Interference—Basic Idea

As an illustration to the methodology in [14], assume the
underlying modulation scheme used is binary phase shift
keying (BPSK). The distance between the transmitter and
the receiver and that between the interferer and the receiver
are dS and dI meters, respectively. The transmission power
of the transmitter and the interferer are PS and PI watts,
respectively.

Assuming that the interfering signal can be modeled as
additive white Gaussian noise (AWGN) and the background
noise can be ignored, we use the two-ray ground reflection
model

pl(d) = GTGRh
2
Th

2
R

d4
= C

d4
(1)

to represent the path loss, where GT and GR are the gain of
transmitter and receiver antenna, respectively, hT and hR are
the height of transmitter and receiver antenna, respectively,
and C = GTGRh

2
Th

2
R. The path loss exponent is 4 in this

model. We let GT = GR = 1 and hT = hR = 1.5. Then,
according to [26], the bit error rate (BER) is given by

1
2
erfc

(√
γ
)
, (2)

where γ is the SINR attained at the receiver and is given by

γ = PSpl(dS)
PIpl(dI)

. (3)

Define the packet-level normalized throughput ρ′(γ) to
be the ratio of the successful packet reception rate at the
receiver when SINR = γ to the maximum packet reception
rate of the link when BER = 0. As such, ρ′(γ) is actually the
probability of a packet to be received without error when the
SINR is γ. Suppose that all packets consist of L bits and bit
errors are identically, independently distributed within each
packet. We have

ρ′
(
γ
) =

[
1− 1

2
erfc

(√
γ
)]L

. (4)

In general, ρ′(γ) depends on the BER, which, in turn, is a
function of the SINR at the receiver as well as the specific
modulation scheme being used. While we use BPSK as an
example here, the actual expression for ρ′ under othermodu-
lation schemes can be readily derived as shown in [2, Table 5].

Figure 1 shows a plot of such packet-level normalized
throughput ρ′ against distance between the interferer and the
receiver for PS = PI = 25 dBm, dS = 300 meters, dI ranging
from 400 to 700 meters, and L = 12000 bits (= 1500 bytes).
Observe from the figure the nonbinary transitional region of
ρ′ as the separation between the interferer and the receiver
increases. Such “partial interference” region is also consistent
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with the findings of many empirical studies discussed in
Section 1.

In Figure 1, we also plot the variation of throughput
against distance between the interferer and the receiver if the
physical model is used. The SINR threshold γ0 for the binary-
interference model is set by assuming that when γ = γ0, the
packet error rate is 10−3, that is,

10−3 = 1−
[
1− 1

2
erfc

(√
γ0
)]L

. (5)

We observe that if the value we assign to γ0 is too large
(or the threshold distance is too large), we underestimate
the throughput that the links can achieve. On the other
hand, if γ0 is too small (or the threshold distance is too
small), we introduce excessive interference into the network.
In other words, it is difficult to use a single threshold to
describe accurately the relationship between interference and
throughput of each link in a network.

4. Capacity GainWhen Partial
Interference Is Considered

In this section, we demonstrate that there is a gain in system
capacity when the effect of partial interference is considered.
We consider one variation of the Manhattan network [27],
that is, a network consisting of a rectangular grid extending
to infinity in both dimensions. The horizontal and vertical
separations between neighboring stations are denoted by r
and d, respectively.

Under infinite transmitter backlog, the packet-level
capacity of each link, that is, the maximum packet reception
rate without interference, is denoted by ρ0. We assume that
differential binary phase shift keying (DBPSK) is employed
and a packet consists of L bits. We use the two-ray ground
reflection model (1) as in previous section to model the
path loss. To apply the physical model, we let the SINR
threshold γ0 be the case that the packet error rate is ε, that
is, 1− [1− (1/2) exp(−γ0)]L = ε, where (1/2) exp(−γ) is the
bit error rate of DBPSK [26]. We let L = 8192 and ε = 10−3,
therefore the SINR requirement is γ0 = 15.23. Assuming that
there is no interferer, this SINR requirement is met when the
length of a link is smaller than 493 meters.

We use a Cartesian coordinate plane to represent the
modified Manhattan network. One station is placed at every
point with integral coordinates in the network. Suppose that
we schedule flows in the modified Manhattan network from
the South to the North using the pattern shown in Figure 2
and its shifted versions. In Figure 2, an arrow is used to
represent an active link, where the tail and the head of an
arrow denote the transmitter and the receiver of the link,
respectively.

We use the capacity across unit cut η(μ) as the perfor-
mance metric, where μ = r/d is the ratio of the horizontal
separation to the vertical separation. It is a measure on how
much traffic we can send through a cut in a network on
average while physically packing the links towards each other.
Consider the SINR attained at the receiver marked with the
blue circle, which has the position assigned as the origin in
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Figure 2: A scheduling pattern in themodifiedManhattan network.

the Cartesian coordinate plane. We assume that all stations
transmit with power P, and each station has a background
noise power ofN . The SINR is defined by γ(μ) = S/(N+I(μ)),
where S is the received power from the intended transmitter
and I(μ) is the power received from all interferers. The
packet-level capacity achieved by each link, that is, the suc-
cessful packet reception rate at the receiver, is ρ(μ) = ρ0{1−
(1/2) exp[−γ(μ)]}L under our partial interference model.
On the other hand, under the physical interference model,
ρ(μ) = ρ0 if γ(μ) ≥ γ0 and ρ(μ) = 0 otherwise. A cut C in the
network is an infinitely long horizontal line. Let {Tn}n∈N be
the set of all active transmitters such thatC intersects the link
used by Tn. We divide C into segments C(Tn), n ∈ N, where

C(Tn) =
{
x ∈ C : ‖x − Tn‖ = min

n′∈N
‖x − Tn′‖

}
(6)
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and ‖ · ‖ is the Euclidean norm. Then the length L of the
cut occupied by an active transmitter is the length of C(Tn),
and the capacity across unit cut is therefore η(μ) = fρ(μ)/L,
where f is the fraction of time that a link is active.

In the following we assume that d = 450 meters, P =
24.5 dBm, and N = −88 dBm. For the schedule in Figure 2,
the signal power is S = PC/d4. All transmitters in Figure 2 are
located at positions (x, 4y − 1), where x and y are integers.
The interference power is

I
(
μ
) =

⎧⎪⎨
⎪⎩

∞∑
x=−∞

∞∑
y=−∞

PC(
(xr)2 +

[(
4y − 1

)
d
]2)2 −

PC

d4

⎫⎪⎬
⎪⎭

=
⎧⎨
⎩

∞∑
x=−∞

∞∑
y=−∞

[(
xμ
)2 + (4y − 1

)2]−2 − 1

⎫⎬
⎭
PC

d4
.

(7)

Considering the physical model, if the schedule is allowed to
be active, we need μ ≥ μ0 = 5.58, as listed in Table 1 and
depicted in Figure 3 by the blue dashed line. The value of μ0 is
obtained from γ(μ0) = γ0. Each active transmitter occupies a
cut of length r = μd, and each link is active for one quarter of
a cycle. Therefore, for μ = μ0, the maximum capacity across
unit cut under the physical model is ρ0/4μ0d = 0.0996ρ0 bits
per second per kilometer.

If we allow partial interference, the active transmitters
can be packed more closely. When μ decreases, more spatial
reuse is allowed. The increase in the density of active
transmitters outweighs the degradation in capacity, so there
is an increase in the capacity across unit cut. However, if μ
decreases further, interference will be the dominant factor
in determining the capacity across unit cut. Therefore, the
capacity across unit cut drops, and there exists μopt for
the optimal performance under partial interference. This
behavior is depicted by the blue solid line in Figure 3. The
optimal value of μ under partial interference is μopt =
3.06, and the capacity across unit cut is 0.1661ρ0 bits per
second per kilometer. There is a percentage increase of
66.82% in the capacity across unit cut when the effect of
partial interference is considered. Similar results are shown in
Table 1 and Figure 3 for d = 350, 400 meters. The percentage
increase is larger when the links are longer, but the capacity
achieved by each link reduces. We can view μ0d as the carrier
sensing range in the modified Manhattan network with the
scheduling pattern in Figure 2, as it is the smallest horizontal
separation allowed by the physical model. We observe that
if the length of the links increases, the carrier sensing range
needs to be increased in a larger proportion. Also, this carrier
sensing range is much larger than double of the length of
the links, which is the usual convention used in defining the
relationship between carrier sensing range and transmission
range.

5. Partial Interference in 802.11

In this section, we study partial interference in 802.11
networks, the prevalent wireless random access networks.
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under the physical model (binary interference) and partial interfer-
ence.

Table 1: Capacity gain in the modified Manhattan network with
different lengths of links.

d μ0 η(μ0) μopt η(μopt) % increase

350 3.02 0.2365ρ0 2.55 0.2671ρ0 12.93%

400 3.48 0.1796ρ0 2.73 0.2163ρ0 20.45%

450 5.58 0.0996ρ0 3.06 0.1661ρ0 66.82%

We present an analytical framework to characterize partial
interference in a single-channel wireless network under
unsaturated traffic conditions, which uses 802.11b with basic
access scheme and DBPSK. We show that there is a partial
interference region, in which the throughput of each link
increases continuously with the separation between the links
in the network. As a first attempt to relate the capacity-
finding problem in wireless random access networks to the
stability region of such networks, we derive the admissible
(stability) region of an 802.11 network with two potentially
unsaturated links numerically.

5.1. The 802.11 Model. We present our framework to
characterize partial interference in a wireless network with
random access protocols. In this framework, we derive
the transmission probabilities τn and the packet corruption
probabilities cn of the links in the network. τn is the
probability that a station transmits in a randomly chosen
slot, while cn is the probability that a packet is received with
error.

For illustration, we choose the MAC and PHY protocols
to be 802.11b with basic access scheme and 1Mbps DBPSK.
Our model can be readily extended to consider other
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modulation schemes. In addition, we make the following
assumptions.

(i) The network consists of two links (T1,R1) and
(T2,R2), where Tn and Rn denote the transmitter and
the receiver of the links, respectively, n = 1, 2.

(ii) There are a constant buffer nonempty probability qn
that the transmission buffer of Tn is nonempty and a
constant channel idle probability in that Tn senses the
channel to be idle, n = 1, 2.

(iii) Tn transmits with power Pn, and the background
noise power at Rn is Nn, n = 1, 2.

(iv) Channel defects like shadowing and fading are
neglected, and a generic path loss model pl(d) =
Cd−α is used tomodel the wireless channel, where d is
the propagation distance, α is the path loss exponent,
and C is a constant.

(v) The interference from other transmitters plus the
receiver background noise is assumed to be Gaussian
distributed.

(vi) All bits in a packet must be received correctly for
correct reception of the packet.

(vii) The size of an acknowledgement is much smaller
than that of the payload, so the bit errors on
acknowledgement are negligible.

We follow the approach as in [15], using a discrete-time
Markov chain to model the 802.11 Distributed Coordination
Function (DCF) and obtain the transmission probability of
a station. An ordered pair ( j, k) is used to denote the state
of the Markov chain, where j represents the backoff stage
and k is the current backoff counter value. In stage j, k is
in the range [0,Wj − 1], whereWj is the contention window
size in stage j. m is the maximum number of backoff stages.
However, there are some discrepancies between the model
in [15] and the actual behavior of 802.11 DCF. First, the
model assumes that a station retransmits indefinitely until
the packet is successfully transmitted. This assumption is
inconsistent with 802.11 basic access scheme. Also, themodel
does not account for the unsaturated traffic conditions,
which is the scenario appeared in practical situations.

To overcome these limitations, we adopt and modify
the Markov chain proposed by [15] to obtain an enhanced
model. First, we take into account the limited number
of retransmissions in 802.11 as in [28], by restricting the
Markov chain to leave the mth backoff stage once the
station transmits a packet in that backoff stage. Second,
we follow [28] to modify the values of Wj in accordance
with the 802.11 MAC and PHY specifications [29], with m′

corresponding to the first backoff stage using the maximum
contention window size

Wj =
⎧⎨
⎩
2 jW0, 0 ≤ j ≤ m′,

2m
′
W0, m′ < j ≤ m.

(8)

In addition, to handle the unsaturated traffic conditions, we
follow [30] to augment theMarkov chain by introducing new

−1, 0

0, 0

1, 0

j, 0

m, 0

−1, 1

0, 1

1, 1

j, 1

m, 1 · · ·

· · · · · ·

· · ·· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

−1,W0 − 1

0,W0 − 1

1,W1 − 1

j,Wj − 1

m,Wm − 1

Figure 4: A Markov chain model for 802.11 DCF in unsaturated
conditions.

states (−1, k), k ∈ [0,W0 − 1]. These new states represent
the states of being in the post-backoff stage. The post-backoff
stage is entered whenever the station has no packets queued
in its transmission buffer after a successful transmission. The
corresponding Markov chain is depicted in Figure 4.

Let πj,k denote the stationary probability of the state
( j, k) in the Markov chain. The transmission probability of
a station is given by

τn = π−1,0qnin +
m∑

j=0
πj,0

=
⎛
⎝2q2nW0

m∑

j=0
c
j
n

⎞
⎠

×
⎧⎨
⎩q

2
nW0

m∑

j=0
c
j
n

(
Wj + 1

)
+
(
1− qn

)[
1− (1− qn

)W0
]

×[qn(1− in)(W0 + 1) + 2
(
1− qn

)]
⎫⎬
⎭

−1

.

(9)

The details of the Markov chain and the derivation of this
equation can be found in [31].

The packet corruption probability is calculated according
to the modulation scheme used in the PHY layer, the distance
between the transmitter and the receiver, and the existence
of nearby interferer(s). For a fixed carrier sensing threshold
β, we differentiate into two cases, whether both transmitters
can sense the transmission of each other or not.

If T1 can sense the transmission of T2, that is,
P2pl(dT1,T2 ) > β, where dX ,Y is the distance between X and
Y , then the SINR at R1 is

γ1 = P1pl
(
dT1,R1

)

N1
. (10)
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The bit error rate attained by (T1,R1) is e(γ1) =
(1/2) exp(−γ1), and the packet corruption probability for
(T1,R1) is

c1 = 1− [1− e
(
γ1
)]HP+HM+L, (11)

whereHP ,HM , and L represent the number of bits in the PHY
header, the MAC header, and the payload, respectively.

On the other hand, if T1 cannot sense the transmission of
T2, that is, P2pl(dT1,T2 ) ≤ β, then the SINR at R1 depends on
whether T2 is active in transmission or not, that is,

Pr
{
γ1 = γ

} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− τ2, γ = P1pl
(
dT1,R1

)

N1
,

τ2, γ = P1pl
(
dT1,R1

)

N1 + P2pl
(
dT2,R1

) .
(12)

The packet corruption probability is calculated by the
average bit error rate E[e(γ1)]

c1 = 1− (1− E
[
e
(
γ1
)])HP+HM+L

. (13)

The channel idle probability is defined as follows. If T1

can sense the transmission of T2, then T1 will consider the
channel to be idle whenever T2 is inactive, that is, i1 = 1− τ2;
otherwise T1 always senses the channel to be idle and i1 = 1.

Suppose that we want to schedule a flow of λn bits per
second on (Tn,Rn) and ρn bits per second is achieved by
(Tn,Rn), n = 1, 2. We refer λn and ρn to the offered load and
the carried load, respectively. We calculate ρn by

ρn = τn(1− cn)L
E[Sn]

, (14)

where E[Sn] is the expected length of a slot as seen by
(Tn,Rn). Let an be the probability that at least one station
is transmitting, and let sn be the probability that there is
at least one successful transmission given that at least one
station is transmitting. Then E[Sn] = (1 − an)σ + ansn(Ts +
σ) + an(1 − sn)(Tc + σ), where σ , Ts, and Tc are the time
spent in an idle slot, a successful transmission, and an
unsuccessful transmission, respectively. When T1 can sense
the transmission of T2, we consider both links to be one
system:

a1 = 1− (1− τ1)(1− τ2),

s1 = 1− [1− τ1(1− c1)][1− τ2(1− c2)]
a1

.
(15)

Otherwise, we treat both links to be separate systems:

a1 = τ1,

s1 = 1− c1.
(16)

We approximate the packet arrival of (Tn,Rn) to be a
Poisson process with rate λn/L, n = 1, 2, and estimate the
buffer nonempty probability by

qn = 1− exp
{
−λn

L
E[Sn]

}
. (17)

In summary, if T1 can sense the transmission of T2, then
we obtain the following set of equations for (T1,R1):

τ1 =
⎛
⎝2q21W0

m∑

j=0
c
j
1

⎞
⎠

×
⎧⎨
⎩q

2
1W0

m∑

j=0
c
j
1

(
Wj + 1

)
+
(
1− q1

)[
1− (1− q1

)W0
]

×[q1τ2(W0 + 1) + 2
(
1− q1

)]
⎫⎬
⎭

−1

,

c1 = 1− [1− e
(
γ1
)]HP+HM+L,

q1 =1−exp
{
−[(1− [1− τ1(1− c1)][1− τ2(1− c2)])Ts

+[τ1c1+τ2c2−τ1τ2(c1+c2−c1c2)]Tc+σ]
λ1
L

}
.

(18)

Otherwise, we obtain another set of equations for (T1,R1)

τ1 =
⎛
⎝2q21W0

m∑

j=0
c
j
1

⎞
⎠

×
⎧⎨
⎩q

2
1W0

m∑

j=0
c
j
1

(
Wj + 1

)

+2
(
1− q1

)2[1− (1− q1
)W0

]
⎫⎬
⎭

−1

,

c1 = 1− (1− E
[
e
(
γ1
)])HP+HM+L,

q1 = 1− exp
{
−[τ1(1− c1)Ts + τ1c1Tc + σ]

λ1
L

}
.

(19)

Similarly, we can obtain three equations for link (T2,R2).
With these six equations we can solve for the variables τ1,
c1, q1, τ2, c2, q2 by Newton’s method [32] and obtain the
loadings of these two links by (14).

5.2. Some Analytical Results. We use the two-ray ground
reflection model

pl(d) = GTGRh
2
Th

2
R

d4
= C

d4
(20)

to represent the path loss and the values in Table 2 to obtain
numerical results from our model. These values are defined
in or derived from the values in the 802.11 MAC and PHY
specifications [29] or NS-2 [33].
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Table 2: Parameters used for the analytical results.

HP 192 bits HM 272 bits

m 7 m′ 5

Ts 9020 μs Tc 9020 μs

σ 20 μs W0 32

P1, P2 24.5 dBm N1, N2 −88 dBm
Gt , Gr 1 ht , hr 1.5m

T1 R1

T2 R2

Figure 5: A sample topology.

In the following we attempt to find the maximum carried
loads of each link in various scenarios. One observation from
solving the system of equations in Section 5.1 is that the
carried load will be smaller than the offered load when the
offered load is too large. This corresponds to the instability of
802.11 observed in previous works (e.g., [15]). Therefore, we
use binary search to find the maximum carried load under
stable conditions. Initially, the search range for the offered
load is between 0 and 1Mbps. We choose the midpoint of
the search range to be the offered load and solve the system
of equations. If the resultant carried load is the same as the
offered load, the offered load can be increased, and the next
search range will be the upper half of the original one. Other-
wise, the offered load results in instability, and the next search
range will be the lower half of the original one. This proce-
dure is repeated until the search range is sufficiently small.

We consider a network of two parallel links as shown in
Figure 5, with d and r representing the length of the links
and the link separation, respectively. The link separation is
defined as the perpendicular distance between the links. We
let L = 8192 bits, d = 450 meters, and β = −70, −75, −78,
−80 dBm to solve for the maximum carried loads and obtain
the curves as shown in Figures 6(a)–6(d).

Consider the curve corresponding to the carrier sensing
threshold of −78 dBm in Figure 6(c), which is a common
value used in NS-2 simulation and the practical value used
in Orinoco wireless LAN card. The corresponding carrier
sensing range is 550 meters, which is in line with the
carrier sensing range used in practice. In our model, we
assume that carrier sensing works when the separation is
within the carrier sensing range and fails otherwise and
use two different sets of equations to model the system in
these situations. Therefore there is an abrupt change in the
aggregate throughput when the separation equals the carrier
sensing range. If there is no carrier sensing in the system, the
aggregate throughput will reduce to zero smoothly when the
link separation reduces.

The curve in Figure 6(c) can be divided into three parts
according to the link separation r. When r < 550 meters,

both transmitters are in the carrier sensing range of each
other. As a result, at most only one transmitter is active at
a time. If r ≥ 550 meters, the transmitters are unaware of
the existence of each other, and they contend for the wireless
channel as if there were no interferers nearby. When r > 800
meters, the separation is so large that there will not be any
interference between the links. When r lies between 550 and
800 meters, the aggregate throughput of the links increases
smoothly as r increases. We label this range of r as the partial
interference region. The existence of this partial interference
region suggests that the interference models proposed by
[1] that a single threshold can represent the interference
relationship in wireless networks may be overly simplified.

The width of this partial interference region depends on
the carrier sensing threshold β used. Smaller β, for example,
−80 dBm, results in a narrower partial interference region as
in Figure 6(d). Simultaneous transmissions are allowed only
for the links separated far enough, and the throughput is
suppressed significantly. For larger β, for example, −75 and
−70 dBm, more spatial reuse is allowed, and the width of the
partial interference region is larger, as shown in Figures 6(a)-
6(b). However, excessive interference is introduced for larger
β, so there is a reduction in the aggregate throughput.

Besides carrier sensing threshold, the length of the links
d also affects the partial interference region. We reduce d to
be 400 meters and obtain the results in Figures 7(a)–7(d). As
shown in Figures 7(a)–7(d), the partial interference region
becomes narrower for all values of carrier sensing threshold.
Also, the aggregate throughput achieved by the links is larger
for the same link separation when the links are shortened.

5.3. Admissible (Stability) Region. As an attempt to obtain
the capacity of 802.11 networks under partial interference,
we compute the admissible (stability) region predicted from
our model. The admissible region includes all flow vectors
(λ1, λ2) such that if (λ1, λ2) is located inside the admissible
region, then a flow of λn can be allocated on and achieved
by (Tn,Rn), n = 1, 2. We use the same settings as above and
choose the carrier sensing threshold to be−78 dBm. The link
separations are chosen to be 500, 600, and 900 meters for
illustrative purposes, because they correspond to different
shapes of the admissible region. Figure 8 shows the admis-
sible region for these three link separations. The link sepa-
ration of 500 meters represents that the links are in mutual
interference and the admissible region has a triangular shape.
When the links are separated by 900 meters, the links do not
interfere with each other, and the admissible region is rect-
angular. For the link separation of 600 meters, partial inter-
ference exists and the admissible region becomes convex.

Although we are able to compute the admissible region
for a two-link 802.11 network numerically, the closed-form
expression for the admissible region is unknown. Also, for
an 802.11 network with two links, we have to solve a
system of six nonlinear equations to compute the admissible
region. When the number of links in the network grows,
the number of equations involved will increase, and the
system of equations will be more difficult to solve. Therefore
the computation of the admissible region of general 802.11
networks seems to be forbiddingly intractable.
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Figure 6: Aggregate throughput for the topology in Figure 5 with length of links = 450 meters and various carrier sensing thresholds.

6. Partial Interference in Slotted ALOHA

In order to obtain insights in the stability region of general
802.11 networks, in this section, we study the stability of
slotted ALOHA, which is a simpler random access protocol,
under the assumptions of finite links and infinite buffer.

6.1. The Finite-Link Slotted ALOHA Model. LetM = {n}Mn=1
be the set of links in the slotted ALOHA system. Time is
slotted. The following assumptions apply to all links n ∈
M. Let Tn and Rn be the transmitter and the receiver of
link n, respectively. Tn has an infinite buffer. The packet
arrival process at Tn is Bernoulli with mean λn and is
independent of the arrivals at other transmitters. Tn attempts

a virtual transmission with probability pn, that is, if its
buffer is nonempty, Tn attempts an actual transmission with
probability pn; otherwise, Tn always remains silent. Also
define pn = 1− pn.

In the system, each time slot is just enough for trans-
mission of one packet. Packets are assumed to have equal
lengths.We assume that transmission results are independent
in each slot. For n ∈ A ⊆ M, let qMn,A be the probability
that the transmission on link n is successful when {Tn′ }n′∈A
is the set of active transmitters. qMn,A depends on the SINR
at the receiver and the modulation scheme used. We also
assume that the transmitters know immediately the trans-
mission results, so that the transmitters remove successfully
transmitted packets and retain only those unsuccessful ones.
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We let Qn(t), t ∈ N be the queue length in Tn at the
beginning of slot t and use anM-dimensional Markov chain
QM(t) = (Qn(t))n∈M to represent the queue lengths in all
transmitters. We denote by An(t) the number of packets
arrived at Tn in slot t and Dn(t) the number of packets
successfully transmitted in slot t by Tn when Qn(t) > 0.
Then Qn(t + 1) = [Qn(t) − Dn(t)]

+ + An(t), where [z]
+ =

max{0, z} is used to account for the case that there is no
packet transmitted when Qn(t) = 0. We use the definition
of stability in [16, 21, 22].

Definition 1. AnM-dimensional stochastic process QM(t) is
stable if for x ∈ NM the following holds:

lim
t→∞Pr

{
QM(t) < x

}
= F(x), lim

x→∞F(x) = 1. (21)

If the following weaker condition holds instead,

lim
x→∞ lim inf

t→∞ Pr
{
QM(t) < x

}
= 1, (22)

then the process is substable. The process is unstable if it is
neither stable nor substable.

The stability problem of slotted ALOHAwe consider here
is to determine whether the slotted ALOHA system with the
set of links M is stable given the parameters {λn}n∈M and
{pn}n∈M. We use the result from [34]. On the assumption
that the arrival and the service processes of a queue are
stationary, the queue is stable if the average arrival rate is less
than the average service rate, and the queue is unstable if the
average arrival rate is larger than the average service rate. We
also define the slotted ALOHA system to be stable when all
queues in the system are stable.

6.2. Stability Region of 2-Link Slotted ALOHA under Partial
Interference. We extend the model in [16] to capture the
impact of partial interference on the capacity of a 2-link
slotted ALOHA system with potentially unsaturated offered
load. For n ∈ M, let Pn and Nn be the transmission
power used by Tn and the background noise power at Rn,
respectively. Assume that the signal propagation follows the
path loss model pl(d) = Cd−α, where d is the propagation
distance, α is the path loss exponent, and C is a constant.
We let γMn,A be the SINR attained at Rn when {Tn′ }n′∈A is
the set of active transmitters. Assume that a packet consists
of L bits. Let e(γ) be the bit error rate when the SINR is γ.
In particular, if DBPSK is used in the physical layer, e(γ) =
(1/2) exp(−γ). Under binary interference, we let the SINR
threshold γ0 be the case that the packet error rate is ε, that is,
1− [1− (1/2) exp(−γ0)]L = ε. Consider M = 2. When only
T1 is active, the SINR attained at R1 is γM1,{1} = P1Cd

−α
T1,R1

/N1,
and

qM1,{1} =
⎧⎨
⎩
1, γM1,{1} ≥ γ0,

0, γM1,{1} < γ0,
(23)

where dX ,Y is the distance between X and Y . When both T1

and T2 are active, then γM1,{1,2} = P1Cd
−α
T1,R1

/(P2Cd−αT2,R1
+ N1)

is the SINR attained at R1, and

qM1,{1,2} =
⎧⎨
⎩
1, γM1,{1,2} ≥ γ0,

0, γM1,{1,2} < γ0.
(24)

If we consider partial interference instead, we can calculate
qMn,A as follows. When only T1 is active,

qM1,{1} =
[
1− e

(
γM1,{1}

)]L
. (25)

When both T1 and T2 are active,

qM1,{1,2} =
[
1− e

(
γM1,{1,2}

)]L
. (26)

Similarly, we can derive expressions for qM2,{2} and qM2,{1,2}
under binary and partial interference.

To evaluate the boundary of the stability region for the
2-link slotted ALOHA system, we use stochastic dominance
as introduced in [18]. We use SP to represent a dominant
system of the original system S, with P being the persistent
set. The transmitters of the links in this set transmit dummy
packets when they decide to transmit but do not have packets
queued in their buffer. The remaining transmitters behave
identically as those in S. We first consider the dominant
system S{1}. In this dominant system, the successful trans-
mission probability of link 2 is p2p1q

M
2,{2} + p2p1q

M
2,{1,2}.

For link 1, the queue in T2 is empty with probability
1 − λ2/(p2p1q

M
2,{2} + p2p1q

M
2,{1,2}); in this case the successful

transmission probability is p1qM1,{1}; otherwise, the successful
transmission probability is p1p2q

M
1,{1} + p1p2q

M
1,{1,2}. Hence,

the average successful transmission probability of link 1 is

p1q
M
1,{1}

(
1− λ2

p2p1q
M
2,{2} + p2p1q

M
2,{1,2}

)

+
(
p1p2q

M
1,{1} + p1p2q

M
1,{1,2}

) λ2
p2p1q

M
2,{2} + p2p1q

M
2,{1,2}

.

(27)

With the following notations,

λ′1 = p1p2q
M
1,{1} + p1p2q

M
1,{1,2},

λ′2 = p2p1q
M
2,{2} + p2p1q

M
2,{1,2},

ΔqM1,{1},{2} = qM1,{1} − qM1,{1,2},

ΔqM2,{2},{1} = qM2,{2} − qM2,{1,2},

(28)

the stability region of S{1} is

λ1 < p1q
M
1,{1} −

λ2p2p1Δq
M
1,{1},{2}

λ′2
, λ2 < λ′2, (29)
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Figure 7: Aggregate throughput for the topology in Figure 5 with length of links = 400 meters and various carrier sensing thresholds.

and by symmetry, the stability region of S{2} is

λ2 < p2q
M
2,{2} −

λ1p1p2Δq
M
2,{2},{1}

λ′1
, λ1 < λ′1. (30)

The union of these two regions constitutes the inner bound
on the stability region of the original system S.

The reason for the union of these two regions to
be the outer bound on the stability region follows from
the indistinguishability argument [16, 18]. Consider the
dominant system S{1}. With a particular initial condition
on the length of the queues, if the queue in T1 is unstable,
it is equivalent to the case that the queue in T1 never
empties with nonzero probability. Then S{1} and S will be
indistinguishable, in the sense that the packets transmitted

from T1 in S{1} are always real packets and S is also unstable.
Therefore, the union of the regions defined by (29) and (30)
is the exact stability region forM = 2.

6.3. Some Illustrations. In this section, we depict the stability
region derived in previous section by considering the
parallel-link topology in Figure 5.We use the two-ray ground
reflection model

pl(d) = GTGRh
2
Th

2
R

d4
(31)

to represent the path loss. The values of various parameters
are shown in Table 3.

We first assume that L = 8192 bits, p1 = p2 = 0.8
and vary the link separation, that is, the perpendicular
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Table 3: Parameters used for the analytical results.

P1, P2 24.5 dBm N1, N2 −88 dBm
GT , GR 1 hT , hR 1.5m

ε 0.001 dT1,R1 , dT2,R2 450m

distance between the links, to obtain the results under binary
interference in Figure 9(a). The stability region has only
two possible shapes. For the separations of 600, 800, and
1000 meters, the SINR attained at either receiver when both
transmitters are active is smaller than the threshold. There-
fore the underlying channel follows the collision channel
model, and the stability region is nonconvex. When the
separation is 1200 meters, the links are separated far enough
so that transmissions on both links are independent. The
channel can be regarded as the orthogonal channel, and the
stability region is convex. Therefore, the threshold in binary
interference determines when to switch between the collision
channel and the orthogonal channel.

Figure 9(b) shows the corresponding results under par-
tial interference. When the link separation is small, the
amount of interference is so large that partial interference
degenerates to the collision channel. As the link separation
increases, the stability region expands gradually and changes
from nonconvex to convex. At another extreme, when the
links are sufficiently far apart, partial interference is identical
to the orthogonal channel. Therefore, partial interference can
be viewed as a generalization of binary interference that it
interpolates the transition from the collision channel to the
orthogonal channel. Notice that the results here are similar to
the case in 802.11, therefore our results should be applicable
to networks with practical random access protocols like
802.11.

Next, we assume that the links are separated by 800
meters. We let both links transmit with probability p and
illustrate the effect of p on the convexity of the stability
region under binary interference in Figure 10(a). When p
is small, that is, 0.2 and 0.4, the links are too conservative
in attempting transmissions. It leads to better channel
utilization by adding one more link to the system, and the
stability region is convex. On the other hand, when p is large,
that is, 0.6 and 0.8, the links are too aggressive. When one
more link is added to the system, it increases contention and
hence reduces the loading supported by each link drastically.
As a result, the stability region is nonconvex. The convexity
of the stability region can therefore be regarded as a measure
of the contention level in a network.

Figure 10(b) illustrates the stability region when partial
interference is considered instead, under the same settings.
Although the SINR attained at a receiver when both
transmitters are active is smaller than the threshold, the
SINR is large enough to support a sustainable throughput
probabilistically. Therefore, it is possible to receive more
packets opportunistically under partial interference, thereby
increasing the loading supported by each link and allowing
the stability region to be convex. If we compare the stability
region under binary and partial interference in identical
settings, as shown in Figures 11(a)–11(d), the stability region
under partial interference is always larger than that under
binary interference. This implies that by considering partial
interference, more combinations of flows on the links can
be admitted, and the capacity of a wireless network can be
potentially increased.

6.4. Partial Characterization of the Stability Region for the M-
Link Case. In this section, we give in closed form a partial
characterization on the boundary of the stability region of
M-link slotted ALOHA under partial interference. First, for
n ∈ A ⊆M, γMn,A = PnCd

−α
Tn ,Rn

/(
∑

n′∈A\{n} Pn′Cd
−α
Tn′ ,Rn

+Nn).
Therefore, under binary interference,

qMn,A =
⎧⎨
⎩
1, γMn,A ≥ γ0,

0, γMn,A < γ0,
(32)

while under partial interference,

qMn,A =
[
1− e

(
γMn,A

)]L
. (33)

For each M′ ⊆ M, let pM(M′) = (pMn (M′))n∈M be an
M-dimensional 0-1 vector such that

pMn (M′) =
⎧⎨
⎩
1, n ∈M′,

0, n /∈M′,
(34)

where M′ is a set of persistent links and all other links are

empty. Define ΠpM(M′) = (Π
pM(M′)
n )n∈M, where

Π
pM(M′)
n =

∑

A:n∈A⊆M′

∏

n′∈A
pn′

∏

n′′∈M′\A
pn′′q

M
n,A, (35)

to be a corner point corresponding to the case that M′ is the
set of persistent links. Notice that RHS of (35) is zero when
n /∈M′. Then we obtain the following theorem.
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Figure 9: Stability region forM = 2 with transmission probabilities 0.8 under binary and partial interference.
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Figure 10: Stability region forM = 2 with link separation 800 meters under binary and partial interference.

Theorem 2. All corner points lie on the boundary of the
stability region.

Proof. Refer to Appendix A.

By using stochastic dominance and the indistinguishabil-
ity argument, we obtain the following theorem.

Theorem 3. Let ΠpM(P ), ΠpM(P∪D) be two corner points such
that D = {n} ⊆ M \ P . Then the line segment joining these

two points lies on the boundary of the stability region. This
line segment represents the case that P is the set of persistent
links while n is the only nonempty nonpersistent link in
the system.

Proof. Refer to Appendix B.

We illustrate the results of these theorems by considering
M = 3 with the ring topology in Figure 12(a). The distance
between a receiver and the nearest interfering transmitter is
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900 meters. Each link transmits with probability 0.6. Other
parameters are the same as in Table 3. From Theorem 2,
each of the eight 3-dimensional 0-1 vectors corresponds to
a corner point shown in Figure 12(b), and their coordinates
can be obtained from (35). By Theorem 3, the solid lines
in Figure 12(b) are part of the boundary of the stability
region. As another example, for M = 2, notice that (29)
and (30) are special cases of (B.1). As a direct consequence
of our Theorems 2 and 3, the stability region of slotted
ALOHAwith two links under partial interference is piecewise
linear.

7. Stability Region of
the General M-Link Slotted
ALOHA System under
Partial Interference

Theorems 2 and 3 cover all cases with zero or one nonempty
nonpersistent link in an M-link system, respectively. How-
ever, if there are at least two nonempty unsaturated links,
the stationary joint queue statistics must be involved in
calculating the boundary. Unless we are able to compute the
stationary joint queue statistics in closed-form, we are unable
to solve the capacity-finding problem, even assuming one of
the simplest random access protocol, that is, slotted ALOHA.
In fact, the characterization of the exact stability region of
a general M-link slotted ALOHA system with nonpersistent
links has remained to be a key open problem for decades
when M > 2 [16–23] even under the simplified binary
interference model.

To overcome the problem caused by the stationary
joint queue statistics, we have introduced the FRASA
(Feedback Retransmission Approximation for Slotted Aloha)
model in [24] to obtain a closed-form approximation for
the stability region of a general M-link slotted ALOHA
system under binary interference (i.e., simple collision
channel) assumptions. We refer the readers to [24, 31]
for a detailed description of the FRASA approach. In the
following subsection, we extend the model and analysis
in [24] to cover the partial interference case. We remark
that our results here automatically apply to the binary
interference case if we allow qMn,A to be either zero or one
only by comparing the corresponding SINR, that is, γMn,A,
against a predefined threshold γ0, as illustrated in (32)
and (33).

7.1. FRASA under Partial Interference. Assume identical
settings as in [24]. There areM links in the network, and the
set of links is denoted by M = {n}Mn=1. Denote this FRASA
system by S. Let p = (pn)n∈M be the transmission probability
vector. Define pn = 1 − pn for all n ∈ M. We first consider
a reduced FRASA system, in which we let M − 1 of the links
have fixed aggregate arrival rates and the remaining link is
assumed with infinite backlog. Take n̂ ∈ M to be the link
with infinite backlog and denote this reduced FRASA system
by Sn̂. Let χn be the aggregate arrival rate of link n ∈M\{n̂},
where χn is between zero and one. Hence, link n̂ is active
with probability pn̂, while for n /= n̂, link n is active with

probability χnpn. Let p′n = χnpn and p′n = 1−χnpn. Introduce
the following notations:

Q
M
(x,y) =

∑

A⊆M\{x,y}

×
∏

n′∈A
p′n′

∏

n′′∈M\(A∪{x,y})
p′n′′q

M
x,A∪{x},

(36)

Q
M
(x,y)′ =

∑

A⊆M\{x,y}

×
∏

n′∈A
p′n′

∏

n′′∈M\(A∪{x,y})
p′n′′q

M
x,A∪{x,y},

(37)

Q
M
(x) =

∑

A⊆M\{x}

×
∏

n′∈A
p′n′

∏

n′′∈M\(A∪{x})
p′n′′q

M
x,A∪{x}.

(38)

Equation (36) is the probability of successful transmission of
link x given that link x is active but link y is not. Equation
(37) is the probability of successful transmission of link x
given that both links x and y are active. Equation (38) is the
probability of successful transmission of link x given that link
x is active. Then the parametric form of the stability region
of Sn̂ will be λn = λn,∀n ∈M, where

λn =
⎧⎪⎨
⎪⎩
χnpn

[
pn̂Q

M
(n,n̂)′ + pn̂Q

M
(n,n̂)

]
, n /= n̂,

pn̂Q
M
(n̂), n = n̂

(39)

with λn̂ > 0 and χn is between zero and one for all n ∈ M \
{n̂}. λ = (λn)n∈M is the successful transmission probability
vector under partial interference.

With this parametric form, we obtain the stability region
of FRASA under partial interference as in the following
theorem.

Theorem 4. For each n̂ ∈ M, one constructs a hypersurface
Fn̂, which is represented by λn = λn,∀n ∈M, where

λn =
⎧⎪⎨
⎪⎩
χnpn

[
pn̂Q

M
(n,n̂)′ + pn̂Q

M
(n,n̂)

]
, n /= n̂,

pn̂Q
M
(n̂), n = n̂

(40)

with λn̂ > 0 and χn is between zero and one for all n ∈
M \ {n̂}. ThenR, the stability region of FRASA under partial
interference, is enclosed by Fn̂,∀n̂ ∈M in the positive orthant.

Proof. Refer to Appendix C.

An illustration of the results of Theorem 4 with the
topology in Figure 12(a) is given in Figure 13. Figures 13(a),
13(b), and 13(c) depict F1, F2, and F3, respectively. The
union of these hypersurfaces, which is the boundary of the
stability region of FRASA under partial interference, is shown
in Figure 13(d).
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Figure 11: Stability region forM = 2 under binary interference and partial interference with various transmission probabilities.

7.2. Simulation Results. In this subsection, we demonstrate
the effects of partial interference on the stability region of
the general M-link slotted ALOHA systems by presenting
results based on both simulation as well as the FRASA closed-
form approximation approach. In particular, we perform
simulations as in [24] to obtain the stability region of slotted
ALOHA by considering the ring topology in Figure 12(a).
We assume that all links transmit with probability 0.6. For
illustrative purpose, we only show the cross-sections of the
stability regions. In Figure 14(a), we depict the cross-sections
of the stability region by fixing λ2, while in Figure 14(b)
the cross-sections of the stability region are obtained by
fixing λ1. The solid lines represent the simulation results

while the dash-dot lines are obtained from the FRASA
closed-form approximation. Observe from the figures that,
for the given set of system parameters, the curves derived
from the FRASA approximation closely follow the simulation
results. As a comparison against binary interference, we
use the same set of input traffic parameters to obtain
the stability region of slotted ALOHA under collision
channel (i.e., binary interference model) via simulations.
The corresponding cross-sections of the stability region are
shown in Figures 14(c) and 14(d), respectively. These results
also show a substantial expansion of the stability region
by considering partial interference instead of binary ones
as in Section 6. More importantly, one should note the
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Figure 13: Stability region of FRASA under partial interference withM = 3, transmission probabilities 0.6 and topology in Figure 12(a) by
Theorem 4.
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Figure 14: Cross-section of stability region of the slotted ALOHA system with M = 3 and transmission probability 0.6 under partial
interference and binary interference (i.e., collision channel) models.

qualitative changes in the shapes of the cross-sections of
the stability region from concave to convex when the more
realistic partial interference phenomenon is considered. This
reinforces our argument that it is important to model the
partial interference effects while analyzing the performance
of wireless multiple access protocols.

8. Conclusion

In this paper, we have introduced the notion of partial inter-
ference in wireless multiple access systems and illustrated
the potential gain in system capacity when the effect of
partial interference is taken into account. In particular, we
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characterize the stability region of IEEE 802.11 networks
under partial interference with two potentially unsaturated
links numerically. We also derive the stability region of
slotted ALOHA networks under partial interference with two
links analytically and obtain a partial characterization of
the boundary of the stability region for the case of more
than two, potentially unsaturated links in a slotted ALOHA
system. By extending the FRASAmodel, we provide a closed-
form approximation for the stability region for general
M-link slotted ALOHA system under partial interference
effects. Our analyses demonstrate that partial interference
considerations can result in not only significant quantitative
differences in the predicted system capacity but also fun-
damental qualitative changes in the shape of the stability
region of the systems. This highlights the need of capturing
the partial interference effects instead of adopting the
conventional, overly simplified binary interference models
while analyzing wireless MAC protocols.

Appendices

A. Proof of Theorem 2

When M′ = ∅, (35) becomes ΠpM(M′) = 0, which is
obviously on the boundary. If M′ /=∅, each link n ∈ M′

operates as M/M/1. If at a certain instant, only the links
in A ⊆ M′ are active, which occurs with probability∏

n′∈Apn′
∏

n′′∈M′\Apn′′ , the probability of successful trans-
mission of link n is qMn,A. Therefore, by unconditioning onA

while noticing qMn,A = 0 if n /∈A, the successful transmission
probability of link n is

∑

A:n∈A⊆M′

∏

n′∈A
pn′

∏

n′′∈M′\A
pn′′q

M
n,A. (A.1)

Therefore ΠpM(M′) lies on the boundary.

B. Proof of Theorem 3

When |P | = 0, it is trivial that the line segment between
ΠpM(P ) andΠpM(P∪D) lies on the boundary because it is part
of the positive λn-axis. Assume that |P | > 0. We prove that

λn < λ′n, n ∈D ,

λn <
∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A

− λn
λ′n

pn
∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′Q

M
n,A,D , n ∈ P ,

λñ = 0, ñ ∈M \ (P ∪D)
(B.1)

with

λ′n =
∑

A:n∈A⊆(P∪D)

∏

n′∈A
pn′

∏

n′′∈(P∪D)\A
pn′′q

M
n,A,

QMn,A,D = qMn,A − qMn,A∪D , A : n ∈A ⊆ P

(B.2)

lies on the boundary of the stability region. For any ñ /∈P ∪
D , Tñ has no packet, hence λñ = 0. Therefore we consider
the dominant system SP , assuming that the system contains
only the links in P ∪D . For the sufficiency part, the queue
in Tn in SP is stable if

λn < pn
∑

A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A∪D

=
∑

A:n∈A⊆(P∪D)

∏

n′∈A
pn′

∏

n′′∈(P∪D)\A
pn′′q

M
n,A = λ′n.

(B.3)

For any n ∈ P , the queue in Tn in SP is stable if

λn <

(
1− λn

λ′n

) ∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A

+
λn
λ′n

∑

A:n∈A⊆(P∪D)

∏

n′∈A
pn′

∏

n′′∈(P∪D)\A
pn′′q

M
n,A

=
(
1− λn

λ′n

) ∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A

+
λn
λ′n

⎛
⎝pn

∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A

+pn
∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A∪D

⎞
⎠

=
∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′q

M
n,A

− λn
λ′n

pn
∑

A:n∈A⊆P

∏

n′∈A
pn′

∏

n′′∈P \A
pn′′Q

M
n,A,D .

(B.4)

The necessity follows directly from the indistinguishability
argument. We observe that λn varies linearly with λn on the
boundary, ∀n /∈D . It is trivial that λn = 0 and λn = λ′n
correspond to ΠpM(P ) and ΠpM(P∪D), respectively.

C. Proof of Theorem 4

Every point λ = (λn)n∈M with

λn =
∑

A:n∈A⊆M

∏

n′∈A
χn′ pn′

∏

n′′∈M\A

(
1− χn′′ pn′′

)
qMn,A,

∀n ∈M,

(C.1)

where χn is between zero and one for all n ∈ M lies in
the stability region of FRASA under partial interference.
Observe that when χn < 1,∀n ∈ M, the corresponding λ
lies in the interior of the stability region. Therefore we only
need to consider those λ with χn = 1 for some n ∈ M.
When χn = 1, it means that link n has infinite backlog
or operate in persistent conditions, while in nonpersistent
conditions, we allow χn to vary arbitrarily between zero
and one. Notice that we can never reduce the successful
transmission probabilities of all links by changing the links
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from operating in persistent conditions to nonpersistent
conditions, because this reduces the amount of interference
experienced by all links. Mathematically, we partitionM into
three disjoint setsP , {n},P . We first letP ∪{n} be the set of
persistent links. Then the successful transmission probability
of link n is

∑

(A′,A′′):A′⊆P ,A′′⊆P

×
⎧⎨
⎩

⎡
⎣ ∏

n′∈A′′
χn′ pn′

∏

n′′∈P \A′′

(
1− χn′′ pn′′

)⎤⎦

×
⎡
⎣pn

∏

n′∈A′
pn′

∏

n′′∈P \A′

(
1− pn′′

)
⎤
⎦qMn,A′∪A′′∪{n}

+

⎡
⎣ ∏

n′∈A′′
χn′ pn′

∏

n′′∈P \A′′

(
1− χn′′ pn′′

)⎤⎦

×
⎡
⎣(1− pn

) ∏

n′∈A′
pn′

∏

n′′∈P \A′

(
1− pn′′

)
⎤
⎦qMn,A′∪A′′

⎫⎬
⎭.

(C.2)

If we let P be the set of persistent links, the successful
transmission probability of link n is

∑

(A′,A′′):A′⊆P ,A′′⊆P

×
⎧⎨
⎩

⎡
⎣χnpn

∏

n′∈A′′
χn′ pn′

∏

n′′∈P \A′′

(
1− χn′′ pn′′

)⎤⎦

×
⎡
⎣ ∏

n′∈A′
pn′

∏

n′′∈P \A′

(
1− pn′′

)
⎤
⎦qMn,A′∪A′′∪{n}

+

⎡
⎣(1− χnpn

) ∏

n′∈A′′
χn′ pn′

∏

n′′∈P \A′′

(
1− χn′′ pn′′

)⎤⎦

×
⎡
⎣ ∏

n′∈A′
pn′

∏

n′′∈P \A′

(
1− pn′′

)
⎤
⎦qMn,A′∪A′′

⎫⎬
⎭.

(C.3)

It is easy to see that the successful transmission probability in
(C.3) is larger than that in (C.2), because
[
χnpnq

M
n,A′∪A′′∪{n} +

(
1− χnpn

)
qMn,A′∪A′′

]

−
[
pnq

M
n,A′∪A′′∪{n} +

(
1− pn

)
qMn,A′∪A′′

]

=
(
1− χn

)
pn
(
qMn,A′∪A′′ − qMn,A′∪A′′∪{n}

)
≥ 0,

(C.4)

where we assume that qMn,A′∪A′′ − qMn,A′∪A′′∪{n} ≥ 0, which
is in general true because the probability of successful
transmission is larger when there are less interferers. This
implies that the stability region of FRASA obtained by
assuming all links in P ⊆ M in persistent conditions is

contained inside the stability region of FRASA obtained by
assuming all links inP ′ ⊆ P in persistent conditions. Hence,
to obtain the boundary of stability region of FRASA under
partial interference, we only have to consider the case that
only one link is persistent. Then we can use the parametric
form (40) to obtain the boundary when χn̂ = 1. By repeating
over all possible values of n̂, we get the desired result.
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