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Abstract We construct a toy model for compact stars based
on the Finslerian structure of spacetime. By assuming a par-
ticular mass function, we find an exact solution of the Finsler–
Einstein field equations with an anisotropic matter distribu-
tion. The solutions are revealed to be physically interesting
and pertinent for the explanation of compact stars.

1 Introduction

Spherically symmetric spacetime related astrophysical prob-
lems have been always interesting to mathematician as well
as physicists. This is because of the fact that phenomena
such as black holes, wormholes and compact stars (start-
ing from dwarf stars via neutron stars to quark/strange stars
through the vigorous process of gravitational collapse) have
been originated in the class of system with spherical symme-
try.

After the monumental construction of Einstein’s general
theory of relativity in the period 1907–1915 [1], numerous
investigators have been started studying relativistic stellar
models with various aspects of physical reality. The investi-
gation of the exact solutions recounting static isotropic and
anisotropic astrophysical objects has continuously fascinated
scientists with growing interest and attraction. However, it
has till now been observed that most of the exact interior
solutions (both isotropic and anisotropic) of the gravitational
field equations do not fulfill, in general, the required physical
conditions of the stellar systems.

The existence of massive compact stellar system was first
proposed by Baade and Zwicky in 1934 [2] when they argued
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that supernova may yield a very small and dense star con-
sisting primarily of neutrons. It eventually came in to reality
by the discovery of pulsar, a highly magnetized and rotating
neutron star, in 1967 by Bell and Hewish [3,4]. There after
the theoretical investigation of compact stars became fun-
damental area of importance in astrophysics. However, for
modeling a compact star emphasis has been given in gen-
eral on the homogeneity of the spherically symmetric matter
distribution and thus assumption was always valid for the per-
fect fluid obeying the Tolman–Oppenheimer–Volkoff (TOV)
equation.

It was Ruderman [5] who first argued that the nuclear
matter density (ρ ∼ 1015 gm/cc), which is expected at the
core of the compact terrestrial object, becomes very much
anisotropic. In such case of anisotropy the pressure inside the
fluid sphere can specifically be decomposed into two parts:
radial pressure and the transverse pressure, where they are
orthogonal to each other. Therefore it is quite reasonable to
consider pressure anisotropy in any compact stellar model.
In this context it can be noted that Gokhroo and Mehra [6]
have shown that in case of anisotropic fluid the existence of
repulsive force helps to construct compact objects.

Other than the above mentioned ultra density [5] anisotropy
may occur for different reasons in the compact stellar sys-
tem. Kippenhahn and Weigert [7] have argued that anisotropy
could be introduced due to the existence of solid core or for
the presence of type 3A-superfluid. Some other reasonable
causes for arising anisotropy are: different kind of phase tran-
sitions [8], pion condensation [9], effects of slow rotation
in a star [10], etc. However, Bowers and Liang [11] indi-
cated that anisotropy might have non-negligible effects on
such parameters like equilibrium mass and surface redshift.
In connection to pressure anisotropy inside a compact star
several recent theoretical investigations are available in the
literature [12–19]. However, there is an exhaustive review on
the subject of anisotropic fluids by Herrera and Santos [20]
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which provides almost all references until 1997 and hence
may be looked at for further information.

Several major characteristics of compact stars established
by the present day observations have been tackled by Ein-
stein’s general theory of relativity based on Riemannian
geometry. Ever since the beginning of the general theory of
relativity, there has also been considerable interest in Alter-
native theories of gravitation. One of the most stimulating
alterations of general relativity is that proposed by Finsler
[21].

The first self-consistent Finsler geometry model was stud-
ied by Cartan [22] in 1935 and the Einstein–Finsler equations
for the Cartan d-connection were introduced in 1950 [23].
Latter on, there were studies on various models of Finsler
geometry and certain applications to physics [21,24]. The
first problem of those original works was related to the
Finsler connections (due to Chern–Rund and/or Berwald)
with non-metricity fields (see details and critics in [24,25]).
The second and third conceptual and technical problems were
related to the facts that the geometric constructions were in
the bulk for local Euclidean signatures. However, in some
cases Finsler pseudo-Riemannian configurations were con-
sidered but researchers were not able to find out any exact
solution.

In a self-consistent manner and related to standard theo-
ries, relativistic models of Finsler gravity and generaliza-
tions were constructed in the beginning of 1996 [26,27],
when Finsler gravity and locally anisotropic spinors were
derived in low energy limits of superstring/supergravity
theories with N -connection structure (velocity type coor-
dinates being treated as extra-dimensional ones). Using
Finsler geometric methods, it was elaborated to the so-
called anholonomic frame deformation method (AFDM),
which allows to construct generic off-diagonal exact solu-
tions in various modified gravity theories, including vari-
ous commutative and noncommutative Finsler generaliza-
tions, and in general relativity [28–30]. In this way vari-
ous classes of exact solutions for Finsler modifications of
black hole, black ellipsoid/torus/brane and string configura-
tions, locally anisotropic cosmological solutions have been
constructed for the canonical d-connection and Cartan d-
connections.

The Finslerian space is very suitable for studying anis-
otropic nature of spacetime (it’s mathematical aspects can be
obtained in detail in Sect. 2). Basically this space is a general-
ization of Riemannian space and has been studied in several
past years extensively in connection to astrophysical prob-
lems, e.g. Lämmerzahl et al. [31] have investigated observ-
able effects in a class of spherically symmetric static Finsle-
rian spacetime whereas Pavlov [32] searches for applicable
character of the Finslerian spacetime by raising the ques-
tion “Could kinematical effects in the CMB prove Finsler
character of the space–time?” Another astrophysics oriented

application of the Finslerian spacetime can be noted through
the work of Vacaru [33] where the author has studied Finsler
black holes induced by noncommutative anholonomic distri-
butions in the Einstein gravity.

Therefore, in the present investigation our sole aim is to
construct a toy model for compact stars under the Finslerian
spacetime which can provide justification of several physical
features of the stellar system. The outline of the study is as
follows: in Sect. 2 the basic equations based on the formal-
ism of the Finslerian geometry are discussed whereas a set
of specific solutions for compact star under Finslerian space-
time has been produced in Sect. 3. The exterior spacetime
and junction conditions are sought for in Sect. 4 in connec-
tion to certain observed compact stars. In Sect. 5, through
several subsections, we discuss in a length various physical
properties of the model. We pass some concluding remarks
in Sect. 6 for the status of the present model as well as future
plans of the work to be pursued. An Appendix has been incor-
porated for justification as well as clarification of some of the
assumptions in mathematical part of the formulation.

2 The basic equations based on the formalism
of the Finslerian geometry

Usually, the Finslerian geometry can be constructed from the
so called Finsler structure F which obeys the property

(x, μy) = μF(x, y)

for all μ > 0, where x ∈ M represents position and y = dx
dt

represents velocity. The Finslerian metric is given as [34]

gμν ≡ ∂

∂yμ

∂

∂yν

(
1

2
F2

)
. (1)

It is to be noted here that a Finslerian metric coincides
with Riemannian, if F2 is a quadratic function of y.

The standard geodesic equation in the Finsler manifold
can be expressed as

d2xμ

dτ 2 + 2Gμ = 0, (2)

where

Gμ = 1

4
gμν

(
∂2F2

∂xλ∂yν
yλ − ∂F2

∂xν

)
, (3)

is called geodesic spray coefficients. The geodesic equation
(2) indicates that the Finslerian structure F is constant along
the geodesic.

The invariant quantity, Ricci scalar, in Finsler geometry is
given as
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Ric ≡ Rμ
μ = 1

F2

×
(

2
∂Gμ

∂xμ
−yλ ∂2Gμ

∂xλ∂yμ
+2Gλ ∂2Gμ

∂yλ∂yμ
− ∂Gμ

∂yλ

∂Gλ

∂yμ

)
,

(4)

where Rμ
ν = Rμ

λνρ y
λyρ/F2.

Here, Rμ
λνρ depends on connections whereas Rμ

μ does not
rather it depends only on the Finsler structure F and is insen-
sitive to connections.

Let us consider the Finsler structure is of the form [34]

F2 = B(r)yt yt − A(r)yr yr − r2 F̄2(θ, ϕ, yθ , yϕ). (5)

Then, the Finsler metric can be obtained as

gμν = diag(B,−A,−r2 ḡi j ), (6)

gμν = diag(B−1,−A−1,−r2 ḡi j ), (7)

where the metric ḡi j and its reverse are derived from F̄ and
the index i, j run over the angular coordinate θ, φ.

Substituting the Finsler structure (5) into Eq. (3), we find

Gt = B ′

2B
yt yr , (8)

Gr = A′

4A
yr yr + B ′

4A
yt yt − r

2A
F̄2, (9)

Gθ = 1

r
yθ yr + Ḡθ , (10)

Gφ = 1

r
yφ yr + Ḡφ, (11)

where the prime denotes the derivative with respect to r ,
and the Ḡ is the geodesic spray coefficients derived by F̄ .
Plugging the geodesic coefficient (8), (9), (10) and (11) into
the formula of Ricci scaler (4), we obtain

F2Ric =
[
B ′′

2A
− B ′

4A

(
A′

A
+ B ′

B

)
+ B ′

r A

]
yt yt

+
[
− B ′′

2B
+ B ′

4B

(
A′

A
+ B ′

B

)
+ A′

r A

]
yr yr

+
[
R̄ic − 1

A
+ r

2A

(
A′

A
− B ′

B

)]
F̄2, (12)

where R̄ic denotes the Ricci scalar of the Finsler structure F̄ .
Now, we are in a position to write the self-consistent grav-

itational field equation in Finsler spacetime. In a pioneering
work Akbar-Zadeh [35] first introduced the notion of Ricci
tensor in the Finsler geometry as

Ricμν = ∂2
( 1

2 F
2Ric

)
∂yμ∂yν

. (13)

Here the scalar curvature in the Finsler geometry is defined
as S = gμνRicμν . Therefore, the modified Einstein tensor in
the Finsler spacetime takes the following form as

Gμν ≡ Ricμν − 1

2
gμνS. (14)

Using equation of Ricci scalar (12), one can obtain from
(13), the Ricci tensors in Finsler geometry. This immediately
yield the Einstein tensors in the Finsler geometry (note that
F̄ is two dimensional Finsler spacetime with constant flag
curvature λ) as follows:

Gt
t = A′

r A2 − 1

r2A
+ λ

r2 , (15)

Gr
r = − B ′

r AB
− 1

r2A
+ λ

r2 , (16)

Gθ
θ = Gφ

φ =− B ′′

2AB
− B ′

2r AB
+ A′

2r A2 + B ′

4AB

(
A′

A
+ B ′

B

)
.

(17)

It has been shown by Li and Chang [34] that the covari-
ant derivative of Einstein tensors in Finsler geometry Gμν

vanishes i.e. covariant conserve properties of the tensor Gμν

indeed satisfy.
Following the notion of general relativity, one can write

the gravitational field equations in the given Finsler space-
time as (see the Appendix for justification)

Gμ
ν = 8πFGTμ

ν , (18)

where Tμ
ν is the energy–momentum tensor.

Note that the volume of Riemannian geometry is not equal
to that of the Finsler space, therefore, it is safe to use 4πF

for expressing the volume of F̄ in the field equation.
The matter distribution of a compact star is still a chal-

lenging issue to the physicists and therefore, as our target is
to find the interior of a compact star, we assume the general
anisotropic energy–momentum tensor [36] as follows:

Tμ
ν = (ρ + pt )u

μuν + pt g
μ
ν + (pr − pt )η

μην, (19)

where uμuμ = −ημημ = 1, pt and pr are transverse and
radial pressures, respectively.

Using the above energy-momentum tensor (19), one can
write the gravitational field equations in the Riemannian
geometry as

8πFGρ = A′

r A2 − 1

r2A
+ λ

r2 , (20)

−8πFGpr = − B ′

r AB
− 1

r2A
+ λ

r2 , (21)

−8πFGpt = − B ′′

2AB
− B ′

2r AB
+ A′

2r A2 + B ′

4AB

(
A′

A
+ B ′

B

)
.

(22)
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Using Eq. (20) we get the value of A, which is given below
as

A−1 = λ − 2Gm(r)

r
, (23)

where m(r) is the mass contained in a sphere of radius r
defined by

m′(r) = 4πFr
2ρ. (24)

3 The model solution for compact star under the
Finslerian spacetime

To construct a physically viable model as well as to make the
above set of equations solvable, we choose the mass function
m(r) in a particular form that has been considered by several
authors for studying isotropic fluid spheres [37], dark energy
stars [38] and anisotropic stars [39,40] as

m(r) = br3

2(1 + ar2)
, (25)

where two constants a, b are positive. The motivation of
this particular choice of mass function lies on the fact that
it represents a monotonic decreasing energy-density in the
interior of the star. Also it gives the energy-density to be
finite at the origin r = 0. The constants may be determined
from the boundary conditions.

Putting the expression of m(r) in Eq. (24), we get

ρ = b(3 + ar2)

8πF (1 + ar2)
. (26)

To determine the unknown metric potentials and physical
parameters, we use the usual equation of state

pr = ωρ, (27)

where the equation of state parameter ω has the constrain
0 < ω < 1. Usually, this equation is used for a spatially
homogeneous cosmic fluid, however, it can be extended to
inhomogeneous spherically symmetric spacetime, by assum-
ing that the radial pressure follows the above equation of
state. The transverse pressure may be obtained from the field
equations.

Plugging Eqs. (26) and (27) in Eqs. (20)–(23), we get the
explicit expressions of the unknowns in the following forms:

A = 1 + ar2

λ + aλr2 − Gbr2 , (28)

B

B0
= (1 + ar2)ω(−λ − aλr2 + Gbr2)

[
b−2ωaλ+3Gbω

2(aλ−Gb)

]
,

(29)

where B0 is an integration constant and without any loss of
generality, one can take it as unity.

The radial and tangential pressures are given by

pr = ωρ = ω

8πF

[
b(3 + ar2)

(1 + ar2)2

]
, (30)

pt = 4ωbλ(3 + 2ar2) − 2ωabr4(2ωλ − 7Gωb − 2Gb − 3Gbω2) + Ga2b2r6(1 + ω2 + 2ω) + 3Gb2r2(1 + 3ω2)

32πF (λ + aλr2 − Gbr2)(1 + ar2)3 . (31)

Note from the above expressions for the radial and tan-
gential pressures that the solutions obtained here are regular
at the center. Now, the central density can be obtained as

ρ(r = 0) = 3b

8πF
. (32)

The anisotropy of pressures dies out at the center and
hence we have

pr (r = 0) = pt (r = 0) = 3ωb

8πF
. (33)

One can notice that as we match our interior solution with
external vacuum solution (pressure zero) at the boundary,
then, at the boundary, all the components of the physical
parameters are continuous along the tangential direction (i.e.
zero pressure), but in normal direction it may not be contin-
uous. Therefore, at the boundary, pressure may zero along
tangential direction, but in normal direction it may not be
zero. So, non-zero pressure at the boundary is not unrealis-
tic.

4 Exterior spacetime and junction condition

Now, we match the interior spacetime to the exterior vacuum
solution at the surface with the junction radius R. The exterior
vacuum spacetime in the Finslerian spacetime is given by the
metric [34]

F2 =
(

1 − 2MG

λr

)
yt yt −

(
1

λ − 2MG
r

)
yr yr

+r2 F̄2(θ, ϕ, yθ , yϕ). (34)

Across the boundary surface r = R between the interior
and the exterior regions of the star, the metric coefficients
gtt and grr both are continuous. This yields the following
results:
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Table 1 Values of the constantsa, b for different strange star candidates

Strange star
candidate

R
(in km)

M
(in M�)

M
(in km)

b a

PSR J1614-2230 10.3 1.97 2.905 0.0175 0.0216

Vela X-12 9.99 1.77 2.610 0.0170 0.0225

PSR J1903+327 9.82 1.67 2.458 0.0165 0.0226

Cen X-1 9.51 1.49 2.197 0.0160 0.0236

SMC X-4 8.9 1.29 1.902 0.015 0.0237

λ − 2MG

R
= 1 + aR2

λ + aλR2 − GbR2 , (35)

1− 2MG

λR
= (1+aR2)ω(−λ−aλR2+GbR2)

[
b−2ωaλ+3Gbω

2(aλ−Gb)

]
.

(36)

The above two equations contain four unknown quanti-
ties, viz., a, b, λ, ω. Equation (32) yields the unknown b
in terms of central density. Also from the total mass of star
m(r = R) = M = bR3

2(1+aR2)
, we can find out the constant

a in terms of the total mass M , radius R and central den-
sity. Finally, Eqs. (35) and (36) yield the unknowns - the
flag curvature λ and the equation of state parameter ω in
terms of the total mass M , radius R and central density. The
values of the constants a, b for different strange star candi-
dates are given in Table 1. Note that for matching we have
used four constraint equations with four unknown and all the

Fig. 1 Variation of the mass vs radial coordinate (upper left), the compactness vs radial coordinate (upper right) and the redshift vs radial coordinate
(lower) are shown in the plot for the specified range of the positive flag curvature
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unknown parameters are found in terms of R and M . For
the use of continuity of dgtt

dr , we will get an extra equation
which gives a restriction equation of M and R. As we have
used real parameters of mass and radius of different compact
stars like PSR J1614 − 2230, etc., we avoid this continuity
of dgtt

dr .

5 Physical features of the compact star model

5.1 Mass–Radius relation

The study of redshift of light emitted at the surface of the
compact objects is important to get observational evidence

Table 2 Maximum compactness factor, mass and surface redshift for
different cases

a b u(R) m(R) (in km) Zs(R)

0.0216 0.0175 0.2769 2.769 0.4970

0.0225 0.0170 0.2615 2.615 0.4480

0.0226 0.0165 0.2531 2.531 0.4229

0.0236 0.0160 0.2381 2.381 0.3817

0.0237 0.0155 0.2299 2.299 0.3607

of anisotropies in the internal pressure distribution. Before
finding out the redshift, we give our attention to the basic
requirement of the model that whether matter distribution
will follow the Buchdahl [41] maximum allowable mass–

Fig. 2 Variation of ρ vs radial coordinate (upper left), ρ + pr vs radial coordinate (upper right), ρ + pt vs radial coordinate (lower left) and
ρ + pr + 2pt vs radial coordinate (lower right) are shown in the plot for the specified range of the positive flag curvature
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Fig. 3 Variation of the gravitational force vs radial coordinate (upper left), hydrostatics force vs radial coordinate (upper right), anisotropic force
vs radial coordinate (lower) are shown in the plot for the specified range of the positive flag curvature

radius ratio limit or not. We have already found out the mass
of the star which has been given in Eq. (24).

The compactness of the star can be expressed as

u = m(r)

r
= br2

2(1 + ar2)
, (37)

and the corresponding surface redshift can be obtained as

Zs = (1 − 2u)−
1
2 − 1 =

(
1 − br2

1 + ar2

)− 1
2

− 1. (38)

The variation of mass, compactness factor and redshift are
shown in Fig. 1 for different strange star candidates for a fixed
value of λ = 0.01 whereas the maximum mass, compactness

factor and redshift are shown in Table 2. From this Table 2
we have found out that

(
u = m(r)

r

)
max

<
4

9
.

Therefore, one can note that the Buchdahl limit (which is
equivalent to Zs ≤ 2, the upper bound of a compressible fluid
star) has been satisfied in our model and hence it is physically
acceptable.

The surface redshift Zs can be measured from the X-
ray spectrum which gives the compactness of the star. In
our study, the high redshift (0.36−0.49) are consistent with
strange stars which have mass–radius ratio higher than neu-
tron stars (Zs ≤ 0.9) [42].
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Fig. 4 Variation of the square of the radial velocity vs radial coordinate
(upper left), square of the transverse velocity vs radial coordinate (upper
right) and difference between the square of the transverse velocity and

square of the radial velocity vs radial coordinate (lower) are shown in
the plot for the specified range of the positive flag curvature

5.2 Energy conditions

Now, we verify the energy conditions, namely, the null energy
condition (NEC), weak energy condition (WEC) and strong
energy condition (SEC) which can be given as follows:

(i) NEC : ρ + pr ≥ 0, (39)

(ii) WEC : ρ + pr ≥ 0, ρ ≥ 0, (40)

(iii) SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0. (41)

We plot the L.H.S of the above inequalities in Fig. 2 which
shows that these inequalities hold good. This therefore con-
firm that our model satisfies all the energy conditions.

5.3 TOV equation

The generalized Tolman–Oppenheimer–Volkoff (TOV)
equation for this system can be given by [13]

− MG(ρ + pr )

r2

√
A

B
− dpr

dr
+ 2

r
(pt − pr ) = 0, (42)

where MG = MG(r) is the effective gravitational mass inside
a sphere of radius r given by the Tolman–Whittaker formula
which can be derived from the equation

MG(r) = 1

2
r2 B ′

√
AB

. (43)
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The above equation explains the equilibrium condition of
the fluid sphere due to the combined effect of gravitational,
hydrostatics and anisotropy forces. Equation (42) can be
rewritten in the following form

Fg + Fh + Fa = 0, (44)

where

Fg = − B ′

2B
(ρ + pr ), (45)

Fh = −dpr
dr

, (46)

Fa = 2

r
(pt − pr ). (47)

The profiles (Fig. 3) of these force indicate that the matter
distribution comprising the compact star is in equilibrium
state subject to the gravitational force Fg, hydrostatic force
Fh plus another force Fa due to anisotropic pressure. The
first two forces are repulsive in nature due to positivity but
the latter force is in attractive nature. The combined effect of
these forces makes the system in a equilibrium position.

5.4 Stability

Now, we examine the stability of model. For this purpose,
we employ the technique proposed by Herrera [43] which
is known as cracking concept. At first, it requires that the
squares of the radial and tangential sound speeds should be
within the limit [0, 1]. The theorem states that one can get
stable configuration if radial speed of sound is greater than
that of transverse speed, i.e. v2

st −v2
sr should be less than zero

within the matter distribution.
Now, we calculate the radial speed (vsr) and transverse

speed (vst) for our anisotropic model as

v2
sr = dpr

dρ
= ω, (48)

v2
st = dpt

dρ
= α + β + γ

2abr(5 + ar2)
, (49)

where

α = 16abωλr − 16ω2a2bλr3 + 56Gwab2r3 + 6Gb2r + 16Gab2r3 + 6Ga2b2r5 + 18Gω2b2r + 24Gω2ab2r3 + 6Gω2a2b2r5 + 12Gωa2b2r5

4(λ + aλr2 − Gbr2)
,

β = 6ar(12ωbλ + 8abωλr2 − 4ω2a2bλr4 + 14Gwab2r4 + 3Gb2r2 + 4Gab2r4 + Ga2b2r6 + 9Gω2b2r2 + 6Gω2ab2r4 + Gω2a2b2r6 + 2Gωa2b2r6)

4(1 + ar2)(λ + aλr2 − Gbr2)
,

γ = (2aλr − 2Gbr)(12ωbλ + 8abωλr2 − 4ω2a2bλr4 + 14Gwab2r4 + 3Gb2r2+4Gab2r4+Ga2b2r6+9Gω2b2r2 + 6Gω2ab2r4 + Gω2a2b2r6 + 2Gωa2b2r6)

4(λ + aλr2 − Gbr2)2 .

To check whether the sound speeds lie between 0 and 1
and v2

st − v2
sr < 0 we plot the radial and transverse sound

speeds and squares of their difference. The Fig. 4 satisfies
Herrera’s criterion and therefore, our model is quite stable
one.

6 Concluding remarks

In the present investigation, we have considered anisotropic
matter source for constructing a new type of solutions for
compact stars. The background geometry is taken as the Fins-
lerian structure of spacetime. It is expected that the compact-
ness of these stars is greater than that of a neutron star. Plug-
ging the expressions for G and c in the relevant equations,
one can figure out that the value of the central density for the
choices of the constant b turns out to be ρ0 ∝ 1015 gm cm−3

which is in observational relevance [5,44,45]. This result is
hopeful as far as physical aspect is concerned and may be
treated as a seminal bottom line of the present study.

In this same physical point of view we have studied sev-
eral other physical aspects of the model to justify validity of
the solutions. The features that emerge out from the present
investigation can be put forward as follows:

(1) Mass–Radius relation: The surface redshift, which gives
the compactness of the star, comes out to be in the range
0.36−0.49 in our study. This high redshift is consistent
with strange stars which have mass–radius ratio higher
than neutron stars [42].
In this connection we were also curious about the condi-
tion of Buchdahl [41] related to the maximum allowable
mass–radius ratio limit. It is observed that the Buchdahl
limit has been satisfied by our model.

(2) Energy condition: In the present model all the energy
conditions are shown to be satisfactory.

(3) TOV equation: The generalized Tolman–Oppenheimer–
Volkoff equation for the Finslerian system of compact
star has been studied. It is observed that the combined
effect of the forces in action keeps the system in static
equilibrium.

(4) Stability: The stability of the model has been examined
by employing the cracking technique of Herrera [43]. We
have shown via Fig. 4 that Herrera’s criterion satisfies
which therefore indicates stability of our model.
As a final comment we would like to mention that the
toy model as put forward in the present study for com-

pact stars under the Finslerian structure of spacetime are
seem very promising. However, some other aspects are
deemed to be performed, such as issues of formation and
structure of various compact stars, before one could be
confirmed about the satisfactory role of the Finslerian
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spacetime than that of the Riemannian geometry. Specif-
ically several other issues as argued by Pfeifer and Wohl-
farth [46] that “Finsler spacetimes are viable non-metric
geometric backgrounds for physics; they guarantee well
defined causality, the propagation of light on a non-
trivial null structure, a clear notion of physical observers
and the existence of physical field theories determining
the geometry of space–time dynamically in terms of an
extended gravitational field equation” can be sought for
in a future study.

Acknowledgments FR and SR are thankful to the Inter-University
Centre for Astronomy and Astrophysics (IUCAA), India for providing
Visiting Associateship under which a part of this work was carried
out. FR is also grateful to DST, Govt. of India for financial support
under PURSE programme. We are also grateful to the referee for his
valuable suggestions which have enabled us to improve the manuscript
substantially.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

Let us choose F̄2 in the following form

F̄2 = yθ yθ + f (θ, φ)yφ yφ,

That is

ḡi j = diag(1, f (θ, φ)), ḡi j = diag
(

1, 1
f (θ,φ)

)
;

(i, j = 2, 3/θ, φ).

One can find from F̄2

G2 = −1

4

∂ f

∂θ
,

G3 = 1

4 f

(
2
∂ f

∂θ
yφ yθ + ∂ f

∂φ
yφ yφ

)
.

Hence, one obtains

F̄2R̄ic = yφ yφ

×
[

− 1

2

∂2 f

∂θ2 + 1

2 f

∂2 f

∂φ2 − 1

2

∂

∂φ

(
1

f

∂ f

∂φ

)

− 1

4 f

(
∂ f

∂θ

)2

+ 1

4 f

∂ f

∂φ

1

f

∂ f

∂φ
+ ∂ f

∂θ

1

2 f

∂ f

∂θ

− 1

4 f 2

(
∂ f

∂φ

)2 ]

+yθ yθ

[
−1

2

∂

∂θ

(
1

f

∂ f

∂θ

)
− 1

4 f 2

(
∂ f

∂θ

)2
]

+yφ yθ

[
1

f

∂2 f

∂θ∂φ
− 1

2

∂

∂θ

(
1

f

∂ f

∂φ

)
− 1

2

∂

∂φ

(
1

f

∂ f

∂θ

)]
.

Now, coefficient of yφ yθ = 0 iff, f is independent of φ

i.e.

f (θ, φ) = f (θ),

where the coefficient of yθ yθ & yφ yφ are non zero.
Therefore

F̄2R̄ic =
[
− 1

2 f

∂2 f

∂θ2 + 1

4 f 2

(
∂ f

∂θ

)2
]

(yθ yθ + f yφ yφ).

Hence

R̄ic = − 1

2 f

∂2 f

∂θ2 + 1

4 f 2

(
∂ f

∂θ

)2

= λ,

where λ may be a constant or a function of θ .

Putting 1
f

(
∂ f
∂θ

)
= T (θ), the above equation yields

dT

dθ
+ 1

2
T 2 + 2λ = 0.

For constant λ, one can get Finsler structure F̄2 as

F̄2 = yθ yθ + A sin2(
√

λθ)yφ yφ, λ > 0

= yθ yθ + Aθ2yφ yφ, λ = 0

= yθ yθ + A sinh2(
√−λθ)yφ yφ, λ < 0,

where A may be taken as 1.
Now, the Finsler structure takes the form

F2 = B(r)yt yt − A(r)yr yr − r2yθ yθ

−r2 sin2 θyφ yφ + r2 sin2 θyφ yφ

−r2 sin2(
√

λθ)yφ yφ

= α2 + r2(sin2 θ − sin2(
√

λθ))yφ y phi

= α2 + r2χ(θ)yφ y phi,

where χ(θ) = sin2 θ − sin2(
√

λθ).
Thus

F = α

√
1 + r2χ(θ)yφ yφ

α2 .

Let bφ = r
√

χ(θ), then

F = α

√
1 + (bφ yφ)2

α2 = α
√

1 + s2

where,

s = (bφ yφ)

α
= β

α

bμ = (0, 0, 0, bφ), bφ y
φ = bμh

μ = β, (β is one form).
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Finally, we have

F = αφ(s), φ(s) =
√

1 + s2.

Hence, F is the metric of (α, β)-Finsler space.
The killing equation KV (F) = 0 in the Finsler space can

be obtained by considering the isometric transformations of
Finsler structure [47]. One can investigate the Killing vectors
of (α, β)-Finsler space. The Killing equations for this class
of Finsler space is given as(

φ(s) − s
∂φ(s)

∂s

)
KV (α) + ∂φ(s)

∂s
KV (β) = 0,

where

KV (α) = 1

2α
(Vμ|ν + Vν|μ)yμyν,

KV (β) =
(
Vμ ∂bν

∂xμ
+ bμ

∂Vμ

∂xν

)
yν .

Here “ |” represents the covariant derivative with respect
to the Riemannian metric α. For the present case of Finsler
structure it is given by

KV (α) + sKV (β) = 0 or αKV (α) + βKV (β) = 0.

Consequently, we have the solution

KV (α) = 0 and KV (β) = 0

or

Vμ|ν + Vν|μ = 0

and

Vμ ∂bν

∂xμ
+ bμ

∂Vμ

∂xν
= 0.

It is to be noted that the second Killing equation constrains
the first one which is, in fact, the Killing equation of the
Riemannian space, that is, it is responsible for breaking the
symmetry (isometric) of the Riemannian space.

On the other hand, the Finsler space we are considering
is, in fact, can be determined from a Riemannian manifold
(M, gμν(x)) as we have

F(x, y) = √
gμν(x)yμyν,

(cf. Eqs. (5) and (6) in the case F̄2 is quadratic in yθ & yφ).
It is a semi-definite Finsler space. Therefore, we can take

covariant derivative of the Riemannian space. The Bianchi
identities are, in fact, coincident with those of the Riemannian
space (being the covariant conservation of Einstein tensor).
The present Finsler space is reducible to the Riemannian
space and consequently the gravitational field equations can
be obtained. Also we shall find the gravitational field equa-
tions alternatively following the Ref. [34]. They have also
shown the covariantly conserved properties of the tensor Gμ

ν

in respect of covariant derivative in Finsler spacetime with

the Chern–Rund connection. Presently this conserved prop-
erty of Gμ

ν which are, in fact, in the same forms but obtained
from the Riemannian manifold follows by using the covari-
ant derivative of that space (which are, in fact, the Bianchi
identity). Also we point out the gravitational field equation
(18) is restricted to the base manifold of the Finsler space, as
in [47], and the fiber coordinates yi are set to be the velocities
of the cosmic components (velocities in the energy momen-
tum tensor). Also, Li et al. [47] have shown that their gravita-
tional field equation could be approximately derived from the
Pfeifer et al. [48]. They [48] have constructed gravitational
dynamic for Finsler spacetime in terms of an action integral
on the unit tangent bundle. Also the gravitational field Eq.
(18) is insensitive to the connection because Gμ

ν are obtained
from the Ricci scalar which is insensitive to the connections
and depend only on the Finsler structure F .

Thus above Eqs. (20)–(22) are derived from the modified
gravitational field equation (18) taking anisotropic energy
momentum tensor (19) as well as these equations are deriv-
able from the Einstein gravitational field equation in the Rie-
mannian spacetime with the metric (6) in which the metric
ḡi j is given by

ḡi j = diag(1, sin2
√

λθ).

That is

gμν = diag(B, −A, −r2, −r2 sin2
√

λθ),

gμν = diag(B−1, −A−1, −r−2, −r−2 sin−2
√

λθ).

The terms involving λ in these equations are playing the
physically meaning role doing the effect of the Finsler geo-
metric consideration of the problem.
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