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1 Introduction

In [1], we presented evidence for a partially massless higher-spin theory which extends

the Vasiliev theory [2–5] (see [4, 6–10] for reviews) to include additional partially massless

states [11–15]. Furthermore, we presented evidence that the theory is dual to the �
2 CFT

which we studied in [16] (see also [17–21]).

On the CFT side, a quantity of interest is the partition function on a sphere of radius

r. For even CFT dimension d, the unambiguous and regulator-independent part of the

sphere partition function is the coefficient of the log divergence, corresponding to the a-

type conformal anomaly aCFT,

− lnZ[r]CFT = power divergent + aCFT log(r) + finite, d even, (1.1)

where the scale of the log and the divergent contributions are set by some UV cutoff. For

odd CFT dimensions, the unambiguous and regulator independent part is the finite part,

known as FCFT,

− lnZ[r]CFT = power divergent + FCFT, d odd. (1.2)

– 1 –
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For notational convenience, we follow [22] and define a generalized free energy

F̃CFT = sin

(

πd

2

)

lnZ[r]CFT , (1.3)

valid in any d, which (up to a constant) reduces to aCFT in even d and FCFT in odd d,

F̃CFT =







(−1)
d
2
π
2 aCFT , d even

(−1)
d+1
2 FCFT , d odd

. (1.4)

In [16], we computed aCFT in even d and the free energy FCFT on spheres in odd d for

both the usual � scalar as well as a �
2 scalar in various dimensions (see also the earlier

work [23–27]).

On the AdS side, a quantity of interest is the partition function on global Euclidean

AdS of radius R. In AdS of odd dimension D, the log divergent part aAdS is unambiguous

and regulator-independent, and in AdS of even dimension the finite part FAdS is regulator-

independent and unambiguous.

− lnZ[R]AdS = power divergent + aAdS log(R) + finite, D odd

− lnZ[R]AdS = power divergent + FAdS, D even (1.5)

where the scale of the log and divergent contributions are set by some IR cutoff. As in the

CFT, we define a generalized free energy F̃AdS valid in any D,

F̃AdS =







(−1)
D−1
2

π
2 aAdS , D odd

(−1)
D
2 FAdS , D even

. (1.6)

The AdS theory has a perturbative expansion in powers of the D-dimensional New-

ton’s constant GN , the dimensionful coupling appearing in front of the action, S ∝
1

GN

∫

dDx (· · · ). (We are taking GN to be dimensionless by implicitly combining it with

appropriate powers of the AdS radius R, and leaving an overall dimensionless constant

multiple appearing in front of it ambiguous.) Thus F̃AdS has a perturbative expansion

F̃AdS = G−1
N F̃0 + F̃1 +GN F̃2 +G2

N F̃3 + · · · (1.7)

The lowest part of the expansion, G−1
N F̃0, is the classical action evaluated on AdS, the

next part F̃1 is the one-loop determinant of the quadratic part of the action expanded on

AdS, and the higher parts F̃2, F̃3, · · · are higher order bubble diagrams containing the bulk

interaction vertices.

AdS/CFT tells us that the well-defined parts of the field theory and AdS partition

functions should be equal,

F̃CFT = F̃AdS. (1.8)

In the unitary Vasiliev theories, there is an argument that the inverse Newton’s con-

stant G−1
N should be quantized [28]. Furthermore, we expect on general grounds that

G−1
N ∼ N , where N is the number of “colors” of the dual CFT. In the examples of interest
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where the dual CFT is free, the generalized free energy in the CFT for the U(N) and O(N)

models can be related to the generalized free energy F̃ of a single free real scalar, due to

the fact that the CFTs are free and the generalized free energies are additive. Therefore

F̃CFT = nscalarsF̃ , nscalars =

{

N, O(N) theory

2N, U(N) theory
. (1.9)

In AdS, a computation of F̃0 would require the knowledge of the Vasiliev action, which at

present is not universally agreed upon (see [29–36] for efforts in this direction). Neverthe-

less, the answer is expected to be,

F̃0 =

{

NF̃ , minimal Vasiliev theory

2NF̃ , non minimal Vasiliev theory
. (1.10)

In order to be consistent with the quantization of the inverse Newton’s constant, we would

expect all the higher corrections F̃2, F̃3, · · · to vanish. This however leaves open the possi-

bility that F̃1 is nontrivial, representing a one-loop renormalization of the inverse Newton’s

constant. In order to respect the quantization of the inverse Newton’s constant, it must be

the case that F̃1 is an integer multiple of F̃ ,

F̃1 =

{

nF̃1, minimal O(N) theory

2nF̃ , non minimal U(N) theory
, n ∈ Integers, (1.11)

so that we may (schematically) move F̃1 to the left-hand side of the equation F̃CFT =

G−1
N F̃0 + F̃1, giving

G−1
N ∝ N − n. (1.12)

In the papers by Giombi, Klebanov and Safdi [37, 38] (see also [39–50]), they did

precisely this for the original Vasiliev theory for various d, with several different regulators

which they demonstrated to be equivalent. They found that in the U(N) theory, F̃1 vanishes

(consistent with G−1
N ∝ N), and in the O(N) theory F̃1 = F̃ (consistent with G−1

N ∝ N−1).

In this paper, we reproduce their computations and perform the analogous computation

for the partially massless (PM) theory described in [1]. We have already computed the

conformal anomaly and free energy in the dual �2 theory in [16]. Both the CFT and

AdS theories are not unitary, and so we do not expect the arguments given in [28] for the

quantization of the inverse Newton’s constant to directly apply.1 Nevertheless, what we

find is the same shift of the inverse Newton’s constant as was found for the original Vasiliev

theory:

G−1
N ∝

{

N , nonminimal/U(N) PM theory,

N − 1 , minimal/O(N) PM theory.
(1.13)

This is essentially a one-loop computation in the full PM higher-spin theory, and is

evidence that the full theory is UV-finite and is a complete theory on its own. The way we

1In particular, they assume the absence of negative-norm states, which the AdS PM theory and its

dual have.
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do the computation is to compute a zeta function for the PM theory,2 ζhs2(z) on AdSD,

where D = d + 1. We evaluate ζ ′hs2(0), which gives us the one-loop correction F̃1. We

also evaluate ζhs2(0) for even-D spaces, which ought to be 0 so that the log contributions

vanish and the finite quantities of interest are unambiguous. The sum over spins must

be regularized in a manner consistent with the higher spin symmetries of the theory, and

the authors of [38] found that in order to ensure that ζhs(0) = 0 for even-D spaces, one

regulator that they could use was to insert
(

s+ d−3
2

)−α
in the spin sum, then take the

α → 0 limit afterwards. One of our findings, identical to the findings of [49], is that in

order to ensure that ζhs2(0) = 0 for the PM theory we need to use that same regulator

for the massless particles, and for the partially massless particles we instead need to insert
(

s+ d−5
2

)−α
, then take the α → 0 limit afterwards.

The organization of this paper is as follows: in section 2, we define the zeta functions of

interest, as well as the spectra of interest, and explain how to extract the one-loop F̃1 from

the zeta function. (Now that we have established that we’re only interested in the one-

loop effective action, we drop the subscript 1 to ease the notation, using instead F̃ 1-loop to

represent this quantity as needed.) In section 3, we compute the one-loop renormalization of

the inverse Newton’s constant in odd 7 ≤ D ≤ 17, demonstrating that it is consistent with

quantization, finding the same results as were obtained for the Vasiliev theory (G−1
N ∝ N

for the U(N) theory, G−1
N ∝ N − 1 for the O(N) theory). Next, in section 4, we do the

same but in even D = 6, 8, again obtaining matching results. Finally, we study the case

of AdS4, where the Verma modules of a scalar and a tensor join into one extended Verma

module in the dual CFT3, and we are successfully able to compute the zeta function in

this case after regularizing the zeta functions of the same two particles, obtaining the same

results.

Conventions. We always use d to refer to the CFT dimension, and D to refer to the

AdS dimension, so that D = d+1. Despite the fact that we use d below, the computation

performed in this paper is exclusively in AdS. ∆ refers to the operator dimension of the

CFT dual of an AdS field, and is used to encode the boundary conditions of the AdS field.

2 Generalities of the one-loop renormalization

The one-loop partition function is formally given by

Z1-loop
AdS [r] = e−W

1-loop
AdS =

∏

particles

(detD)−
1
2 , (2.1)

where D is the differential operator coming from the quadratic action around AdS of

a given particle (with gauge modes appropriately fixed and appropriate Faddeev-Popov

ghosts added). To compute the operator determinants, the zeta function technique is used.

2Here, as in the companion paper [1], hs2 refers to the algebra of global symmetries of the �
2 CFT, first

studied by Eastwood and Leistner [51], then studied further by Joung and Mkrtchyan [15].
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2.1 Zeta function definitions

For a given theory in d+ 1 dimensions, we would like to compute a regularized total zeta

function ζd(z), which is related to the one-loop effective action as

W 1-loop
AdS =

1

2

∑

particles

ln detD = −1

2
lim
z→0

(

ζd(z) ln(Λ
2) + ζ ′d(z)

)

(2.2)

where Λ is a UV cutoff in units of the AdS scale, and its coefficient ζd(0) must be zero in

order for the physical quantity ζ ′d(0), which encodes F̃ 1-loop, to be unambiguous. ζd(0) being

0 follows straightforwardly from the definition in odd D/even d spaces, but its vanishing

is more intricate in even D/odd d and must be checked with care.

The total zeta function ζd(z) is given schematically by summing the ζ-function of each

particle in the theory,

ζd(z) =
∑

particles

ζd,∆,s(z). (2.3)

We say schematically because this sum is divergent and requires regularization, which we

describe below. The zeta function of a single particle can be defined as (see [52–58] for

more on the origin of these expressions):

ζd,∆,s(z) =
vol(AdSd+1)

vol(Sd)

2d−1

π
gs,d

∫ ∞

0
du

µd,s(u)
(

u2 +
(

∆− d
2

)2
)z (2.4)

for ∆ > d
2 . Zeta functions for ∆ ≤ d

2 are defined from the above by analytic continuation.

Note again here that we use dual CFT notation d, ∆, s for convenience of specifying

boundary conditions, but the computation is a purely AdS one. The various functions

used in this definition are:

vol(AdSD) =











2(−π)
D−1
2 log(R)

Γ(D+1
2 )

D odd

π
D−1
2 Γ

(

−D−1
2

)

D even

, (2.5)

vol(Sd) =
2π

d+1
2

Γ
(

d+1
2

) , (2.6)

gs,d =
(2s+ d− 2)(s+ d− 3)!

(d− 2)!s!
, (2.7)

µd even,s(u) =
π
(

u2 +
(

s+ d−2
2

)2
)

(

2d−1Γ
(

d+1
2

))2

d−4
2
∏

j=0

(u2 + j2) , (2.8)

µd odd,s(u) =

(

1− 2

1 + e2πu

) uπ
(

(

d−2
2 + s

)2
+ u2

)

(

2d−1Γ
(

d+1
2

))2

d−4
2
∏

j= 1
2

(

u2 + j2
)

. (2.9)
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The volumes are self-explanatory,3 gs,d is the number of propagating degrees of freedom

in a massive spin s particle in d + 1 dimensions, and µ are spectral densities. We will

need Faddeev-Popov-type anticommuting ghosts to eliminate gauge degrees of freedom,

and for these the zeta function gets an overall minus sign (i.e. they carry negative degrees

of freedom).

The physical quantity of interest, F̃ 1-loop, is encoded in the effective action as the

linearization of the total ζ-function about z = 0 [52],

W = −1

2
ζ ′d(0)− ζd(0) ln(Λ) . (2.10)

Given the vanishing of ζd(0), the contributions to F̃1 from each particle are then given in

terms of the zeta function as

ad,∆,s = −
ζ ′d,∆,s(0)

2 log(R)
, d even , (2.11)

Fd,∆,s = −
ζ ′d,∆,s(0)

2
, d odd . (2.12)

(We will drop the AdS subscripts from now on, as all the remaining computations are

performed in the bulk).

Finally, we obtain the full one-loop effective action by summing over all particles in the

theory. We must regulate the sum over spins for both the massless and partially massless

towers. As stated in the introduction, we will find that for the partially massless tower,

the following regularization scheme ensures that ζd(0) = 0: first we regulate by inserting
(

s+ d−5
2

)−α
, then perform the sum over s, then take the limit α → 0.

2.2 The four spectra of interest

We study four theories in this paper: the nonminimal and minimal Vasiliev theories, and

the nonminimal and minimal PM theories. The Vasiliev theories have been studied before

in this context [37, 38], we nevertheless reproduce their work as it is a necessary and natural

stepping stone to studying the zeta functions for the PM theories. The PM theories on

AdS have fields with wrong sign kinetic terms in the spectrum. However, since we are

computing a functional determinant, the overall normalization and sign of the quadratic

action does not matter and these fields still enter the zeta function with a positive sign.

All the gauge fields, including the partially massless fields, have associated Faddeev-Popov

anticommuting ghosts. These contribute a zeta function of opposite sign. Therefore, using

the results of [1] and our claimed regularization scheme, the spectrum of each of these four

theories and their associated regularized zeta functions are as follows:

1) Nonminimal Vasiliev:

• ∆ = d− 2 scalar

3Note, though, that in odd D, we have an IR divergence which arises from the infinite volume of AdS.

This divergence is the AdS dual of the logarithmic divergence due to the conformal anomaly in the CFT.

In even D, we have an unambiguous finite part of the effective action, matching the finite part of the free

energy of the CFT.

– 6 –
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• ∆ = d+ s− 2 physical spins with spin s, s ≥ 1

• ∆ = d+ s− 1 ghost spins with spin s− 1, s ≥ 1

ζnonmin
hs,d (z) = ζd,d−2,0(z) + lim

α→0

∞
∑

s=1

(ζd,d+s−2,s(z)− ζd,d+s−1,s−1(z))

(

s+
d− 3

2

)−α

(2.13)

2) Minimal Vasiliev:

• ∆ = d− 2 scalar

• ∆ = d+ s− 2 physical spins with spin s, even s ≥ 2

• ∆ = d+ s− 1 ghost spins with spin s− 1, even s ≥ 2

ζmin
hs,d(z) = ζd,d−2,0(z) + lim

α→0

∞
∑

s=2,4,6,...

(ζd,d+s−2,s(z)− ζd,d+s−1,s−1(z))

(

s+
d− 3

2

)−α

(2.14)

3) Nonminimal PM:

• ∆ = d− 2 scalar

• ∆ = d− 4 “new scalar”

• ∆ = d− 3 “new vector”

• ∆ = d− 2 “new tensor” (s = 2)

• ∆ = d+ s− 2 physical spins with spin s, s ≥ 1

• ∆ = d+ s− 1 ghost spins with spin s− 1, s ≥ 1

• ∆ = d+ s− 4 PM spins with spin s, s ≥ 3

• ∆ = d+ s− 1 PM ghost spins with spin s− 3, s ≥ 3

ζnonmin
hs2,d

(z) = ζd,d−2,0(z) + ζd,d−4,0(z) + ζd,d−3,1(z) + ζd,d−2,2(z)

+ lim
α→0

∞
∑

s=1

(ζd,d+s−2,s(z)− ζd,d+s−1,s−1(z))

(

s+
d− 3

2

)−α

+ lim
α→0

∞
∑

s=3

(ζd,d+s−4,s(z)− ζd,d+s−1,s−3(z))

(

s+
d− 5

2

)−α

(2.15)

4) Minimal PM:

• ∆ = d− 2 scalar

• ∆ = d− 4 “new scalar”

• ∆ = d− 2 “new tensor”(s = 2)

• ∆ = d+ s− 2 physical spins with spin s, even s ≥ 2

• ∆ = d+ s− 1 ghost spins with spin s− 1, even s ≥ 2

– 7 –
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• ∆ = d+ s− 4 PM spins with spin s, even s ≥ 4

• ∆ = d+ s− 1 PM ghost spins with spin s− 3, even s ≥ 4

ζnonmin
hs2,d

(z) = ζd,d−2,0(z) + ζd,d−4,0(z) + ζd,d−2,2(z)

+ lim
α→0

∞
∑

s=2,4,6,...

(ζd,d+s−2,s(z)− ζd,d+s−1,s−1(z))

(

s+
d− 3

2

)−α

+ lim
α→0

∞
∑

s=4,6,8,...

(ζd,d+s−4,s(z)− ζd,d+s−1,s−3(z))

(

s+
d− 5

2

)−α

. (2.16)

As we will see below in section 4, there is a subtlety in D = 4 for the two PM theories,

having to do with module mixing in the dual CFT, requiring modification of the definition

of the zeta function. We will give precise definitions there.

3 One-loop renormalization in odd D

We first turn to the simpler case of computing the zeta function in oddD (even d), returning

to even D in section 4. We will find that the one-loop contribution to the dual of the

conformal anomaly equals 0 in the nonminimal theories, and equals the conformal anomaly

aCFT of a single real � and �
2 scalar in the minimal Vasiliev and PM theories, respectively.

We begin with the case of AdS9 as an example of the general procedure, because as

argued in [1, 16], the cases of D = 3, 5, 7 are special for various reasons. We then state

results through AdS17 for completeness’ sake. We also study the case of AdS7, following

the näive procedure of simply computing the zeta function, and we encounter no obstacles

and obtain the expected result. We do not consider the cases of AdS3 and AdS5; we

might expect to be able to obtain similar results which match the log theories in CFT2

and CFT4. We have not yet performed this check, as the PM theory described in the

companion paper [1] instead produces the duals of the finite CFT2 and CFT4 rather than

the log theories (see [16] for our terminology regarding log vs. finite theories in these special

cases).

3.1 AdS9

There are four non-gauge particles in the PM theory which are fully massive, and these

must be treated separately. Their representations, given in terms of (∆, s), are (4, 0), (5, 1),

(6, 2) and (6, 0). In the case of (4, 0), as ∆ = d
2 , in order to make the integrals converge

we must4 consider ∆ = 4 + ǫ and at the end continue ǫ to 0. Upon doing this the zeta

function is

ζ8,4+ǫ,0(z) =
ǫ3−2z log(R)Γ

(

z − 9
2

)

215040
√
πΓ(z)

(

70(2z − 9)ǫ4 + 49(2z − 9)(2z − 7)ǫ2

+ 12(2z − 9)(2z − 7)(2z − 5) + 35ǫ6

)

. (3.1)

4As stated previously, we must do this whenever ∆ ≤ d
2
.
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Differentiating at z = 0 produces the contribution to the anomaly, which however

starts at O(ǫ3),

a8,4+ǫ,0 = −
ǫ3

(

−35ǫ6 + 630ǫ4 − 3087ǫ2 + 3780
)

12700800
. (3.2)

Therefore

a8,4,0 = lim
ǫ→0

a8,4+ǫ,0 = 0 . (3.3)

For the other three non-gauge particles, there are no issues directly computing their

zeta functions and evaluating their derivatives:

ζ8,5,1(z) =
(8z(32z−241)+3507) log(R)Γ(z− 9

2)
40320

√
πΓ(z−1)

a8,5,1 = − 167
113400

ζ8,6,2(z) =
2−2z−5(4z(25z−44)−993) log(R)Γ(z− 9

2)
9
√
πΓ(z−1)

a8,6,2 =
331
5670

ζ8,6,0(z) =
2−2z−5(2z−7)(6z+13) log(R)Γ(z− 9

2)
105

√
πΓ(z−1)

a8,6,0 =
13

28350

For the gauge fields, we must sum over each tower of spins and each tower of cor-

responding ghosts. We give one example here then state answers for the other cases of

interest. For the spin sums, we follow the procedure of [38] and perform the sum over

spins before performing the u-integral in the definition of the zeta function. We define the

u-integrand of the zeta function simply by ζ(z, u),

ζ8,spins(z) =

∫ ∞

0
du

∞
∑

s=1

ζ8,6+s,s(z, u) . (3.4)

The result of performing the sum is

ζ8,spins(z, u) =
u22−2z−9 log(R)

(

u2+1
)−z

14175π

×

(

4
(

4z(8ζ(2(z−5))+26ζ(2(z−4))−28ζ(2(z−3))−6ζ(2(z−2))+ζ(2z−11)

+23ζ(2z−9)−ζ(2z−7)−23ζ(2z−5))−2880
(

u2+1
) (

4u2+1
) (

4u2+9
)

)

+u24z
(

8
(

7u2+5
)

ζ(2(z−6))−4
(

9u2+35
)

ζ(2(z−4))+
(

35−78u2
)

ζ(2z−9)

+
(

6u4+8u2
)

ζ(2(z−7))−2
(

3u4+14u2−77
)

ζ(2(z−5))+
(

u4+u2
)

ζ(2z−15)

+
(

10u4+28u2+5
)

ζ(2z−13)+
(

−11u4+49u2+119
)

ζ(2z−11)−54ζ(2(z−3))

−159ζ(2z−7)
)

)

. (3.5)
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The result of integrating this with respect to u is

ζ8,spins(z) =
4−z−7 log(R)Γ

(

z− 9
2

)

14175
√
πΓ(z)

×

(

15 22z+1(8z−15)ζ(2(z−7))+15 4z+2z(2z−9)ζ(2(z−6))

+22z+3(z(z(32z−105)−809)+2772)ζ(2(z−5))−69120(z−1)(2z−7)(6z+13)

−22z+1(2z−9)(2z−7)(112z−199)ζ(2(z−3))−4z(2z−9)(2z−7)(8z+457)ζ(2z−7)

+15 22z+1(z−1)ζ(2z−15)+15 4z(4z(z+6)−119)ζ(2z−13)

+4z(2z(2z(8z+273)−4405)+13461)ζ(2z−11)−3 22z+3(2z−9)(2z−7)(2z−5)ζ(2z−4)

+4z(2z−9)(2z(184z−999)+1315)ζ(2z−9)+22z+3(2z−9)(z(52z−417)+755)ζ(2z−8)

−23 4z+1(2z−9)(2z−7)(2z−5)ζ(2z−5)

)

. (3.6)

Finally, we may differentiate at 0 to obtain

a8,spins = −
ζ ′8,spins(0)

2 log(R)
= − 14334496157

31261590360000
. (3.7)

These same steps may be performed for the other sums of interest. The corresponding

zeta functions and contributions to the anomaly are

ζ8,ghosts(z) =

∫ ∞

0
du

∞
∑

s=1

ζ8,7+s,s−1(z, u) a8,ghosts = 624643
31261590360000

ζ8,even spins(z) =

∫ ∞

0
du

∞
∑

s=2,4,6,...

ζ8,6+s,s(z, u) a8,even spins = − 22329082757
62523180720000

ζ8,even ghosts(z) =

∫ ∞

0
du

∞
∑

s=2,4,6,...

ζ8,7+s,s−1(z, u) a8,even ghosts = − 6339909557
62523180720000

ζ8,PM spins(z) =

∫ ∞

0
du

∞
∑

s=3

ζ8,4+s,s(z, u) a8,PM = − 1778854645457
31261590360000

ζ8,PM ghosts(z) =

∫ ∞

0
du

∞
∑

s=3

ζ8,7+s,s−3(z, u) a8,PM ghosts = 78710743
31261590360000

ζ8,even PM spins(z) =

∫ ∞

0
du

∞
∑

s=4,6,8,...

ζ8,4+s,s(z, u) a8,even PM = − 3684874361057
62523180720000

ζ8,even PM ghosts(z) =

∫ ∞

0
du

∞
∑

s=4,6,8,...

ζ8,7+s,s−3(z, u) a8,even PM ghosts = 35089486543
62523180720000

With all of these results, we may now sum up and compare with the CFT for each of

the theories of interest. First we reproduce the results of [38] for the nonminimal original

Vasiliev theory,

anonmin
hs,8 = a8,6,0 + a8,spins − a8,ghosts = 0 . (3.8)

Therefore G−1
N ∝ N .
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Now the minimal original Vasiliev theory theory,

amin
hs,8 = a8,6,0 + a8,even spins − a8,even ghosts =

23

113400
. (3.9)

This is precisely the anomaly of one real � scalar in 8d. Therefore we may interpret

G−1
N ∝ N − 1, as in [38].

Now the PM theory. We begin with the nonminimal theory,

anonmin
hs2,8 = a8,6,0+a8,spins−a8,ghosts+a8,4,0+a8,5,1+a8,6,2+a8,PM spins−a8,PM ghosts = 0 .

(3.10)

This is consistent with G−1
N ∝ N , with no one-loop correction.

Finally, the minimal PM theory:

amin
hs2,8 = a8,6,0+a8,even spins−a8,even ghosts+a8,4,0+a8,6,2+a8,even PM spins−a8,even PM ghosts

= − 13

14175
. (3.11)

This is precisely the conformal anomaly of one real �2 scalar in 8d, which supports the

interpretation G−1
N ∝ N − 1.

3.2 AdS7

In AdS7, the only expected subtlety comes from the two scalars, whose dual CFT modules

mix [16]. Indeed, the free action for the scalars is nondiagonalizable [1]. However, following

the näive procedure of simply computing the zeta function seems to give us the expected

results. In the future, it would be interesting to inquire as to why this happens.

The only subtlety in AdS7 is the fact that the ∆ = 2 scalar and the ∆ = 3 vector have

∆ ≤ d
2 , and so their contributions require analytic continuation from ∆ > d

2 . Computing

the zeta function for a scalar of dimension ∆ and continuing, we obtain

ζ ′6,∆,0(0) = −
(∆− 3)3

(

3∆4 − 36∆3 + 141∆2 − 198∆ + 82
)

7560
logR (3.12)

As ∆ → 2, we obtain a6,2,0 = − 1
1512 . Similarly for the ∆ = 3 vector, we obtain

a6,3,1 = 0.

The rest of the computation follows similarly to the AdS9 case above. In the end, we

obtain the following results:

a6,4,0 = 1
1512 a6,2,0 = − 1

1512

a6,3,1 = 0 a6,4,2 = 109
1890

a6,spins = − 1124261
1702701000 a6,ghosts = 233

212837625

a6,even spins = − 1125659
851350500 a6,even ghosts = 1127057

1702701000

a6,PM = − 98159381
1702701000 a6,PM ghosts = − 543703

851350500

a6,even PM = − 89282353
1702701000 a6,even PM ghosts = − 2219257

425675250
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D ascalar anew scalar anew vector anew tensor

7 1
1512 − 1

1512 0 109
1890

9 − 13
14175 0 167

56700 − 331
2835

11 − 19
30800 − 263

7484400
1049

467775 − 243
2200

13 − 275216
638512875 − 28151

1277025750
22419

14014000 − 9492016
91216125

15 − 307525
980755776 − 717

56056000
2229232

1915538625 − 12075925
122594472

17 − 70327
297797500 − 531926

69780335625
3964165

4547140416 − 797931
8508500

Table 1. The one-loop contributions of the massive particles to the dual of the conformal anomaly

in AdS7 through AdS17.

anonmin
hs,6 = a6,4,0+a6,spins−a6,ghosts = 0 . (3.13)

amin
hs,6 = a6,4,0+a6,even spins−a6,even ghosts = − 1

756
. (3.14)

anonmin
hs2,6 = a6,4,0+a6,spins−a6,ghosts+a6,2,0+a6,3,1+a6,4,2+a6,PM spins−a6,PM ghosts

= 0 . (3.15)

amin
hs2,6 = a6,4,0+a6,even spins−a6,even ghosts+a6,2,0+a6,4,2+a6,even PM spins−a6,even PM ghosts

=
8

945
. (3.16)

These results all support the conclusion that G−1
N ∝ N in the nonminimal Vasiliev and PM

theories, and G−1
N ∝ N − 1 in the minimal Vasiliev and PM theories.

3.3 AdS11 through AdS17

Carrying out the above procedure in AdS11 through AdS17, we fill out the following tables

of contributions to a. The contributions of the four massive particles are given in table 1.

The spin sums, their associated ghosts’ sums, and the difference between them (we’ve

included the difference for convenience) are in table 2. The same spin sums, but with even

spins only, are in table 3. The sum over the partially massless particles and their associated

ghosts is in table 4, and finally, the same but with even spins only is in table 5.

Putting these results all together, we obtain the results for the one-loop correction to

the inverse Newton’s constant in all four of these theories in table 6.

4 One-loop renormalization in even D

In even-D cases, we must not only concern ourselves with the finite part of the effective

action (which will be dual to the free energy F ), but also with the log-divergent part of the

action, the would-be a-type conformal anomaly. Odd-dimensional CFTs have no a-type

conformal anomaly due to the absence of diff-invariant counterterms to renormalize the

log divergence, and so our regularization scheme for the AdS dual of the free energy must
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d aspins aghosts adifference

7 − 1124261
1702701000

233
212837625 − 1

1512

9 14334496157
15630795180000 − 624643

15630795180000
13

14175

11 19887362021
32238515058750 − 269057

257908120470000
19

30800

13 19659148636669746041
45610068020048532000000 − 1509998285959

45610068020048532000000
275216

638512875

15 2937757532570636610049
9369068139118302615000000 − 5570293999663

4684534069559151307500000
307525

980755776

17 517155640022646178755331547867
2189879516259542026449129600000000 − 101884121512763172133

2189879516259542026449129600000000
70327

297797500

Table 2. The one-loop contribution of the massless spins, their ghosts, and the difference of the

two to the dual of the conformal anomaly in AdS7 through AdS17.

d aeven spins aeven ghosts adifference

7 − 1125659
851350500

1127057
1702701000 − 1

504

9 22329082757
31261590360000

6339909557
31261590360000

29
56700

11 336323718943
515816240940000 − 18125926607

515816240940000
5143

7484400

13 38721009127060464041
91220136040097064000000

597288146279028041
91220136040097064000000

1423223
3405402000

15 2949756676401053999087
9369068139118302615000000 − 5999571915208694519

4684534069559151307500000
38754643

122594472000

17 1033175411772321536794365707867
4379759032519084052898259200000000

1135868272970820716297387867
4379759032519084052898259200000000

7366432081
31261590360000

Table 3. The one-loop contribution of the even massless spins, their ghosts, and the difference of

the two to the dual of the conformal anomaly in AdS7 through AdS17.

d aPM spins aPM ghosts adifference

7 − 98159381
1702701000 − 543703

851350500 − 431
7560

9 1778854645457
15630795180000 − 78710743

15630795180000
239
2100

11 7426137840569443
68603560045020000 − 2294093807

68603560045020000
54011
498960

13 3454885655909454389459
33711789406122828000000 − 19136712972541

33711789406122828000000
1046987549
10216206000

15 10945175018472155430073063
112428817669419631380000000 − 1540451871354437

112428817669419631380000000
442030453
4540536000

17 29067924098063852463799436333081
312839930894220289492732800000000 − 126297330828409506919

312839930894220289492732800000000
322745647937
3473510040000

Table 4. The one-loop contribution of the partially massless spins, their ghosts, and the difference

of the two to the dual of the conformal anomaly in AdS7 through AdS17.
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d aeven PM spins aeven PM ghosts adifference

7 − 89282353
1702701000 − 2219257

425675250 − 17
360

9 3684874361057
31261590360000 − 35089486543

31261590360000
2249
18900

11 15136962033791593
137207120090040000

23004885601693
137207120090040000

3569
32400

13 7019560472352046241459
67423578812245656000000 − 1927792373316186541

67423578812245656000000
27279877
261954000

15 22150846580406974501675563
224857635338839262760000000

1184338144028746310563
224857635338839262760000000

4025400551
40864824000

17 58681950547410701097873345293081
625679861788440578985465600000000 − 639052947373902172972626919

625679861788440578985465600000000
57490751477
612972360000

Table 5. The one-loop contribution of the even partially massless spins, their ghosts, and the

difference of the two to the dual of the conformal anomaly in AdS7 through AdS17.

guarantee that there is no dual log divergence as well, in the process ensuring that the free

energy is unambiguous and physical. In terms of zeta functions, the free energy will be

manifested in terms of ζ ′d(0), whereas the log divergence will be ζd(0). We calculate these

two independently but with the same regulator.

What we will find is that the idea behind the regulator of [38], inserting
(

s+ d−3
2

)−α

before carrying out the spin sum, may continue to be used for the partially massless tower,

but needs to be modified to
(

s+ d−5
2

)−α
(as found also in [49]). The massless regulator is

left unchanged. Note that in this section, we subtract ghosts from spins before regulating

and performing the spin sums. Therefore, in all results below, when we say “spins”, what

we really mean is “spins minus ghosts”.

The one-loop computation in even D is much more technically involved than the odd

D computation. To that end, we need to define some helpful intermediate functions,

following [38]. First, the spectral density contains a term 1− 2
1+e2πu . We define two partial

spectral densities by splitting up this term:

µ(1) =
uπ

(

(

d−2
2 + s

)2
+ u2

)

(

2d−1Γ
(

d+1
2

))2

d−4
2
∏

j= 1
2

(

u2 + j2
)

, (4.1)

µ(2) = −
2uπ

(

(

d−2
2 + s

)2
+ u2

)

(e2πu + 1)
(

2d−1Γ
(

d+1
2

))2

d−4
2
∏

j= 1
2

(

u2 + j2
)

. (4.2)

We use these to define partial zeta functions:

ζ
(i)
d,∆,s(z) =

vol(AdSd+1)

vol(Sd)

2d−1

π
gs,d

∫ ∞

0
du

µ
(i)
d,s(u)

(

u2 +
(

∆− d
2

)2
)z , (4.3)

which sum to the (complete) zeta function

ζd,∆,s(z) = ζ
(1)
d,∆,s(z) + ζ

(2)
d,∆,s(z) . (4.4)
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d Nonmin Vasiliev Min Vasiliev Nonmin PM Min PM

7 0 − 1
756 0 8

945

9 0 23
113400 0 − 13

14175

11 0 − 263
7484400 0 62

467775

13 0 133787
20432412000 0 − 28151

1277025750

15 0 − 157009
122594472000 0 7636

1915538625

17 0 16215071
62523180720000 0 − 1488889

1953849397500

Table 6. Complete result for the AdS computation of anomalies at one loop.

We continue to use the notation ζd,∆,s(z, u) for the pre-integrated zeta function,

ζd,∆,s(z) =

∫ ∞

0
du ζd,∆,s(z, u) . (4.5)

We also need the following helpful identities and definitions:

lim
z→0

d

dz





∫ ∞

0
du

u2p+1

(

u2 +
(

∆− d
2

)2
)z



 = (−1)p+1

(

∆− d

2

)2(1+p) H1+p − 2 ln
(

∆− d
2

)

2(1 + p)
,

(4.6)

where Hn is the nth harmonic number. This identity covers all of the single particle ζ(1)′(0)

that we need to evaluate.

We now turn to ζ(2)′(0). Define the following,

∫ ∞

0
du

u2p+1 ln
(

u2 +
(

∆− d
2

)2
)

1 + e2πu
= cp + 2

∫ ∆− d
2

0
dx xAp(x) , (4.7)

where

cp =
Γ(2 + 2p)

41+2pπ2(1+p)

(

ζ(2 + 2p)
(

−21+2p ln(2π) + ln(4π) + (21+2p − 1)ψ (2 + 2p)
)

+ (21+2p − 1)ζ ′(2 + 2p)
)

, (4.8)

Ap(x) =
4p − 2

(4π)2p
Γ(2p)ζ(2p)− x2Ap−1(x) ,

A0(x) =
1

2
ψ

(

x+
1

2

)

− 1

2
lnx , (4.9)

where ψ is the digamma function, and Ap is defined recursively.

We will split the computation of ζ ′d,∆,s(0) into two parts, which we will call the “J”

and “K” parts, following [38]. The definitions of these revolve around the x-integral that

will be done over the polygamma function ψ
(

x+ 1
2

)

. J is the part of the answer that

follows by ignoring this integral:

Jd,∆,s =

{

ζ ′d,∆,s(0)

∣

∣

∣

∣

ψ

(

x+
1

2

)

→ 0

}

. (4.10)
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Then, in terms of this, K is the remaining part of the zeta function, which now only

involves the integral of the polygamma function:

Kd,∆,s = ζ ′d,∆,s(0)− Jd,∆,s . (4.11)

As mentioned earlier, there are subtleties in D = 4, which we will explore below.

4.1 AdS6

As we will demonstrate, in all four theories we study, ζ5(0) = 0. In the nonminimal

theories, we find ζ ′5(0) = 0, consistent with G−1
N ∝ N , and for the minimal theories, we

find ζ ′5(0) = −2F , where F is the free energy of a real scalar with an appropriate number

of powers of the Laplacian evaluated on S5.

4.1.1 ζ5(0)

ζ5(0) receives contributions from every field and ghost in the theory. First we begin with

the four massive particles. We may define ζ5,∆,s(0) per particle by integrating then setting

z → 0 for ζ(1), and the opposite for ζ(2):

ζd,∆,s(0) ≡ ζ
(1)
d,∆,s(0) +

(∫ ∞

0
du ζ

(2)
d,∆,s(0, u)

)

. (4.12)

Carrying this out for the four massive particles we obtain

ζ5,3,0(0) =
1

1512
, ζ5,1,0(0) = − 37

7560
,

ζ5,2,1(0) =
67

7560
, ζ5,3,2(0) =

13

270
. (4.13)

The zeta functions for massless and PM spins and their associated ghosts may be done

in an identical fashion. After that, we must sum over spins, but again this sum is divergent

and must be regulated by inserting a
(

s+ d−3
2

)−α
for massless spins or a

(

s+ d−5
2

)−α
for

PM spins, doing the sum, and then setting α → 0:5

ζ5,spins(0) = lim
α→0

∞
∑

s=1

(ζ5,s+1,s(0)− ζ5,s+2,s−1(0))

(

s+
d− 3

2

)−α

= − 1

1512
, (4.15)

ζ5,PM spins(0) = lim
α→0

∞
∑

s=3

(ζ5,s−1,s(0)− ζ5,s+2,s−3(0))

(

s+
d− 5

2

)−α

= − 197

3780
. (4.16)

5We could ask what would happen if we had instead chosen to regulate the PM sum in d = 5 by (s+x)−α,

for some other x. If we had done so, we would have found instead:

ζ
nonmin,x
hs2,5

(0) = ζ5,3,0(0) + ζ5,1,0(0) + ζ5,2,1(0) + ζ5,3,2(0)

+ lim
α→0

∞
∑

s=1

(ζ5,s+3,s(z)− ζ5,s+4,s−1(z)) (s+ 1)−α

+ lim
α→0

∞
∑

s=3

(ζ5,s+1,s(z)− ζ5,s+4,s−3(z)) (s+ x)−α

=
x
(

105x8 − 1050x6 + 3423x4 − 4510x2 + 1480
)

151200
. (4.14)

Thus we see that we ought to choose x = 0 to ensure that the above vanishes. We can also carry out

this same exercise for the minimal theory, and in other dimensions. We have done so and all support the

conclusion that the appropriate regulator is
(

s+ d−5
2

)

−α
.
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In the case of even spins only:

ζ5,even spins(0) = lim
α→0

∞
∑

s=2,4,6,...

(ζ5,s+1,s(0)− ζ5,s+2,s−1(0))

(

s+
d− 3

2

)−α

= − 1

1512
.

(4.17)

ζ5,even PM spins(0) = lim
α→0

∞
∑

s=4,6,8,...

(ζ5,s−1,s(0)− ζ5,s+2,s−3(0))

(

s+
d− 5

2

)−α

= − 109

2520
.

(4.18)

By adding together the appropriate ζ5(0)s, we see that this regularization scheme is suffi-

cient to ensure that ζnonmin
hs,5 (0), ζmin

hs,5(0), ζ
nonmin
hs2,5

(0), and ζmin
hs2,5

(0) are all 0, thus there is no

dual conformal anomaly term for the CFT5.

4.1.2 ζ′
5
(0)

As in [38], the computation of ζ ′5(0) is considerably more involved. We generally refer

to the procedure outlined there, with modifications as needed to accommodate the PM

theory. We split all of the computations into “J” and “K” pieces, as explained above. We

begin with J . It receives contributions from both ζ(1)′(0) and ζ(2)′(0). We begin with the

computation of ζ(1)′(0). This may be evaluated as in [38] by using the identities defined

above. Now, we turn to ζ(2)′(0).

ζ
(2)′
5,∆,s(0) = −

∫ ∞

0
du

(s+ 1)(s+ 2)(2s+ 3)u
(

u2 + 1
4

)

(

(

s+ 3
2

)2
+ u2

)

ln
(

(

∆− 5
2

)2
+ u2

)

360(e2πu + 1)
.

(4.19)

We may expand this in powers of u, then use (4.7) term-by-term to replace each u

integral with a constant plus an x integral. After recursing in p, we’re ultimately left

with an x integral of the form
∫ ∆− d

2
0 dx xqψ

(

x+ 1
2

)

. All such integrals (along with their

multiplicative coefficients out front) define what we mean by K. Everything else in ζ(2)′(0),

along with all of ζ(1)′(0), together define J . More details can be found in [38].

All of the J pieces are straightforward to deal with with the identities above. The K

pieces require some more work; we defer the reader to the methodology in [37, 38]. The

general idea is to rewrite the polygamma function in an integral form

ψ(y) =

∫ ∞

0
dt

(

e−t

t
− e−yt

1− e−t

)

, (4.20)

then perform the x integral, then perform the regulated spin sum, subtract off the power-

law divergences in the t-integral, then finally perform the t integral. We perform the t

integral by taking appropriate derivatives so that we can use the integral representation of

the Hurwitz-Lerch Φ function,

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0
dt

ts−1e−vt

1− ze−t
=

∞
∑

n=0

zn

(n+ v)s
, (4.21)

which we can relate in turn to derivatives of the Hurwitz zeta function.
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Once all of the dust settles, we find the following results. First, the individual particles:

J5,scalar = 3 log(A)
640 − 7ζ′(4)

256π4 − 31ζ′(6)
512π6 − 1459

907200 + 89γ
241920 − 11 log(2)

161280 + 89 log(π)
241920

K5,scalar = 23 log(A)
1920 + 21ζ′(−5)

640 − 7ζ′(−3)
192 − ζ(3)

96π2 − ζ(5)
32π4 − 1181

1382400 + 211 log(2)
483840

J5,new scalar = 3 log(A)
640 − 7ζ′(4)

256π4 − 31ζ′(6)
512π6 − 4483

907200 + 89γ
241920 − 11 log(2)

161280 + 89 log(π)
241920

K5,new scalar = −99 log(A)
640 + 21ζ′(−5)

640 + 19ζ′(−3)
64 + 3ζ(5)

32π4 − 3ζ(3)
32π2 + 1433

51200 + 211 log(2)
483840

J5,new vector = 25 log(A)
384 − 91ζ′(4)

256π4 − 155ζ′(6)
512π6 − 737

36288 + 1033γ
241920 − 31 log(2)

17920 + 1033 log(π)
241920

K5,new vector = 71 log(A)
384 + 21ζ′(−5)

128 − 155ζ′(−3)
192 + 17ζ(3)

96π2 + 5ζ(5)
32π4 − 3821

276480 + 2903 log(2)
483840

J5,new tensor = 343 log(A)
960 − 245ζ′(4)

128π4 − 217ζ′(6)
256π6 − 439

4050 + 383γ
17280 − 41 log(2)

3840 + 383 log(π)
17280

K5,new tensor = 1001 log(A)
960 + 147ζ′(−5)

320 − 469ζ′(−3)
96 − 49ζ(3)

48π2 − 7ζ(5)
16π4 − 54467

691200 + 227 log(2)
6912

where A is Glaisher’s constant. Now, the various spin sums:

J5,spins = −3 log(A)
640 + 7ζ′(4)

256π4 + 31ζ′(6)
512π6 − 89γ

241920 + 1459
907200 + 11 log(2)

161280 − 89 log(π)
241920

K5,spins = −23 log(A)
1920 − 21ζ′(−5)

640 + 7ζ′(−3)
192 + ζ(3)

96π2 + ζ(5)
32π4 + 1181

1382400 − 211 log(2)
483840

J5,even spins = −3 log(A)
640 + 7ζ′(4)

256π4 + 31ζ′(6)
512π6 − 89γ

241920 + 1459
907200 + 11 log(2)

161280 − 89 log(π)
241920

K5,even spins = −23 log(A)
1920 − 21ζ′(−5)

640 + 7ζ′(−3)
192 + 5ζ(3)

192π2 − 11ζ(5)
128π4 + 1181

1382400 + 7349 log(2)
483840

J5,PM spins = −41 log(A)
96 + 147ζ′(4)

64π4 + 155ζ′(6)
128π6 − 1621γ

60480 + 30311
226800 + 503 log(2)

40320 − 1621 log(π)
60480

K5,PM spins = −103 log(A)
96 − 21ζ′(−5)

32 + 259ζ′(−3)
48 + 15ζ(3)

16π2 + 3ζ(5)
16π4 + 22337

345600 − 4751 log(2)
120960

J5,even PM spins = −139 log(A)
384 + 497ζ′(4)

256π4 + 465ζ′(6)
512π6 − 1817γ

80640 + 34273
302400 + 1733 log(2)

161280 − 1817 log(π)
80640

K5,even PM spins = −341 log(A)
384 − 63ζ′(−5)

128 + 881ζ′(−3)
192 + 289ζ(3)

192π2 + 29ζ(5)
128π4 + 70243

1382400 − 14389 log(2)
53760

Adding together the appropriate J andK for our four theories gives the claimed results.

For nonminimal Vasiliev theory:

−1

2
ζnonmin′
hs,5 (0) = −1

2

(

J5,scalar +K5,scalar + J5,spins +K5,spins

)

= 0 , (4.22)

and for the minimal Vasiliev theory:

−1

2
ζmin′
hs,5 (0) = −1

2

(

J5,scalar +K5,scalar + J5,even spins +K5,even spins

)

=
15ζ(5)

256π4
− ζ(3)

128π2
− log(4)

256
. (4.23)

This is the free energy of a real � scalar on S5.
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Now, the nonminimal PM theory:

−1

2
ζnonmin′
hs2,5

(0) = −1

2

(

J5,scalar+K5,scalar+J5,new scalar+K5,new scalar+J5,new vector+K5,new vector

+J5,new tensor+K5,new tensor+J5,spins+K5,spins+J5,PM spins+K5,PM spins

)

,

= 0 , (4.24)

and the minimal PM theory:

−1

2
ζmin′
hs2,5(0) = −1

2

(

J5,scalar+K5,scalar+J5,new scalar+K5,new scalar+J5,new tensor+K5,new tensor

+J5,even spins+K5,even spins+J5,even PM spins+K5,even PM spins

)

=
15ζ(5)

128π4
−13ζ(3)

64π2
+
7 log(2)

64
. (4.25)

As we demonstrated in [16], this is the free energy of a real �2 scalar on S5.

4.2 AdS8

The techniques we use for AdS8 are identical to the techniques we use for AdS6, so we

simply state results:

ζ7,5,0(0) = 127
226800 ζ7,3,0(0) = − 23

226800

ζ7,4,1(0) = − 311
226800 ζ7,5,2(0) = 71

1200

ζ7,spins(0) = − 127
226800 ζ7,even spins(0) = − 127

226800

ζ7,PM spins(0) = − 2617
45360 ζ7,even PM spins(0) = − 3349

56700

These all sum together to ensure that ζ7(0) = 0 for all four theories. Now ζ ′7(0):

J7,scalar = − 5 log(A)
7168

+
259ζ′(4)

61440π4
+

155ζ′(6)

12288π6
+

127ζ′(8)

8192π8
+ 139583

217728000
− 14359γ

232243200
+

19 log(2)
5529600

− 14359 log(π)
232243200

K7,scalar = 537 log(A)
35840

+
17ζ′(−7)
21504

+
61ζ′(−5)

5120
+

13ζ′(−3)
3072

+
3ζ(7)

128π6
− ζ(3)

160π2
− ζ(5)

64π4
− 2171077

722534400
− 15157 log(2)

232243200

J7,new scalar = − 5 log(A)
7168

+
259ζ′(4)

61440π4
+

155ζ′(6)

12288π6
+

127ζ′(8)

8192π8
− 14359γ

232243200
+ 391481

1524096000
+

19 log(2)
5529600

− 14359 log(π)
232243200

K7,new scalar = − 181 log(A)
107520

+
17ζ′(−7)
21504

+
13ζ′(−3)

3072
− 73ζ′(−5)

15360
− ζ(3)

720π2
− ζ(5)

192π4
− ζ(7)

128π6
+ 755987

6502809600
− 15157 log(2)

232243200

J7,new vector = − 49 log(A)
5120

+
3493ζ′(4)

61440π4
+

1829ζ′(6)

12288π6
+

889ζ′(8)

8192π8
+ 741641

217728000
− 185953γ

232243200
+

3571 log(2)
38707200

− 185953 log(π)
232243200

K7,new vector = − 73 log(A)
3072

+
17ζ′(−7)

3072
+

203ζ′(−3)
3072

− 203ζ′(−5)
3072

+
29ζ(3)

1440π2
+

13ζ(5)

192π4
+

7ζ(7)

128π6
+ 1549619

928972800
− 207379 log(2)

232243200

J7,new tensor = − 2187 log(A)
35840

+
7371ζ′(4)

20480π4
+

3627ζ′(6)

4096π6
+

3429ζ′(8)

8192π8
+ 498223

8064000
− 42839γ

8601600
+

1013 log(2)
1433600

− 42839 log(π)
8601600

K7,new tensor = 12879 log(A)
7168

+
153ζ′(−7)

7168
+

27ζ′(−5)
1024

− 2619ζ′(−3)
1024

+
27ζ(5)

64π4
+

81ζ(7)

128π6
− 81ζ(3)

80π2
− 26735727

80281600
− 48917 log(2)

8601600
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Now the spin sums:

J7,spins = 5 log(A)
7168

− 259ζ′(4)

61440π4
− 155ζ′(6)

12288π6
− 127ζ′(8)

8192π8
− 139583

217728000
+ 14359γ

232243200
− 19 log(2)

5529600
+

14359 log(π)
232243200

K7,spins = − 537 log(A)
35840

− 13ζ′(−3)
3072

− 61ζ′(−5)
5120

− 17ζ′(−7)
21504

+
ζ(3)

160π2
+

ζ(5)

64π4
− 3ζ(7)

128π6
+ 2171077

722534400
+

15157 log(2)
232243200

J7,even spins = 5 log(A)
7168

− 259ζ′(4)

61440π4
− 155ζ′(6)

12288π6
− 127ζ′(8)

8192π8
− 139583

217728000
+ 14359γ

232243200
− 19 log(2)

5529600
+

14359 log(π)
232243200

K7,even spins = − 537 log(A)
35840

− 13ζ′(−3)
3072

− 61ζ′(−5)
5120

− 17ζ′(−7)
21504

+
11ζ(3)

3072π2
+

21ζ(5)

1024π4
+

15ζ(7)

2048π6
+ 2171077

722534400
− 438443 log(2)

232243200

J7,PM spins = 73 log(A)
1024

− 5173ζ′(4)

12288π4
− 12865ζ′(6)

12288π6
− 4445ζ′(8)

8192π8
− 19949423

304819200
+ 271393γ

46448640
− 6211 log(2)

7741440
+

271393 log(π)
46448640

K7,PM spins = − 9069 log(A)
5120

+
683ζ′(−5)

15360
+

2547ζ′(−3)
1024

− 85ζ′(−7)
3072

+
159ζ(3)

160π2
− 31ζ(5)

64π4
− 87ζ(7)

128π6
+ 2153990567

6502809600
+

308659 log(2)
46448640

J7,even PM spins = 79 log(A)
1280

− 5593ζ′(4)

15360π4
− 2759ζ′(6)

3072π6
− 889ζ′(8)

2048π8
− 23638907

381024000
+ 292753γ

58060800
− 6871 log(2)

9676800
+

292753 log(π)
58060800

K7,even PM spins = − 6893 log(A)
3840

− 17ζ′(−7)
768

+
1961ζ′(−3)

768
− 83ζ′(−5)

3840
+

47317ζ(3)

46080π2
− 1625ζ(5)

3072π4
− 1217ζ(7)

2048π6
+ 21648379

65028096
+

1127779 log(2)
58060800

Now, we put these ingredients together. First the nonminimal Vasiliev theory:

−1

2
ζnonmin′
hs,7 (0) = −1

2

(

J7,scalar +K7,scalar + J7,spins +K7,spins

)

= 0 . (4.26)

Then the minimal Vasiliev theory:

−1

2
ζmin′
hs,7 (0) = −1

2

(

J7,scalar +K7,scalar + J7,even spins +K7,even spins

)

=
41ζ(3)

30720π2
− 5ζ(5)

2048π4
− 63ζ(7)

4096π6
+

log(2)

1024
. (4.27)

This is the free energy of a real � scalar on S7. Next the nonminimal PM theory:

−1

2
ζnonmin′
hs2,7

(0) = −1

2

(

J7,scalar+K7,scalar+J7,new scalar+K7,new scalar+J7,new vector+K7,new vector

+J7,new tensor+K7,new tensor+J7,spins+K7,spins+J7,PM spins+K7,PM spins

)

= 0 , (4.28)

and finally, the minimal PM theory:

−1

2
ζmin′
hs2,7

(0) = −1

2

(

J7,scalar+K7,scalar+J7,new scalar+K7,new scalar+J7,new tensor+K7,new tensor

+J7,even spins+K7,even spins+J7,even PM spins+K7,even PM spins

)

=
55ζ(5)

1024π4
− 79ζ(3)

15360π2
− 63ζ(7)

2048π6
− 1

512
3 log(2) . (4.29)

As we demonstrated in [16], this is the free energy of a real �2 scalar on S7.

4.3 AdS4

As we demonstrated in [1, 16], the AdS4/CFT3 PM theory is special because of the new

scalar-new tensor module mixing that takes place in both AdS and in the CFT. Therefore,

we might expect there to be subtlety in the zeta function for this theory. However, a
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similar module mixing took place in the AdS7/CFT6 PM theory between the two scalars,

but nothing prevented us from directly computing the zeta function in that case. We might

therefore expect that the AdS4 case would also be straightforward. However, it is not; the

ζ ′3(0) for both the new scalar and new tensor are ill-defined due to a new divergence that

arises. We can, however, regulate both of these divergences by increasing their masses via

increasing the scaling dimension of the dual operator by ǫ for both. As we will see, using

the same ǫ for both is crucial for obtaining the right dual free energy. Upon doing so, we

will see that the divergence cancels in the total zeta function, and we obtain the expected

results. We do not have a good physics reason for the origin of this divergence or why it

must be regularized in this fashion, other than that it works. It would be very interesting

to further explore this in the future.

We proceed as if the kinetic terms were diagonal and see what awaits us. The ζ3(0)

computations are uncomplicated:

ζ3,1,0(0) = − 1
180 ζ3,−1,0(0) = 269

180

ζ3,0,1(0) = −41
60 ζ3,1,2(0) = −31

36

ζ3,spins(0) = 1
180 ζ3,even spins(0) = 1

180

ζ3,PM spins(0) = 1
20 ζ3,even PM spins(0) = −19

30

These add to ensure that ζ3(0) = 0 for all four theories in question.

Now turn to ζ ′3(0). There are two obstructions; both K3,new scalar and K3,new tensor are

divergent/ill-defined, arising from precisely the two particles we expected subtlety from.

First, we state results for everything else, then turn our attention to the obstructions.

J3,scalar = − log(A)
24 + 7ζ′(4)

32π4 − 7γ
2880 + 53

4320 + log(4096)
8640 − 7 log(π)

2880

K3,scalar = − log(A)
8 + 5

8ζ
′(−3)− ζ(3)

8π2 + 11
1152 − 11 log(2)

2880

J3,new scalar = − log(A)
24 + 7ζ′(4)

32π4 − 7γ
2880 + 7253

4320 + log(4096)
8640 − 7 log(π)

2880

J3,new vector = −9 log(A)
8 + 21ζ′(4)

32π4 − 7γ
960 + 1133

1440 + 7 log(2)
80 − 7 log(π)

960

K3,new vector = −27 log(A)
8 + 15

8 ζ
′(−3)− 9ζ(3)

8π2 + 57
128 + iπ − 91 log(2)

960

J3,new tensor = −125 log(A)
24 + 35ζ′(4)

32π4 − 7γ
576 + 413

864 + 61 log(2)
144 − 7 log(π)

576
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Note the imaginary part iπ in K3,new vector. Now the spin sums:

J3,spins = log(A)
24 − 7ζ′(4)

32π4 − 53
4320 + 7γ

2880 − log(2)
720 + 7 log(π)

2880

K3,spins = log(A)
8 − 5

8ζ
′(−3) + ζ(3)

8π2 − 11
1152 + 11 log(2)

2880

J3,even spins = log(A)
24 − 7ζ′(4)

32π4 − 53
4320 + 7γ

2880 − log(2)
720 + 7 log(π)

2880

K3,even spins = log(A)
8 − 5

8ζ
′(−3) + ζ(3)

2π2 − 11
1152 − 709 log(2)

2880

J3,PM spins = 51 log(A)
8 − 63ζ′(4)

32π4 − 471
160 + 7γ

320 − 1
8041 log(2) +

7 log(π)
320

K3,PM spins = −39 log(A)
8 − 45

8 ζ
′(−3) + 19ζ(3)

8π2 + 1823
384 + 171 log(2)

320

J3,even PM spins = 21 log(A)
4 − 21ζ′(4)

16π4 − 1553
720 + 7γ

480 − 1
4017 log(2) +

7 log(π)
480

K3,even PM spins = −33 log(A)
4 − 15

4 ζ
′(−3) + 13ζ(3)

8π2 + 997
192 − 1

480869 log(2)

We now turn to K3,new scalar. This K function involves the following integral:

Kdiv
3,new scalar =

1

12

∫ − 5
2

0
dx x(1− 4x2)ψ

(

1

2
+ x

)

. (4.30)

The integral does not converge as is, so we shift the upper region of integration to −5
2 + ǫ.

Then, we may perform the integral, and expand the resulting answer in powers of ǫ. The

terms which survive as ǫ → 0 are

Kǫ
3,new scalar = −49 log(A)

8
− 5 ln ǫ+

5

8
ζ ′(−3)− 5ζ(3)

8π2
− 6037

1152
− iπ− 7211 log(2)

2880
− 5 log(π)

2
.

(4.31)

We see that this diverges logarithmically as ǫ → 0. The same is true of the spin two; its K

is associated with the integral

Kdiv
3,new tensor =

125

12

∫ − 1
2

0
dx x

(

1− 4

25
x2

)

ψ

(

1

2
+ x

)

. (4.32)

Again, we may deform the limit of the integral to −1
2 + ǫ (with the same ǫ) and expand,

keeping terms which survive as ǫ → 0:

Kǫ
3,new tensor =

115 log(A)

8
+ 5 ln ǫ+

25

8
ζ ′(−3)− 5ζ(3)

8π2
+

55

1152
+

1189 log(2)

576
+

5 log(π)

2
.

(4.33)

We see that upon adding these two together, the divergences in ǫ cancel and we may take

a smooth ǫ → 0 limit, obtaining a finite result,

K3,new scalar and tensor =
33 log(A)

4
+

15

4
ζ ′(−3)− 5ζ(3)

4π2
− 997

192
− iπ − 211 log(2)

480
. (4.34)

Note that if, instead, we had regularized the scalar by ǫ and the tensor by 2ǫ, then

the divergences would still have cancelled, but the answer would have differed by 5 ln 2,

which would not give the expected result, as we will show below. Again, we do not yet

– 22 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
6

have a good motivation for using the same ǫ for both, other than that it gives the expected

answers.

Now, we’re ready to put the pieces together. First the nonminimal Vasiliev theory:

−1

2
ζnonmin′
hs,3 (0) = −1

2

(

J3,scalar +K3,scalar + J3,spins +K3,spins

)

= 0 . (4.35)

Then the minimal Vasiliev theory:

−1

2
ζmin′
hs,3 (0) = −1

2

(

J3,scalar +K3,scalar + J3,even spins +K3,even spins

)

=
log(4)

16
− 3ζ(3)

16π2
. (4.36)

This is the free energy of a real � scalar on S3. Now, the nonminimal PM theory:

−1

2
ζnonmin′
hs2,3

(0) = −1

2

(

J3,scalar+K3,scalar+J3,new scalar+J3,new vector+K3,new vector+J3,new tensor

+K3,new scalar and tensor+J3,spins+K3,spins+J3,PM spins+K3,PM spins

)

= 0 , (4.37)

and finally, the minimal PM theory:

−1

2
ζmin′
hs2,3(0) = −1

2

(

J3,scalar +K3,scalar + J3,new scalar + J3,new tensor +K3,new scalar and tensor

+ J3,even spins +K3,even spins + J3,even PM spins +K3,even PM spins

)

= −3ζ(3)

8π2
+

iπ

2
+

log(1024)

8
(4.38)

≈ 0.820761 + 1.5708i . (4.39)

As we demonstrated in [16], this is the free energy of a real �2 scalar on S3, albeit in a

different and simpler form than we presented there.

It would be interesting to understand more deeply the ǫ-regulation that we do to obtain

a finite result, beginning from the mixed AdS4 scalar-tensor theory we describe in [1]. As

we mentioned above, we were motivated by cancellation of the divergence, rather than any

deep physics reason for why we should regulate in precisely this fashion. It would be much

more appealing if we had a natural motivation for regularizing in the manner that we did.

Such divergences have appeared before [59], although there, they signalled the presence of

lnN corrections to G−1
N . Nevertheless, perhaps a connection could be made to the induced

gauge symmetries of their work.

It would also be interesting to obtain a deeper understanding of the imaginary piece

that appears in the free energy, both from an AdS perspective as well as a CFT one. In

the CFT, we can see that in three dimensions, the spectrum of D (and therefore the AdS

spectrum of H) is unbounded from below, due to the presence of the operator j
(0)
0 with

∆ < 0. This is unlike the other dimensions we study in this paper, and may be related to

the presence of a complex free energy.
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5 Conclusions

We have computed the one-loop partition functions in a generalization of Vasiliev’s theory

which includes a tower of partially massless modes. By AdS/CFT, this theory is dual to

a U(N) or O(N) free scalar CFT with a �
2 kinetic term, and the bulk partition function

we compute should match the sphere partition function of the �
2 CFT.

We computed the one-loop partition functions by evaluating zeta functions for each

particle within the theory, then summing up over each tower of spins. The sum over spins

requires additional regularization which must be compatible with the symmetries of the

theory.

We computed the one-loop effective action for both the “minimal” version of the theory

containing only even spins, and for the “non-minimal” version of the theory containing all

spins. We did this in odd AdS dimensions D = 7 through 19, for which the log-divergent

part of the effective action is dual to the a-type conformal anomaly of the dual boundary

theory, and also for even-dimensional AdS spaces for D = 4 through 8, for which the finite

part of the one-loop effective action is dual to the free energy on a sphere of the dual

boundary theory. There were subtleties in the case D = 4, but not D = 7, the cases where

module mixing occurs in the dual field theory. In D = 4, there were divergences associated

with ζ ′3(0) for the new scalar and new tensor, which we were able to regulate by jointly

shifting their masses. After regulating, the answer became finite and we could take the

regulator to 0. However, we were forced to regulate in a particular way, using the same

regulator for both particles, in order to obtain the expected results. We want to attempt

to understand the motivation for this regularization in the future.

We found that in even D, in order to ensure that the finite part of the effective action

is unambiguous (i.e. ζd(0) = 0), we needed to regulate the sum over partially massless

spins by inserting
(

s+ d−5
2

)−α
before summing, sum, and then take the α → 0 limit, just

as in [49].

Our results are that in the nonminimal theory, the one loop contribution vanishes and

so there are no quantum corrections to the Newton’s constant, and in the minimal theory

the inverse Newton’s constant gets a one-loop correction of exactly the same magnitude as

in the original Vasiliev theory,

G−1
N ∝

{

N , nonminimal/U(N) PM theory,

N − 1 , minimal/O(N) PM theory.
(5.1)

These results provide evidence that the theory is UV complete and that this computation

is one-loop exact.

In the future, it would be interesting to understand better the nature of the divergences

in the AdS4 case, and see if these sorts of subtlety occur in other theories besides the PM

theories. It would also be interesting to attempt to explore the one-loop effective actions of

PM theories dual to more general �k theories. Also, we could explore the de Sitter analogue

of this computation, or the adjoint scalar variant. Perhaps the fermionic ✓∂k theories’ PM

duals, or the supersymmetric extension of this theory, could shine some light on the puzzle

related to the one-loop effective action in the type B Vasiliev theory, explored recently
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in [47] and references therein. It would be also very interesting to attempt to explore the

one-loop matching in non-integer d, computing directly F̃ at one-loop in the bulk and in

the CFT. Finally, it would be interesting to explore the connection to the character-based

approach taken in [46].
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