
Chapter 4
QoS Assessment and SLA Management

Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco,
Riccardo Benito Desantis, Giuliano Casale, Juan F Pérez,
Francesco D’Andria and Román Sosa González

4.1 Introduction

Verifying that a software system shows certain non-functional properties is a pri-
mary concern for Cloud applications.1 Given the heterogeneous technology offer
and the related pricing models currently available in the Cloud market it is extremely
complex to find the deployment that fits the application requirements, and pro-
vides the best Quality of Service (QoS) and cost trade-offs. This task can be very

1In this chapter non-functional properties, QoS and non-functional requirements will be used
interchangeably.

D. Ardagna (B) · M. Ciavotta · G.P. Gibilisco · R.B. Desantis
DEIB, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
e-mail: danilo.ardagna@polimi.it

M. Ciavotta
e-mail: michele.ciavotta@polimi.it

G.P. Gibilisco
e-mail: giovannipaolo.gibilisco@polimi.it

R.B. Desantis
e-mail: riccardobenito.desantis@polimi.it

G. Casale · J.F. Pérez
Department of Computing, Imperial College, 180 Queens Gate, London SW7 2AZ, UK
e-mail: g.casale@imperial.ac.uk

J.F. Pérez
e-mail: j.perez-bernal@imperial.ac.uk

F. D’Andria · R. Sosa González
ATOS Spain SA, Subida al Mayorazgo 24B Planta 1, 38110 Santa Cruz de Tenerife, Spain
e-mail: francesco.dandria@atos.net

R. Sosa González
e-mail: roman.sosa@atos.net

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_4

35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81723887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 D. Ardagna et al.

challenging, even infeasible if performed manually, since the number of solutions
may become extremely large depending on the number of possible providers and
available technology stacks. Furthermore, Cloud systems are inherently multi-tenant
and their performance can vary with the time of day, depending on the congestion
level, policies implemented by the Cloud provider, and the competition among run-
ning applications.

MODAClouds envisions design abstractions that help the QoS Engineer to spec-
ify non-functional requirements and tools to evaluate and compare multiple Cloud
architectures, evaluating cost and performance considering the distinctive traits of
the Cloud.

To better understand the scope of the MODAClouds QoS and SLA tools, referred
to as SPACE 4Clouds for Dev—QoS Modelling and Analysis tool, Fig. 4.1 pro-
vides a high-level overview of the architecture and main actors involved. Each of
these tools is the topic of the upcoming sections. In Figurewe depict how the Feasibil-
ity Study engineer, the Application Developer and the QoS engineer provide inputs
to this MODAClouds module. The Feasibility Study engineer provides a set of can-
didate providers for the application under development. The application developer
instead creates a consistent application model and a set of architectural constraints
using MODACloudML meta-models (see Chap.3). Ultimately, the QoS engineer is
in charge to define suitable QoS constraints. Simply put, the tool receives in input a
set of models describing an application both in terms of functionalities and resource
demands. At this point two possible scenarios are possible, in the first one the QoS
engineer uses the tool in assessment mode, namely she evaluates the performance
and cost based on a specific application deployment (which includes type and num-
ber of VMs and PaaS services). In the second scenario the QoS engineer provides

Fig. 4.1 SPACE 4Clouds for Dev—high-level architecture

http://dx.doi.org/10.1007/978-3-319-46031-4_3

4 QoS Assessment and SLA Management 37

only a partial configuration and lets the tool face the task of analysing the possible
alternatives to return a cost optimised solution that meets the constraints.

In this latter scenario, the module returns a complete deployment description (set
of providers, type of VM per tier, number of VMs per hour, type of other services),
and also reports useful information about the overall cost and performance. The
QoS engineer at that point may choose to accept the solution as it is, to modify the
constraints or to change the deployment and evaluate/force different configurations.

This MODAClouds module is composed of three main components:

• SPACE4Clouds has a twofold function. First, it keeps track of candidate solutions
and manages their creation, modification, evaluation, comparison and feasibility
check. Second, SPACE 4Clouds deals with the design-space exploration and opti-
misation process by means of a metaheuristic local-search-based approach.

• LINE is the component in charge of the evaluation of the performance models
(Layered Queuing Networks—LQN) enriched with information about the effi-
ciency and the dynamic behaviour that can affect the Cloud platform.

• SLA tool is the component responsible for generating a formal document describ-
ing a Service Level Agreement (SLA) among the involved parties in MODA-
Clouds: customers, application providers and cloud providers.

The rest of this chapter is organised as follows: in Sect. 4.2 the MiC case study
is presented, SPACE 4Clouds and LINE are described in Sect. 4.3 whereas the SLA
tool is detailed in Sect. 4.4.

4.2 Case Study: Meeting in the Cloud (MiC)

In this section, we introduce a web application called Meeting in the Cloud (MiC)
that will be used throughout this chapter as a case study. MiC is a web application
for social networking that lets the user to profile her topics of interest and to share
them with similar users. Moreover, MiC identifies the most similar users in the
network according to the registered users’ preferences. More specifically, during
the registration process, the new user selects her topics of interest from a set of
alternatives, providing a preference for each of them in the range 1–5. At the end of
the registration, MiC calculates the Pearson coefficient [1] based on the preferences
expressed, identifies the users in the system with the most similar interests, and
creates a list of contacts for the newcomer. After the registration process, the user
can log in into the MiC portal and interact with her Best Contacts by writing and
reading posts on the selected topics. Users can also change their interests refining
their profiles; in this case the system reacts re-evaluating the similarity and updating
the list of recommended contacts.

The application, whose main elements are depicted in Fig. 4.2, comprises a Fron-
tend to process the incoming http requests and a Backend developed using JSP and
Servlet technologies. A task queue [2, 3] is used to decouple Frontend and Backend

38 D. Ardagna et al.

Fig. 4.2 MiC registration steps

in order to make the system capable to evaluate the similarity value in an asyn-
chronous, non-blocking way. The overall application results in this way reactive and
responsive all the time. An SQL database stores users’ profiles, messages, and best
contacts lists. A Blob Service is used to store pictures, while a NoSQL database
stores users’ interests and preferences. Both are accessed directly by the Frontend.
Finally, a Memcache system is used to temporarily store the last retrieved profiles
and best contacts messages with the aim of improving the response time of the whole
application.

MiC is especially designed to exploit multi Cloud capabilities using a particular
Java library, called CPIM, which basically provides an abstraction from the PaaS
services provided by the main Cloud Providers, for more details please refer to [4].

4.3 QoS Assessment and Optimisation

SPACE 4Clouds (System PerformAnce and Cost Evaluation on Cloud) is a multi-
platform open source tool for the specification, assessment and optimisation of
QoS characteristics for Cloud applications. It allows users to describe a software
architecture by means of MODACloudML meta-models that express Cloud-specific
attributes. Among other things, suchmodels include a user-definedworkload in order
to assess both performance and cost of the application under different runtime con-
ditions. Users can specify the models defining the Cloud application using Creator
4Clouds graphical interface, while information about the performance of the con-
sidered Cloud resources is kept in a SQL database to decouple its evolution from

4 QoS Assessment and SLA Management 39

Fig. 4.3 SPACE 4Clouds—architecture

the one of the tool. SPACE 4Clouds can be used either to assess the cost of a com-
plete described solution (i.e. application and Cloud configuration) according to the
cost model defined in [5] or (providing only the application model) to find a suitable
(evenmulti-Cloud) configuration that minimises the running cost while meeting QoS
requirements.

Figure4.3 shows the internal structure of SPACE 4Clouds and the main compo-
nents are:

• GUI: consists of a main configuration window that allows loading the application
models to be analysed and configuration parameters for the analysis/optimisation
process. The GUI also provides some frames used to visualise the results of the
assessment and the progress of the optimisation;

• Solution: represents the set of classes that form the internal representation of the
application. Since a 24h horizon is considered, the solution stores 24 records with
information about configuration, performance, cost and constraint violations.

• LQN Handler: maps the internal representation of a solution on the LQN models
used by the solver LINE (see Sect. 4.3.3) for the evaluation; the transformation
process supports both IaaS and PaaS services and for multi-Cloud deployments.
This component is also responsible for the serialisation of the solution in this
format before the evaluation and the parsing of the output of LINE.

• Evaluation Server: the role of this component is to decouple the evolution of
the different phases of the evaluation between the 24h model instances for each
consideredprovider contained in each solution.This decoupling allows the solution
evaluation to happen in parallel.

• Data Handler: is the interface between the SQL database and other components
of the tool.

• Cost Assessment: is the component responsible for the cost evaluation of the solu-
tion.

• Constraint Handler: is the component responsible to assess the feasibility of the
solution with respect to Architectural and QoS constraints. Constraints are defined
via a Domain-Specific Language (DSL) for flexibility and extensibility reasons.

40 D. Ardagna et al.

• Optimisation Engine: It interacts with other components to evaluate the solutions
built with respect to cost, feasibility and performance, and it is responsible for
finding the optimal deployment configuration. Its core implements a metaheuristic
strategy based on a two-level local search with multiple neighbourhoods.

In the following the describe separately the assessment and optimisation scenarios
with the help the MiC use case.

4.3.1 Assessment

In this sectionwe consider the assessment scenario, the one inwhich theQoSengineer
uses SPACE 4Clouds to evaluate the cost and performance of the application under
development:

1. Through theGUI theQoS engineer loads themodels exported byCreator 4Clouds
including also a full deployment configuration (list of providers, type and number
of VMs and workload share for each hour), and a description of the incoming
workload and QoS constraints.

2. The models are translated into 24 LQN instances. Each instance is tailored to
model the application deployment in a particular hour of the day. These instances
are then used by theOptimisation andAssessment engine to initialise the structure
of a SPACE 4Clouds solution.

3. The set of LQN files is fed into the performance engine, usually LINE, which is
in charge of executing the performance analysis.

4. The output of the analysis performed by LINE, stored in an XML file, is read by
the LQN Handler and written back in the solution.

5. The solution can then be evaluated in terms of feasibility against user defined
constraints by the Constraint Handler component.

We consider the MiC use case presented in Sect. 4.2. For the sake of simplicity
only Frontend, Backend and a SQL database are considered, packed together and
deployed on a single VM. Let us suppose that all the modelling work has been
already done and the QoS engineer has to decide the type and the number of VMs
for each hour of the day to be allocated to satisfy a set of constraints. Two candidate
Cloud providers have been selected, namely Amazon and Microsoft, based upon
the pricing models available on the Internet and on the user’s experience. The QoS
engineer considers that the dailyworkload for the application under developmentwill
likely follow a bimodal distribution, which he can roughly estimate. She also has
to consider the non-functional requirements associated with the ongoing project. In
our example the CPU utilisation is imposed to be lower than 80% and the response
time of the register functionality to be less than 4s. Using such information, she
devises a preliminary Multi-Cloud configuration (5 medium instances allocated on
each provider per hour and 50–50% workload splitting) and loads it along with the
application functional model and the constraint set in SPACE 4Clouds; she chooses

4 QoS Assessment and SLA Management 41

Fig. 4.4 Average response time for MiC register functionality

the assessment feature and the solution is evaluated and returned. As the reader can
see from Fig. 4.4, the response time constraint is violated in the central hours of the
day, while the expected daily cost is $34.8.

The solution is clearly infeasible and the QoS engineer has to pull her sleeves
up and fine-tune the configuration, perhaps acting on the number of VMs and the
workload splitting between the selected Clouds per hour. This is a non-trivial task
since, for instance, varying the workload share directed to a certain provider affects
the response time and implies an adjustment of the number of VMs running at that
particular hour. A similar reasoning applies to the VM types involved. After long
fine tuning, the user identifies a feasible solution with the following cost: $39.4.
The solution in point has the same types of VMs of the original one and the same
workload percentage for each of two providers but uses a larger number of VMs in
the hours between 10 a.m. and 19 p.m.

At this point the user can be satisfied with her work but we will see in the next
section that there is still room for improvementwithout sacrificing feasibility, exploit-
ing the optimisation feature of SPACE 4Clouds.

4.3.2 Optimisation

The aim of this section is to provide a brief description of the optimisation strategy
implemented within SPACE 4Cloud. A two-step approach has been developed; in
the first step an initial valid configuration of the system is derived automatically
starting from a partially specified application description given by the QoS engineer.
In order to do so, a Mixed Integer Linear Problem (MILP) is built and efficiently
solved [6]. This solution is based on approximated performance models, in fact, the
QoS associated to a deployment solution is calculated bymeans of anM/G/1 queuing
model with processor sharing policy. Such performancemodel allows calculating the
average response time of a request in closed form. Our goal is to determine quickly

42 D. Ardagna et al.

an approximated initial solution (list of Cloud providers, types of VMs, number of
VMs and hourly load balancing) that is then further improved.

In the second step a local-search-basedoptimisation algorithm iteratively improves
the starting Cloud deployment exploring several configurations. A more expressive
performance model (LQN) is employed to derive more accurate estimates of the QoS
by means of the LINE solver. More specifically, the algorithm implemented exploits
the assessment feature to evaluate several, hopefully distinct Cloud configurations. It
has been designed to explore the solution space using a bi-level approach that divides
the problem into two levels delegating the assignment of the VM type to the first
(upper) level, and the load balancing and the definition of the number of replicas to
the second (lower) level. The first level implements a stochastic local search with
tabu memory; at each iteration the VM type used for a particular tier is changed
randomly from all the available VM types, according to the architectural constraints.
The tabu memory is used to store recent moves and avoid cycling of the candidate
solutions around the same configurations. Once the VM size is fixed the solution
is refined by gradually reducing the number of VMs until the optimal allocation is
found. Finally the workload is balanced among the Cloud providers by solving a
specific MILP model. This whole process is repeated for a pre-defined number of
iterations, updating the final solution each time a feasible and cheaper one is found.

Returning to the example begun in the previous section, let us imagine that the
QoS engineer has at her disposal only the functional and non-functional description
of the application and an indication on the possible shape and average value of the
workload. The user in point can leave to SPACE 4Clouds the task of choosing the
most suitable set of providers (limited to two providers for a fair comparison with the
scenario in the previous section), the type and number of VMs for each provider and
hour, and the hourly workload share for each provider. In this second case a feasible
and optimised solution is returned in around 20 min and the related cost is $19.33
that is 50% lower than the solution devised by trial and error in the previous section.
At this point one may wonder, how is the solution from SPACE 4Clouds different
from the one obtained by the QoS engineer? Fig. 4.5 depicts the number of VMs per
hour for the selected Cloud providers. We can see that Microsoft has been replaced

Fig. 4.5 VMs allocated per hour on Amazon and Flexiscale cloud providers

4 QoS Assessment and SLA Management 43

Fig. 4.6 CPU utilization per hour on Amazon and Flexiscale cloud providers

by Flexiscale and that the number of VMs allocated varies hourly from 1 through
20 differently for each provider. Moreover, distinct (more powerful) VM types have
been selected and the workload has been split in 80–20%, where the larger part has
been assigned to Flexiscale. Finally, Fig. 4.6 reports the average CPU utilization per
Cloud provider, that is clearly below the threshold of 80% imposed by the user.

4.3.3 LINE

LINE [7] is a tool for the performance analysis of cloud applications. LINE has
been designed to automatically build and solve performance models from high-level
descriptions of the application. This description can be in the form of a Layered
Queueing Network (LQN) model. From this description, LINE is able to provide
accurate estimates of relevant performance measures such as application response
time or server utilisation. LINE can also provide response times for specific compo-
nents of the application, enabling the pinpointing of components causing a degrada-
tion in the QoS. LINE can therefore be used at design time to diagnose whether the
deployment characteristics are adequate to attain the desired QoS levels.

Although other tools are available for performance modelling (such as Simu-
Com [8] and LQNS [9]), LINE stands apart for a number of reasons.

• In addition to provide average performancemeasures, LINE can compute response
time distributions, which can be directly used to assess percentile Service Level
Agreements (SLAs), e.g., that 95% of the requests for the register functionality
are processed in less than 6s.

• LINE features a reliability model, namely random environments [10], to capture a
number of conditions thatmay affect the application, including servers breakdowns
and repairs, slow start-up times, resource heterogeneity and contention in multi-
tenancy, a key property of cloud deployments.

44 D. Ardagna et al.

• LINE is able to model general request processing times, which can be used to
represent the resource demands posed by the very broad range of cloud applica-
tions.

• LINE offers a parallel execution mode for the efficient solution of a large number
of performance models.

4.4 SLA Management

As far as SLA management is concerned, in the MODAClouds context we consider
three possible actors, Cloud Service Providers (CSPs), which are responsible for
the efficient utilization of the physical resources and guarantees their availability
for the customers; Application Providers (APs) that are responsible for the efficient
utilization of their allocated resources in order to satisfy the SLA established with
their customers (end users) and achieve their business goals and customers, which
represent the legitimate users for the services offered by the application providers.
Usually, CSPs chargeAPs for renting Cloud resources to host their applications. APs,
in turn, may charge their Customers for the use of their services and need to guarantee
their customers’ SLA. SLA violations, indeed, have an impact on APs reputation
and revenue loss incurred in the case of Cloud-hosted business applications. In both
circumstances penalty-based policies have to be enforced.

MODAClouds therefore devises a two-level SLAsystem; thefirst level (Customer-
AP) describes the service offered by the Application Provider to its users. The guar-
antee terms in this SLA should only watch observable metrics by the end user. At
the other level, AP-CP SLA describes the QoS expected from the Cloud provider. In
this SLA level, there is one agreement per Virtual Machine or PaaS service.

The lifecycle of an SLA can be split up in several different phases:

1. preparation of the service offer as a template,
2. location and mediation of the agreement,
3. assessment of the agreement during execution and
4. termination and decommission of the agreement.

Within MODAClouds we designed and implemented a policy-driven SLA frame-
work that focus on the phase 1–3 of the described lifecycle. It comprises a REST
server (the SLA core) and a set of additional helper tools: the SLA Mediator and
the SLA Dashboard. The Mediator tool acts as a layer atop the core, to implement
some MODAClouds specific behaviour. The SLA Dashboard shows the violations
and penalties of agreements in a more user-friendly way.

Figure4.7 shows how the SLAComponents are organised and how they are related
to other MODAClouds components, in particular:

• SLA Repository: manages the persistence of SLA Templates, SLA Contracts and
the relation between Services/Contracts/Templates.

4 QoS Assessment and SLA Management 45

Fig. 4.7 SLA tool: architecture

• SLA Mediator: maps the QoS constraints defined by the QoS Engineer in SLA
Agreements of both SLA levels.

• Assessment: computes the possible business violations, notifying any observer
(like an external Accounting component) of raised penalties.

Finally, we want to remark that the tool has been implemented following to be fully
compliant (concepts, agreements and templates) with theWS-Agreement2 specifica-
tion. This choice made it a tool more flexible and potentially applicable to contexts
other than MODAClouds.

References

1. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc
Lond 58:240–242

2. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co. Inc

3. Schmidt D, Stal M, Rohnert H, Buschmann F (2001) Pattern-oriented software architecture
patterns for concurrent and networked objects. Wiley

4. Giove F, Longoni D, Yancheshmeh SM, Ardagna D, Di Nitto E (2013) An approach for the
development of portable applications on PaaS clouds. Closer 2013 Proc Aachen Ger 30:591–
601

5. Franceschelli D. and Ardagna D. and Ciavotta M. and Di Nitto E.: SPACE4CLOUD: a tool for
system performance and costevaluation of cloud systems. Proceedings of the 2013 international
workshop on multi-cloud applications and federated clouds, 2013, pp 27–34

6. Ardagna D, Gibilisco GP, Ciavotta M, Lavrentev A (2014) A multi-model optimization frame-
work for the model driven design of cloud applications. Search-Based Softw Eng 8636:61–76.
Springer

7. Pérez JF, Casale G,(2013) Assessing SLA compliance from Palladio component models. In:
Proceedings of the 2nd workshop on management of resources and services in cloud and sky
computing (MICAS). IEEE Press

2Web Services Agreement Specification (WS-Agreement) http://www.ogf.org/documents/GFD.
192.pdf.

http://www.ogf.org/documents/GFD.192.pdf
http://www.ogf.org/documents/GFD.192.pdf

46 D. Ardagna et al.

8. Becker S, Koziolek H, Reussner R (2009) The Palladio component model for model-driven
performance prediction. J Syst Softw 82(1):3–22

9. Franks G,Maly P,WoodsideM, Petriu DC, Hubbard A (2009) Layered queueing network solver
and simulator user manual. Real-Time and Distributed Systems Lab Carleton Univ Canada

10. Casale G, Tribastone M (2011) Fluid analysis of queueing in two-stage random environments.
In: Eighth international conference on quantitative evaluation of systems (QEST). IEEE, pp
21–30

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	4 QoS Assessment and SLA Management
	4.1 Introduction
	4.2 Case Study: Meeting in the Cloud (MiC)
	4.3 QoS Assessment and Optimisation
	4.3.1 Assessment
	4.3.2 Optimisation
	4.3.3 LINE

	4.4 SLA Management
	References

