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Abstract

Background: Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing
the development of methods and resources for the automatic extraction of information from the biomedical
literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction
tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of
physiological and pathological processes at various levels of biological organization, and the PC task targets
reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis
of established pathway representations and ontologies.

Results: Six groups participated in the CG task and two groups in the PC task, together applying a wide range of
extraction approaches including both established state-of-the-art systems and newly introduced extraction
methods. The best-performing systems achieved F-scores of 55% on the CG task and 53% on the PC task,
demonstrating a level of performance comparable to the best results achieved in similar previously proposed tasks.

Conclusions: The results indicate that existing event extraction technology can generalize to meet the novel
challenges represented by the CG and PC task settings, suggesting that extraction methods are capable of
supporting the construction of knowledge bases on the molecular mechanisms of cancer and the curation of
biomolecular pathway models. The CG and PC tasks continue as open challenges for all interested parties, with
data, tools and resources available from the shared task homepage.

Background
The BioNLP Shared Task (BioNLP ST), organized for the
third time in 2013, presents open challenges in biomedical
natural language processing to all interested parties. The
shared task organizers provide task definitions, manually
annotated data for method development and evaluation,
and tools for the assessment and comparison of informa-
tion extraction approaches proposed by the community
[1-3]. We describe two of the event extraction tasks of the
BioNLP ST’13 challenge, the Cancer Genetics (CG) and
Pathway Curation (PC) tasks, both of which were newly
introduced for the 2013 challenge. This manuscripts

extends on the previous papers presenting the tasks at the
BioNLP ST workshop [4,5].
Both the CG and PC tasks aim to support knowledge

base construction, the over-arching theme of the 2013
BioNLP ST. That is, both tasks are motivated by the need
to develop better methods for automatically analyzing
the literature at large scale in order to support the crea-
tion, maintenance and further development of structured
representations of domain knowledge. However, the spe-
cific representations and subdomains of biomedical
knowledge targeted by the tasks differ substantially, lead-
ing to two different information extraction task settings.
The CG task targets the automatic analysis of the litera-

ture on cancer, a complex group of genetic diseases that is
one of the most common causes of death worldwide.
Despite decades of focused research and an ever-increasing
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body of knowledge on its causes and mechanisms, cancer
remains imperfectly understood [6,7]. Part of the challenge
of building comprehensive knowledge bases on cancer is
the sheer volume of information on the topic: for example,
a search for “cancer“ in the PubMed literature database [8]
finds mentions in over three million publications, or in
approximately one in every eight papers published in the
domain.
By contrast to the disease-oriented focus of the CG task,

the goals of the PC task are defined by a specific category
of knowledge representation, namely formal models of
biomolecular pathways such as the Systems Biology
Markup Language (SBML) [9,10] and the Biological Path-
way Exchange (BioPAX) language [11,12]. Structured
models such as these are increasingly applied to capture
the best current understanding of complex biomolecular
systems and represent it in a way that permits automatic
processing [13], and a large number of such models can
be found in repositories such as BioModels [14] and
PANTHER DB [15]. However, the construction of these
models is a demanding task, with large models potentially
combining information from thousands of individual pub-
lications from among the millions of published papers
involving biomolecules and their reactions.
Although cancer knowledge base construction and

pathway model curation both face challenges stemming
from the enormous size and rapid growth of the biomedi-
cal literature, existing tools for the automatic analysis of
that literature have not fully addressed the needs of these
important tasks. In particular, in biomedical information
extraction there has long been considerable focus on the
recognition of biomolecular entities and binary relations
such as protein-protein interaction involving these enti-
ties [16-20], largely to the exclusion of upper levels of
biological organization and richer representations of
entity relations such as pathway models.
While previous BioNLP ST events have been instrumen-

tal in promoting the extraction of more expressive repre-
sentations in the form of event structures [21,22],
they have still been mostly limited to molecular and sub-
cellular level entities and processes (Table 1). As an under-
standing of cancer requires the ability to associate
molecular level causes with cellular, tissue- and organ-
level effects and organism-level outcomes, methods
following the approaches of these previous shared tasks are
only capable of addressing a modest part of the challenge
of supporting cancer knowledge base construction. Simi-
larly, although the event structures applied in the BioNLP
ST tasks have similar expressivity to pathway models,
former tasks in the series have not directly addressed either
the specific representation nor the semantics of major path-
way formalisms, leaving open significant challenges in map-
ping between event structures, pathway reactions, and the
semantic types of the two [23,24].

We believe that the event extraction approach can sub-
stantially benefit both cancer knowledge base construc-
tion and the curation of biomolecular pathway models,
and the BioNLP ST’13 Cancer Genetics and Pathway
Curation tasks aim to close the gaps hindering the reali-
zation of these benefits. Specifically, the CG task intro-
duces novel extraction targets covering all levels of
biological organization ranging from the molecular to the
whole organism, further extending the scope of previous
tasks in the series through the inclusion of pathological
processes and events representing experimenter action.
The PC task bases both its representation and its seman-
tics directly on major pathway model standards such as
SBML, BioPAX and the Systems Biology Ontology
[25,26] to assure the compatibility of extracted informa-
tion with these efforts. Extensive newly annotated
corpora are introduced to support both of these novel
extraction tasks.
In the following, we first present the applied event

representation and its application in the CG and PC task
settings in detail. We next introduce the corpora for the
two tasks and the criteria for evaluating the predictions
submitted by task participants against their annotation.
We then present the task participants and systems, the
primary evaluation results and additional analyses of
these results, and finally discuss the overall findings of
these tasks and present conclusions.

Methods
Representation
The BioNLP ST main tasks are information extraction
tasks targeting event structures (or events for short) [27]
following the general approach first introduced in the
BioNLP ST’09 [28]. Events capture information on reac-
tions and processes involving physical entities of interest.
In addition to entities and events, the representation

Table 1. Properties of selected shared tasks in biomedical
information extraction prior to the BioNLP ST 13

Task Levels of biological
organization

Representation

LLL’05 Molecular Binary relations

BioCreative II PPI Molecular Binary relations

BioCreative II.5
IPT

Molecular Binary relations

BioNLP ST’09 GE Molecular, subcellular Event structures

BioCreative III PPI Molecular Binary relations

BioNLP ST’11 GE Molecular, subcellular Event structures

BioNLP ST’11 EPI Molecular Event structures

BioNLP ST’11 ID Molecular, organism Event structures

BioNLP ST’11 BB Cellular, anatomical, environment Binary relations

BioNLP ST’11 BI Molecular Event structures

Entity mention-focused tasks (detection and normalization) and the
supporting tasks of the BioNLP ST are not included.
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applied in the tasks involves relations between entities
and event modifications that identify additional aspects of
extracted events such as speculation and negation. We
next present these annotation primitives, and then pro-
ceed to present the specific types and their definitions
applied in the CG and PC tasks.
Entities
Each mention of a relevant physical entity is annotated
as a contiguous span of text that is assigned a type such
as CELL or SIMPLE CHEMICAL from a closed set of
entity types defined for the task. Figure 1 shows exam-
ples of entity annotation.
The recognition of mentions of physical entities in free

text is a very well-studied task both in general-domain and
biomedical natural language processing [29,30], and the
recognition of many key entity types relevant to the CG
and PC tasks has been considered in particular for mole-
cular level entities in a number of tasks in the BioCreative
series of community evaluations [16,17,31]. Thus, to focus
the efforts of participants on the novel aspects of the CG
and PC tasks, manually created (“gold standard”) physical
entity mention annotations are provided to participants
also for test data, following a convention first established
in the BioNLP ST’09.
Relations
The CG and PC tasks both define a single relation type,
Equiv. Equiv is a symmetric, transitive binary relation
that identifies entity mentions as being equivalent in the
sense of referring to the same real-world entity. Equiv
relations are used to mark local aliases such as abbrevia-
tions. Figure 2 shows examples of the relation annotation.
The relation annotations are not an extraction target in

the task, and gold standard Equiv annotation is applied
also for the test data. The Equiv annotations are used in
evaluation when determining if two events match: for
event matching, any entities connected by an Equiv rela-
tion (directly or transitively) are interchangeable.
Events
Events, the primary extraction target in BioNLP ST
main tasks, are structured annotations, each of which
has a type, zero or more participants, and an associated
statement in text that expresses the event (the event
trigger). As for entity annotations, event types are drawn
from a closed, task-specific set, and the event trigger is
a contiguous span of characters. Event participants can
be either entity or event annotations, the latter allowing

complex event structures where one event is identified
as e.g. causing or preventing another. For each event
participant, the role that the participant plays in the
event is further identified. The number of role types is
small and mostly generic, but some moderately task-
specific roles are also defined. The following roles are
used in the CG and PC tasks:
Theme Entity or event that undergoes the primary

effects of the event. For example, the GENE OR GENE
PRODUCT “p53” in “p53 is transcribed” and the DEVEL-
OPMENT event in “regulation of . . . development”.
Cause Entity or event that is causally active in the event.

Example: the “insulin” entity in “insulin regulates VEGF
expression” and the NEGATIVE REGULATION event trig-
gered by “inhibition” in “inhibition . . . prevented necrosis”.
Participant Entity or event that participates in the

event in a way that is not specified in detail in the con-
text. Example: GENE OR GENE PRODUCT “TAK1” in
“TAK1 is involved in Wnt signaling”.
Product Entity that is produced in the event. Example:

the COMPLEX “NF-kappa B” in “formation of NF-kappa
B”. Not applied in the CG task.
Instrument Entity used to carry out the event. Exam-

ple: the GENE OR GENE PRODUCT “angiostatin” in “mice
were treated with angiostatin”. Not applied in the PC
task.
Site Part of the Theme entity that is specifically

affected by the event. Example: “serine-15” in “phosphor-
ylation of p53 on serine-15”
AtLoc Location where the event takes place. Example:

the ORGAN “skin” in “skin tumorigenesis” and the CEL-
LULAR COMPONENT “nucleus” in “Rlm1 resides in the
nucleus”.
FromLoc Source of movement in events involving

change of location. Example: the CELLULAR COMPO-
NENT “mitochondria” in “release of cytochrome c from
the mitochondria” and “cytoplasm” in “MAPK translo-
cates from the cytoplasm”
ToLoc Direction or end point of movement in events

involving change of location. Example: “lymph node” in
“lymph node metastasis” and “plasma membrane” in
“RSK1 translocates to the plasma membrane”.
Examples of event annotation are shown in Figure 3.

Event modifications
Both the CG and PC tasks involve the modification types
NEGATION and SPECULATION. These modifications are

Figure 1 Illustration of entity annotations. a) Cancer Genetics
task b) Pathway Curation task. (Illustrations created with BRAT [59])

Figure 2 Illustration of relation annotations. a) Cancer Genetics
task b) Pathway Curation task.
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simple binary flags that apply to an event, marking it as
being explicitly denied (NEGATION , e.g. “p53 is not
affected”) or expressed in a speculative context (SPECU-
LATION, e.g. “p53 may be affected”). Event modifications
are not associated with a text “trigger”, unlike in some
related task settings [32,33]. The representation, annota-
tion scope, and semantics of these modifications are
defined as in the BioNLP ST’09, similarly to many other
subsequent tasks. Event modifications are one of the
extraction targets in the two tasks, and systems aiming to
address all aspects of the tasks should identify also event
NEGATION and SPECULATION.
Data format
The information introduced above is represented in the
tasks using the simple data format first introduced for the
BioNLP ST’09. This is a standoff format where the anno-
tated texts are stored separately from their annotations,
with annotations referencing relevant spans of text via char-
acter offsets. The annotations are further split so that the
physical entity annotations that are provided to the task
participants also for the test data are stored in one file, and
the annotations corresponding to extraction targets in
another. Each document thus involves three files: the text,
the given annotations, and the extraction targets. The
annotations are stored in a line-oriented format where each
line contains a single annotation, consisting of a unique
identifier, the annotation type, and fields specific to the
annotation primitive, such as the trigger and event argu-
ments for event annotations, or the (start, end) character
offsets and marked text for physical entity annotations and
event triggers. Figure 4 shows a simple example illustrating
the data format. For a detailed specification, we refer to the
documentation on the shared task homepage [34].

Cancer genetics task setting
Table 2 summarizes the entity types and reference
resources applied in the CG task annotation. Of the mole-
cular level entity types, the most prominent are SIMPLE
CHEMICAL, used to mark mentions of the names of
non-repetitive chemical entities, and GENE OR GENE
PRODUCT, used for the names of genes, proteins, RNA,
and their families. These two entity types are closely simi-
lar in definition to the CHEMICAL and PROTEIN types
included in previous ST tasks [35,36]. However, the CG
molecular types are more fine-grained than the corre-
sponding types in these previous tasks, and the task
applies detailed types such as PROTEIN DOMAIN OR
REGION for cases where many previous tasks used the
generic type ENTITY [28].
Anatomy-level entities, a notable novel aspect of the

CG task, are subdivided primarily by granularity, and
their type labels and definitions mainly follow the Com-
mon Anatomy Reference Ontology (CARO) [37], which
is a small species-independent ontology based on the
Foundational Model of Anatomy (FMA) [38]. For anato-
mical entities, not only names but also nominal and

Figure 3 Illustration of event annotations. a) Cancer Genetics
task b) Pathway Curation task.

Figure 4 Illustration of the data format. Adapted from [36].

Table 2. Cancer Genetics task entity types, reference
resources, and definitions

Type Reference Ontology ID

ORGANISM NCBI
taxonomy

CARO:0000012

Anatomical entity

ORGANISM SUBDIVISION Species-
specific

CARO:0000032

ANATOMICAL SYSTEM anatomy CARO:0000011

ORGAN resources
(e.g.

CARO:0000024

MULTI-TISSUE STRUCTURE FMA),
derived

CARO:0000055

TISSUE resources
(e.g.

CARO:0000043

DEVELOPING ANATOMICAL
STRUCTURE

UBERON) UBERON:0005423

CELL CL CARO:0000013

CELLULAR COMPONENT GO-CC GO:0005575

ORGANISM SUBSTANCE FMA etc. CARO:0000004

IMMATERIAL ANATOMICAL
ENTITY

FMA etc. CARO:0000007

PATHOLOGICAL FORMATION - -

CANCER - -

Molecular entity

GENE OR GENE PRODUCT gene,
protein,

SBO:0000246

PROTEIN DOMAIN OR REGION and related SBO:0000493

DNA DOMAIN OR REGION entity DBs SBO:0000493

SIMPLE CHEMICAL ChEBI SBO:0000247

AMINO ACID ChEBI CHEBI:33709

The indentation of the types corresponds to is-a relations. The labels in italics
are not annotated types but groupings defined only for organization.
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adjectival references (e.g. “mitochondrial”) are anno-
tated. We refer to Ohta et al. [39] for more detailed dis-
cussion of the anatomical entity type definitions. Finally,
the names of organisms and nominal mentions of com-
parable specificity (e.g. “patients”) are annotated as
ORGANISM, as in a number of previous tasks.
To assure consistency, resources identifying entities of

each relevant type were used for reference during the
entity annotation. Mentions of biomolecules are annotated
with reference to databases of genes, proteins, their
families, and related entities such as Entrez Gene [40],
UniProt [41], PFam [42], and CATH [43], and simple che-
mical entity mentions with reference to ChEBI [44]. Ana-
tomical entity mentions are annotated primarily with
reference to species-specific anatomy ontologies such as
FMA and derived resources such as UBERON [45]. For
cells and cellular components, available cross-species
resources such as the Cell Ontology (CL) [46] and the
Gene Ontology Cellular Component subontology (CO-
CC) are used. ORGANISM annotations are created with
reference to the NCBI taxonomy [47].
The CG event types and their arguments are summar-

ized in Table 3. As in most previously introduced BioNLP
ST task settings, the CG task bases its event types primar-
ily on the Gene Ontology (GO) [48]. Specifically, the defi-
nitions of event types of the molecular, general and
regulation categories follow the corresponding GO-based
types in the 2011 GENIA (GE) [35] and Epigenetics and
Post-translational Modifications (EPI) [36] tasks. By con-
trast, event types of the anatomical and pathological cate-
gories have not been considered in previous ST settings.
As for the other categories, these events are defined with
GO as the primary reference resource whenever possible.
However, there are some categories of processes that

are critical for comprehensive analysis of the cancer lit-
erature but fall outside of the scope of GO. Most impor-
tantly, GO systematically excludes from its scope
pathological processes such as carcinogenesis. We
address this limitation in two ways. First, we reinterpret
GO types such as GROWTH to extend their scope so as to
include also pathological entities, so that e.g. “cancer
development” is annotated with the GROWTH type. Second,
for intrinsically pathological processes such as METASTA-
SIS that lack a close physiological analogue, we intro-
duce a small number of representative high-level event
types such as Metastasis. Finally, we introduce the single
upper-level event type PLANNED PROCESS to mark pro-
cesses explicitly involving experimenter action [49]. We
refer to [50] for further information on the design of the
CG task events.

Pathway curation task setting
Four entity types are defined in the PC task: the mole-
cular level entity categories SIMPLE CHEMICAL, GENE

OR GENE PRODUCT, and COMPLEX, and the CELLULAR
COMPONENT type (Table 4). Of these four, all but COM-
PLEX are defined also in the CG task (see previous sec-
tion), and the two tasks share the definitions of these
types. The remaining type, COMPLEX, is used to mark
the names of molecular entities of non-covalently linked
components, which are particularly relevant to the PC
task extraction targets.
Table 5 presents the event types annotated in the PC

task and their arguments. By contrast to the CG task
and the majority of previously introduced BioNLP ST
tasks, the PC task applies the Systems Biology Ontology
(SBO) as its primary reference ontology for events, only
basing a small number of upper-level event types on
GO. While the use of SBO for the PC task entity and
event definitions assures compatibility with pathway
representations on the type level, supporting pathway
curation tasks using event extraction further requires
the ability to map event structures to complex pathway
reactions (and vice versa).
Popular pathway model standards such as SBML and

BioPAX differentiate between three basic categories of
reaction participants: reactants, products, and modifiers.
The former two correspond roughly to reaction inputs
and outputs, while the last category identifies entities
that have a regulatory effect, such as inhibiting or catalyz-
ing the reaction. While this categorization of pathway
reaction participants has some close analogies to the
event structures applied in previous shared tasks, some
aspects of the event representation require adjustments
to assure a systematic and consistent mapping. In the PC
task, we interpret event role types as follows: first, Theme
is used to annotate participants corresponding to reac-
tants, and Cause is applied together with regulation event
types to capture modifiers and their effects (inhibition,
catalysis, etc.). Finally, we introduce the new role Product
specifically for the purpose of representing the product
role in pathway models.
The use of SBO types and event roles defined with

respect to the participant categories in pathways makes
events and pathway reactions fully isomorphic in theory.
However, natural language text does not necessarily
explicitly state all participants, so in practice event repre-
sentations that adhere to the principle that all annota-
tions are bound to specific expressions in text may not
always map to complete reaction representations. For
example, in a pathway model, a phosphorylation reaction
that takes p38g as a reactant would have phospho-p38g as
a product. However, as the combination of reactant, reac-
tion type and product is redundant, authors rarely
express all three, instead using more concise forms such
as “p38g is phosphorylated”. Figure 5 illustrates the map-
ping and the difference between idealized, fully explicit
statements and less complete forms that frequently
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appear in actual publications. We refer to [24] for further
discussion of the relation between the PC task entity and
event types, the event representation, and representations
applied in pathway models.

Corpora
Both the Cancer Genetics and Pathway Curation tasks
use corpus resources based in part on relevant

Table 4. Pathway Curation task entity types, reference
resources, and definitions

Entity type Reference Ontology ID

SIMPLE CHEMICAL ChEBI SBO:0000247

GENE OR GENE PRODUCT gene/protein DBs SBO:0000246

COMPLEX complex DBs SBO:0000253

CELLULAR COMPONENT GO-CC SBO:0000290

Table 3. Cancer Genetics task event types and their arguments

Type Core arguments Additional arguments

Anatomical

DEVELOPMENT Theme (Anatomy)

BLOOD VESSEL DEVELOPMENT Theme?(Anatomy) AtLoc?

GROWTH Theme (Anatomy)

DEATH Theme (Anatomy)

CELL DEATH Theme?(Cell)

BREAKDOWN Theme (Anatomy)

CELL PROLIFERATION Theme (Cell)

CELL DIVISION Theme (Cell)

CELL DIFFERENTIATION Theme (Cell) AtLoc?

REMODELING Theme (Tissue)

REPRODUCTION Theme (Organism)

Pathological

MUTATION Theme (GGP) AtLoc?, Site?

CARCINOGENESIS Theme?(Anatomy) AtLoc?

CELL TRANSFORMATION Theme (Cell) AtLoc?

METASTASIS Theme?(Anatomy) ToLoc

INFECTION Theme?(Anatomy), Participant?(Organism)

Molecular

METABOLISM Theme (Molecule)

SYNTHESIS Theme (Simple chemical)

CATABOLISM Theme (Molecule)

AMINO ACID CATABOLISM Theme?(Molecule)

GLYCOLYSIS Theme?(Molecule)

GENE EXPRESSION Theme+(GGP)

TRANSCRIPTION Theme (GGP)

TRANSLATION Theme (GGP)

PROTEIN PROCESSING Theme (GGP)

PHOSPHORYLATION Theme (Molecule) Site?

(other chemical modifications defined similarly to PHOSPHORYLATION)

PATHWAY Participant (Molecule)

General

BINDING Theme+(Molecule) Site?

DISSOCIATION Theme (Molecule) Site?

LOCALIZATION Theme+(Molecule) At/From/ToLoc?

Regulation Theme (Any), Cause?(Any)

POSITIVE REGULATION Theme (Any), Cause?(Any)

NEGATIVE REGULATION Theme (Any), Cause?(Any)

PLANNED PROCESS Theme*(Any), Instrument*(Entity)

The indentation corresponds to ontological structure (is-a/part-of relations). The suffixes ?, *, and + denote zero or one, zero or more, and one or more
arguments of the shown type (respectively). GGP stands for Gene or gene product. For brevity, additional argument types are not shown in table: the AtLoc,
FromLoc and ToLoc arguments take an anatomical entity type, and Site arguments take a Protein domain or region or DNA domain or region entity type.
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previously released corpora. Nevertheless, most of the
annotations in the shared task versions of the training,
development and test corpora of both tasks were newly
introduced specifically for these tasks. The following
sections present these resources and their preparation.
Annotation process
The annotation of the CG and PC task corpora followed
the same overall process: document selection, automatic

pre-annotation of entity mentions, manual finalization of
entity annotations, and manual event annotation.
While some of the aspects of the entity annotation are

novel, many of the annotated entity types are in scope of
established domain tools and resources. To reduce the
overall annotation effort, we thus created preliminary
annotation using a selection of automatic named entity
and entity mention taggers. For SIMPLE CHEMICAL

Table 5. Pathway Curation task event types and arguments

Event type Core arguments Additional arguments Ontology ID

CONVERSION Theme(Molecule), Product(Molecule) SBO:0000182

PHOSPHORYLATION Theme(Molecule), Cause(Molecule) Site(Simple chemical) SBO:0000216

DEPHOSPHORYLATION Theme(Molecule), Cause(Molecule) Site(Simple chemical) SBO:0000330

(Other modifications, such as ACETYLATION, defined similarly.)

LOCALIZATION Theme(Molecule) At/From/ToLoc(Cell. comp.) GO:0051179

TRANSPORT Theme(Molecule) From/ToLoc(Cell. comp.) SBO:0000185

GENE EXPRESSION Theme(Gene or gene product) GO:0010467

TRANSCRIPTION Theme(Gene or gene product) SBO:0000183

TRANSLATION Theme(Gene or gene product) SBO:0000184

DEGRADATION Theme(Molecule) SBO:0000179

BINDING Theme(Molecule), Product(Complex) SBO:0000177

DISSOCIATION Theme(Complex), Product(Molecule) SBO:0000180

REGULATION Theme(Any), Cause(Any) GO:0065007

POSITIVE REGULATION Theme(Any), Cause(Any) GO:0048518,

GO:0044093

ACTIVATION Theme(Molecule), Cause(Any) SBO:0000412

NEGATIVE REGULATION Theme(Any), Cause(Any) GO:0048519,

GO:0044092

INACTIVATION Theme(Molecule), Cause(Any) SBO:0000412

PATHWAY Participant(Molecule) SBO:0000375

“Molecule” represents any of Simple chemical, Gene or gene product, or Complex. “Any” refers to an annotation of any type. The indentation of the types
corresponds to ontological relations (is-a and part-of ) between the event types

Figure 5 Pathway model reactions and event representations. Illustration of reactions in a pathway model (left), idealized explicit statements
annotated with a directly mapped representation (center), and realistic expressions in text with actual event annotation. Figure from [5].
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tagging, we used the OSCAR4 system, which was trained
on the chemical entity mention recognition corpus
of Corbett and Copestake [51]. For GENE OR GENE
PRODUCT mention detection, we used BANNER [52] for
the CG task and NERsuite [53] for the PC task. Both of
these systems were trained on the Gene Mention task
corpus introduced in the BioCreative 2 evaluation [54].
NERsuite was also applied for anatomical entity mention
detection (CULLULAR COMPONENT only for the PC task).
For these tagging tasks, the general machine learning-
based system was trained on the Anatomical Entity Men-
tion (AnEM) corpus [39] following the approach presented
by Pyysalo and Ananiadou [55]. As no broad-coverage cor-
pus annotated specifically for mentions of macromolecular
complexes was available, we applied heuristics based on
the GENE OR GENE PRODUCT annotation and dictionary-
based tagging to create the initial annotations for the PC
task COMPLEX type. Finally, LINNAEUS [56] was applied
for the CG task ORGANISM mentions. The overall proces-
sing used the pipeline first introduced for similar analysis
for the BioNLP ST’11 [57]. These tools were additionally
integrated into the Argo workflow system [58] to support
the PC task curation process. Following initial automatic
entity mention annotation, we performed manual revision
of the outputs to correct tagger errors prior to advancing
to the event annotation stage.
We acknowledge that automatic annotation is not only

far from perfect, but also carries a risk of introducing sys-
tematic errors, some of which may persist through subse-
quent manual revision. As entity annotations were not a
target of extraction in either of the tasks, the possibility
of some remaining bias from such errors was considered
acceptable. By contrast, we wished to assure that the
quality of the event annotations was as high as possible
and to avoid any possibility of introducing systematic
errors that might call into question whether the evalua-
tion provides a fair representation of the comparative
performance of different extraction approaches. For this
reason, the event annotation of both tasks was created
manually from scratch, forgoing any initial automatic
annotation.
All manual annotation, including the revision of the

initial automatic entity mention annotations as well as
the primary event annotation, was performed using the
open source BRAT annotation tool [59].
The task-specific annotation process details are pre-

sented below.
Cancer genetics corpus annotation
The CG corpus consists of 600 PubMed abstracts
selected on the basis of their relevance to established
hallmarks of cancer, such as the evasion of apoptosis,
tissue invasion, and sustained angiogenesis [6]. Of these
600 documents, 250 are part of the previously released
multi-level event extraction (MLEE) corpus [50], which

concentrates specifically on the angiogenesis subdomain.
The other 350 documents were selected by querying
PubMed for MeSH terms that relate to other hallmarks
of cancer, such as apoptosis and metastasis (Table 6).
After identifying queries providing sufficient specificity,
we selected a random sample of the resulting docu-
ments and performed a round of manual filtering to
assure that each abstract is relevant to the selected char-
acteristic of cancer and its molecular basis.
The CG corpus was annotated by Tomoko Ohta, a PhD

biologist with a cancer molecular biology background
and extensive experience in event annotation. The crea-
tion of the anatomical entity annotation is described in
[55], and the event annotation extended the guidelines
and manual annotation process introduced in [50].
After the completion of the initial manual annotation,

we performed some iterations of automatically supported
revisions to further improve annotation quality and con-
sistency. For example, we used the consistency check
options of the search.py script included with BRAT to
find text strings that were annotated as entity mentions
in some cases but not in others and annotations that
shared the same surface form but were assigned different
semantic types. Automatically detected potential incon-
sistencies were subjected to further manual examination
and correction when necessary. As only a single annota-
tor was trained to perform the CG corpus annotation, we
did not directly measure inter-annotator agreement dur-
ing the annotation of this corpus. However, our previous
IAA evaluation using the same annotation protocol [50]
indicated that following an initial training round, the ana-
tomical entity annotation could be replicated by a second
annotator with 94.1% accuracy and the event annotation
with 72.5% F-score using the primary task evaluation
criteria.
Pathway curation corpus annotation
As for the CG task, the texts of the PC task corpus are
also drawn from PubMed abstracts. For the CG corpus,
we aimed to assure that each included abstract provides
evidence for the annotation of some reaction found in at
least one selected pathway model (Table 7). To select
such documents, we applied two complementary strate-
gies, one predicated on the presence of explicit references
to evidence documents in the pathway annotations, and
the other using a system developed specifically to support
the creation of such annotations.
For the first approach, we selected the BioModels path-

ways that had the most manually annotated references
identifying a document in PubMed. We then retrieved the
abstracts of a random sample of these documents and fil-
tered them manually to assure their relevance to the task.
The second strategy was required as the majority of path-
way models do not include any references to evidence
documents. To select documents providing evidence for
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reactions in other pathways, we entered selected
PANTHER DB models into PathText [60], a system for
identifying documents relevant to specific reactions. We
then selected random reactions from these models and
manually filtered the top results retrieved by PathText for
relevance. This approach is described in detail by Miwa et
al. [61].
The PC task annotation effort was carried out in colla-

boration between the UK National Centre for Text
Mining (NaCTeM) and the Korea Institute of Science
and Technology Information (KISTI). The entity anno-
tation followed the automatically supported approach
described above, and event annotation was performed
fully manually by three biologists. The effort was orga-
nized by a coordinator with experience from several
event annotation projects, but the individual annotators
had no previous experience with the annotation of nat-
ural language texts. After a brief introduction to event
annotation and training with the annotation tool and
guidelines, the primary annotation was performed other-
wise independently, but with a random 20% of docu-
ments provided to all three annotators to evaluate
consistency, identify points of disagreement, and

measure inter-annotator agreement. Following the com-
pletion of the primary manual annotation, consistency
checking using automatic methods to detect potentially
inconsistent annotations was performed similarly as in
the CG task data preparation (described above).
An evaluation of the redundantly annotated documents

after consistency checking indicated an inter-annotator
agreement of 61.0% F-score for the event annotation
using the primary task evaluation criteria. This level of
agreement is somewhat low given the comparative sim-
plicity of the task annotation targets. This can likely be
attributed in substantial part to the facts that the annota-
tors were working in a different country from the annota-
tion coordinators, communicating primarily over email,
and that only a relatively short period of annotator train-
ing could be included due to the overall project schedule.
This serves to emphasize that while it is necessary to
involve domain experts in annotation efforts targeting
specialized texts, such expertise must be accompanied by
thorough annotator training that provides sufficient
experience on the use of the annotation formalism and
tools as well as detailed understanding of the annotation
guidelines. Finally, the redundantly annotated documents
were assessed by the annotation coordinator to select the
best of each set of annotations for the final corpus. This
selection implies that the measured inter-annotator
agreement of 61% F-score is a lower bound on the quality
of the released PC task event annotation.
Corpus statistics
Both the CG and PC task corpora were divided into
training, development and test sets representing
approximately 50%, 17%, and 33% of the documents,
respectively. Table 8 summarizes the CG corpus statis-
tics, and Table 9 gives the statistics of the PC corpus.
We note that the CG corpus is the largest of the
BioNLP ST 2013 corpora by most of these measures,
including in particular the number of annotated events.
While the PC task corpus is somewhat smaller, it never-
theless has more annotated events than all corpora in
previous BioNLP ST tasks with the exception of the ori-
ginal GE task. We thus expect that the availability of
sufficient numbers of training examples should not be a
limiting factor for the performance of systems partici-
pating in either task compared to previous BioNLP ST
tasks.

Table 6. Queries for Cancer Genetics task document selection

Domain Documents Query terms

Carcinogenesis 150 cell transformation, neoplastic AND (proteins OR genes)

Metastasis 100 neoplasm metastasis AND (proteins OR genes)

Apoptosis 50 apoptosis AND (proteins OR genes)

Glucose metabolism 50 (glucose/metabolism OR glycolysis) AND neoplasms

Only matches against MeSH terms were queried for, excluding cases where the query terms appeared only in text (e.g. “neoplasms"[MeSH Terms]).

Table 7. Pathway models used to select documents for
the Pathway Curation task

Pathway Repository ID Publication

mTOR BioModels MODEL1012220002 [88]

mTORC1 upstream
regulators

BioModels MODEL1012220003 [88]

TLR BioModels MODEL2463683119 [89]

Yeast Cell Cycle BioModels MODEL1011020000 [90]

Rb BioModels MODEL4132046015 [91]

EGFR BioModels MODEL2463576061 [92]

Human Metabolic
Network

BioModels MODEL6399676120 [93]

NF-kappaB pathway - - [23]

p38 MAPK PANTHER
DB

P05918 -

p53 PANTHER
DB

P00059 -

p53 feedback loop
pathway

PANTHER
DB

P04392 -

Wnt signaling pathway PANTHER
DB

P00057 -
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Evaluation
The evaluation of both the CG and PC tasks is instance-
based and uses the standard precision, recall and F-score
metrics. The primary criteria for determining if an event
(or event modification) predicted by a participating sys-
tem matches a gold standard event (modification) follow
those first introduced in the initial BioNLP ST. In brief,
these criteria require that a predicted and gold event are
identical with two possible exceptions: the boundaries of
predicted events may differ from those of the corre-
sponding gold event by up to one word on each side, and
the events that are referred to as arguments of the pre-
dicted and gold events under consideration may differ in
their non-core arguments (see Tables 3 and 5). We refer
to Kim et al. [28] for a detailed definition of these criteria.
The statistical significance of the performance differences
between each pair of participating systems was assessed
using the approximate randomization method [62,63]
using 9,999 repetitions.
We consider here also two variants of the primary eva-

luation setting: evaluation on core extraction targets only,
and evaluation using an additional relaxation of the
matching criteria termed single partial penalty. For the
core task evaluation, we removed from both the gold
annotation and the predictions of each participant all but
the core event arguments (Tables 3 and 5) as well as
event modifications, and then eliminated duplicate events
arising from this simplification. This evaluation setting
corresponds to the GE task subtask 1 [35] and the core
evaluation settings of the EPI and Infectious Diseases
(ID) tasks [36], focusing evaluation on a reduced set of
targets defining only the minimum required to character-
ize an event. The single partial penalty criterion, first pro-
posed in [64], aims to address the following issue in the

primary evaluation criteria: events predicted by a system
that otherwise match a gold standard event but either
lack some of the arguments of that event or have some
extra arguments are penalized twice: the predicted event
counts as a false positive, and the gold standard event it
largely corresponds to counts as a false negative. With
the single partial penalty criterion, when a prediction and
a gold standard event match partially in this way, either
the prediction is counted as a false positive (extra argu-
ments) or the gold standard event as a false negative
(missing arguments), but not both. Finally, we consider
also the combination of the core evaluation and single
partial penalty variants.

Results and discussion
Participation
Final results for the two tasks were submitted by six
teams, with all six submitting to the CG task and two
submitting also to the PC task. Table 10 presents a
summary of the teams, their members, and the ranks of
their systems at the tasks they participated in. These
teams involved members from six academic groups as
well as one company, representing a broad variety of
backgrounds, including linguists, bioinformaticians, and
computer scientists among others.
Table 11 summarizes the key properties of the systems

applied to the two tasks. The participants approached the
tasks using a broad variety of different architectures,
including one-best machine learning pipelines (TEES-2.1
and NaCTeM), a joint subgraph matching-based
approach (NCBI), a rule-based method (RelAgent), and
two parsing-based approaches (UET-NII and ISI).
Machine learning-based processing stages are dominated
by the application of support vector machines, a popular
learning method also in previous shared tasks.
A range of different methods was applied also in support

of the individual processing stages. The methods used for
basic word-level processing are generally comparatively
simple, domain-independent approaches, with only the
NCBI system using a lemmatization method developed
specifically for domain texts (BioLemmatizer) [65]. By con-
trast, we note that all six systems perform syntactic analy-
sis using primarily advanced, domain-specific parsing
methods. These choices may be motivated in part by the
observation that the application of parsers has been a very
common feature of high-performing systems in previous
BioNLP ST events. However, there is substantial variety in
the specific choice of parser. The TEES-2.1 and NCBI sys-
tems use the McClosky-Charniak-Johnson constituency
parser [66,67] and the Stanford Dependency conversion
[68], which was the most common choice for syntactic
analysis in BioNLP ST’11. The systems of NaCTeM and
UET-NII use the probabilistic HPSG parser Enju [69],
with NaCTeM additionally using the GDep shift-reduce

Table 8. Cancer Genetics task corpus statistics

Item Train Devel Test Total

Documents 300 100 200 600

Words 66082 21732 42064 129878

Entities 11034 3665 6984 21683

Relations 466 176 275 917

Events 8803 2915 5530 17248

Modifications 670 214 442 1326

Table 9. Pathway Curation task corpus statistics

Item Train Devel Test Total

Documents 260 90 175 525

Words 53811 18579 35966 108356

Entities 7855 2734 5312 15901

Relations 455 128 330 913

Events 5992 2129 4004 12125

Modifications 317 80 174 571
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dependency parser [70]. Finally, the Stanford CoreNLP
tools are used by the ISI system, and a custom parser is
applied by RelAgent [71].
Although event modifications were included as an

extraction target in both tasks, three of the six systems
involve no event modification component at all. Of the
three that do, two apply a machine learning approach
and one a rule-based approach. The choice of the three
participants to exclude event modification from their
methods may reflect at least in part the rarity of modifi-
cations compared to event annotations (see Tables 8
and 9) and the known difficulty of this subtask.
As in previous instantiations of the BioNLP ST, the 2013

shared task was run as an open challenge, where partici-
pants were encouraged to use any additional resources to
augment the training data provided by the task organizers.
Of such external resources, perhaps the most obviously
applicable is the set of corpora introduced in previous
shared tasks: as discussed in the introduction, these tasks
have involved many of the same extraction targets, in par-
ticular basic biomolecular events. Three teams made use
of one or more previously introduced BioNLP ST corpora.
The TEES-2.1 and NCBI teams both used the GE corpus
[35] and NCBI used also the EPI task corpus [36]. The
NaCTeM system did not use any external corpora for the
CG task, but for the PC task the system was applied with a
stacked model [72] with predictions also from models
trained on the BioNLP ST’11 GE, EPI and ID tasks [36] as
well as from four event corpora not included in a shared

task [24,73-75]. Three teams also applied lexical resources
based on event corpora (Table 11).
We note that of the eight submissions received from

the six participating groups, five represent applications
or extensions of previously proposed approaches: the
University of Turku and the National Centre for Text
Mining submitted to both tasks using their established,
state-of-the-art event extraction systems, the Turku
Event Extraction System [76,77] (TEES) and EventMine
[78,79] (NaCTeM), and the National Center for Biotech-
nology Information participated in the CG task using an
extension of their previously proposed subgraph match-
ing approach [80,81]. By contrast, the CG task submis-
sions from the RelAgent, UET-NII and ISI teams used
approaches that were now evaluated in a BioNLP ST
event for the first time.
For more information on the participating systems, we

refer to the descriptions of these systems published by
the groups who created them, summarized in Table 10.

Cancer genetics primary evaluation results
The Cancer Genetics task primary evaluation results are
presented in summary in Table 12. Statistical signifi-
cance testing indicated that all pairwise differences
between systems are significant (p < 0.05) excepting for
that between the NCBI and RelAgent systems.
The TEES-2.1 system achieved the best performance at

the task, averaging an F-score of 55%. A version of the
same system ranked first also in the original 2009 BioNLP

Table 10. Participating teams, ranks and references to system descriptions

Team Institution Tasks (rank) Members Ref

TEES-2.1 University of Turku CG(1), PC(2) 1 BI [94,95]

NaCTeM National Centre for Text Mining PC(1), CG(2) 1 NLP [96,97]

NCBI National Center for Biotechnology Information CG(3) 3 BI [98,99]

RelAgent RelAgent Private Ltd. CG(4) 1 LI, 1 CS [71]

UET-NII University of Engineering and Technology, Vietnam and National Institute of Informatics, Japan CG(5) 6 CS [100]

ISI Indian Statistical Institute CG(6) 2 ML, 2 NLP -

Abbreviations: BI: Bioinformatician, CS: Computer Scientist, LI: Linguist, ML: Machine Learning researcher, NLP: Natural Language Processing researcher.

Table 11. Summary of system architectures

NLP methods Events Resources

Team Lexical Syntactic Trigger Arg Group Modif. Corpora Other

TEES-2.1 Porter McCCJ + SD SVM SVM SVM SVM GE hedge words

NaCTeM Snowball Enju, GDep SVM SVM SVM SVM (see text) triggers

NCBI MedPost, BLem McCCJ + SD Joint, subgraph matching - GE, EPI -

RelAgent Brill fnTBL, custom rules rules rules rules - -

UET-NII Porter Enju SVM MaxEnt Earley - - triggers

ISI CoreNLP CoreNLP NERsuite Joint, MaltParser - - -

Abbreviations: Trigger: event trigger detection, Arg: trigger-argument relation detection, Group: argument grouping into event structures, Modif.: event
modification prediction, CoreNLP: Stanford CoreNLP, Porter: Porter stemmer, BLem: BioLemmatizer, Snowball: Snowball stemmer, McCCJ: McClosky-Charniak-
Johnson parser, Charniak: Charniak parser, SD: Stanford Dependency conversion, SVM: Support Vector Machines, MaxEnt: Maximum Entropy Modeling.
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ST, then achieving an F-score of 52% [82], as well as in
four out of eight tasks in the 2011 shared task, there
achieving an F-score of 53% in the comparable GE task
[83]. The NaCTeM group ranked second at the CG task,
applying the EventMine system that has also been evalu-
ated on numerous previous shared task corpora. The per-
formance it achieves here, an F-score of 52%, is likewise at
a broadly similar level to its performance at previously
introduced tasks [84]. Also the third-ranking group, NCBI,
extends on a system previously applied at the BioNLP
ST’11, here performing notably better in relative terms at
an F-score of 46% than the F-score of 41% achieved in the
2011 GE task [80].
Of the three newly introduced systems, the rule-based

system of RelAgent achieves the best performance, aver-
aging an F-score of 46% and thus performing within 10
percentage points of the top-ranking system. This shows
that the CG task targets are not so complicated as to
make the task inaccessible to rule-based approaches and
that newly introduced systems can achieve a level of per-
formance that is broadly competitive with the established
state-of-the-art systems. The parsing-based systems
achieve less competitive results, with F-scores of 30%
for UET-NII and 24% for ISI. The results for both sys-
tems are primarily limited by low levels of recall, sug-
gesting that better F-scores could perhaps be achieved
by trading off some of the comparatively high precision.
We thus observe that the top three positions are taken

by previously established systems - perhaps not a surpris-
ing finding - and, more importantly, that each of these sys-
tems achieves a level of performance at the CG task that is
broadly comparable or better than the performance of the
same system at previous related and narrower tasks such
as GE. This is highly encouraging as it indicates that the
state-of-the-art systems generalize to meet all of the novel
challenges of the CG task, including the substantially
increased number of entity and event types, the cancer
domain, as well as the inclusion of higher levels of biologi-
cal organization.
Table 13 gives the primary results separately for each

event type. These results show that the newly introduced
anatomical and pathological event categories are not par-
ticularly challenging for the event extraction methods;

indeed, the best results for anatomical category events
are better than the best results for molecular events
(F-score of 77% versus 73%). The best results for patholo-
gical processes are only slightly lower at an F-score of
68%. By contrast to the broad new categories of events,
the specific newly introduced event type Planned process
PLANNED PROCESS proved challenging to extract (best
result was an F-score of 41%), perhaps in part due to the
fact that it frequently involves multiple arguments.
The previously established event categories general

and regulation remain as challenging here as in previous
related challenges, likely reflecting at least partly the
known challenges in the extraction of events with multi-
ple arguments (e.g. BINDING) and those that recursively
include other events (regulation types). Results are com-
paratively low also for the modification types, with a
best F-score of 40% for NEGATION and 30% for SPEC-
ULATION. The extraction of these types involve chal-
lenges similar to those for regulation events in that their
correct extraction requires also the correct extraction of
the events that they apply to [28].

Pathway curation primary evaluation results
The overall results of the PC task are given in Table 14.
The NaCTeM team achieves the better performance on
the task, an F-score of 53%, using the EventMine sys-
tem. The TEES-2.1 system comes in a close second at
an F-score of 51%. Although these F-scores do not differ
much, the two systems arrive at these results with quite
different predictions: while the NaCTeM system exhibits
balanced precision and recall, the performance of TEES-
2.1 is noticeably skewed in favor of higher precision and
lower recall.
Table 15 shows the results of the PC task separated by

event type. The two systems show very similar patterns
of performance in terms of F-scores, again with the
NaCTeM approach reaching its results with reasonably
balanced precision and recall results for most types and
TEES-2.1 frequently showing a clear preference for pre-
cision over recall. The performance for different event
categories shows mainly similar patterns as in previous
molecular-level event extraction tasks: simple modifica-
tion events such as PHOSPHORYLATION that frequently
take only a single Theme argument are comparatively
easy extraction targets (a better result of an F-score of
66%), while structures that require the correct extraction
of events that they apply to are challenging (40% F-score
for regulation and 29% for modifications). Interestingly,
the general category of events, and in particular the pre-
viously often particularly demanding BINDING type
show comparatively high results here, perhaps reflecting
some special characteristics of the domain.
It is interesting that the ranks of the two systems are

inverted here compared to the CG task, where the

Table 12. Cancer Genetics task primary evaluation result
summary

Team recall prec. F-score

TEES-2.1 48.76 64.17 55.41

NaCTeM 48.83 55.82 52.09

NCBI 38.28 58.84 46.38

RelAgent 41.73 49.58 45.32

UET-NII 19.66 62.73 29.94

ISI 16.44 47.83 24.47
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Table 13. Cancer Genetics task primary evaluation F-scores by event type

Event TEES-2.1 NaCTeM NCBI RelAgent UET-NII ISI

DEVELOPMENT 71.43 64.77 67.33 66.31 61.72 53.66

BLOOD VESSEL DEVELOPM 85.28 78.82 81.92 79.60 21.49 13.56

GROWTH 75.97 59.85 66.67 76.92 70.87 65.52

DEATH 81.74 73.17 74.07 64.71 77.78 63.16

CELL DEATH 73.30 75.18 78.05 66.98 25.17 7.35

CELL PROLIFERATION 80.00 78.33 72.73 64.39 71.43 57.40

CELL DIVISION 0.00 0.00 0.00 0.00 0.00 0.00

CELL DIFFERENTIATION 56.34 48.48 48.98 54.55 59.26 24.14

REMODELING 30.00 22.22 21.05 40.00 20.00 23.53

REPRODUCTION 100.00 100.00 100.00 100.00 100.00 100.00

Anatomical total 77.20 71.31 73.68 70.82 50.04 38.86

MUTATION 38.00 41.05 25.11 27.36 27.91 9.52

CARCINOGENESIS 77.94 72.18 67.14 64.12 35.96 24.72

CELL TRANSFORMATION 81.56 82.54 71.13 67.07 57.14 32.39

BREAKDOWN 76.74 70.13 76.54 42.42 58.67 50.70

METASTASIS 70.91 51.05 52.69 47.79 56.41 26.20

INFECTION 69.57 76.92 69.23 33.33 11.76 0.00

Pathological total 67.51 59.78 54.19 48.14 46.90 25.17

METABOLISM 83.87 70.27 74.29 80.00 68.75 71.43

SYNTHESIS 78.26 71.11 78.26 53.57 64.71 48.65

CATABOLISM 63.64 36.36 38.10 23.08 20.00 36.36

GLYCOLYSIS 0.00 100.00 95.45 97.78 0.00 0.00

AMINO ACID CATABOLISM 0.00 66.67 66.67 66.67 0.00 0.00

GENE EXPRESSION 78.21 79.96 73.69 69.45 58.01 53.28

TRANSCRIPTION 37.33 42.86 51.55 28.12 32.00 20.93

TRANSLATION 40.00 22.22 0.00 0.00 0.00 0.00

PROTEIN PROCESSING 100.00 100.00 100.00 0.00 100.00 100.00

ACETYLATION 100.00 100.00 66.67 100.00 66.67 66.67

GLYCOSYLATION 100.00 100.00 100.00 100.00 100.00 100.00

PHOSPHORYLATION 63.33 70.37 53.12 64.15 58.33 50.00

UBIQUITINATION 100.00 100.00 0.00 100.00 0.00 100.00

DEPHOSPHORYLATION 0.00 80.00 100.00 100.00 0.00 0.00

DNA METHYLATION 66.67 66.67 30.30 42.11 32.43 33.33

DNA DEMETHYLATION 0.00 0.00 0.00 0.00 0.00 0.00

PATHWAY 71.30 59.07 51.14 34.29 18.31 35.64

Molecular total 72.60 72.77 67.33 60.72 49.35 46.70

BINDING 45.35 43.93 37.89 32.69 33.94 11.92

DISSOCIATION 0.00 0.00 0.00 0.00 0.00 0.00

LOCALIZATION 54.83 57.20 47.58 45.22 44.94 35.94

General total 52.20 53.08 44.70 40.89 41.76 29.59

REGULATION 32.66 28.73 14.19 26.48 5.51 4.57

POSITIVE REGULATION 45.89 44.18 34.70 38.40 13.00 12.33

NEGATIVE REGULATION 47.79 43.17 33.20 40.47 10.30 12.16

Regulation total 43.08 39.79 29.21 35.58 10.30 10.29

PLANNED PROCESS 39.43 40.51 34.28 28.57 22.74 21.22

Sub-total 56.75 53.50 48.56 46.37 31.72 25.90

NEGATION 40.00 29.55 0.00 34.64 0.00 0.00

SPECULATION 27.14 30.35 0.00 25.90 0.00 0.00

Modification total 34.66 29.95 0.00 30.88 0.00 0.00

Total 55.41 52.09 46.38 45.32 29.94 24.47
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TEES-2.1 system achieved 3 percentage points higher
performance than EventMine. The only notable differ-
ence in the way that the systems were applied in the
two tasks is that the EventMine system was trained
using a large number of previously introduced resources
for the PC but not the CG task [72]. Although the dif-
ferences in relative performance may be due in part also
to other factors, this is a promising indication that the
use of previously introduced event resources in training
may be beneficial for this extraction task despite its dif-
ferences from those resources.

As discussed in detail above, both EventMine and
TEES are well-established, support vector machine-
based pipeline systems that have demonstrated state-of-
the-art performance across many previous event extrac-
tion tasks [78,83]. Thus, even though the PC task
attracted only limited participation at the BioNLP ST’13,
the finding that these two highly competitive systems
perform in the 51-53% F-score range suggests that this
is probably a reasonable estimate of the best perfor-
mance that current event extraction systems can achieve
at this task.
It is perhaps somewhat surprising that the best results

for this purely molecular-level task are lower than those
for the considerably broader CG task despite the same
systems achieving the best results in both. However, it is
nevertheless a positive finding that this newly intro-
duced task employing a novel reference ontology and
aligned with a representation that has not previously

Table 14. Pathway Curation task primary evaluation
result summary

Team recall prec. F-score

NaCTeM 52.23 53.48 52.84

TEES-2.1 47.15 55.78 51.10

Table 15. Pathway Curation task primary evaluation results by event type

Event NaCTeM TEES-2.1

recall prec. F-score recall prec. F-score

CONVERSION 34.33 35.48 34.90 35.82 42.86 39.02

PHOSPHORYLATION 62.46 55.94 59.02 53.40 66.00 59.03

DEPHOSPHORYLATION 45.00 56.25 50.00 35.00 77.78 48.28

ACETYLATION 69.57 72.73 71.11 82.61 76.00 79.17

DEACETYLATION 33.33 33.33 33.33 0.00 0.00 0.00

METHYLATION 42.86 60.00 50.00 57.14 80.00 66.67

DEMETHYLATION 100.00 100.00 100.00 100.00 100.00 100.00

UBIQUITINATION 52.94 64.29 58.06 58.82 76.92 66.67

DEUBIQUITINATION 100.00 100.00 100.00 100.00 100.00 100.00

LOCALIZATION 42.25 61.22 50.00 43.66 54.39 48.44

TRANSPORT 65.52 61.29 63.33 56.55 59.85 58.16

GENE EXPRESSION 90.65 83.15 86.74 84.55 79.39 81.89

TRANSCRIPTION 71.15 82.22 76.29 57.69 73.17 64.52

TRANSLATION 0.00 0.00 0.00 50.00 100.00 66.67

Simple-total 66.42 64.80 65.60 60.40 67.87 63.92

DEGRADATION 78.57 89.19 83.54 78.57 78.57 78.57

ACTIVATION 78.54 70.96 74.56 72.06 72.06 72.06

INACTIVATION 44.62 55.77 49.57 38.46 45.45 41.67

BINDING 64.96 47.30 54.74 53.96 53.96 53.96

DISSOCIATION 38.46 46.88 42.25 35.90 45.16 40.00

PATHWAY 84.91 75.50 79.93 70.94 75.50 73.15

General-total 69.07 62.69 65.72 61.16 65.74 63.37

REGULATION 33.33 33.97 33.65 29.73 39.51 33.93

POSITIVE REGULATION 35.49 42.81 38.81 34.51 45.45 39.23

NEGATIVE REGULATION 45.75 50.64 48.07 41.02 47.37 43.97

Regulation-total 37.73 42.79 40.10 35.17 44.76 39.39

Sub-total 53.47 53.96 53.72 48.23 56.22 51.92

NEGATION 24.52 35.87 29.13 25.16 41.30 31.27

SPECULATION 15.79 22.22 18.46 0.00 0.00 0.00

Modification-total 23.56 34.65 28.05 22.41 40.00 28.73

Total 52.23 53.48 52.84 47.15 55.78 51.10
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been directly applied in event extraction task can be
addressed with established technology without clear
decreases in performance compared to established
tasks [35].

Additional evaluation results
We next present evaluation results under different var-
iants of the evaluation criteria. Note that the supple-
mentary evaluation results presented in this section do
not supersede the primary evaluation results (Tables 12
and 14), which remain the official results of the shared
task.
Table 16 shows the CG task results for the core

extraction targets. The F-score results show improve-
ments ranging between 2.6-4.7% points for the various
systems, reflecting the comparative simplicity of the
core targets and the frequency of non-core targets:
approximately 8% of test set events involve event modi-
fications, i.e. NEGATION or SPECULATION annotations,
and 6% involve non-core arguments. The greatest bene-
fit is observed for the NCBI system, which unlike the
highest-ranking two systems does not attempt to predict
event modifications.
Table 17 gives the core task results for the Pathway

Curation task. The observed effect is more modest than
for the CG task, likely reflecting both the lower fre-
quency of non-core targets (4% of events have modifica-
tions, 6% non-core arguments) and the fact that both
participating systems predict modifications and all event
arguments.
Table 18 summarizes the evaluation results for the CG

task with the single partial penalty criterion. For the full
task, this criterion provides for most systems compar-
able F-scores as evaluation on the core targets only
(Table 16), although with a different precision/recall bal-
ance. Evaluation with the single partial penalty criterion

on the core targets shows that the relative improve-
ments in F-score from these two variants of the primary
evaluation are nearly additive, indicating that the var-
iants address different aspects of the task.
The Pathway Curation task results with single partial

penalty are shown in Table 19. For this task, the effect
of this relaxed evaluation criterion is somewhat greater
than that of considering core targets only, yet more lim-
ited than for the CG task. However, as for the CG task,
the effects of the two variants are largely additive, with
their combination providing a 4-5% point increase over
the primary F-score results. We note that the effect of
the single partial penalty criterion for the CG and PC
task results broadly parallels its effect on the results of
the BioNLP ST’11 EPI and ID tasks for which it was ori-
ginally proposed [36].

Discussion
We next summarize some of the main findings of the
CG and PC task evaluations, consider specific challenges
and possible ways of addressing these, and discuss the
significance of the task results. Overall, we find that the
best results in both the CG and PC tasks broadly paral-
lel those achieved in similarly structured event extrac-
tion tasks in the BioNLP ST’09 [28] and ‘11 [35,36].
This suggests that the difficulty of the extraction task is
not primarily determined by the factors that have varied
between these tasks, such as the domain of the source
texts (cancer, pathways, infectious diseases, etc.), the
level of biological organization (molecular, cellular, tis-
sue, etc.), the ontological basis applied in the annotation

Table 16. Cancer Genetics task core evaluation results

Team recall prec. F-score Δf

TEES-2.1 52.14 66.18 58.33 2.92

NaCTeM 53.32 58.98 56.01 3.92

NCBI 43.33 62.07 51.04 4.66

RelAgent 44.82 52.40 48.32 3.00

UET-NII 22.08 65.21 33.00 3.06

ISI 18.57 49.93 27.08 2.61

The Δf column shows absolute difference to the primary evaluation F-score.

Table 17. Pathway Curation task core evaluation results

Team recall prec. F-score Δf

NaCTeM 54.14 54.78 54.46 1.62

TEES-2.1 49.49 57.02 52.99 1.89

The Δf column shows absolute difference to the primary evaluation F-score.

Table 18. Cancer Genetics task evaluation results with
single partial penalty

Primary (full task) Core

Team recall prec. F-score Δf recall prec. F-score Δf

TEES-2.1 50.64 68.78 58.33 2.92 53.72 70.49 60.97 2.64

NaCTeM 50.70 61.88 55.74 3.65 55.03 64.43 59.36 3.35

NCBI 39.75 65.97 49.61 3.23 44.35 68.54 53.85 2.81

RelAgent 43.47 54.39 48.32 3.00 46.55 57.21 51.33 3.01

UET-NII 22.35 67.01 33.52 3.58 24.85 68.65 36.49 3.49

ISI 17.65 51.17 26.25 1.78 19.92 52.96 28.95 1.87

The Δf columns show absolute difference to the corresponding F-scores
without single partial penalty.

Table 19. Pathway Curation task evaluation results with
single partial penalty

Primary (full task) Core Δf

Team recall prec. F-score Δf recall prec. F-score Δf

NaCTeM 54.14 57.02 55.54 2.70 56.12 58.34 57.21 2.75

TEES-2.1 49.66 58.77 53.83 2.73 52.13 59.85 55.72 2.73

The Δf columns show absolute difference to the corresponding F-scores
without single partial penalty.

Pyysalo et al. BMC Bioinformatics 2015, 16(Suppl 10):S2
http://www.biomedcentral.com1471-2105/16/S10/S2

Page 15 of 19



(GO, SBO), or, remarkably, even the number of different
entity or event types targeted in the task. The detailed
results bear out this observation (Tables 13 and 15). For
example, we find that extraction performance for events
taking only single arguments is comparatively high
across the different categories outlined above (Figure 6).
Similarly, complex extraction targets such as events

involving multiple arguments, events that recursively
involve another event, and event modifications that
often involve non-local “triggers” that are not explicitly
annotated (Figure 7) represent challenges in all task set-
tings. The relative difficulty of these extraction targets is
well established, and much of it is inherent: it is more
challenging to extract a structure involving three ele-
ments than one involving two, and the primary evalua-
tion metrics of the shared tasks make no attempt to
normalize away such effects. Nevertheless, the finding
that most errors are found in these types of structures
suggests that substantial advances in extraction perfor-
mance may require extraction approaches emphasizing
global features and joint models rather than the

comparatively local approaches that currently dominate
biomedical event extraction.
Previous detailed analyses of system errors [28,36]

identified a number of specific properties that further
characterize hard-to-extract events, including complex
syntactic structure, participants identified through core-
ference, or reference to entities via relations such as
part-of. Despite supporting tasks organized to address
some of these challenges as part of the BioNLP ST’11
[85,86] and some successful implementations in event
extraction systems [84], no system participating in the
current tasks attempted integration of coreference reso-
lution or entity relation extraction with event extraction.
The combination of such analysis components is techni-
cally challenging, but it is likely that many events cannot
be reliably extracted without such comprehensive
integration.
It must also be noted that measured extraction perfor-

mance is limited by the quality and consistency of the
gold standard annotation: even domain experts trained to
perform event annotation may reach no more than 60%

Figure 6 Simple events. Events with single arguments are reliably extracted regardless of factors such as text domain or level or biological
organization.

Figure 7 Complex events. Events involving multiple participants, recursive structure, and modifications continue to represent challenges for
extraction.
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F-score in cases, and 80% F-score remains a difficult tar-
get even for highly trained human annotators. The eva-
luation criteria can also be questioned: results using
different criteria showed relative reductions in F-score
error of 10% or more for most systems (Tables 18
and 19). These differences raise a question of which
result is “correct”, or which reflects the “true” perfor-
mance of the systems. Naturally, no single number can
adequately represent system performance in full, and
preferences between different evaluation criteria are task-
dependent and somewhat subjective. However, we note
that the results of previous manual evaluations of system
outputs (e.g. [36,87]) suggest that users may perceive the
quality of system outputs as substantially higher than the
primary evaluation results indicate, lending support to
the application of also more relaxed criteria. Finally, we
note that although evaluation variants produce substan-
tial effects on absolute F-scores, all criteria agree on
which of any two systems performs better. Thus, the
primary results are stable in their ranking of systems by
performance in both the CG and PC tasks.

Conclusions
We have presented the Cancer Genetics and Pathway
Curation tasks, two event extraction tasks that were
newly introduced in the BioNLP Shared Task 2013.
Both tasks are motivated by the needs of maintaining
comprehensive and up-to-date information in the face
of the enormous size and rapid growth of the biomedi-
cal domain scientific literature. For the CG task, such
information can be used to develop knowledge bases on
the molecular mechanisms underlying cancer; for the
PC task, for developing, evaluating and maintaining
molecular pathway models using representations such as
SBML and BioPAX.
The two tasks both involve a number of aspects not pre-

viously considered in BioNLP ST settings. For the CG
task, the most notable novel points are that the task
addresses entities and events at all levels of biological orga-
nization from the molecular to the whole organism and
involves pathological as well as physiological processes.
The PC task stands out in particular in defining the struc-
ture of its extraction targets explicitly with reference to
major pathway model representations and their types on
the basis of the Systems Biology Ontology, thus aligning
the extraction task closely with the needs of pathway cura-
tion efforts. Each of the tasks introduces a new, manually
annotated corpus substantially extending on previously
available resources. Both corpora draw their texts from
PubMed abstracts, with the CG corpus containing annota-
tions of over 17,000 events in 600 documents and the PC
corpus over 12,000 events in 525 documents.
Six groups participated in the CG task, applying a

broad range of extraction approaches including machine

learning-based pipelines, a joint pattern matching-based
approach, a rule-based approach and two parsing-based
approaches. Two groups participated in the PC task,
both applying well-established pipeline systems using
support vector machines. All participating systems
applied detailed analysis of sentence structure, most
commonly in the form of full dependency parses. The
best result achieved in the CG task was an F-score of
55.4% by the TEES-2.1 system, and the best result in the
PC task was an F-score of 52.8% by the EventMine sys-
tem. Both of the top-ranking systems are machine learn-
ing-based pipeline systems that have achieved state-of-
the-art results in many previously proposed event
extraction tasks.
The performance of the top-ranking systems at the

two tasks is broadly in the range of the best results
achieved at similar previously proposed event extraction
tasks, indicating that current event extraction methods
generalize well to meet the novel challenges represented
by the CG and PC tasks.
Following the convention established in the first

BioNLP Shared Task, both the Cancer Genetics and
Pathway Curation tasks will continue as open challenges
available to all interested participants. The corpora, eva-
luation tools, and supporting resources are available
under open licenses from the BioNLP Shared Task
homepage http://2013.bionlp-st.org/.
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