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Abstract
This paper is devoted to the study of gap functions of random generalized variational
inequality problems in a fuzzy environment. Further by using the residual vector we
compute error bounds for random generalized variational inequality problems and
we generalize the regularized gap functions proposed by Fukushima. Furthermore we
study various properties of the generalized regularized gap functions in random fuzzy
mappings and derive the global error bounds for random generalized variational
inequality problems. Our results are new and generalize a number of known results to
generalized variational inequality problems with fuzzy mappings.
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1 Introduction
The theory of gap function was introduced for the study of a convex optimization prob-
lem and subsequently applied to variational inequality problems. One of the classical ap-
proaches in the analysis of a variational inequality problem is to transform it into an equiv-
alent optimization problem via the notion of a gap function. Recently some effort has been
made to develop gap functions for various classes of variational inequality problems; see
for example [–]. Besides these, gap functions also turned out to be very useful in de-
signing new globally convergent algorithms and in analyzing the rate of convergence of
some iterative methods and also in deriving the error bounds.

The fuzzy set theory introduced by Zadeh [] in , has emerged as an interesting
and fascinating branch of pure and applied sciences. The applications of the fuzzy set
theory can be found in control engineering and optimization problems of mathemati-
cal sciences. In the recent past, variational inequalities in the setting of fuzzy mappings
have been introduced and studied which are closely related with fuzzy optimization and
decision-making problems. In recent years, many efforts have been made to reformulate
the variational inequality problems and optimization problems in the fuzzy mapping. As
a result, variational inequality problems have been generalized and extended in various
directions using novel techniques of fuzzy theory.
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In , Chang and Zhu [] introduced the concepts of variational inequality for fuzzy
mappings. Since then, many authors studied various classes of variational inequalities for
fuzzy mappings such as existence, iterative algorithms etc.; see for example [–]. The
concept of a random fuzzy mapping was first introduced by Huang [] while studying a
new class of random multi-valued nonlinear generalized variational inclusions. For some
related work, we refer to [–]. Recently, Dai [] introduced a new class of general-
ized mixed variational like inequalities for random fuzzy mappings and established an
existence theorem for the auxiliary problem and analyzed a new iterative algorithm for
finding the solution of generalized mixed variational like inequality problems.

Gap functions have turned out to be very useful in deriving the error bounds, which
provide a measure of the distance between solution set and an arbitrary point. Error
bounds have played an important role not only in sensitivity analysis but also in con-
vergence analysis of iterative algorithms for solving variational inequality problems. It is
therefore of interest to investigate error bounds for gap functions associated with various
variational inequalities. For some related work, we refer to [, –]. To the best of our
knowledge, gap functions and error bounds have not been studied yet in fuzzy environ-
ment.

The purpose of this paper is to study of gap functions for random generalized variational
inequalities in the random fuzzy environment. Then error bounds of generalized mixed
variational inequalities are established in terms of residual vector. Further, by using the
generalized regularized gap function we obtain global error bounds of solutions of random
generalized variational inequalities with and without a Lipschitz continuity assumption.
Finally, we give concluding remarks.

2 Preliminaries and basic formulations
Throughout this paper, let H be a real Hilbert space, whose inner product and norm are
denoted by 〈·, ·〉 and ‖·‖, respectively. Let F be a collection of all fuzzy sets over H . A map-
ping T : H → F (H) is called a fuzzy mapping on H . If T is a fuzzy mapping on H , then
T(x) (denoted by Tx, in the sequel) is a fuzzy set on H and Tx(y) is the membership func-
tion of y in Tx. Let A ∈F (H), α ∈ [, ]. Then the set (A)α = {x ∈ H : A(x) ≥ α} is called an
α-cut set of A.

In this paper, we denote by (�,�) a measurable space, where � is a set and � is a
σ -algebra of subsets of � and also we denote by B(H), H , CB(H), and H(·, ·) the class
of Borel σ -fields in H , the family of all nonempty subsets of H , the family of all nonempty
closed bounded subsets of H , and the Hausdorff metric on CB(H), respectively.

Definition . [] A mapping x : � → H is said to be measurable if for any B ∈ B(H),
{t ∈ � : x(t) ∈ B} ∈ �.

Definition . [] A mapping f : � × H → H is called a random operator if for any
x ∈ H , f (t, x) = x(t) is measurable. A random operator f is said to be continuous if for any
t ∈ �, the mapping f (t, ·) : H → H is continuous.

Definition . [] A multi-valued mapping T : � → H is said to be measurable if for
any B ∈ B(H), T–(B) = {t ∈ � : T(t) ∩ B 	= ∅} ∈ �.
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Definition . [] A mapping w : � → H is called a measurable selection of a multi-
valued measurable mapping T : � → H if w is measurable and for any t ∈ �, w(t) ∈ T(t).

Definition . [] A mapping T : �×H → H is called a random multi-valued mapping
if for any x ∈ H , T(·, x) is measurable. A random multi-valued mapping T : � × H →
CB(H) is said to be H-continuous if for any t ∈ �, T(t, ·) is continuous in the Hausdorff
metric.

Definition . [] A fuzzy mapping T : � → F (H) is called measurable, if for any α ∈
(, ], (T(·))α : � → H is a measurable multi-valued mapping.

Definition . [] A fuzzy mapping T : � × H → F (H) is called a random fuzzy map-
ping, if for any x ∈ H , T(·, x) : � →F (H) is a measurable fuzzy mapping.

Clearly, the random fuzzy mapping include multi-valued mappings, random multi-
valued mappings, and fuzzy mappings as special cases.

Let T̂ : � × H →F (H) be a random fuzzy mapping satisfying the following condition:
(I): there exists a mapping a : H → [, ] such that

(T̂t,x)a(x) ∈ CB(H), ∀(t, x) ∈ � × H .

By using the random fuzzy mapping T̂ , we can define a random multi-valued mapping T
as follows:

T : � × H → CB(H), (t, x) → (T̂t,x)a(x), ∀(t, x) ∈ � × H .

T is called the random multi-valued mapping induced by the random fuzzy mapping T̂ .
Given mappings a : H → [, ], the random fuzzy mapping T̂ : � × H → F (H) satisfies

the condition (I) and random operator h : � × H → H with Im(h) ∩ dom(∂φ) 	= ∅, we con-
sider the following random generalized variational inequality problem (for short, RGVIP):
Find measurable mappings x, w : � → H , such that for all t ∈ �, y(t) ∈ H ,

T̂t,x(t)
(
w(t)

) ≥ a
(
x(t)

)
,

〈
w(t), y(t) – h

(
t, x(t)

)〉
+ φ

(
y(t)

)
– φ

(
h
(
t, x(t)

)) ≥ , (.)

where ∂φ denotes the sub-differential of a proper, convex, and lower semicontinuous func-
tion φ : H →R∪ {+∞} with its effective domain being closed.

The set of measurable mappings (x, w) is called a random solution of the RGVIP (.).
Special cases:

(I) If a is zero operator and T : H → H is a single-valued mapping, then the RGVIP
(.) reduces to the generalized mixed variational inequality problem, denoted by
GMVIP, which consists in finding x ∈ H such that

〈
Tx, y – h(x)

〉
+ φ(y) – φ

(
h(x)

) ≥ , ∀y ∈ H , (.)

which was studied by Solodov []. He introduced three gap functions for the
GMVIP (.) and by using these he obtained error bounds.
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(II) If h(x) = x, ∀x, then problem GMVIP (.) reduces to mixed variational inequality
problem, denoted by MVIP, which consists in finding x ∈ H such that

〈Tx, y – x〉 + φ(y) – φ(x) ≥ , ∀y ∈ H , (.)

which was considered by Tang and Huang []. They introduced two regularized
gap functions for the MVIP (.) and studied their differentiable properties.

(III) If the function φ(·) is an indicator function of a closed set K in H , then problem
MVIP (.) reduces to a classical variational inequality problem, denoted by VIP,
which consists in finding x ∈ K such that

〈Tx, y – x〉 ≥ , ∀y ∈ K , (.)

which was studied by [, , , , , ]. They derived local and global error bounds
for the VIP (.) in terms of the regularized gap functions and the D-gap functions.

First of all, we recall the following well-known results and concepts.
For the VIP (.), it is well known that x ∈ K is a solution if and only if

 = x – PK
[
x – θT(x)

]
,

where PK is the orthogonal projector onto K and θ >  is arbitrary. The norm of the right-
hand side of the above equation is commonly known as the natural residual vector.

Throughout this paper, unless otherwise stated, the set of minimizers of the function
t : H →R∪ {+∞} over the set Y ⊂ H is denoted by arg mint∈Y t(y). For a convex function
φ : H → R ∪ {+∞} with domφ = {x ∈ H : φ(x) < +∞} denotes its effective domain, the
sub-differential at x ∈ H is denoted by ∂φ(x) = {w ∈ H : φ(y) ≥ φ(x) + 〈w, y – x〉,∀y ∈ H}
and a point w ∈ ∂φ(x) is called a sub-gradient of φ at x.

Motivated by the proximal map given in [], we give a similar characterization for the
RGVIP (.) in the random fuzzy environment by defining the mapping Pφ

θ (t) : � × H →
domφ, as

Pφ,z
θ (t)(t, z) = arg min

y(t)∈H

{
φ
(
y(t)

)
+


θ (t)

∥
∥y(t) – z(t)

∥
∥

}
, z(t) ∈ H , t ∈ �,

where θ : � → (, +∞) a measurable function which is the so called proximal mapping in
H for a random fuzzy mapping. Note that the objective function above is proper strongly
convex. Since dom(φ) is closed, Pφ,z

θ (t)(t, z) is well defined and single-valued. For any mea-
surable function θ : � → (, +∞) define the residual vector

Rφ

θ (t)
(
t, x(t)

)
= h

(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, x(t) ∈ H .

We next show that Rφ

θ (t)(t, x(t)) plays the role of natural residual vector in random fuzzy
mapping for the RGVIP (.).

Lemma . For any measurable function θ : � → (, +∞) and for each t ∈ �, the measur-
able mapping x : � → H is a solution of the RGVIP (.) if and only if Rφ

θ (t)(t, x(t)) = .
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Proof Let Rφ

θ (t)(t, x(t)) = , which implies that h(t, x) = Pφ,x
θ (t)[h(t, x) – θ (t)w(t)]. It is equiva-

lent to h(t, x) = arg miny(t)∈H{φ(y(t)) + 
θ (t)‖y(t) – (h(t, x) – θ (t)w(t))‖}. By the optimality

conditions (which are necessary and sufficient, by convexity), the latter is equivalent to

 ∈ ∂φ
(
h(t, x)

)
+


θ (t)

(
h(t, x) –

(
h(t, x) – θ (t)w(t)

))
= ∂φ

(
h(t, x)

)
+ w(t),

which implies –w(t) ∈ ∂φ(h(t, x)). This in turn is equivalent, by the definition of the sub-
gradient, to

φ
(
y(t)

) ≥ φ
(
h(t, x) –

〈
w(t), y(t) – h(t, x)

〉)
, ∀y(t) ∈ H , t ∈ �,

which implies that x(t) solves the RGVIP (.).
This completes the proof. �

Definition . A random multi-valued operator T : �×H → CB(H) is said to be strongly
h-monotone, if there exists a measurable function α : � → (, +∞) such that

〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉

≥ α(t)
∥
∥x(t) – x(t)

∥
∥, ∀wi(t) ∈ T(t, xi),∀xi(t) ∈ H , i = , ,∀t ∈ �.

Definition . A random operator h : � × H → H is said to be Lipschitz continuous, if
there exists a measurable function L : � → (, +∞) such that

∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥ ≤ L(t)
∥∥x(t) – x(t)

∥∥, ∀xi(t) ∈ H , i = , ,∀t ∈ �.

Definition . A random multi-valued mapping T : � × H → CB(H) is said to be
Ĥ-Lipschitz continuous, if there exists a measurable function λ : � → (, +∞) such that

Ĥ
(
T

(
t, x(t)

)
, T

(
t, x(t)

)) ≤ λ(t)
∥∥x(t) – x(t)

∥∥, ∀x(t), x(t) ∈ H .

Now, we give the following lemmas.

Lemma . [] Let T : � × H → CB(H) be a Ĥ-Lipschitz continuous random multi-
valued mapping, then for measurable mapping x : � → H , the multi-valued mapping
T(·, x(·)) : � → CB(H) is measurable.

Lemma . [] Let T, T : � → CB(H) be two measurable multi-valued mappings, ε > 
be a constant, and w : � → H be a measurable selection of T, then there exists a measur-
able selection w : � → H of T such that for all t ∈ �,

∥
∥w(t) – w(t)

∥
∥ ≤ ( + ε)Ĥ

(
T(t), T(t)

)
.

Definition . A function G : H → R is said to be a gap function for the RGVIP (.), if
it satisfies the following properties:

(i) G(x) ≥ , ∀x ∈ H ;
(ii) G(x∗) = , if and only if x∗ ∈ H solves the RGVIP (.).
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Lemma . Let x : � → H be a measurable mapping and θ : � → (, +∞) be a measur-
able function, then for all x(t) ∈ H and for each t ∈ �, Rφ

θ (t)(t, x(t)) is a gap function for the
RGVIP (.).

Proof It is clear that ‖Rφ

θ (t)(t, x(t))‖ ≥  for each t ∈ �, x(t) ∈ H and ‖Rφ

θ (t)(t, x∗(t))‖ = 
if and only if h(t, x∗) = Pφ,x∗

θ (t) [h(t, x∗) – θ (t)w(t)]. By the definition of Pφ,x∗
θ (t) , Pφ,x∗

θ (t) [h(t, x∗) –
θ (t)w(t)] satisfies

 ∈ ∂φ
(
Pφ,x∗

θ (t)
[
h
(
t, x∗) – θ (t)w(t)

])

+


θ (t)
(
Pφ,x∗

θ (t)
[
h
(
t, x∗) – θ (t)w(t)

]
–

(
h(t, x) – θ (t)w(t)

))
.

Hence,

–w(t) +


θ (t)
(
h
(
t, x∗) – Pφ,x∗

θ (t)
[
h
(
t, x∗) – θ (t)w(t)

]) ∈ ∂φ
(
Pφ,x∗

θ (t)
[
h
(
t, x∗) – θ (t)w(t)

])
.

It follows that, for all y(t) ∈ H ,

φ
(
y(t)

)
– φ

(
Pφ,x∗

θ (t)
[
h
(
t, x∗) – θ (t)w(t)

])

+
〈
w(t) –


θ (t)

(
h
(
t, x∗) – Pφ

K (x∗)
[
h
(
t, x∗) – θ (t)w(t)

])
,

y(t) – Pφ,x∗
K (x∗)

[
h
(
t, x∗) – θ (t)w(t)

]〉 ≥ .

Thus, x∗(t) solves the RGVIP (.).
This completes the proof. �

Next we study those conditions under which the RGVIP (.) has a unique solution.

Lemma . Let (�,�) be a measurable space and H be a real Hilbert space. Suppose that
h : � × H → H be a random mapping and φ : H → R ∪ {+∞} be a real-valued function.
Let the random fuzzy mapping T̂ : � × H →F (H) satisfy the condition (I), and a random
multi-valued mapping T : � × H → CB(H) induced by the random fuzzy mapping T̂ be
strongly h-monotone with the measurable function α : � → (, +∞), then the RGVIP (.)
has a unique solution.

Proof Let the two measurable mappings x, x : � → H be the two solutions of the RGVIP
(.) such that x(t) 	= x(t) ∈ H . Then we have

〈
w(t), y(t) – h

(
t, x(t)

)〉
+ φ

(
y(t)

)
– φ

(
h
(
t, x(t)

)) ≥ , (.)
〈
w(t), y(t) – h

(
t, x(t)

)〉
+ φ

(
y(t)

)
– φ

(
h
(
t, x(t)

)) ≥ . (.)

Taking y(t) = h(t, x(t)) in (.) and y(t) = h(t, x(t)) in (.), adding the resultants, we have

〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉 ≥ .
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Since T is strongly h-monotone with measurable function α : � → (, +∞), therefore

 ≤ 〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉 ≤ –α(t)
∥∥x(t) – x(t)

∥∥,

which implies that x(t) = x(t), ∀t ∈ �, the uniqueness of the solution of the RGVIP (.).
This completes the proof. �

Now by using normal residual vector Rφ

θ (t)(t, x(t)), we derive the error bounds for the
solution of the RGVIP (.).

Theorem . Suppose for each t ∈ �, x(t) ∈ H is solution of the RGVIP (.). Let (�,�)
be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping T̂ :
� × H → F (H) satisfy the condition (I) and T : � × H → CB(H) be the random multi-
valued mapping induced by the random fuzzy mapping T̂ . Let h : �×H → H be a random
mapping and φ : H →R∪ {+∞} be a real-valued function such that

(i) for each t ∈ �, the measurable mapping T is strongly h-monotone and Ĥ-Lipschitz
continuous with the measurable functions α,λ : � → (, +∞), respectively;

(ii) for each t ∈ �, the mapping h(t, ·) is Lipschitz continuous with the measurable
function L : � → (, +∞);

(iii) if there exists a measurable function K : � → (, +∞) such that

∥∥Pφ,x
θ (t)(z) – Pφ,x

θ (t) (z)
∥∥ ≤ K(t)

∥∥x(t) – x(t)
∥∥, ∀x(t), x(t), z(t) ∈ H ,

then for any x(t) ∈ H , t ∈ � and θ (t) > K (t)L(t)
α(t)–K (t)λ(t)(+ε) , we have

∥∥x(t) – x(t)
∥∥ ≤ L(t) + θ (t)λ(t)( + ε)

α(t)θ (t) – K(t)(L(t) + θ (t)λ(t)( + ε))
∥∥Rφ

θ (t)
(
t, x(t)

)∥∥.

Proof Let for each t ∈ �, x(t) ∈ H be a solution of the RGVIP (.), then

〈
w(t), y(t) – h(t, x)

〉
+ φ

(
y(t)

)
– φ

(
h
(
t, x(t)

)) ≥ , ∀y(t) ∈ H .

Substituting y(t) = Pφ,x
θ (t) [h(t, x(t)) – θ (t)w(t)] in the above inequality, we have

〈
w(t), Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+ φ
(
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
– φ

(
h
(
t, x(t)

)) ≥ . (.)

For any fixed x(t) ∈ H and measurable function θ : � → (, +∞), we observe that

h
(
t, x(t)

)
– θ (t)w(t) ∈ (

I + θ (t)∂φ
)(

I + θ (t)∂φ
)–(h

(
t, x(t)

)
– θ (t)w(t)

)

=
(
I + θ (t)∂φ

)
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
,

which is equivalent to

–w(t) +


θ (t)
[
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]]

∈ ∂φ
(
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
.
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By the definition of a sub-differential, we have

〈
w(t) –


θ (t)

(
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
, y(t) – Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
〉

+ φ
(
y(t)

)
– φ

(
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]) ≥ .

Taking y(t) = h(t, x(t)) in the above we get

〈
w(t) –


θ (t)

(
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
,

h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
〉

+ φ
(
h
(
t, x(t)

))
– φ

(
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]) ≥ .

This implies that

〈
–w(t) +


θ (t)

(
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
,

Pφ,x
θ (t)

[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+ φ
(
h
(
t, x(t)

))
– φ

(
Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]) ≥ . (.)

Adding (.) and (.), we get

〈
w(t) – w(t) +


θ (t)

(
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

])
,

Pφ,x
θ (t)

[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉 ≥ .

This also can be written as

θ (t)
〈
w(t) – w(t), Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+ θ (t)
〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, h

(
t, x(t)

)
– h

(
t, x(t)

)〉 ≥ ,

which implies that

θ (t)
〈
w(t) – w(t), Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, h

(
t, x(t)

)
– h

(
t, x(t)

)〉

≥ θ (t)
〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, h

(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]〉
.
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By using the strong h-monotonicity of T , we get

θ (t)
〈
w(t) – w(t), Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
, h

(
t, x(t)

)
– h

(
t, x(t)

)〉

≥ α(t)θ (t)
∥
∥x(t) – x(t)

∥
∥ +

∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥.

Also the above inequality can be written as

θ (t)
〈
w(t) – w(t), Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)

– Pφ,x
θ (t)

[
h
(
t, x(t)

)
– θ (t)w(t)

]
+ Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]〉

+
〈
h
(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]

+ Pφ,x
θ (t)

[
h
(
t, x(t)

)
– θ (t)w(t)

]
, h

(
t, x(t)

)
– h

(
t, x(t)

)〉

≥ α(t)θ (t)
∥∥x(t) – x(t)

∥∥ +
∥∥Rφ

θ (t)
(
t, x(t)

)∥∥.

By using the Cauchy-Schwarz inequality along with the triangular inequality, we have

θ (t)
∥∥w(t) – w(t)

∥∥∥∥Pφ,x
θ (t)

[
h
(
t, x(t)

)
– θ (t)w(t)

]
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]∥∥

+ θ (t)
∥
∥w(t) – w(t)

∥
∥
∥
∥Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– h

(
t, x(t)

)∥∥

+
∥∥h

(
t, x(t)

)
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]∥∥∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥

+
∥
∥Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]
– Pφ,x

θ (t)
[
h
(
t, x(t)

)
– θ (t)w(t)

]∥∥

× ∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥

≥ α(t)θ (t)
∥
∥x(t) – x(t)

∥
∥ +

∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥.

Now using the Ĥ-Lipschitz continuity of T , the Lipschitz continuity of h, and assumption
(iii) on Pφ,x

θ (t)(·), we have

θ (t)λ(t)( + ε)
∥∥x(t) – x(t)

∥∥K(t)
∥∥x(t) – x(t)

∥∥

+ θ (t)λ(t)( + ε)
∥
∥x(t) – x(t)

∥
∥
∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥

+
∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥L(t)
∥
∥x(t) – x(t)

∥
∥ + K(t)L(t)

∥
∥x(t) – x(t)

∥
∥

≥ α(t)θ (t)
∥
∥x(t) – x(t)

∥
∥ +

∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥.

The above can be written again as

K(t)θ (t)λ(t)( + ε)
∥
∥x(t) – x(t)

∥
∥ + θ (t)λ(t)( + ε)

∥
∥x(t) – x(t)

∥
∥
∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥

+ L(t)
∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥
∥
∥x(t) – x(t)

∥
∥ + K(t)L(t)

∥
∥x(t) – x(t)

∥
∥

≥ α(t)θ (t)
∥
∥x(t) – x(t)

∥
∥.
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Therefore, we have

∥
∥x(t) – x(t)

∥
∥ ≤ L(t) + θ (t)λ(t)( + ε)

α(t)θ (t) – K(t)(L(t) + θ (t)λ(t)( + ε))

× ∥
∥Rφ

θ (t)
(
t, x(t)

)∥∥, ∀x(t) ∈ H , t ∈ �,

where θ (t) > K (t)L(t)
α(t)–K (t)λ(t)(+ε) .

This completes the proof. �

3 Generalized regularized gap functions for RGVIP (2.1)
Fukushima [] considered the regularized gap function gθ : H →R defined by

gθ (x) = max
y∈K

{
〈Tx, x – y〉 –

θ


‖x – y‖

}
, where θ >  is a positive parameter.

The function gθ constitutes an equivalent constrained optimization reformulation of the
VIP (.) in the sense that x solves the VIP (.) if and only if x minimizes gθ on K and
gθ (x) = , ∀x ∈ H . The regularized gap function was further extended by Wu et al. [].
They considered the function Gθ : H →R defined by Gθ (x) = maxy∈K {〈Tx, x–y〉–θF(x, y)}.

Wu et al. [] showed that Gθ constitutes an equivalent constrained differentiable opti-
mization reformulation of the VIP (.). Motivated and inspired by the work of [, , ,
, ] going in this direction, in this section we construct a generalized regularized gap
function Gθ (t) : � × H →R, associated with problem RGVIP (.) defined by

Gθ (t)
(
x(t)

)
= max

y(t)∈H
�θ (t)

(
x(t), y(t)

)
,

where θ : � → (, +∞) is a measurable function,

Gθ (t)
(
x(t)

)
= max

y(t)∈H

{〈
w(t), h

(
t, x(t)

)
– y(t)

〉
+ φ

(
h
(
t, x(t)

))

– φ
(
y(t)

)
– θ (t)F

(
h
(
t, x(t)

)
, y(t)

)}
,

Gθ (t)
(
x(t)

)
=

〈
w(t), h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+ φ

(
h
(
t, x(t)

))

– φ
(
πθ (t)

(
x(t)

))
– θ (t)F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
,

(.)

where πθ (t)(x(t)) denotes the unique minimizer of –�θ (t)(x(t), ·) on H for each t ∈ � and
the function F : H × H → R satisfies the following conditions:

(A) F is continuously differentiable on H × H ;
(A) F is nonnegative on H × H ;
(A) F(x(t), ·) is strongly convex uniformly in x(t), for each t ∈ �, i.e., there exists a

measurable function β : � → (, +∞) such that, for any t ∈ �, x(t) ∈ H ,

F
(
x(t), y(t)

)
– F

(
x(t), y(t)

)

≥ 〈∇F
(
x(t), y(t)

)
, y(t) – y(t)

〉
+ β(t)

∥∥y(t) – y(t)
∥∥, ∀y(t), y(t) ∈ H ,

where ∇F denotes the partial differential of F with respect to the second variable
of F ;



Khan et al. Journal of Inequalities and Applications  (2016) 2016:47 Page 11 of 17

(A) F(x(t), y(t)) =  if and only if x(t) = y(t), ∀t ∈ �;
(A) ∇F(x(t), ·) is uniformly Lipschitz continuous, i.e., there exists a measurable

function γ : � → (, +∞) such that, for any t ∈ �, x(t) ∈ H ,

∥
∥∇F

(
x(t), y(t)

)
– ∇F

(
x(t), y(t)

)∥∥ ≤ γ (t)
∥
∥y(t) – y(t)

∥
∥, ∀y(t), y(t) ∈ H .

Lemma . Suppose F satisfies (A)-(A). Then for each t ∈ �, ∇F(x(t), y(t)) =  if and
only if x(t) = y(t), ∀t ∈ �.

Proof Suppose that for each t ∈ �, ∇F(x(t), y(t)) = . Then (A) implies that y(t) is the
unique minimizer of F(x(t), ·). Since F(x(t), ·) always has the unique minimizer x(t) by (A)
and (A), it follows that x(t) = y(t). Next, we suppose x(t) = y(t). Then, by (A), we have
F(x(t), ·) = . It follows from (A) that y(t) is a global minimizer of F(x(t), ·). Hence, we
have ∇F(x(t), y(t)) = .

This completes the proof. �

Lemma . Suppose that the function F satisfies (A). Then, for any t ∈ �, y(t), y(t) ∈ H ,
we have

〈∇F
(
x(t), y(t)

)
– ∇F

(
x(t), y(t)

)
, y(t) – y(t)

〉 ≥ β(t)
∥∥y(t) – y(t)

∥∥;

that is, ∇F(x(t), ·) is strongly monotone with modulus β(t) on H .

Proof For any t ∈ �, y(t), y(t) ∈ H , it follows from (A) that

F
(
x(t), y(t)

)
– F

(
x(t), y(t)

) ≥ 〈∇F
(
x(t), y(t)

)
, y(t) – y(t)

〉
+ β(t)

∥∥y(t) – y(t)
∥∥

and

F
(
x(t), y(t)

)
– F

(
x(t), y(t)

) ≥ 〈∇F
(
x(t), y(t)

)
, y(t) – y(t)

〉
+ β(t)

∥
∥y(t) – y(t)

∥
∥.

Adding the above inequalities together, we get the required result.
This completes the proof. �

Lemma . Suppose that the function F satisfies (A)-(A) with the associated measurable
functions β ,γ : � → (, +∞). Then we have

F
(
x(t), y(t)

) ≤ (
γ (t) – β(t)

)∥∥x(t) – y(t)
∥
∥, ∀x(t), y(t) ∈ H .

Proof From (A), we have

F
(
x(t), x(t)

)
– F

(
x(t), y(t)

)

≥ 〈∇F
(
x(t), y(t)

)
, x(t) – y(t)

〉
+ β(t)

∥∥x(t) – y(t)
∥∥, ∀x(t), y(t) ∈ H .

By using (A), the above can be written as –F(x(t), y(t)) ≥ 〈∇F(x(t), y(t)), x(t) – y(t)〉 +
β(t)‖x(t) – y(t)‖,

F
(
x(t), y(t)

) ≤ ∥∥∇F
(
x(t), y(t)

)∥∥∥∥x(t) – y(t)
∥∥ – β(t)

∥∥x(t) – y(t)
∥∥. (.)
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From (A), we have ‖∇F(x(t), x(t)) – ∇F(x(t), y(t))‖ ≤ γ (t)‖x(t) – y(t)‖, by using (A), it
can be written as

∥∥∇F
(
x(t), y(t)

)∥∥ ≤ γ (t)
∥∥x(t) – y(t)

∥∥. (.)

From inequalities (.) and (.), we have

F
(
x(t), y(t)

) ≤ (
γ (t) – β(t)

)∥∥x(t) – y(t)
∥∥, ∀x(t), y(t) ∈ H .

This completes the proof. �

Lemma . Suppose that the function F satisfies (A)-(A). Then, for each t ∈ �, the
measurable mapping x : � → H is a solution of the RGVIP (.) if and only if h(t, x(t)) =
πθ (t)(x(t)).

Proof For any x(t) ∈ H , since πθ (t)(x(t)) minimizes –�θ (x(t), ·) on H , and –�θ (x(t), ·) is
convex, we have

 ∈ ∂�θ

(
x(t), y(t)

)

= w(t) + ∂φ
(
πθ (t)

(
x(t)

))
+ θ (t)∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
.

– w(t) – θ (t)∇F
(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

)) ∈ ∂φ
(
πθ (t)

(
x(t)

))
.

By the definition of the sub-gradient,

φ
(
y(t)

) ≥ φ
(
πθ (t)

(
x(t)

))

–
〈
w(t) + θ (t)∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, y(t) – πθ (t)

(
x(t)

)〉
, i.e.,

〈
w(t), y(t) – πθ (t)

(
x(t)

)〉
+ φ

(
y(t)

)
– φ

(
πθ (t)

(
x(t)

))

≥ θ (t)
〈
–∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, y(t) – πθ (t)

(
x(t)

)〉
.

(.)

If h(t, x(t)) = πθ (t)(x(t)) then, by Lemma ., we see that x(t) is a solution of the RGVIP (.).
Conversely, x(t) is a solution of the RGVIP (.), then taking y(t) = πθ (t)(x(t)) in (.), we

obtain

〈
w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉
+ φ

(
πθ (t)

(
x(t)

))
– φ

(
h
(
t, x(t)

)) ≥ .

On the other hand, since h(t, x(t)) ∈ H , it follows from (.) that

〈
w(t), h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+ φ

(
h
(
t, x(t)

))
– φ

(
πθ (t)

(
x(t)

))

≥ θ (t)
〈
–∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
.

Adding the above two inequalities, we have

θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉 ≥ .
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By using the strong convexity of F(h(t, x(t)), ·), together with (A) and (A), we have

θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+ β(t)

∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥

≤ F
(
h
(
t, x(t)

)
, h

(
t, x(t)

))
– F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

)) ≤ .

From the last two inequalities, we get h(t, x(t)) = πθ (t)(x(t)).
This completes the proof. �

Theorem . Let for each t ∈ �, x(t) ∈ H is solution of the RGVIP (.). Assume that for
each t ∈ �, the random multi-valued mapping T is strongly h-monotone and Ĥ-Lipschitz
continuous with measurable functions α,λ : � → (, +∞), respectively. If h : �×H → H is
Lipschitz continuous with measurable function L : � → (, +∞) and the function F satisfies
(A)-(A), then

∥
∥x(t) – x(t)

∥
∥ ≤ λ(t)( + ε) + θ (t)γ (t)L(t)

α(t)

× ∥∥h
(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥, ∀x(t) ∈ H ,∀t ∈ �.

Proof Since x(t) is a solution of the RGVIP (.) and πθ (t)(x(t)) ∈ H for every x(t) ∈ H , we
have

〈
w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉
+ φ

(
πθ (t)

(
x(t)

))
– φ

(
h
(
t, x(t)

)) ≥ . (.)

On the other hand, taking y(t) = h(t, x(t)) in (.)

〈
w(t), h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+ φ

(
h
(
t, x(t)

))
– φ

(
πθ (t)

(
x(t)

))

≥ θ (t)
〈
–∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
. (.)

Adding the two inequalities (.) and (.), we have

〈
w(t) – w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉

≤ θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
. (.)

By Lemmas ., ., and (A) we have

θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉

= θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
– ∇F

(
h
(
t, x(t)

)
, h

(
t, x(t)

))
, h

(
t, x(t)

)
– h

(
t, x(t)

)〉

– θ (t)
〈∇F

(
h
(
t, x(t)

)
, h

(
t, x(t)

))
– ∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
,

h
(
t, x(t)

)
– πθ (t)

(
x(t)

)〉

≤ θ (t)
∥∥∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
– ∇F

(
h
(
t, x(t)

)
, h

(
t, x(t)

))∥∥

× ∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥ – θ (t)β(t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥

≤ θ (t)γ (t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥
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– θ (t)β(t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥.

≤ θ (t)γ (t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥.

By using the Lipschitz continuity of h, we have

θ (t)
〈∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉

≤ θ (t)γ (t)L(t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥∥∥x(t) – x(t)
∥∥. (.)

From the inequalities (.) and (.), we have

〈
w(t) – w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉

≤ θ (t)γ (t)L(t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥∥∥x(t) – x(t)
∥∥. (.)

Now from the strongly h-monotonicity of T , we have

α(t)
∥∥x(t) – x(t)

∥∥

≤ 〈
w(t) – w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉

≤ 〈
w(t) – w(t), h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+

〈
w(t) – w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉

≤ ∥
∥w(t) – w(t)

∥
∥
∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥ +
〈
w(t) – w(t),πθ (t)

(
x(t)

)
– h

(
t, x(t)

)〉
.

From the Ĥ-Lipschitz continuity of T and then from inequalities (.), we have

α(t)
∥
∥x(t) – x(t)

∥
∥

≤ λ(t)( + ε)
∥
∥x(t) – x(t)

∥
∥
∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥

+ θ (t)γ (t)L(t)
∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥
∥
∥x(t) – x(t)

∥
∥

≤ (
λ(t)( + ε) + θ (t)γ (t)L(t)

)∥∥h
(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥∥∥x(t) – x(t)
∥∥.

Therefore,

∥
∥x(t) – x(t)

∥
∥ ≤ λ(t)( + ε) + θ (t)γ (t)L(t)

α(t)
∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥, ∀x(t) ∈ H .

This completes the proof. �

Theorem . Suppose that the function F satisfies (A)-(A). We have

Gθ (t)
(
x(t)

) ≥ θ (t)β(t)
∥∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥, ∀x(t) ∈ H ,∀t ∈ �.

In particular, Gθ (t)(x(t)) =  if and only if x(t) solves the RGVIP (.).

Proof For any x(t) ∈ H , taking y(t) = h(t, x(t)) in (.), we have

〈
w(t), h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
+ φ

(
h
(
t, x(t)

))
– φ

(
πθ (t)

(
x(t)

))

≥ θ (t)
〈
–∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉
.
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Therefore, we have

Gθ (t)
(
x(t)

) ≥ 〈
–θ (t)∇F

(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
, h

(
t, x(t)

)
– πθ (t)

(
x(t)

)〉

– θ (t)F
(
h
(
t, x(t)

)
,πθ (t)

(
x(t)

))
.

From (A), we have

Gθ (t)
(
x(t)

) ≥ θ (t)
[
–F

(
h
(
t, x(t)

)
, h

(
t, x(t)

))
+ β(t)

∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥].

From (A), we have

Gθ (t)
(
x(t)

) ≥ θ (t)β(t)
∥
∥h

(
t, x(t)

)
– πθ (t)

(
x(t)

)∥∥.

The second assertion is obvious by Lemma ..
This completes the proof. �

From Theorem . and Theorem ., we can easily get the following global error bound
for the RGVIP (.).

Theorem . Let for each t ∈ �, x(t) ∈ H be solution of the RGVIP (.). Assume that, for
each t ∈ �, the random multi-valued mapping T is strongly h-monotone and Ĥ-Lipschitz
continuous with measurable functions α,λ : � → (, +∞), respectively. If h : �×H → H is
Lipschitz continuous with measurable function L : � → (, +∞) and the function F satisfies
(A)-(A), then Gθ (t)(x(t)) provides a global error bound for the RGVIP (.)

∥
∥x(t) – x(t)

∥
∥ ≤ λ(t)( + ε) + θ (t)γ (t)L(t)

α(t)
√

θ (t)β(t)

√
Gθ (t)

(
x(t)

)
, ∀x(t) ∈ H ,∀t ∈ �.

Also we can derive the global error bound for the RGVIP (.) without using the
Lipschitz continuity of T .

Theorem . Let for each t ∈ �, x(t) ∈ H be solution of the RGVIP (.). Assume that for
each t ∈ �, the random multi-valued mapping T is strongly h-monotone and h : � × H →
H is Lipschitz continuous with measurable functions α, L : � → (, +∞), respectively. If the
function F satisfies (A)-(A), then

∥∥x(t) – x(t)
∥∥ ≤ 

√
α(t) + θ (t)(β(t) – γ (t))L(t)

√
Gθ (t)

(
x(t)

)
, ∀x(t) ∈ H ,∀t ∈ �.

Proof For each t ∈ �, fix an arbitrary x(t) ∈ H . Since x(t) is a solution of the RGVIP (.),
from the definition of Gθ (t)(x(t)) and the h-strongly monotonicity of T , we obtain

Gθ (t)
(
x(t)

) ≥ 〈
w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉
+ φ

(
h
(
t, x(t)

))
– φ

(
h
(
t, x(t)

))

– θ (t)F
(
h
(
t, x(t)

)
, h

(
t, x(t)

))

≥ 〈
w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉
+ α(t)

∥∥x(t) – x(t)
∥∥

+ φ
(
h
(
t, x(t)

))
– φ

(
h
(
t, x(t)

))
– θ (t)F

(
h
(
t, x(t)

)
, h

(
t, x(t)

))
. (.)
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Since for each t ∈ �, x(t) ∈ H is a solution of the RGVIP (.),

〈
w(t), y(t) – h

(
t, x(t)

)〉
+ φ

(
y(t)

)
– φ

(
h
(
t, x(t)

)) ≥ .

Taking y(t) = h(t, x(t)) in the above inequality, we have

〈
w(t), h

(
t, x(t)

)
– h

(
t, x(t)

)〉
+ φ

(
h
(
t, x(t)

))
– φ

(
h
(
t, x(t)

)) ≥ . (.)

From inequalities (.) and (.), we have

Gθ (t)
(
x(t)

) ≥ α(t)
∥∥x(t) – x(t)

∥∥ – θ (t)F
(
h
(
t, x(t)

)
, h

(
t, x(t)

))
. (.)

Moreover, by Lemma . and the Lipschitz continuity of h, we have

–F
(
h
(
t, x(t)

)
, h

(
t, x(t)

)) ≥ (
β(t) – γ (t)

)∥∥h
(
t, x(t)

)
– h

(
t, x(t)

)∥∥

≥ (
β(t) – γ (t)

)
L(t)

∥∥x(t) – x(t)
∥∥. (.)

From (.) and (.), we have

∥∥x(t) – x(t)
∥∥ ≤ 

√
α(t) + θ (t)(β(t) – γ (t))L(t)

√
Gθ (t)

(
x(t)

)
, ∀x(t) ∈ H .

This completes the proof. �

Remark . For a suitable choice of the mappings T , h, φ and the function a : H → [, ],
we can obtain several known results [, , , , ] as special cases of the main result of this
paper.

4 Conclusion
In this paper, the concept of gap functions for random generalized variational inequality
problems has been introduced by using the fuzzy residual vector. By using a generalized
regularized gap function we calculated global error bounds, i.e., upper estimates on the
distance to the solution set of random generalized variational inequality problems, which
is one of the useful applications of gap functions. The concepts of fuzzy theory can be ap-
plied to fuzzy optimization problems and probabilistic models, also by using fuzzy theory
many innovative methods can be developed further in this fascinating area of the varia-
tional inequality theory. Further attention is needed for the study of relationship between
fuzzy sets, random sets, and fuzzy variational inequalities, which might provide useful
applications to the gap functions and finding its error bounds.
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