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1 Introduction
Let D = {z : |z| < } be the open unit disc of the complex plane C, ∂D its boundary. Let
H(D) denote the space of all analytic functions in D and let B(D) be the subset of H(D)
consisting of those f ∈H(D) for which |f (z)| <  for all z ∈ D. Also, dA(z) be the normalized
area measure on D so that A(D) ≡ . The usual α-Bloch spaces Bα and Bα, are defined as
the sets of those f ∈H(D) for which

‖f ‖Bα = sup
z∈D

∣∣f ′(z)
∣∣( – |z|)α < ∞,

and

lim|z|→

∣∣f ′(z)
∣∣( – |z|)α = ,

respectively. Now, we will give the following definition:

Definition . The (p,α)-Bloch spaces Bp,α and Bp,α, are defined as the sets of those
f ∈H(D) for which

‖f ‖Bp,α =
p

sup
z∈D

∣∣f (z)∣∣ p –∣∣f ′(z)
∣∣( – |z|)α < ∞,

and

lim|z|→

∣∣f (z)∣∣ p –∣∣f ′(z)
∣∣( – |z|)α = ,

where  < p,α <∞.
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Remark . The definition of (p,α)-Bloch spaces is introduced in the present paper for
the first time. One should note that, if we put p =  in Definition ., we will obtain the
spaces Bα and Bα,.

Remark . (p,α)-Bloch space is very useful in some calculations in this paper and it can
be also used to study some other operators like integral operators (see []).

If (X,d) is ametric space, we denote the open and closed balls with center x and radius r >
 by B(x, r) := {y ∈ X : d(y,x) < r} and B̄(x, r) := {y ∈ X : d(y,x) = r}, respectively. The well-
known hyperbolic derivative is defined by f *(z) = |f ′(z)|

–|f (z)| of f ∈ B(D) and the hyperbolic
distance is given by ρ(f (z), ) := 

 log(
+|f (z)|
–|f (z)| ) between f (z) and zero.

A function f ∈ B(D) is said to belong to the hyperbolic α-Bloch class B*
α if

‖f ‖B*
α
= sup

z∈D
f *(z)

(
 – |z|)α < ∞.

The little hyperbolic Bloch-type class B*
α, consists of all f ∈ B*

α such that

lim|z|→
f *(z)

(
 – |z|)α = .

The Schwarz-Pick lemma implies B*
α = B(D) for all α ≥  with ‖f ‖B*

α
≤ , and therefore,

the hyperbolic α-Bloch classes are of interest only when  < α < .
It is obvious that B*

α is not a linear space since the sum of two functions in B(D) does
not necessarily belong to B(D).

Now, let  < p < ∞, we define the hyperbolic derivative by f *p (z) =
p


|f (z)|
p
 –|f ′(z)|

–|f (z)|p of f ∈
B(D). When p = , we obtain the usual hyperbolic derivative as defined above.
A function f ∈ B(D) is said to belong to the generalized hyperbolic (p,α)-Bloch class

B*
p,α if

‖f ‖B*
p,α

= sup
z∈D

f *p (z)
(
 – |z|)α < ∞.

The little generalized (p,α)-hyperbolic Bloch-type class B*
p,α, consists of all f ∈ B*

p,α such
that

lim|z|→
f *p (z)

(
 – |z|)α = .

Let the Green’s function of D be defined as g(z,a) = log 
|ϕa(z)| , where ϕa(z) = a–z

–āz is the
Möbius transformation related to the point a ∈ D. For  < p, s < ∞, the hyperbolic class
Q*(p, s) consists of those functions f ∈ B(D) for which

‖f ‖pQ*(p,s) = sup
a∈D

∫
D

(
f *p (z)

)gs(z,a)dA(z) < ∞.

Moreover, we say that f ∈ Q*(p, s) belongs to the class Q*(p, s, ) if

lim|a|→

∫
D

(
f *p (z)

)gs(z,a)dA(z) = .

When p = , we obtain the usual hyperbolic Q class as studied in [, , ].

http://www.journalofinequalitiesandapplications.com/content/2012/1/185
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Remark . The Schwarz-Pick lemma implies that B*
p,α = B(D) for all α ≥  with

‖f ‖B*
p,α

≤  and therefore, the generalized hyperbolic (p,α)-classes are of interest only
when  < α < . Also Q*(p, s) = B(D) for all s > , and hence, the generalized hyperbolic
Q(p, s)-classes will be considered when  ≤ s ≤ .

For any holomorphic self-mapping φ of D, the symbol φ induces a linear composition
operator Cφ(f ) = f ◦ φ fromH(D) or B(D) into itself. The study of a composition operator
Cφ acting on the spaces of analytic functions has engaged many analysts for many years
(see, e.g., [–, , , ] and others).
Yamashita was probably the first to consider systematically hyperbolic function classes.

He introduced and studied hyperbolic Hardy, BMOA and Dirichlet classes in [–] and
others. More recently, Smith studied inner functions in the hyperbolic little Bloch-class
[], and the hyperbolic counterparts of the Qp spaces were studied by Li in [] and Li
et al. in []. Further, hyperbolic Qp classes and composition operators were studied by
Pérez-González et al. in [].
In this paper, we will study the generalized hyperbolic (p,α)-Bloch classes B*

p,α and the
hyperbolic Q*(p, s) type classes. We will also give some results to characterize Lipschitz
continuous and compact composition operatorsmapping from the generalized hyperbolic
(p,α)-Bloch class B*

p,α to Q*(p, s) classes by conditions depending on the symbol φ only.
Thus, the results are generalizations of the recent results of Pérez-González, Rättyä and
Taskinen [].
Recall that a linear operator T : X → Y is said to be bounded if there exists a constant

C >  such that ‖T(f )‖Y ≤ C‖f ‖X for all maps f ∈ X. By elementary functional analysis, a
linear operator between normed spaces is bounded if and only if it is continuous, and the
boundedness is trivially also equivalent to the Lipschitz-continuity. Moreover, T : X → Y
is said to be compact if it takes bounded sets in X to sets in Y which have compact closure.
For Banach spaces X and Y contained in B(D) orH(D), T : X → Y is compact if and only
if for each bounded sequence (xn) ∈ X, the sequence (Txn) ∈ Y contains a subsequence
converging to a function f ∈ Y .
Throughout this paper, C stands for absolute constants which may indicate different

constants from one occurrence to the next.
The following lemma follows by standard arguments similar to those outlined in [].

Hence we omit the proof.

Lemma . Assume φ is a holomorphic mapping from D into itself. Let  < p, s < ∞, and
 < α < ∞. Then Cφ : B*

p,α → Q*(p, s) is compact if and only if for any bounded sequence
(fn)n∈N ∈ B*

p,α which converges to zero uniformly on compact subsets of D as n → ∞, we
have limn→∞ ‖Cφ fn‖Q*(p,s) = .

Using the standard arguments similar to those outlined in Lemma  of [], we have the
following lemma:

Lemma . Let  < α < ∞, then there exist two functions f , g ∈ B*
p,α such that for some

constant C,

(∣∣f *p (z)∣∣ + ∣∣g*p(z)∣∣)( – |z|)α ≥ C > , for each z ∈D.

http://www.journalofinequalitiesandapplications.com/content/2012/1/185
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2 Natural metrics inB*
p,α and Q*(p, s) classes

In this section we introduce natural metrics on generalized hyperbolic α-Bloch classes
B*
p,α and the classes Q*(p, s).
Let  < p, s < ∞, and  < α < . First, we can find a natural metric in B*

p,α (see []) by
defining

d
(
f , g;B*

p,α
)
:= dB*

p,α
(f , g) + ‖f – g‖Bp,α +

∣∣f () – g()
∣∣ p , ()

where

dB*
p,α
(f , g) := sup

z∈D

∣∣∣∣ f
′(z)|f (z)| p –
 – |f (z)|p –

g ′(z)|g(z)| p –
 – |g(z)|p

∣∣∣∣( – |z|)α .

For f , g ∈Q*(p, s), define their distance by

d
(
f , g;Q*(p, s)

)
:= dQ* (f , g) + ‖f – g‖Q(p,s) +

∣∣f () – g()
∣∣ p ,

where

dQ* (f , g) :=
(
p

sup
z∈D

∫
D

∣∣∣∣ f
′(z)|f (z)| p –
 – |f (z)|p –

g ′(z)|g(z)| p –
 – |g(z)|p

∣∣∣∣


gs(z,a)dA(z)
) 


.

Now, we give a characterization of the complete metric space d(·, ·;B*
p,α).

Proposition . The class B*
p,α equipped with the metric d(·, ·;B*

p,α) is a complete metric
space. Moreover, B*

p,α, is a closed (and therefore complete) subspace of B*
p,α .

Proof Clearly d(f , g;B*
p,α) ≥ , d(f , g,B*

p,α) = d(g, f ;B*
p,α). Also,

d
(
f ,h;B*

p,α
) ≤ d

(
f , g;B*

p,α
)
+ d

(
g,h;B*

p,α
)
.

Moreover, d(f , f ;B*
p,α) =  for all f , g,h ∈ B*

p,α .
It follows from the presence of the usual (p,α)-Bloch term that d(f , g;B*

p,α) =  implies
f = g . Hence, (B*

p,α ,d) is a metric space. Let (fn)∞n= be a Cauchy sequence in the metric
space (B*

p,α ,d), that is, for any ε > , there is an N =N(ε) ∈N such that

d
(
fn, fm;B*

p,α
)
< ε

for all n,m >N . Since (fn) ⊂ B(D), the family (fn) is uniformly bounded and hence normal
in D. Therefore, there exist f ∈ B(D) and a subsequence (fnj )∞j= such that fnj converges to
f uniformly on compact subsets, and by the Cauchy formula, the same also holds for the
derivatives. Let m >N . Then the uniform convergence yields

∣∣∣∣ f
′(z)|f (z)| p –
 – |f (z)|p –

f ′
m(z)|fm(z)|

p
 –

 – |fm(z)|p
∣∣∣∣( – |z|)α

= lim
n→∞

∣∣∣∣ f
′
n(z)|fn(z)|

p
 –

 – |fn(z)|p –
f ′
m(z)|fm(z)|

p
 –

 – |fm(z)|p
∣∣∣∣( – |z|)α ≤ lim

n→∞d
(
fn, fm;B*

p,α
) ≤ ε ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/185


El-Sayed Ahmed Journal of Inequalities and Applications 2012, 2012:185 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2012/1/185

for all z ∈D, and it follows that

‖f ‖B*
p,α

≤ ‖fm‖B*
p,α

+ ε.

Thus, f ∈ B*
p,α as desired.Moreover, () and the completeness of the usual (p,α)-Bloch im-

ply that (fn)∞n= converges to f with respect to themetric d. The second part of the assertion
follows by (). �

Next, we give a characterization of the complete metric space d(·, ·;Q*(p, s)).

Proposition . The class Q*(p, s) equipped with the metric d(·, ·;Q*(p, s)) is a complete
metric space. Moreover, Q*(p, s, ) is a closed (and therefore complete) subspace of Q*(p, s).

Proof For f , g,h ∈Q*(p, s), then clearly
• d(f , g;Q*(p, s))≥ ,
• d(f , f ;Q*(p, s)) = ,
• d(f , g;Q*(p, s)) =  implies f = g ,
• d(f , g;Q*(p, s)) = d(g, f ;Q*(p, s)),
• d(f ,h;Q*(p, s))≤ d(f , g;Q*(p, s)) + d(g,h;Q*(p, s)).

Hence, d is metric on Q*(p, s).
For the completeness proof, let (fn)∞n= be a Cauchy sequence in the metric space

(Q*(p, s),d), that is, for any ε >  there is an N = N(ε) ∈ N such that d(fn, fm;Q*(p, s)) < ε,
for all n,m >N . Since fn ∈ B(D) such that fn converges to f uniformly on compact subsets
of D. Let m >N and  < r < . Then Fatou’s lemma yields

∫
D(,r)

∣∣∣∣ |f (z)|
p
 –f ′(z)

 – |f (z)|p –
|fm(z)| p –f ′

m(z)
 – |fm(z)|p

∣∣∣∣


gs(z,a)dA(z)

=
∫
D(,r)

lim
n→∞

∣∣∣∣ |fn(z)|
p
 –f ′

n(z)
 – |fn(z)|p –

|fm(z)| p –f ′
m(z)

 – |fm(z)|p
∣∣∣∣


gs(z,a)dA(z)

≤ lim
n→∞

∫
D

∣∣∣∣ |fn(z)|
p
 –f ′

n(z)
 – |fn(z)|p –

|fm(z)| p –f ′
m(z)

 – |fm(z)|p
∣∣∣∣


gs(z,a)dA(z) ≤ ε,

and by letting r → –, it follows that

∫
D

(
f *p (z)

)gs(z,a)dA(z) ≤ ε + 
∫
D

∣∣∣∣ |fm(z)|
p
 –f ′

m(z)
 – |fm(z)|p

∣∣∣∣


gs(z,a)dA(z). ()

This yields

‖f ‖pQ*(p,s) ≤ ε + ‖fm‖Q*(p,s),

and thus f ∈ Q*(p, s). We also find that fn → f with respect to the metric of Q*(p, s). The
second part of the assertion follows by (). �

3 Lipschitz continuous and compactness of Cφ

Theorem . Let  < p < ∞,  ≤ s ≤ , and  < α ≤ . Assume that φ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:

http://www.journalofinequalitiesandapplications.com/content/2012/1/185
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(i) Cφ : B*
p,α →Q*(p, s) is bounded;

(ii) Cφ : B*
p,α →Q*(p, s) is Lipschitz continuous;

(iii) supa∈D
∫
D

|φ′(z)|
(–|φ(z)|p)α g

s(z,a)dA(z) < ∞.

Proof First, assume that (i) holds, then there exists a constant C such that

‖Cφ f ‖Q*(p,s) ≤ C‖f ‖B*
p,α
, for all f ∈ B*

p,α .

For given f ∈ B*
p,α , the function ft(z) = f (tz), where  < t < , belongs to B*

p,α with the prop-
erty ‖ft‖B*

p,α
≤ ‖f ‖B*

p,α
. Let f , g be the functions from Lemma . such that


( – |z|)α ≤ ∣∣f *p (z)∣∣ + ∣∣g*p(z)∣∣,

for all z ∈D, so that

|φ′(z)|
( – |φ(z)|)α ≤ (f ◦ φ)*(z) + (g ◦ φ)*(z).

Thus,

∫
D

|tφ′(z)|
( – |tφ(z)|)α g

s(z,a)dA(z)

≤ C
∫
D

((
(f ◦ tφ)*p(z)

) + (
(g ◦ tφ)*p(z)

))gs(z,a)dA(z)
≤ C‖Cφ‖(‖f ‖B*

p,α
+ ‖g‖B*

p,α

)
.

This estimate together with the Fatou’s lemma implies (iii).
Conversely, assuming that (iii) holds and that f ∈ B*

p,α , we see that

sup
a∈D

∫
D

(
(f ◦ φ)*p(z)

)gs(z,a)dA(z)

= sup
a∈D

∫
D

(
f *p

(
φ(z)

))∣∣φ′(z)
∣∣gs(z,a)dA(z)

≤ ‖f ‖B*
p,α

sup
a∈D

∫
D

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z).

Hence, it follows that (i) holds.
(ii) ⇐⇒ (iii). Assume first that Cφ : B*

p,α →Q*(p, s) is Lipschitz continuous, that is, there
exists a positive constant C such that

d
(
f ◦ φ, g ◦ φ;Q*(p, s)

) ≤ Cd
(
f , g;B*

p,α
)
, for all f , g ∈ B*

p,α .

Taking g = , this implies

‖f ◦ φ‖Q*(p,s) ≤ C
(‖f ‖B*

p,α
+ ‖f ‖Bp,α +

∣∣f ()∣∣ p ), for all f ∈ B*
p,α . ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/185
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The assertion (iii) for α =  follows by choosing f (z) = z in (). If  < α < , then


p
∣∣f (z)∣∣ p =

∣∣∣∣
∫ z



∣∣f (t)∣∣ p f ′(t)dt +
(
f ()

) p


∣∣∣∣
≤ ‖f ‖Bp,α

∫ |z|



dx
( – x)α

+
∣∣f ()∣∣ p

≤ ‖f ‖Bα

( – α)
+

∣∣f ()∣∣ p ,

this yields


p
∣∣f (φ()) – g

(
φ()

)∣∣ p ≤ ‖f – g‖Bp,α

( – α)
+

∣∣f () – g()
∣∣ p .

Moreover, Lemma . implies the existence of f , g ∈ B*
p,α such that

∣∣f *p (z) + g*p(z)
∣∣( – |z|)α ≥ C > , for all z ∈D. ()

Combining () and (), we obtain

‖f ‖B*
p,α

+ ‖g‖B*
p,α

+ ‖f ‖Bp,α + ‖g‖Bp,α +
∣∣f ()∣∣ p + ∣∣g()∣∣ p

≥ C
∫
D

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z)

for which the assertion (iii) follows.
Assume now that (iii) is satisfied, we have

d
(
f ◦ φ, g ◦ φ;Q*(p, s)

)
= dQ*

(p,s)
(f ◦ φ, g ◦ φ) + ‖f ◦ φ – g ◦ φ‖Q(p,s)

+
∣∣f (φ()) – g

(
φ()

)∣∣ p

≤ dB*
p,α
(f , g)

(
sup
a∈D

∫
D

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z)
) 



+ ‖f – g‖Bp,α

(
sup
a∈D

∫
D

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z)
) 



+
‖f – g‖Bp,α

( – α)
+

∣∣f () – g()
∣∣ p

≤ Cd
(
f , g;B*

p,α
)
.

Thus Cφ : B*
p,α → Q*(p, s) is Lipschitz continuous and the proof is completed. �

Remark . We know that a composition operator Cφ : B*
p,α → Q*(p, s) is said to be

bounded if there is a positive constant C such that ‖Cφ f ‖Q*(p,s) ≤ C‖f ‖B*
p,α

for all f ∈ B*
p,α .

Theorem . shows that Cφ : B*
p,α → Q*(p, s) is bounded if and only if it is Lipschitz-

continuous, that is, if there exists a positive constant C such that

d
(
f ◦ φ, g ◦ φ;Q*(p, s)

) ≤ Cd
(
f , g;B*

p,α
)
, for all f , g ∈ B*

p,α .

http://www.journalofinequalitiesandapplications.com/content/2012/1/185
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By elementary functional analysis, a linear operator between normed spaces is bounded
if and only if it is continuous, and the boundedness is trivially also equivalent to the
Lipschitz-continuity. So, our result for composition operators in hyperbolic spaces is the
correct and natural generalization of the linear operator theory.

Recall that a composition operator Cφ : B*
p,α → Q*(p, s) is compact if it maps any ball in

B*
p,α onto a precompact set in Q*(p, s).
The following observation is sometimes useful.

Proposition . Let  < p < ∞,  ≤ s ≤  and  < α ≤ . Assume that φ is a holomorphic
mapping from D into itself. If Cφ : B*

p,α → Q*(p, s) is compact, it maps closed balls onto
compact sets.

Proof If B ⊂ B*
p,α is a closed ball and g ∈ Q*(p, s) belongs to the closure of Cφ(B), we can

find a sequence (fn)∞n= ⊂ B such that fn ◦φ converges to g ∈Q*(p, s) as n→ ∞. But (fn)∞n= is
a normal family, hence it has a subsequence (fnj )∞j= converging uniformly on the compact
subsets of D to an analytic function f . As in earlier arguments of Proposition . in [],
we get a positive estimate which shows that f must belong to the closed ball B. On the
other hand, also the sequence (fnj ◦ φ)∞j= converges uniformly on compact subsets to an
analytic function, which is g ∈Q*(p, s). We get g = f ◦φ, i.e., g belongs to Cφ(B). Thus, this
set is closed and also compact. �

Compactness of composition operators can be characterized in full analogy with the
linear case.

Theorem . Let  < p < ∞,  ≤ s ≤ , and  < α ≤ . Assume that φ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:

(i) Cφ : B*
p,α →Q*(p, s) is compact.

(ii)

lim
r→–

sup
a∈D

∫
|φ|≥rj

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z) = .

Proof We first assume that (ii) holds. Let B := B̄(g, δ)⊂ B*
p,α , where g ∈ B*

p,α and δ > , be a
closed ball, and let (fn)∞n= ⊂ B be any sequence. We show that its image has a convergent
subsequence in Q*(p, s), which proves the compactness of Cφ by definition.
Again, (fn)∞n= ⊂ B(D) is a normal family, hence there is a subsequence (fnj )∞j= which con-

verges uniformly on the compact subsets of D to an analytic function f . By the Cauchy
formula for the derivative of an analytic function, also the sequence (f ′

nj )
∞
j= converges uni-

formly to f ′. It follows that also the sequences (fnj ◦φ)∞j= and (f ′
nj ◦φ)∞j= converge uniformly

on the compact subsets of D to f ◦ φ and f ′ ◦ φ, respectively. Moreover, f ∈ B ⊂ B*
p,α since

for any fixed R,  < R < , the uniform convergence yields

sup
|z|≤R

∣∣∣∣ f
′(z)|f (z)| p –
 – |f (z)|p –

g ′(z)|g(z)| p –
 – |g(z)|p

∣∣∣∣( – |z|)α

+ sup
|z|≤R

∣∣f (z) – g(z)
∣∣ p –∣∣f ′(z) – g ′(z)

∣∣( – |z|)α +
∣∣f () – g()

∣∣ p –
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= lim
j→∞ sup

|z|≤R

∣∣∣∣
f ′
nj (z)|fnj (z)|

p
 –

 – |fnj (z)|p
–
g ′(z)|g(z)| p –
 – |g(z)|p

∣∣∣∣( – |z|)α

+ sup
|z|≤R

∣∣fnj (z) – g(z)
∣∣ p –∣∣f ′

nj (z) – g ′(z)
∣∣( – |z|)α +

∣∣f () – g()
∣∣ p – ≤ δ.

Hence, d(f , g;B*
p,α) ≤ δ.

Let ε > . Since (ii) is satisfied, we may fix r,  < r < , such that

sup
a∈D

∫
|φ(z)|≥r

|φ(z)|p–|φ′(z)|
( – |φ(z)|p)α gs(z,a)dA(z) ≤ ε.

By the uniform convergence, we may fix N ∈N such that

∣∣fnj ◦ φ() – f ◦ φ()
∣∣ ≤ ε, for all j ≥ N. ()

The condition (ii) is known to imply the compactness of Cφ : Bp,α →Q(p, s), hence pos-
sibly to passing once more to a subsequence and adjusting the notations, we may assume
that

‖fnj ◦ φ – f ◦ φ‖Q(p,s) ≤ ε, for all j ≥ N, for some N ∈ N. ()

Now let

I(a, r) = sup
a∈D

∫
|φ(z)|≥r

[
(fnj ◦ φ)*p(z) – (f ◦ φ)*p(z)

]gs(z,a)dA(z),

and

I(a, r) = sup
a∈D

∫
|φ(z)|≤r

[
(fnj ◦ φ)*p(z) – (f ◦ φ)*p(z)

]gs(z,a)dA(z).

Since (fnj )∞j= ⊂ B and f ∈ B, it follows that

I(a, r) = sup
a∈D

∫
|φ(z)|≥r

[
(fnj ◦ φ)*p(z) – (f ◦ φ)*p(z)

]gs(z,a)dA(z)

≤ p

sup
a∈D

∫
|φ(z)|≥r

L(fnj , f ,φ)gs(z,a)dA(z)

≤ dB*
α
(fnj , f ) sup

a∈D

∫
|φ(z)|≥r

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z),

where

L(fnj , f ,φ) =
∣∣∣∣ |(fnj ◦ φ)(z)| p –(fnj ◦ φ)′(z)

 – |(fnj ◦ φ)(z)|p –
|(f ◦ φ)(z)| p –(f ◦ φ)′(z)

 – |(f ◦ φ)(z)|p
∣∣∣∣


.

Hence,

I(a, r)≤ Cε. ()
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On the other hand, by the uniform convergence on compact subsets of D, we can find an
N ∈N such that for all j ≥ N,

L(fnj , f ,φ) =
∣∣∣∣
|(fnj ◦ φ)(z)| p –f ′

nj (φ(z))

 – |fnj (φ(z))|p
–

|(f ◦ φ)(z)| p –f ′(φ(z))
 – |f (φ(z))|p

∣∣∣∣ ≤ ε

for all z ∈D with |φ(z)| ≤ r. Hence, for such j, we obtain

I(a, r) = sup
a∈D

∫
|φ(z)|≤r

(
(fnj ◦ φ)*p(z) – (f ◦ φ)*p(z)

)gs(z,a)dA(z)

≤ sup
a∈D

∫
|φ(z)|≤r

L(fnj , f ,φ)
∣∣φ′(z)

∣∣gs(z,a)dA(z)

≤ ε

(
sup
a∈D

∫
|φ(z)|≤r

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z)
) 

 ≤ Cε,

hence,

I(a, r)≤ Cε, ()

where C is the bound obtained from (iii) of Theorem .. Combining (), (), () and (),
we deduce that fnj → f in Q*(p, s).
As for the converse direction, let fn(z) := 

n
α–zn for all n ∈N, n≥ .

‖f ‖B*
p,α

=
p

sup
a∈D

n
αp
 |z| αp

 –( – |z|)α
 – –pnp(α–)|z|np

≤ (
p– + 

)
sup
a∈D

n
αp
 |z| αp

 –( – |z|)α . ()

The function r
np
 –( – r)α attains its maximum at the point r =  – α

α+ αp
 – . For simplicity,

we see that () has the upper bound

(
p– + 

)
nα

(
 –

α

α + n – 

)n–(
α

α + n – 

)α

≤ (
p– + 

)
.

Then the sequence (fn)∞n= belongs to the ball B̄(, (p– + ))⊂ B*
p,α .

Suppose that Cφ maps the closed ball B̄(, (p– + )) ⊂ B*
p,α into a compact subset of

Q*(p, s); hence, there exists an unbounded increasing subsequence (nj)∞j= such that the
image subsequence (Cφ fnj )∞j= converges with respect to the norm. Since both (fn)∞n= and
(Cφ fnj )∞j= converge to the zero function uniformly on compact subsets of D, the limit of
the latter sequence must be zero. Hence,

∥∥nα–
j φnj

∥∥
Q*(p,s) → , as j → ∞. ()

Now let rj =  – 
nj
. For all numbers a, rj ≤ a < , we have the estimate

nα
j a

nj–

 – anj
≥ 

e( – a)α
(
see []

)
. ()
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Using (), we deduce

∥∥nα–
j φnj

∥∥
Q*(p,s) ≥ p


sup
a∈D

∫
|φ|≥rj

∣∣∣∣
nα
j (φ(z))

nj–|φnj (z)| p –φ′(z)
 – |φnj (z)|p

∣∣∣∣


gs(z,a)dA(z)

≥ Cp
e

sup
a∈D

∫
|φ|≥rj

|φ′(z)|
( – |φ(z)|p)α g

s(z,a)dA(z). ()

From () and (), the condition (ii) follows. This completes the proof. �

For  < p < ∞ and  ≤ s < ∞, we define the weighted Dirichlet-class D(p, s) consists of
those functions f ∈H(D) for which

∫
D

∣∣f (z)∣∣p–∣∣f ′(z)
∣∣( – |z|)s dA(z) < ∞.

For  < p < ∞ and  ≤ s < ∞, the generalized hyperbolic weighted Dirichlet-class
D*(p, s) consists of those functions f ∈ B(D) for which

∫
D

(
f *p (z)

)( – |z|)s dA(z) < ∞.

The proof of Proposition . implies the following corollary:

Corollary . For f , g ∈ D*(p, s). Then, D*(p, s) is a complete metric space with respect to
the metric defined by

d
(
f , g;D*(p, s)

)
:= dD*(p,s)(f , g) + ‖f – g‖D(p,s) +

∣∣f () – g()
∣∣ p ,

where

dD*(p,s)(f , g) :=
(
p

sup
z∈D

∫
D

∣∣∣∣ f
′(z)|f (z)| p –
 – |f (z)|p –

g ′(z)|g(z)| p –
 – |g(z)|p

∣∣∣∣
(
 – |z|)s dA(z)

) 

.

Moreover, the proofs of Theorems . and . yield the following result:

Theorem . Let  < p < ∞, – < s ≤ , and  < α ≤ . Assume that φ is a holomorphic
mapping from D into itself. Then the following statements are equivalent:

(i) Cφ : B*
p,α →D*(p, s) is Lipschitz continuous;

(ii) Cφ : B*
p,α →D*(p, s) is compact;

(iii)

∫
D

|φ′(z)|
( – |φ(z)|p)α

(
 – |z|)s dA(z) <∞.
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