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Abstract

Neural networks have been widely used to provide retrievals of geophysical parameters from spectral radiance
measurements made remotely by air-, ground-, and space-based sensors. The advantages of retrievals based on
neural networks include speed of execution, simplicity of the trained algorithm, and ease of error analysis, and the
proliferation of high quality training data sets derived from models and/or operational measurements has further
facilitated their use. In this article, we provide examples of geophysical retrieval algorithms based on neural
networks with a focus on Jacobian analysis. We examine a hypothetical 80-channel hyperspectral microwave
atmospheric sounder (HyMAS) and construct examples comparing neural network water vapor retrieval
performance with simple regressions. Jacobians (derivatives of the outputs with respect to the network weights
and with respect to the inputs) are also presented and discussed. Finally, a discussion of the Jacobian operating
points is provided.

1. Introduction
Three-dimensional (3D) measurements of the Earth’s
surface and atmospheric thermodynamic state (tempera-
ture, moisture, pressure, precipitation, and so forth)
have been made indirectly from satellite measurements
for many years [1,2]. These measurements are inferred
from direct observations of upwelling thermal emission
and scattered radiance in microwave and infrared spec-
tral regions, typically near the peaks and troughs of
atmospheric absorption lines due largely to molecular
oxygen, water vapor, and carbon dioxide. Physical con-
siderations involving the use of these spectral regions
include the relatively high cloud-penetrating capability
at microwave wavelengths and the relatively sharp
weighting functions at infrared wavelengths, particularly
in the shortwave region near four micron where Planck
nonlinearity further increases temperature sensitivity.
A 3D characterization of the atmosphere comprises a
2D array of vertical profile measurements, sometimes
referred to as “soundings”, and the sensors that acquire
such measurements are referred to as “sounders”.
Modern spaceborne atmospheric sounders consist of

passive spectrometers that measure spectral radiance
intensity in a number of frequency bands. The vertical

resolution of a single sounding is a function of the num-
ber of frequency bands that are simultaneously used-
bands near the peak of an absorption line measure
atmospheric features near the top of the atmosphere, as
lower levels are obscured due to high atmospheric
absorption, and bands near the troughs of absorption
lines are sensitive to the lower layers of the atmosphere
and the surface. The Atmospheric InfraRed Sounder
(AIRS) launched on the NASA Aqua satellite in 2002
was the first spaceborne infrared “hyperspectral” soun-
der, simultaneously measuring spectral radiance inten-
sity in 2378 channels in the thermal infrared wavelength
region from approximately 3.7 to 15.4 micron using a
grating spectrometer [3], and the Infrared Atmospheric
Sounding Interferometer (IASI), launched in 2006, mea-
sures 8461 channels from 3.6 to 15.5 micron using a
Fourier transform interferometric spectrometer [4].
Infrared hyperspectral observations provide vertical
resolution approaching 1 km in the lower troposphere
for nadir observations and have improved Numerical
Weather Prediction (NWP) forecast accuracy [5,6].
Infrared measurements, however, are significantly per-
turbed by the presence of clouds. Microwave measure-
ments, at lower vertical resolution but lower sensitivity
to clouds, are therefore used synergistically with infrared
measurements in “cloud-clearing” algorithms to provide
global, all-weather atmospheric sounding capability. The
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Advanced Microwave Sounding Unit (AMSU), first
launched in 1998, provides measurements in 20 noncon-
tiguous spectral bands spanning approximately 23 to
190 GHz. The spatial resolution of AIRS and AMSU
varies from approximately 15 km to 150 km, depending
on frequency and sensor scan angle. Additional
advanced sounders operating in microwave and infrared
spectral regions have recently been developed, and in
2011, the United States will launch the NPOESS pre-
paratory project (NPP) the first satellite in its next-
generation civilian operational satellite system in coop-
eration with the European meteorological satellite
(EUMETSAT) system, a collaborative venture now
termed the Joint Polar Satellite System (JPSS). The NPP
satellite will host five sensors, including the advanced
technology microwave sounder (ATMS) and the cross-
track infrared sounder (CrIS), together referred to as the
cross-track infrared and microwave sounding suite
(CrIMSS). A new generation of “hyperspectral micro-
wave” systems has recently been proposed [7], and we
examine the performance of these sensors in this paper.
The analyzes presented here build upon those presented
in [8] by considering Jacobian analysis in the context of
water vapor retrieval. Furthermore, the Jacobian operat-
ing point is also a focus of the present work.
For the following analyzes, we assume that a noisy

observation of a random radiance vector R̃ is related to
some atmospheric state vector S through a forward
model f(⋅) as follows

R̃ = f(S) + � = R + � (1)

where Ψ is a random noise vector (that may depend
on S), and R is the “noise-free” radiance observation.
The retrieval seeks to estimate the state vector S given
an observation of R̃, where we use Ŝ(R̃) to denote the
estimate of S given an observation ofR̃.

2. Neural network estimation of geophysical
parameters
Artificial neural networks, or neural nets, are computa-
tional structures inspired by biological networks of den-
sely connected neurons, each of which is capable only of
simple computations. Just as biological neural networks
are capable of learning from their environment, neural
nets are able to learn from the presentation of training
data, as the free parameters (weights and biases) are
adaptively tuned to fit the training data. Neural nets can
be used to learn and compute functions for which the
analytical relationships between inputs and outputs are
unknown and/or computationally complex and are
therefore useful for pattern recognition, classification,
and function approximation. Neural nets are particularly
appealing for the inversion of atmospheric remote

sensing data, where relationships are commonly non-
linear and non-Gaussian, and the physical processes
may not be well understood. Neural networks were per-
haps first applied in the atmospheric remote sensing
context by Escobar-Munoz et al. [9], and many other
investigators have recently reported on the use of neural
networks for inversion of microwave sounding observa-
tions for the retrieval of temperature and water vapor
[8,7][10-13] and hydrologic parameters [14-22], as well
as inversion of infrared sounding observations for retrie-
val of temperature and water vapor [23-27] and trace
gases [28]. Neural networks have also been used in the
geophysical context for nonlinear data representation
[29].
In this article, we focus on feedforward multilayer per-

ceptron (FFMLP) neural networks due to their simpli-
city, flexibility, and ease of use. Multilayer neural
networks most often consist of an input layer, one or
more nonlinear hidden layers, and a linear output layer.
The mathematical functions implemented by FFMLP
nets are continuous and differentiable, which greatly
simplifies training and error analysis. But perhaps the
most useful attribute of neural nets is their scalability; a
network with a sufficient number of weights and biases
is capable of approximating a bounded, continuous
function to an arbitrary level of precision over a finite
domain [30]. Therefore, neural networks can be used as
universal function approximators.

2.1. Feedforward neural networks
Feedforward neural networks propagate the inputs (the
input layer) through a set of computational nodes
arranged in layers to calculate the network outputs. The
output layer is the final layer of the neural network and
usually contains linear elements. The layers between the
input layer and the output layer are called hidden layers
and usually contain nonlinear elements. This network
topology is depicted graphically in Figure 1.
The various types of feedforward neural networks dif-

fer primarily in the nonlinear functions (the so-called
activation functions) that are used in the hidden layer
nodes and the training algorithms that are used to opti-
mize the free parameters of the network. In general, the
connections shown in Figure 1 need not be fully popu-
lated: some optimization strategies start with a large
number of hidden nodes and “prune” the network by
eliminating connections, and possibly nodes, as training
progresses.
The neuron is the basic structural element of feedfor-

ward multilayer perceptron networks. The inputs to a
neuron are weighted, summed over the n inputs, trans-
lated, and passed through an activation function. The
neuron is shown graphically in Figure 1, and the transfer
function can be written as follows:
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y = f

(
n∑
i=1

wixi + b

)
(2)

where xi is the ith input, wi is the weight associated
with the ith input, b is the bias, f(⋅) is the activation
function of the neuron, and y is the output. The activa-
tion functions are generally chosen to be strictly increas-
ing, smooth (continuous first derivative), and
asymptotic. Neurons with sigmoidal (soft limit) activa-
tion functions are commonly used in the hidden layer
(s), and the identity function is used in the output layer.
The logistic function

f (x) =
1

1 + e−x
(3)

with first derivative f’(x) = f(x) - f2(x) can be used as a
sigmoidal activation function. However, a multilayer
perceptron trained with the backpropagation algorithm
may, in general, learn faster when the activation func-
tion is antisymmetric, that is, f(-x) = -f(x) [31]. The
logistic function is not antisymmetric, but can be made
antisymmetric by a simple scaling and shifting, resulting
in the hyperbolic tangent function

f (x) = tanh x =
ex − e−x

ex + e−x
(4)

with first derivative f’(x) = 1 - f2(x). The simple form
of sigmoidal function and its derivative allows fast and
accurate calculation of the gradients needed to optimize

selection of the weights and biases and carry out sec-
ond-order error analysis.

2.2. Feedforward multilayer perceptron neural networks
Neurons can be combined to form a multilayer network.
In this type of network, individual neurons are arranged
in layers, and the neurons in each layer all use the same
transfer function. The inputs to the network are fed to
every node of the first layer, and the outputs of each
layer (except the output layer) are fed to every node of
the next layer.
An example of a two-layer network (that is, one hid-

den layer and one output layer) is shown in Figure 1. In
Figure 1, xi is the ith input, n is the number of inputs,
wij is the weight associated with the connection from
the ith input to the jth node in the hidden layer, bi is
the bias of the ith node, m is the number of nodes in
the hidden layer, f(⋅) is the transfer function of the neu-
rons in the hidden layer, υi is the weight between the
ith node and the output node, c is the bias of the output
node, g(⋅) is the transfer function of the output node,
and y is the output. We can then relate the network
output to the inputs as follows:

y = g

⎛
⎝ m∑

j=1

vjf

(
n∑
i=1

wijxi + bj

)
+ c

⎞
⎠ (5)

The weights (wji) and biases (bj) for the jth neuron are
chosen to minimize a cost function over a set of P
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Figure 1 Neural network structure. (a) Interconnection of the multilayer feed-forward neural network, specifically, the multilayer perceptron,
and (b) the neuron or node.
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training patterns. A common choice for the cost func-
tion is the sum-squared error, defined as

E(w) =
1
2

∑
p

∑
k

(
t(p)k − y(p)k

)2
, (6)

where y(p)k
and t(p)k

denote the network outputs and tar-

get responses, respectively, of each output node k given
a pattern p, and w is a vector containing all the weights
and biases of the network. The “training” process
involves iteratively finding the weights and biases that
minimize the cost function through some numerical
optimization procedure. Second-order methods are
commonly used, where the local approximation of the
cost function by a quadratic form is given by

E(w + dw) ≈ E(w) + ∇E(w)Tdw

+
1
2
dwT∇2E(w)dw,

(7)

where ∇E(w) and ∇2E(w) are the gradient vector and
the Hessian matrix of the cost function, respectively.
Setting the derivative of (7) to zero and solving for the
weight update vector dw yields

dw = −[∇2E(w)
]−1∇E(w). (8)

Direct application of (8) is difficult in practice, because
computation of the Hessian matrix (and its inverse) is
nontrivial, and usually needs to be repeated at each
iteration. For sum-squared error cost functions, it can
be shown that

∇E(w) = JTe (9)

∇2E(w) = JTJ + S, (10)

where J is the Jacobian matrix that contains first
derivatives of the network errors with respect to the
weights and biases, e is a vector of network errors, and

S =
∑P

p=1 ep∇2ep[31]. The Jacobian matrix can be com-

puted using a standard backpropagation technique [32]
that is significantly more computationally efficient than
direct calculation of the Hessian matrix [33]. However,
an inversion of a square matrix with dimensions equal
to the total number of weights and biases in the net-
work is required. For the Gauss-Newton method, it is
assumed that S is zero (a reasonable assumption only
near the solution), and the update Equation (8)
becomes

dw = −[JTJ]−1Je. (11)

The Levenberg-Marquardt modification [34] to the
Gauss-Newton method is

dw = −[JTJ + μI]−1Je. (12)

As μ varies between zero and ∞, dw varies continu-
ously between the Gauss-Newton step and steepest des-
cent. The Levenberg-Marquardt method is thus an
example of a model trust region approach in which the
model (in this case the linearized approximation of the
error function) is trusted only within some region
around the current search point [35]. The size of this
region is governed by the value μ.

3. Neural network retrieval examples
Consider a simulated hyperspectral microwave atmo-
spheric (HyMAS) sounding system operating near the
opaque 118.75 GHz oxygen line and the 183.31GHz
water vapor line [7]. The system consists of 64 tempera-
ture channels, each of approximately 500 MHz band-
width equally spaced over a 5 GHz intermediate
frequency bandwidth and 16 water vapor channels, each
of approximately 1 GHz bandwidth over a 10 GHz
intermediate frequency bandwith. Channel 1 is the most
transparent temperature channel (farthest from the cen-
ter of the oxygen line), and channel 64 is the most opa-
que temperature channel (closest to the center of the
oxygen line). Channel 65 is the most transparent water
vapor channel and channel 80 the most opaque water
vapor channel. The temperature weighting functions for
this 64-channel microwave sounder are shown in Figure
2. Vertical coverage of the atmosphere is most dense in
the lower atmosphere where variability is the largest and
becomes sparser with increasing altitude.
The channel sensitivities (ΔTrms) are each approxi-

mately 0.2 K. The measurements are simulated using a
radiative transfer algorithm [36] and an ocean surface
model [37].

3.1. Atmospheric state model
The NOAA88b global profile ensemble [38] was used to
produce the training, validation, and testing sets, with
an 80-10-10 split of the data. The NOAA88b data set
contains 7,547 radiosonde/rocketsonde profiles, globally
distributed seasonally and geographically. Atmospheric
temperature, moisture, and ozone are given at 100 dis-
crete levels from the surface to altitudes exceeding 50
km. Skin surface temperature is also recorded.
NOAA88b water vapor measurements above approxi-
mately 12 km are of questionable quality and are not
considered in this paper.

3.2. Radiative transfer model
Simulated brightness temperature observations for
atmospheric profiles in the NOAA88b data set were cal-
culated using the TBARRAY software package of
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Rosenkranz [39]. TBARRAY is a line-by-line routine
based on the Liebe millimeter-wave propagation model
(MPM) [40,41]. Scattering was not modeled because
cloud liquid water content was not recorded in the
NOAA88b data set. All radiative transfer calculations
for the temperature and water vapor retrieval simula-
tions were performed at a single angle at nadir
incidence.

3.3. Ocean surface emissivity model: FASTEM and
FASTEM2
English and Hewison developed the FASTEM model
[37], which parameterizes an “effective” ocean surface
emissivity for frequencies between 10 and 220 GHz for
earth incidence angles less than 60° and for oceanic sur-
face wind speeds less than 20 m/sec. FASTEM2, an
updated version of FASTEM, uses an approach similar
to that of Petty and Katsaros [42] to compute the sur-
face emissivity. FASTEM and FASTEM2 both incorpo-
rate geometric optics, Bragg scattering, and foam effects.
FASTEM2 (with the optical depth option set to zero)
was used for the simulations of the cases presented in
this paper. The oceanic surface wind speed is not
recorded in the NOAA88b data set, and the FASTEM2
wind speed input for these cases was therefore rando-
mized using a uniform distribution between 0.5 and
10 m/sec.

3.4. Land surface emissivity model
Land surface emissivity values were assigned randomly
using a uniform distribution between 0.8-1.0. The same
emissivity value was used for all frequencies. Recent
study has shown that this simple model is fairly repre-
sentative of most naturally occurring land emissivities

[43], although improvements are planned in future
study.
First, a linear regression water vapor (mixing ratio)

profile retrieval operator was derived. The linear regres-
sion RMS error on the testing set is shown in Figure 3.
A neural network with a single hidden layer of 50 nodes
was initialized using the Nguyen-Widrow procedure and
trained with the Levenberg-Marquardt learning algo-
rithm. Random noise was added to the training set at
each iteration, and early stopping (after approximately
50 epochs) was used to prevent overfitting by terminat-
ing the learning algorithm if the validation error failed
to decrease for any of five successive epochs. The water
vapor profile was estimated at 50 levels from the surface
to approximately 12 km. The neural networks were each
trained three times, and the validation data set was used
to select the network with the best performance.
Neural network retrieval performance is shown in

Figure 3. The 80-50-50 network (6,600 weights) trained
at a rate of 280 seconds per epoch on a desktop Intel
Xeon PC operating at a clock speed of 3 GHz. The
retrieval performance of the neural network is superior
to that of linear regression throughout the atmosphere.
Note that the bias of the retrieval error in this example
is small relative to the error variance, as the mean of
the training set is very close to the mean of the valida-
tion and test sets.

4. Neural network Jacobians
We now further evaluate performance by examining the
neural network Jacobian, that is, the sensitivity of the
output values to changes in either the input values or
the network weights. Jacobian analysis can be used to
assess neural network performance in a variety of ways
[23][44]. For example, the effect of sensor noise (or
other interfering signals) on retrieval accuracy can be
easily evaluated. Jacobians provide information on the
relevance of network inputs and can therefore be used
(usually in concert with other techniques) to select only
the most significant inputs. Finally, Jacobians facilitate
system optimization, where various parameters of the
observing system can be optimized jointly.
A complete performance characterization of a given

atmospheric retrieval algorithm requires an analysis of
the retrieval errors. The retrieval error depends on sev-
eral components, including sensor noise, the vertical
resolution of the sensor, and many others. The assess-
ment of these components in isolation is difficult for
complex retrieval schemes, and finite-differencing meth-
ods are often used to approximate the effects of these
contributions over a limited set of atmospheric cases. A
significant advantage of atmospheric retrievals based on
neural networks is that Jacobians can be calculated ana-
lytically, and the calculations can be carried out using

Figure 2 Temperature weighting functions of a hypothetical
microwave sounding system with 64 channels near the 118.75
GHz oxygen line are shown.
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relatively simple methods, such as the backpropagation
algorithm. We now present basic methods for calculat-
ing neural network Jacobians and simple examples illus-
trating system characterization.
A retrieval averaging kernel can be defined as:

∂Ŝ
∂S

=
∂R
∂S

∂Ŝ
∂R

(13)

We now focus on the second term in (13), the retrie-
val Jacobian, which consists of the partial derivatives of
the outputs (estimates of the atmospheric state vector,
S) with respect to the inputs (the radiance vector, R).
Note that the first term in (13) can readily be calculated
with modern radiative transfer packages, see [45], for
example. We reconcile neural network and atmospheric
retrieval terminologies by equating the neural network
inputs to the observed radiances, X = R, and equating

the neural network outputs to the estimates of the
atmospheric states, Y = Ŝ. Returning to the equation
relating the inputs and outputs of a simple feedforward
multilayer perceptron with one hidden layer of m nodes
and a single output, yk:

yk = g

⎛
⎝ m∑

j=1

vjkf

(
n∑
i=1

wijxi + bj

)
+ ck

⎞
⎠ (14)

we can express the derivative dyk/dxi using the chain
rule, as follows:

dyk
dxi

= g′(ak)
m∑
j=1

vjkf ′(aj)wij (15)

where ak and aj are the weighted sum of the inputs to
the output and hidden layers, respectively. We assume
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Figure 3 RMS water vapor profile retrieval error for neural network and linear regression estimators. 64 temperature channels near
118.75 GHz were used, and 16 water vapor channels near 183.31 GHz were used. The network comprised a single hidden layer with 50 nodes.
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that all inputs other than xi are fixed. The derivative of
the hyperbolic tangent function is related to the func-
tion itself as

f ′ = 1 − f 2 (16)

If a linear output layer is used, g’(ak) = 1, and (15)
becomes

dyk
dxi

=
m∑
j=1

vjk(1 − f 2(aj))wij (17)

and we see that the Jacobian is easily calculated from
the network outputs and weights. This result for a net-
work with a single hidden layer is readily generalized to
networks with multiple hidden layers. Note that the
mapping function implemented by the neural network
could be highly nonlinear, and therefore care must be
taken to ensure that the Jacobian is evaluated near an
appropriate operating point. The network Jacobian is
generated as a simple “byproduct” of the forward propa-
gation of the inputs through the network. Because of
this, neural networks are well suited to complicated
function approximation problems, as the computation
required for error analysis is greatly reduced in compari-
son to other methods requiring numerical finite-differ-
ence techniques.

5. Neural network error analysis using the
Jacobian
We now present a typical case study to illustrate several
facets of retrieval system analysis using the Jacobian. We
return to the neural network example presented earlier,
which is based on a simulated spaceborne microwave
sounding system with 80 channels operating near the
118.75 GHz oxygen line and the 183.31GHz water vapor
line. The neural network is used to retrieve the water
vapor (mixing ratio) profile at 50 levels. The NOAA88b
global ensemble [38] of over 7,000 profiles was used to
produce the training, validation, and testing sets, with
an 80-10-10 split of the data. An FFMLP network with
a single hidden layer of 30 nodes was initialized using
the Nguyen-Widrow procedure and trained with the
Levenberg-Marquardt learning algorithm. Random noise
(s = 0.2 K) was added to the training set at each itera-
tion, and early stopping was used to prevent overfitting.
Both the simulated radiances and the temperature pro-
file elements were normalized to unit standard deviation
and zero mean to simplify the interpretation of the
resulting Jacobians.

5.1. The network weight Jacobian
The Jacobians (both with respect to the network weights
and inputs) can now be calculated using the trained

neural network as discussed in Section 4. First, we will
examine the “network weight Jacobian,” the derivative of
the outputs with respect to the weights. This derivative
is the primary component of network learning algo-
rithms based on gradient descent. Large values of the
Jacobian indicate that a given weight has high influence
on the output parameter (that is, the output is highly
sensitive to the value of that weight) and small values
indicate a small influence. The network weight Jacobian
for the microwave sounder example is shown in Figure
4. Only the 4,000 (80 inputs × 50 nodes) hidden layer
weights are shown in the figure. The weights have been
arranged in increasing order of the derivative at 10 km.
There are several interesting features evident in this fig-
ure. First, a band of approximately 1,000 weights (near
the vertical center in the figure) have very small influ-
ence on any output. This suggests that the neural net-
work could be simplified by removing the connections
corresponding to the least influential weights. Second,
outputs corresponding to altitudes in the mid-tropo-
sphere are highly influenced (both in the positive and
negative directions) by some of the weights. This could
indicate that the relationships between the radiometric
observations and the temperature at these altitudes are
substantially nonlinear.

5.2. The network input Jacobian
We now consider the “network input Jacobian,” the
derivative of the outputs with respect to the inputs. This
Jacobian reveals the inputs that most significantly influ-
ence the outputs. The influence of input perturbations
on the outputs can be calculated as follows [35]:

∇yk �
∑
i

dyk
dxi

∇xi (18)

This simple formalism allows many attributes of a
remote sensing system to be evaluated by propagating
the perturbations through to the outputs using the Jaco-
bian. Furthermore, second-order analysis is facilitated by
expressing the output covariance matrix as a function of
the input covariance (or the covariance of the input per-
turbation) and the Jacobian as follows:

C�Y ≈ ∂Y

∂X
C�Y

(
∂Y

∂X

)T

(19)

Second-order analysis of this type is a very powerful
tool both for diagnostic and optimization purposes.
The neural network input Jacobian for the 80-channel

microwave example is shown in Figure 5a for the mean
brightness temperature spectrum (the implications of
other operating points will be explored in the following
section). It is evident from the figure that higher
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channel numbers generally exhibit more influence on
outputs corresponding to higher altitudes, as is
expected, because the channels are ordered in increasing
opacity. Furthermore, outputs corresponding to higher
altitudes generally are more influenced by the inputs
than are the low-altitude outputs.
For comparison, the analogous Jacobian image for a

linear regression operator is shown in Figure 5b. There
are general features common to both images. However,
the smooth gradients in the linear regression Jacobian
image are immediately apparent, in contrast to the high-
frequency structure in the corresponding neural network
Jacobian image. This structure could be evidence of
nonlinear or non-Gaussian relationships between the
inputs and the outputs that the neural network is
exploiting.

6. Impact of Jacobian operating point
We conclude the article with a brief analysis of the sen-
sitivity of the Jacobian to the input operating point, that
is, the point at which the tangent line is calculated (aj in
(17)). The neural network in general synthesizes a

nonlinear function, and the Jacobian therefore may
depend significantly on the operating point. Note in
contrast that the linear regression by definition yields a
linear Jacobian for all inputs.
An example is presented in Figure 6. Here, the net-

work input Jacobian is calculated for three different
cases of the water vapor retrieval, a relatively dry case
with approximately 1 mm of integrated water vapor
(IWV) is shown in the top panel of the figure, the mean
of the training case with approximately 8 mm IWV is
shown in the middle panel of the figure, and a relatively
moist case with approximately 25 mm IWV is shown in
the bottom panel of the figure. It is clear the that the
Jacobian magnitude generally increases with increasing
water content (put another way, the nonlinear relation-
ship between brightness temperature and water vapor
content increases with water vapor content, a principal
reason that the neural network is substantially superior
to the linear regression retrieval). However, it is interest-
ing to note that some features are strikingly different in
the three images. For example, in the dry atmosphere
case in the mid-troposphere, the Jacobian has a negative

Figure 4 The derivative of the neural network output with respect to the network weights in the hidden layer. The network outputs
consist of the water vapor profile estimates from 0 to 10 km in 200 m steps.
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(a) Neural network (b) Linear regression

Figure 5 The derivative of the retrieval output with respect to the inputs for: (a) neural network and (b) linear regression. The outputs
consist of the water vapor profile estimates from 0 to 10 km in 200 m steps.

(a) Relative dry atmosphere (b) Mean atmosphere (identical to Figure 5(a))

(c) Relatively moist atmosphere

Figure 6 The derivative of the retrieval output with respect to the inputs for: (a) a relatively dry atmosphere (integrated water vapor, or
IWV, of approximately 1 mm, (b) the mean NOAA88b atmosphere (IWV of approximately 8 mm), and (c) a relatively moist atmosphere (IWV of
approximately 25 mm). The outputs consist of the water vapor profile estimates from 0 to 10 km in 200 m steps.
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slope for channels 75-79, but a positive slope neighbor-
ing channels (near 70-74). The moist atmospheric case
shows the opposite behavior, as a significant negative
slope is seen in channels 70-74.
The implications for this result is that it is important

to consider the input operating point when working
with Jacobians for highly nonlinear processes such as
the water vapor retrieval. Furthermore, examination of
the Jacobians can be used to help assess both the nonli-
nearity of the underlying retrieval problem and the
degree to which the nonlinearity changes with respect
to the inputs.

7. Summary
Neural network retrievals of atmospheric water vapor
were shown to substantially outperform linear regres-
sion retrievals for an 80-channel hyperspectral micro-
wave sounding system based on a global simulation
using the NOAA88b profile dataset. It was demon-
strated that neural network Jacobian analysis is a
powerful tool that can be used to assess a variety of
performance metrics. The network Jacobians are easily
calculated using analytical expressions related to net-
work outputs, and therefore very little additional com-
putation is required. The Jacobians can be used to
determine the sensitivity of the network outputs to
changes in both the network weights and the inputs.
This information can provide insight into network
topology optimization by identifying connections that
do not significantly influence the outputs. Jacobians are
also useful for perturbation analysis, where input per-
turbations due to sensor noise or other interfering sig-
nals can be easily propagated through the neural
network, and the resulting impact on the outputs can
be determined. Finally, it was shown that the Jacobians
may depend significantly on the input for problems
that are highly nonlinear, and care must be taken
therefore to choose a suitable operating point based on
the objectives of the analysis.
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