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Abstract Overall survival following hematopoietic cell trans-
plantation (HCT) has improved over the past two decades
through better patient selection and advances in HLA typing,
supportive care, and infection prophylaxis. Nonetheless, mor-
tality rates are still unsatisfactory and transplant-related mor-
tality remains a major cause of death after unrelated allogeneic
HCT. Since there are no known pre-HCT, non-HLA biologic
predictors of survival following transplant, for over a decade,
scientists have been investigating the role of non-HLA
germline genetic variation in survival and treatment-related
mortality after HCT. Variation in single nucleotide polymor-
phisms (SNPs) has the potential to impact chemotherapy, ra-
diation, and immune responses, leading to different post-HCT
survival outcomes. In this paper, we address the current
knowledge of the contribution of genetic variation to survival
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Introduction

The most successful curative therapy for many malignant he-
matologic diseases is hematopoietic cell transplantation
(HCT). However, the success of this treatment is limited by
transplant-related mortality (TRM). Better patient selection
and advances in HLA typing combined with supportive care
and infection prophylaxis have improved survival over the past
two decades [1, 2¢, 3]. Nonetheless, TRM remains a major
cause of death, with disease-related mortality (DRM) the other
largest contributor [4]. Although several clinical variables, in-
cluding disease status at transplant, stem cell source, graft
source, and CMYV status are associated with survival outcomes
[3], there are currently no established genetic predictors of
survival after transplantation outside of HLA matching. Varia-
tion in single nucleotide polymorphisms (SNPs) may lead to
differential gene transcription, translation, and protein struc-
ture. These changes have the potential to modify immune re-
sponses or side effects of chemotherapy and/or radiation, and
thus, survival outcomes in HCT patients [5, 6]. Various
candidate genes have been tested for association with survival
outcomes. Variants have been selected in genes relating to
immune response to infection and inflammatory reactions,
with the goal of understanding the biological basis of TRM
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and DRM and ultimately developing a better understanding of
individual risk conveyed by genomic loci outside HLA. In
studies of allogeneic HCT outcomes, the individual and joint
effects of recipient and donor genotypes have been tested with
the intent of developing a clinically applicable donor selection
strategy to improve transplant success [7-9]. Another approach
has focused on selecting and evaluating SNPs in genes within
drug metabolism/detoxification pathways. By demonstrating
genetic associations with transplant outcomes after exposure
to various chemotherapeutic agents or combinations, the po-
tential to assign a conditioning regimen based on genotype
becomes a possibility [10, 11]. To date, these candidate gene
approaches have not been conclusive, in part due to sample
size limitations and marked heterogeneity in population, dis-
ease, HLA matching, donor, and graft source. The objective of
this article is to understand where studies of germline genetic
variation have taken the transplant field in the hunt for clini-
cally valid and actionable genetic variation associated with
survival after HCT and how using genomics, versus genetics,
may lead to better outcomes for patients [12¢, 13]. We focus
only on the role of germline genetic variation on survival after
transplant since other studies have eloquently reviewed SNP
associations with outcomes such as susceptibility to leukemia
and chemotherapy toxicity [14] and the incidence and severity
of graft-versus-host disease (GvHD) [15¢¢]. We address current
knowledge about the contribution of germline SNPs to survival
following allogeneic HCT, first reviewing the published evi-
dence for a role of non-HLA genetics in survival following
transplant irrespective of, and considering, chemotherapeutic
exposures. We then consider where these studies are in the
translational research continuum and discuss genomic study
design and methodological considerations when measuring
competing risk outcomes.

Overview of Associations of Candidate Genes
with Survival After HCT

Candidate gene studies have tested SNP associations with
cause-specific (TRM and DRM) and overall survival in redox
metabolism genes (GSTM1, UGT2B17) [16, 17] and cytokine
and chemokine genes and their receptors (/L7 receptor-c, IL-
10 and TNF-a, IL-1, IL-1-0, IL-1-a, IL-6, IL-10, IL-10R, IL-
23,IL23R, CCL2, CCRS5, TLRY9) in both donors and recipients
[18-30]. Other studies focused on variants in genes responsi-
ble for immune response and recognition including FCGR34
[31], CTLA4 [23, 24, 32-35], LCT [36], and NOD2/CARDI15
[37-49], as well as VDR [50-54] and MTHFR [54, 55] and
THBD [56]. Initial results were promising, reviewed in [57],
and yielded some significant associations with overall survival
(OS) and TRM after related and unrelated donor HCT. How-
ever, follow-up studies did not replicate SNP associations with
outcomes, either because the initial study population was so
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small the association was false, the replication was equally
small, and/or the follow-up was not rigorously designed for
replication [23, 38, 45—47].

Associations of NOD2/CARD15 with Survival After HCT

An excellent example of this is NOD2/CARDI5, selected for
study in transplant outcomes as SNPs in NOD2/CARD15 were
found to be associated with Crohn’s disease, and there are sim-
ilarities in this chronic inflammatory disorder of the gastrointes-
tinal tract and GvHD symptoms. Few genes have been studied so
extensively in relation to HCT with so many conflicting results,
reviewed in [58]. While the initial association with an increased
risk of TRM [42] was confirmed by a few studies [40, 44, 48],
multiple other studies showed no association with survival fol-
lowing HCT [38, 45, 46, 59], with additional work hinting that
perhaps results varied by use of T cell-depleted grafts [43]. The
largest NOD2/CARDI5 study to date, 567 donor-recipient pairs
both HLA matched and mismatched with primary diagnoses in-
cluding hematologic malignancies, non-hematologic malignan-
cies, and nonmalignant diseases, found only a borderline associ-
ation (p=.049) of a recipient SNP with increased TRM and con-
flicting results in the non-malignant patient groups [60].

Collectively, these SNP-survival association studies appear
to be dependent on the combination of transplant regimen,
donor cell source, disease, and HLA matching and even fur-
ther compounded by the fact that SNP frequencies vary sig-
nificantly by race and ethnicity [61, 62]. The intrinsic com-
plexity of these results is further obfuscated as estimates of
effect size and p values were obtained from prohibitively
small studies, in most cases with 100-200 patients. In addi-
tion, only limited variants in this region were studied for as-
sociations with TRM, DRM, or OS. Given the polymorphic
nature of NOD?2 and the varying linkage disequilibrium struc-
ture by race and ethnicity [58], a more thorough investigation
in homogenous appropriately sized populations is needed.

This extensive body of work is an excellent illustration of
the consequences of heterogeneity and small sample size on
studies of the relationship of germline genetics with survival
following HCT. Definitive results from large-scale and repli-
cated genetic studies are an imperative first step to finding
clinically valid, and ultimately clinically actionable, variants
for incorporation in treatment planning [12°, 63].

Pharmacogenetic Associations with Survival after HCT

Busulfan (Bu) and cyclophosphamide (Cy), the most com-
monly used alkylators in high-dose conditioning regimens
prior to HCT, are associated with inter-individual variation
in both relapse and toxicity [64]. While the unpredictable me-
tabolism of these agents can lead to unintentional overdosing,
an alternative explanation for excessive toxicity and
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differential adverse effects among patients given a Bu/Cy con-
ditioning regimen is genetics [65]. SNPs in the CYP450
and glutathione enzyme families have been shown to
affect clinical outcomes, relapse, and drug-related toxic-
ities after HCT. Specifically response to Cy/Bu has been
hypothesized to be due to variation in Cy metabolism
by CYP2B6 and CYP2CI19 which activates Cy to 4-
hydroxy Cy [66, 67] and metabolizing enzymes in-
volved in Bu conjugation, namely glutathione S-transfer-
ase (GST) isoenzymes Al (GSTAI) and M1 (GSTM]I).
However, as with the studies of survival-SNP associa-
tions, pharmacogenetic studies of survival after HCT are
plagued with inconsistencies due to small sample sizes
compounded by the heterogeneity in exposure (drug)
and dose.

Association of the CYP Gene Family with Survival

CYP2C19 encodes a well-characterized and highly poly-
morphic enzyme that metabolizes Cy (among other
drugs). Individuals can be grouped into poor (PM), in-
termediate (IM), and extensive (EM) metabolizers by
presence or absence of active enzymes. PM
(CYP2C19*2/%2, *2/*%3, and *3/*3) metabolize drugs
more slowly, show prolonged side effects [68, 69], and
have a higher rate of TRM, but no association was seen
with OS [59]. Although this was one of the larger studies
of TRM, the low frequency of PM (approximately 3 %
of the study population) necessitated a design with con-
siderably larger sample sizes for the appropriate statisti-
cal power to detect the true effect size. Subsequent ex-
aminations of CYP2C19 have again suffered from the
tyranny of small numbers. Melanson et al. [70] redefined
the CYP2C19, PM and IM classification previously used
[59] and showed associations of CYP2C19*2/*2 with
worse progression-free survival (PFS) and OS but not
with non-relapse mortality. This could be due to
myeloablative doses of conditioning, the sequence of
conditioning regimen drugs, or interactions with other
drugs which may diminish or alter the detectable genetic
effects. Consistent genetic and phenotype definitions are
imperative for replications.

CYP2B6 is also an important enzyme that helps deter-
mine the rate of Cy clearance; however, only suggestive
associations with survival following HCT have been
shown among individuals who are considered ultra-rapid
metabolizers, but no impact was seen on overall survival
[70]. As with the CYP2C19 extensive metabolizer group,
the CYP2B6 variants defining ultra-rapid metabolizers
were not common, yielding a small comparison group.
These CYP studies, like the NOD2/CARDI15 research,
highlight the importance, and challenge, in designing ap-
propriately sized discovery and replication studies.

Association of Glutathione S-transferase (GST) Superfamily
with Disease-Free Survival

Bu-containing conditioning regimens show even greater inter-
patient variability in efficacy and toxicity than Cy. Intravenous
vs oral administration of Bu, as well as differences in GI absorp-
tion, can generate variability in pharmacokinetics, drug clearance
and drug activity. Therefore, patients receiving myeloablative Bu
prior to HCT have therapeutic drug monitoring as standard clin-
ical practice [71]. A high Bu steady-state plasma concentration
can be toxic, whereas low concentrations are associated with
poor engraftment and higher relapse risk [72]. Consequently,
clinical outcomes are improved by targeting plasma concentra-
tions and thus variants in the predominant metabolizing enzymes
involved in Bu conjugation, glutathione S-transferase (GST) iso-
enzymes Al (GSTAI) and M1 (GSTM1I), have been tested for
association with survival after transplant [10, 17, 54, 6668,
72-75]. Yee et al. found a SNP in the GSTMI-GSTMS locus,
1s3754446, associated with an almost twofold shorter disease-
free survival in two cohorts of acute myeloid leukemia (AML)
patients treated with chemotherapy-based autologous HCT. De-
spite replicating in both cohorts (p=.001 and p=.028), the find-
ing was not significant after correction for multiple testing [10].
The authors found similar relationships with rs4148405 in
ABCC3, although while passing multiple testing correction in
cohort 1 (p<10e—06), it did not replicate in cohort 2. Additional
genetic association studies have provided some evidence that
variants in the genes in the ATP-binding cassette (4BC) family
are associated with outcome [75, 76].

While other adverse associations with GSTM polymor-
phisms have been shown with transplant-related toxicities
[74] and in other cancers, reviewed in [77], the GSTM1 associ-
ations seen by Yee et al. have not replicated [54, 74]. Again this
could be due to the population studied (Rocha et al. analyzed
associations in HLA-identical sibling donor-recipient pairs,
while Hahn et al. analyzed overall survival in groups of autol-
ogous and related and unrelated donor allogeneic patients), the
small heterogeneous sample sizes, the differences in the exact
GSTM variation studied, or even subtle population substructure.

It is important to note that while this pharmacogenetic re-
search is inconclusive, these drug metabolism pathways are well
established and thus merit further investigation in larger cohorts.
This approach has been done previously with success in relation
to genetic associations with GvHD following HCT [78].

In 2007, an article in Blood was published, highlighting the
rationale for a genome-wide approach in studying hematolog-
ic etiology and disease outcome [79¢], and scientists have
eagerly moved in this direction [15¢¢]; however, since this
time, only candidate gene studies have been published
(Table 1). Of these, only two have replicated significant find-
ings in a second independent population and one result has
demonstrated enough validity to pursue clinical application in
a multicenter trial currently underway.
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Independent and Joint Effects of KIR and HLA-C in AML
Patients Treated with alloHCT

The polymorphic killer-cell immunoglobulin-like receptors
(KIRs) recognize KIR ligands. HLA molecules activate KIR
receptors at the cell surface and therefore are considered K/R--
ligands. The KIR ligands are grouped into three major catego-
ries based on the amino acid sequence determining the KIR-
binding epitope in HLA-C and HLA-B molecules. All
expressed HLA-C alleles are of the C1 or C2 group and most
HLA-B alleles can be classified as either Bw4 or Bw6 [80, 81].
This HLA-KIR interaction was first explored in HLA haplo-
identical transplantation [73] and later investigated in other
allogeneic donor settings in hopes it may stimulate GVL re-
actions in HCT [81-84]. More recently, survival outcomes
under varying combinations of donor genetic variation in
KIR and recipient HLA class I have been tested [84—89e¢].
These studies focused on AML outcomes after an unrelated
donor HCT (URD-HCT) in pediatric and adult patients and
have shown similar results in both the direction and magnitude
of the impact of the KIR donor genotype on survival out-
comes. Therefore, a prospective clinical trial incorporating
KIR genotyping into URD selection for AML is currently
accruing patients (http://www.clinicaltrials.gov/
,NCTO01288222). This is the first clinical trial of HCT
outcomes involving non-HLA genetics and is the result of
consecutively larger studies rigorously demonstrating a
genetic association in homogenous study populations.

KIR can be broadly categorized into two haplotypes
[90-92]: the A haplotype, with at most a single activating gene,
KIR2DS4, and the B haplotype, with KIR2DS4 plus at least
one of the following activating genes: KIR3DS1, KIR2DS2,
KIRDS3, or KIRDSS. Individuals who are B/x (either B/B or
heterozygous B/A) are described as having an activating KIR
genotype. The first study to demonstrate an association of re-
cipient outcome with K/R activating genes included 209 HLA-
matched and 239 HLA-mismatched T-replete URD-HCT for
AML [88]. Three-year overall survival was significantly
higher after transplantation from a K/R B/x donor afforded
the recipients better overall and relapse-free survival when
compared with A/A donors. The protective effect of donor
B/x genotype was replicated in a larger cohort of early, inter-
mediate, and advanced AML undergoing T-replete URD-HCT
(n=1086). However this advantage was not seen in acute lym-
phoblastic leukemia (ALL) patients (n=323).

HLA-KIR Interactions Associated with Survival After HCT

The KIR locus contains genes that are centromeric (Cen) and
telomeric (7e/). Dividing the B/x haplotype into Cen and Tel
segments showed that the B haplotype genes in the Cen region
had a stronger effect in improving the overall survival after
transplantation than those in the 7el region. Specifically,

individuals who were Cen-B/B/Tel-X/X (KIR2DS2 and/or
KIR2DL2, no KIR2DL3/X) versus Cen-A/A/Tel-X/X
(KIR2DL3 only/X) showed an increase in overall and
disease-free survival. Again, no KIR effect was seen for
ALL patients [87]. While promising, the proportion of Cen-
B/B patients in the study was 11 %. When the cohort was
expanded to include almost 500 additional AML patients
(N=1532), the association of leukemia-free survival (LFS)
with donors having two or more B motifs was maintained.
In addition to testing the B motif association, the authors
sought to assess donor K/R-HLA recipient combinations with
outcome [85]. Individuals who are Cen-B/B have activating
KIR genes that encode inhibitory KIRs specific for the C/ and
C2 epitopes of HLA-C. The authors examined the interaction
between donor K/IR B genes and recipient class I HLA KIR
ligands and found transplants mismatched at HLA-C1 experi-
enced an almost twofold reduction in LFS by the KIR B/x
donor. Interestingly this survival advantage in C//x recipients
compared with C2/C2 recipients was similar irrespective of
the donor KIR B status. Unlike the frequency of Cen-B/B in
the population, approximately 85 % of the US population is
HLA C1/x, thus making these findings very generalizable to
the transplant population.

While these studies assessed KIR haplotypes, it has been
shown that both OS and TRM are affected by individual acti-
vating KIRs in the Tel region, KIR3DS1 and KIR2DS1 [89ee,
93], and that like the motifs, these individual KIR may interact
with recipient HLA. Venstrom et al. [89+¢] found that donor
KIR2DS| positive with HLA-C1/x conferred increased surviv-
al benefits (similar in effect size seen in Cen-B/B with HLA
C/x) while KIR3DS!I impacted survival but donor HLA-C
match or mismatch had no enhanced effect. Thus, it appears
that both independent and joint donor and recipient genetics
impact survival, making it particularly important to better un-
derstand this complex interplay in large comprehensive
studies.

Selecting a Favorable KIR Donor in Unrelated HCT for AML

A prospective trial is currently accruing to test and validate
the efficacy of choosing an URD for HCT based on KIR
genotyping. Up to 600 AML patients will be enrolled to
determine whether prospective selection of URDs based on
a favorable K/R donor will reduce the cumulative incidence
of relapse and improve LFS and overall survival. Preferred
KIR donors are selected on the basis of a B content score.
The KIR B—content score for each donor’s KIR genotype is
defined as the number of centromeric and telomeric gene-
content motifs containing B haplotype—defining genes and
is classed as “Best”, “Better” or “Neutral”. This trial is not
considering HLA-C/x donor variation. Once completed, this
trial will provide the first prospective evidence on the
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utility of non-HLA genotypes to improve survival after
URD-HCT for AML.

Are We Ready for Primetime?

To understand where these genetic studies have led the trans-
plant field, we consider this research in a useful framework for
characterizing the spectrum of translational research [12e¢]. It is
important to not think of these phases as linear but rather as on a
continuum, accessible at any point on the path to identifying,
quantifying, and characterizing the relationship of genomics
with survival after HCT. Four phases (T1-T4) comprise the
framework, with TO representing the discovery of new variant
associations and other biomarkers of outcome following HCT.
In the T1 phase, results from TO are moved towards the imple-
mentation of interventions or diagnostic tests, e.g., evaluation of
the function of genomic variants and analyses of gene-exposure
interactions. T2 research is the clinical intervention used to de-
termine if the proposed application of T1 findings is better than
the standard of care. The K/R genomics studies began as TO and
moved into T1, and the trial is at present in T2. T3 assesses how
to implement and integrate T2, e.g., should K/R-HLA matching
improve overall survival, we must determine how this can be
implemented into clinical practice at transplant centers nation-
wide. Lastly, the population health impact of implementation is
evaluated in T4, e.g., what the overall reduction is in death
attributable to the introduction of K/R matching in HCT.

Most of genomic variation research related to HCT survival
is at the TO and maybe T1 level; however, it is important to
realize that while these are the first steps to translating results
to routine clinical practice, it is also imperative researchers are
simultaneously working with the fields of health economics,
comparative effectiveness, disparities, and bioethics in an effort
to understand and reduce barriers that will prevent the successful
application of non-HLA genomics to transplant [63]. One

Table 2 DISCOVeRY-BMT study design

example of opportunities in this arena rests with the scientists
working in the field of statistical genetics. High-resolution typ-
ing is expensive and time consuming. To combat this time and
cost issue, for the last decade, researchers have focused on the
development of statistical methods to impute HLA regions with
a high degree of accuracy [94]. In the European-American pop-
ulation for classical HLA class I and class II genes, there is
approximately 97 % accuracy [95], and these methods are rap-
idly expanding to include other races and ethnic groups [96, 97].
There are a number of translational research opportunities deriv-
ing from this T1 phase work, and with the accessibility of se-
quencing increasing, this work may move quickly through T2,
as precision can be shown with studies in large sample sizes, and
on to T3 and T4, implementation, e.g., where we must consider
the how, where, and how much. We should not wait to think
about these problems of implementation and assessment but
rather understand the contribution and value of this particular
research as it is moving towards clinical validation.

Genome-Wide Association Study of Survival After HCT

While heterogeneity and small sample sizes have plagued many
of these studies, there is clear translational potential and further
exploration of the contribution of non-HLA genetic variation in
the recipient and/or donor to the risk of mortality after HCT is
warranted. To examine this hypothesis in a well-sized and well-
defined study population, we have begun a genome-wide asso-
ciation study (GWAS) to investigate the joint and independent
genetic factors in recipients and donors contributing to death after
URD-HCT, called Determining the /nfluence of Susceptibility-
COnveying Variants Related to 1-Year mortality after unrelated
donor Blood and Marrow Transplant (DISCOVeRY-BMT). The
two independent cohorts used for analyses include patients diag-
nosed with AML, ALL, or myelodysplastic syndrome (MDS),
reported to the Center for International Blood and Marrow Trans-
plant Research (CIBMTR) with a banked National Marrow Do-
nor Program (NMDP) biorepository sample available for both

Genetic variation Study population Exposure Survival outcomes: overall,
TRM and DRM
Common (Illumina Omni Express Donor and recipient pairs - AIM 1
chip+imputation) and rare (Illumina in two cohorts (C1=2601, Non-myeloablative therapy versus AIM 2
Exome chip) genetic variation C2=923) myeloablative therapy
Cyclophosphamide AIM 3
+Total body irradiation versus
+busulfan

The DISCOVeRY BMT study design includes analyses of common and rare genetic variation in two cohorts. Specifically, we are undertaking a GWAS
to map the independent and joint effects of recipient and donor genetic variation associated with survival outcomes after HLA-matched unrelated donor
BMT in thousands of donor-recipient pairs. The purpose of specific aims 2 and 3 are to determine if conditioning regimens modify associations between
recipient and/or donor genetic variants and TRM in the same population as aim 1
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the recipient and donor. Cohorts 1 and 2 include 2609 10/10
HLA-matched, T cell-replete, URD-HCT recipients treated from
2000 to 2008 and 923 8/8 HLA-matched, T cell-replete, URD-
HCT recipients treated from 2000 to 2011, respectively. Of the
2609 patients, 1116 (43 %) died before 1-year post-transplant,
and of the 923 patients, 368 (40 %) died before 1-year post-HCT.

Competing Risk Models in GWAS

To analyze TRM, we must consider that TRM and DRM are
competing risks for the outcome of death [98+]. Broadly, two
approaches can be used to model competing risks: cause-
specific hazard functions, constructed using a Cox proportion-
al hazard model, defining causes other than the one we are
interested in as censored failures, or we can model the cumu-
lative incidence functions of the different event types using a
subdistribution hazard model which takes into account com-
peting risks rather than merely censoring them [99]. The
modeling of the cause-specific hazards is appropriate when
the goal is to assess if a factor is associated with the risk of a
specific cause of failure. However, when the goal is to com-
pare the observed incidence of events from a given cause
between groups, the subdistribution hazard should be used.
Because the effect of a covariate on cause-specific hazard
function for a particular cause can be different from its effect
on the subdistribution function of the corresponding cause, the
cause-specific hazard function and subdistribution can give
different results [100, 101]. These two analyses both provide
important information, and it is recommended both methods
are used when measuring associations with competing risk
[102]. However, of the studies reviewed (Table 1), more often
than not only cause-specific hazard was done and not both.
This inconsistency in approach can be remedied going for-
ward by leveraging both methods to better understand the
contribution of genetic variation to survival after HCT.

To date, competing risk events have not been analyzed on a
genome-wide scale and are often thought of as unique to the
HCT field. However, as cancer treatments improve and more
follow-up data are available, being able to analyze rare and com-
mon variation using competing risk analyses will be necessary in
order to assess the role of genetic variation in competing clinical
outcomes. At present, existing software scaled for millions of
analyses is not available to test competing risk events; therefore,
we are in the process of building custom R statistical packages to
analyze both common and rare genetic variations in this setting.

DISCOVeRY-BMT Study Design and Power

The study design is illustrated in Table 2. We present some
example power calculations for assessing the hazard of TRM
overall as well as gene-drug interactions under a competing risk
hazard model. Given that the minimum number of TRM subtype
deaths (death due to GvHD, infection, and organ failure) and

overall TRM is between 10 % and 40 % and assuming a minor
allele frequency (MAF) of 0.40, we have excellent power to
detect hazard ratios between 1.98 and 1.38, respectively
(Fig. 1). Considering a reduced population comprising
only patients given myeloablative cyclophosphamide
(either TBI or Bu), approximately 70 % of all patients
in the first cohort, and assuming 40 % of URD-HCT
recipients experience TRM before 1-year post-transplant,
we will have power to detect hazard ratios from 1.75 to
2.25 for MAF varying between 40 % to 10 %, respec-
tively. Unfortunately, in contrast to the relative homoge-
neity of myeloablative conditioning regimens used in
URD-HCT (BuCY or CyTBI), reduced intensity/non-
myeloablative conditioning regimens are heterogeneous in both
drugs and doses therefore precluding a well-powered
GWAS. DISCOVeRY-BMT is a large homogeneous population

Power to detect genetic associations with
outcomes after HCT

. — MAF=.40
--- MAF=.10

Hazard Ratio
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Fig. 1 Power to detect associations with DRM, TRM, and TRM
subtypes is shown in the Fig. 1. The x-axis, showing the proportion of
events, can be used to determine power for a range of survival outcomes
following HCT from 10 to 50 % in frequency. The dashed and solid lines
reflect minor allele frequencies of 0.10 and 0.40, respectively. Thus, for
example, given a survival outcome occurring in 25 % of DISCOVeRY-
BMT cohort 1 and a minor allele frequency of 0.40, we have power to
detect hazard ratios of approximately 1.5. A lower MAF of 0.10 yields
power to detect hazard ratios of 2.0
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that will be able to unambiguously identify clinically
relevant hazards attributable to the joint and/or indepen-
dent effects of genetic variation. Thus, it is the first step
towards translating these data clinically and defining the
biology of these devastating and poorly understood end-
points [12e°].

Conclusion

The rapidly growing number of URD HCTs coupled with a
high TRM yields an increasingly significant public health prob-
lem. Given TRM is the limiting factor to referring more poten-
tial patients and extending survival in existing patients, it is a
clear target for translational research to increase the success and
utilization of HCT as a curative therapy. So far, candidate gene
studies have pursued discovery studies of genetic variation with
the intent of making them clinically actionable but have had
limited success in replication and thus are stuck in the TO phase.
When considering the KIR-HLA findings and the subsequent
trial, we describe this as T2 research, with the understanding
that the implementation (T3) and assessment of the impact (T4)
will follow. Should this be successful, it will be the first dem-
onstration that better matching using non-HLA alleles is not
only possible but can also actively reduce death rates.

DISCOVeRY-BMT is also designed to identify polymor-
phisms in recipients and/or unrelated donors with the potential
for better recipient-donor pairing, the identification of patients
at risk for TRM, or a high probability of DRM (T1 phase) with
the intent of moving through the continuum of translational
research. Importantly, the data generated from this project will
be made publicly available to provide a very unique resource
of'a highly specialized, curative therapy where many addition-
al hypotheses can be tested or confirmed.
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