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Abstract
In this paper we review, and extend to the non-isothermal case, some results
concerning the application of the maximum entropy closure technique to the
derivation of hydrodynamic equations for particles with spin-orbit interaction and
Fermi-Dirac statistics. In the second part of the paper we treat in more details the case
of electrons on a graphene sheet and investigate various asymptotic regimes.
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1 Introduction
This paper is devoted to present some results on the derivation of hydrodynamic equa-
tions describing electrons subject to spin-orbit-like interactions. Systems of this kind, of
particular interest for applications to microelectronics, include electrons undergoing the
so-called Rashba effect [], the Kane’s two-band K·P model [] and electrons in single-
layer graphene []. The diffusive and hydrodynamic descriptions of such systems are ex-
tensively treated in Refs. [–]. Here, we summarize the results contained in Refs. [–],
concerning the hydrodynamic description, and extend them to the non-isothermal case.

In comparison with kinetic models, the advantages of fluid models for applications are
evident. In fact, from the numerical point of view, a system of PDEs for a set of macro-
scopic quantities is much more desirable than a single equation for a density in phase-
space, where also the components of momentum are independent variables. Moreover,
from the point of view of mathematical modeling, they offer more flexibility, as various
kind of boundary conditions and coupling terms (e.g. with a self-consistent potential or
with various types of scattering mechanisms) can be very naturally embodied in the math-
ematical model.

On the other hand, the derivation of fluid equations for the systems under considera-
tion, which possess spinorial degrees of freedom and non-parabolic dispersion relations
(energy bands), is far from being a trivial extension of the techniques employed for stan-
dard (i.e. scalar and parabolic) particles. The best strategy to obtain hydrodynamic (or,
more in general, fluid-dynamic) equations in this case, seems to be their systematic deriva-
tion from an underlying kinetic description by means of the Maximum Entropy Principle
(MEP) and its quantum extensions [–]. The MEP basically stipulates that the micro-
scopic (kinetic) state of the system is the most probable among all states sharing the same
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macroscopic moments of interest, providing therefore a formal closure of the system of
moment equations. This is a very general principle which finds a variety of applications
to different fields, ranging from statistical mechanics to signal theory []. For quantum
systems it can be used in combination with the quantum kinetic framework provided by
the phase-space formulation of quantum mechanics due to Wigner [, ].

In the present work the Wigner formalism is used ‘semiclassically’, which means that
some quantum features are retained (namely, the peculiar energy-band dispersion rela-
tions and the Fermi-Dirac statistics) while others are neglected (namely, the quantum co-
herence between different bands). Consequently, the obtained hydrodynamic description
misses some interesting physics when quantum interference between bands becomes im-
portant (e.g. close to abrupt potential variations [, ]). Nevertheless, the derived equa-
tions possess an interesting mathematical structure and reveal some interesting physics,
still occurring in absence of such interference phenomena (see, in particular, Section ).

The paper is organized as follows. In Section  the kinetic-level formalism, based on a
semiclassical Wigner description, is introduced for a fairly general spin-orbit Hamiltonian
that includes all cases of interest. In Section  we write the moment equations for density,
velocity and energy, and perform their formal closure by means of the MEP. Then, the sec-
ond part of the paper is focused on the case of graphene. In Section  the general theory
exposed in the first part is specialized for the Dirac-like Hamiltonian describing electrons
on a single-layer graphene sheet. In Section  we obtain the asymptotic form of the hy-
drodynamic equations derived in Section  in some physically relevant limits (namely, the
high temperature, zero temperature, collimation and diffusive limits). Finally, Section  is
devoted to conclusions and perspectives.

2 Phase-space description of spin-orbit particles
Let us consider a spin-orbit Hamiltonian of the form

H(x, p) =
[
h(p) + V (x)

]
σ + h(p) · σ , ()

where x ∈R
d , p ∈R

d , σ = (σ,σ,σ), h = (h, h, h) and

σ =

(
 
 

)

, σ =

(
 
 

)

, σ =

(
 –i
i 

)

, σ =

(
 
 –

)

.

Moreover, the dot product is defined as h · σ = hσ + hσ + hσ.
Hamiltonians of this kind describe various systems of great interest in solid-state

physics. The first example is a -dimensional electron gas confined in an asymmetric po-
tential well, which is subject to the Rashba spin-orbit interaction [, ]. In this case:

d = , h(p) =


m∗ |p|, h(p) = αp × ez,

where p = (px, py), m∗ is the electron effective mass, ez is the normal direction to the well
and α is the Rashba constant.

Another example is the two-band K·P model [, , , ]; in this case:

d = , h(p) =


m
|p|, h(p) =

(
,

�

m
K · p,

Eg



)
,
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where m is the electron (bare) mass, Eg is the band-gap and K is the matrix element of the
gradient operator between conduction and valence Bloch functions.

The last example is that of electrons on a single-layer graphene sheet [, , ], in which
case:

d = , h(p) = , h(p) = cp.

This case will be considered in more details in the second part of the paper.
We remark that the variable p has to be interpreted as the crystal pseudo-momentum,

rather than the ordinary momentum. The interpretation of the vector variable σ depends
on the cases: it is (proportional to) the spin vector in the case of Rashba Hamiltonian,
while it is a pseudo-spin in the other two examples [, ]. For graphene, in particular, the
pseudo-spin is related to the decomposition of the honeycomb lattice into two inequiva-
lent sublattices, which reflects the presence of two carbon atoms in the fundamental cell
of the lattice [, ].

The main semiclassical quantities associated with () are:
. the two energy bands

E±(p) = h(p) ± ∣∣h(p)
∣∣ ()

(i.e., the eigenvalues of H with V = );
. the projectors on the eigenspaces corresponding to E±(p),

P±(p) =


(
σ ± ν(p) · σ ), ()

where

ν(p) =
h(p)
|h(p)| ()

is the pseudo-momentum direction;
. the semiclassical velocities

v±(p) = ∇pE±(p); ()

. the effective-mass tensor []

M
–
± (p) = ∇p ⊗ v±(p) = ∇p ⊗ ∇pE±(p). ()

Note, in particular, that the eigenvalues of the projectors P± are  and , corresponding
to whether or not the electron energy belongs to the upper/lower energy band. Hence,
the expected value of P± can be interpreted as the fraction of electrons belonging to the
upper/lower band (see below).

The phase-space description of a statistical population of electrons with Hamiltonian
() is provided by the Wigner matrix [, , , ]

F(x, p, t) =
∑

k=

fk(x, p, t)σk , ()
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which is the Wigner transform,

fk(x, p, t) =
∫

Rd
ρk

(
x +

q


, x –
q


, t
)

e–iq·p/� dq,

of the spinorial density matrix

ρ(x, y, t) =
∑

k=

ρk(x, y, t)σk .

Such representation of a quantum mixed-state has the fundamental property that the ex-
pected value of an observable with symbol A =

∑
k= ak(x, p)σk is given by the classical-

looking formula

EF [A] =
∫

Rd
Tr(FA) dx dp =


(π�)d

∫

Rd

∑

k=

ak(x, p)fk(x, p, t) dx dp. ()

By applying Eq. () to the band projectors P±(p) we obtain

EF [P±] =


(π�)d

∫

Rd
(f ± ν · f) dx dp

and it is therefore natural to interpret the functions

f± = f ± ν · f ()

as the phase-space densities of electrons having energies, respectively, in the upper and
lower band.

Let us now consider the following hydrodynamic moments of electrons in the two bands:

n± = 〈f±〉 (density),

n±u± = 〈v±f±〉 (velocity),

n±e± = 〈E±f±〉 (energy)

()

(see also Ref. [] where additional moments are considered). Here we have introduced
the shorthand

〈f 〉(x, t) =


(π�)d

∫

Rd
f (x, p, t) dp.

The (semiclassical) dynamics of the Wigner matrix () is provided by the Wigner equations
for the Hamiltonian () [],

⎧
⎨

⎩
(∂t + ∇ph · ∇x – ∇xV · ∇p)f +

∑
k= ∇phk · ∇xfk = ,

(∂t + ∇ph · ∇x – ∇xV · ∇p)fi + ∇phi · ∇xf = 
�

(h × f)i,
()
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with i = , , . From (), the following equations for the band-Wigner functions f+ and f–

(see definition ()) are readily obtained:

(∂t + v± · ∇x – ∇xV · ∇p)f± = –∇x · f⊥ ± ν · (∇xV · ∇p)f⊥, ()

where the terms containing

f⊥ := (ν × f) × ν

are responsible for quantum interference between the two bands [, ].

3 Maximum entropy closure
In order to obtain from () a closed system of equations for the moments (), we assume
that the system is in a state Fme of maximum entropy, according to the so-called Maximum
Entropy Principle (MEP) [–] which in the present case reads as follows:

MEP Fme is the most probable microscopic state with the observed macroscopic mo-
ments n±, u± and e±.

Hence, we search for a Wigner matrix Fme that maximizes the total entropy

E(F) = –
kB

(π�)d

∫

Rd
Tr
{

s(F)
}

(x, p) dp dx ()

among all matrices F =
∑

k= fkσk , such that  ≤ F ≤  and

〈⎛

⎜
⎝


v±
E±

⎞

⎟
⎠ f±

〉

= n±

⎛

⎜
⎝


u±
e±

⎞

⎟
⎠ . ()

In (), kB is the Boltzmann constant, Tr is the matrix trace and

s(x) = x log x + ( – x) log( – x),  ≤ x ≤ , ()

is (minus) the Fermi-Dirac entropy function. The condition  ≤ F ≤  ensures that s(F) is
a well-defined matrix.

It can be proven [] that

f me
± =

(
s′)–(v± · B± + A± – C±E±)

=


exp(C±E± – v± · B± – A±) + 
, ()

where A±, B± = (B, . . . , Bd)± and C± are Lagrange multipliers (functions of x and t), and,
moreover,

fme
⊥ = . ()
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Thus, the (semiclassical) MEP state corresponds to two local Fermi-Dirac distributions
in the two energy bands. In particular, Eq. () implies that, in such state, the interfer-
ence terms vanish and, therefore, the two bands are decoupled (unless additional cou-
pling mechanisms are considered [, , ]). Hence, from now on, we shall treat the two
bands separately and, in order to simplify notations, the ± labels will be suppressed (ex-
cept where a distinction between quantities taking different forms in the two bands, such
as E± or v±, is necessary).

Using () and () in () (and suppressing the ± labels, as it was just explained) yields

(∂t + v± · ∇x – ∇xV · ∇p)f me = . ()

By taking the moments 〈·〉, 〈v±·〉 and 〈E±·〉 of both sides of Eq. (), and recalling the
definitions () and (), we obtain the moment equations

⎧
⎪⎪⎨

⎪⎪⎩

∂tn + ∂j(nuj) = ,

∂t(nui) + ∂jP±
ij + Q±

ij ∂jV = ,

∂t(ne) + ∂jS±
j + nuj ∂jV = ,

()

where ∂i = ∂/∂xi and

P±
ij =

〈
v±

i v±
j f me〉,

Q±
ij =

〈
∂v±

i
∂pj

f me
〉

=
〈(
M

–
±
)

ij f me〉,

S±
j =

〈
E±v±

j f me〉.

()

Thanks to the MEP, the moment system () is implicitly closed by the constraints (),
linking the Lagrange multipliers (A, B, C) to the moments (n, u, e) thus allowing (in princi-
ple) to think to f me as being parametrized by (n, u, e) and, consequently, the extra moments
(P±, Q±, S±) as functions of the unknowns (n, u, e).

Following Levermore [], we can express the moments of the MEP state f me as the
derivatives with respect to the Lagrange multipliers of the ‘density potential’ ε∗, which is
defined as the Legendre transform of the entropy density

ε =
〈
s
(
f me)〉,

where s is given by () and f me by (). It is not difficult to show that

ε∗ = –
〈
log

(
 – f me)〉

and that the constraint equations () may be rewritten as

∂ε∗

∂A
= n,

∂ε∗

∂Bi
= nui, –

∂ε∗

∂C
= ne, ()

where i = , . . . , d. Levermore’s theory, moreover, ensures that system (), with the closure
relations () is hyperbolic and, therefore, it is at least locally well-posed (see also Ref. []).
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4 The case of graphene
We now specialize the formalism introduced so far to the case of a population of elec-
trons on a single-layer graphene sheet. Such electrons, in the proximity of a Dirac point
in pseudo-momentum space [], are described by the Hamiltonian () with

d = , h(p) = , h(p) = cp

(where c ≈  m/s is the Fermi velocity), which corresponds to a Dirac-like Hamiltonian
for relativistic, massless particles. We remark that this is an approximation which is valid
only in the proximity of a Dirac point for an infinite, ideal and un-doped system (see Ref.
[] and references therein). In this case the energy bands are the Dirac cones

E±(p) = ±c|p|, ()

and the eigenprojections are given by

P±(p) =


(
σ ± ν(p) · σ ), ()

where

ν(p) =
p
|p| . ()

Moreover, the semiclassical velocities are

v±(p) = ± cp
|p| = ±cν(p), ()

implying that electrons travel with the constant speed c and direction ν , and the effective-
mass tensor is

M
–
± (p) =

c
|p|ν⊥(p) ⊗ ν⊥(p), ()

where

ν⊥ = (–ν,ν).

Since the lower band is unbounded from below, we have to change a little the theory devel-
oped in the previous sections and describe the lower-band population in terms of electron
vacancies, i.e. holes. This is achieved by means of the substitution

f–(x, p, t) �−→  – f–(x, –p, t),

which brings the transport equation, Eq. (), into

(∂t + cν · ∇x ∓ ∇xV · ∇p)f me = . ()
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Note that the only difference between electrons and holes is the charge sign. Moreover,
the MEP-states for electrons and holes have now the form

f me =


exp(C|p| – ν(p) · B – A) + 
, ()

in fact, both upper-cone electrons and lower-cone holes have positive energies

E(p) = c|p| ()

(note that in () the Fermi velocity c has been absorbed in the Lagrange multiplier C).
Moreover, we slightly change the definition of u to be the average direction

nu = 〈νf 〉,  ≤ |u| ≤ ,

which differs from average velocity just for the constant factor c. The inequality |u| ≤  is
an obvious consequence of the fact that u is an average of directions.

The moment equations (), in the specific case of graphene, read as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tn + c ∂j(nuj) = ,

∂t(nui) + c ∂jPij ± Qij ∂jV = ,

∂t(ne) + c ∂jSj ± cnuj ∂jV = ,

()

where the higher-order moments Pij, Qij and Sj take the form

Pij =
〈
νiνj f me〉,

Qij =
〈


|p|ν

⊥
i ν⊥

j f me
〉
,

Sj =
〈
cpj f me〉.

()

We now intend to find an (as much as possible) explicit expression for the dependence
of the Lagrange multipliers A, B = (B, B) and C in terms of the moments n, u = (u, u)
and e, as resulting from the constraint equations

〈
f me〉 = n,

〈
νf me〉 = nu,

〈
c|p|f me〉 = ne. ()

By expressing the integrals over p ∈R
 in polar coordinates, we obtain the expressions

〈
f me〉 =

I
(A, |B|)
π�C ,

〈
νf me〉 =

I
 (A, |B|)
π�C

B
|B| ,

〈
c|p|f me〉 =

cI
(A, |B|)
π�C ,

()

where

I s
N (x, y) =


π

∫ π


cos(Nθ )φs(x + y cos θ ) dθ , ()
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and φs is the Fermi integral of order s > :

φs(z) =


�(s)

∫ ∞



ts–

et–z + 
dt.

It is now convenient to put

B = |B|, C =
c

kBT
, nT =

k
BT

π�c =


π�C , ()

so that the previous expressions can be rewritten as

〈
f me〉 = nTI

 (A, B),
〈
νf me〉 =

nT

B
I

 (A, B)B,
〈
c|p|f me〉 = nT kBTI

(A, B).

()

We remark that the new Lagrange multiplier T has the physical meaning of the elec-
tron gas temperature. From () and the constraint equations (), we obtain that B has
the same direction as u and that (n, |u|, e) are related to the scalar Lagrange multipliers
(A, B, T) by

I
 (A, B)nT = n,

I
 (A, B)

I
(A, B)

= |u|,

I
(A, B)

I
(A, B)

kBT = e.

()

Similarly to what is found in Ref. [], we obtain the following expressions of the higher-
order moments () in terms of n, u, T and the functions I s

N = I s
N (A, B):

Pij =
n

|u|
(I

 + I


I


uiuj +
I

 – I


I


u⊥
i u⊥

j

)
,

Qij =
c

kBT
n

|u|
(I

 – I


I


uiuj +
I

 + I


I


u⊥
i u⊥

j

)
,

Sj =
kBTn

|u|
I


I


uj,

()

where u⊥ = (–u, u).

5 Asymptotic regimes
The expressions () of Pij, Qij and Sj are still not explicit, as functions of n and u. In
fact, these expressions depend, through the functions I s

N (A, B), on the two scalar Lagrange
multipliers A and B, which are related to n and |u| via the relations (). In Ref. [] it has
been proven that the correspondence between (A, B) and (n, |u|) is - but, as far as we
know, it is not possible to give an explicit, analytic, expression of the former as functions
of the latter.
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However, we can say more in some particular regimes of physical interest. Such regimes
correspond to different asymptotic regions [] in the half plane (A, B) ∈ R × [,∞),
namely:

. the asymptotic region A + B → ∞ with A < –B (i.e. (A, B) below the ‘critical line’
A + B = ), corresponds to a regime of high temperatures, where the Fermi-Dirac
distribution is well approximated by a Maxwell-Boltzmann distribution;

. the asymptotic region A + B → ∞ with A > –B corresponds to the limit T → ,
in which case we speak of ‘degenerate fermion gas’;

. the asymptotic region A + B → ∞ with A ∼ B (i.e. (A, B) approaches the critical
line A + B = ) corresponds to a ‘collimation regime’, |u| → , where the velocities of
the electrons are all aligned along a ((x, t)-dependent) direction in the p-space (the
direction determined by u); there are two types of collimation, depending on
whether the critical line is approached from below (Maxwell-Boltzmann
collimation) or from above (degenerate gas collimation);

. opposite to the collimation limit, the asymptotic region B →  corresponds to the
diffusive limit |u| → , where the velocities are randomly spread over all directions.

The asymptotic analysis of Eqs. () in these regimes is based on the following result,
which has been proven in Ref. [].

Theorem The functions I s
N have the following asymptotic behavior:

. in the Maxwell-Boltzmann limit, A + B → ∞, with A < –B,

I s
N (A, B) ∼ eAIN (B), ()

where IN are the modified Bessel functions of the first kind;
. in the degenerate gas limit, A + B → ∞, with A > –B,

I s
N (A, B) ∼ 

π�(s + )

∫ C(A,B)


cos(Nθ )(A + B cos θ )s dθ , ()

where

C(A, B) = �
[

cos–
(

–
A
B

)]
=

⎧
⎨

⎩
arccos(– A

B ), if – B < A < B,

π , if A ≥ B.
()

5.1 Maxwell-Boltzmann regime
The Maxwell-Boltzmann regime is the limit for large T and corresponds to A + B → ∞
with A < –B in the (A, B) half plane. In this case, we can use the approximation (). Note,
in particular, that in such limit the functions I s

N become factorized and independent on
the index s. Then, the constraint equations () become

eAI(B)nT = n,

I(B)
I(B)

= |u|,

kBT = e.

()
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and it can be shown that the MEP-state () is well approximated by the Maxwellian-like
distribution

f me =
n

nT I(B)
exp

[
–

c
kBT

|p| + Bν(p) · u
|u|

]
, ()

where

B =
(

I

I

)–(|u|). ()

Moreover, we get the explicit form of Pij, Qij and Sj:

Pij =
n

|u|
[
X
(|u|)uiuj +

(
 – X

(|u|))u⊥
i u⊥

j
]
,

Qij =
c
e

n
|u|

[
X
(|u|)u⊥

i u⊥
j +

(
 – X

(|u|))uiuj
]
,

Sj = neuj,

()

where

X
(|u|) =

I(B) + I(B)
I(B)

and B is given by ().
By playing a little with the asymptotic expansions of the modified Bessel functions In we

obtain the asymptotic behavior of X(|u|) in the diffusive limit:

X
(|u|) =




+



|u| + O
(|u|), as |u| → , ()

and in the collimation limit:

X
(|u|) =  – 

(
 – |u|) + O

((
 – |u|)), as |u| → . ()

Substituting Sj = neuj in the third of the moment equations () yields, after a little al-
gebra,

∂te + cuj ∂je ± cuj ∂jV = . ()

Thus, the isothermal case (e = kBT constant) is only compatible with uj ∂jV = , i.e. the
component of the force field parallel to the velocity field must vanish. In this case, the
pseudo-momentum balance equation reduces to

∂t(nui) + c ∂j

(
nX(|u|)uiuj

|u| +
n( – X(|u|))u⊥

i u⊥
j

|u|
)

± c
kBT

n
|u| X

(|u|)u⊥
i u⊥

j ∂jV = . ()
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5.2 Degenerate gas regime
The degenerate gas regime is the limit for T →  and corresponds to A + B → ∞ with
A > –B, in the (A, B) half plane. In this case, we can use the approximation ()-(). It is
convenient to put

A = R cosψ , B = R sinψ ,

and rewrite () as follows:

I s
N (R cosψ , R sinψ) ∼ RsF s

N (ψ), R > ,  ≤ ψ <
π


, ()

where

F s
N (ψ) =


π�(s + )

∫ C(ψ)


cos(Nθ )(cosψ + sinψ cos θ )s dθ ()

and

C(ψ) = �[cos–(– cotψ)
]

=

⎧
⎨

⎩
arccos(– cotψ), if π

 < ψ < π
 ,

π , if  ≤ ψ ≤ π
 .

()

The asymptotic form of the constraint equations () is now

F
 (ψ)RnT = n,

F
 (ψ)

F
 (ψ)

= |u|,

F
 (ψ)

F
 (ψ)

kBTR = e.

()

Note that:
. |u| only depends on ψ and we can write

ψ =
(F


F



)–(|u|); ()

. recalling (), from the first of the above equations we have R ∼ /T and, then, the
third equation shows that e remains positive even though T → .

From the above considerations it is readily seen that, in the limit T → , the MEP-state
() takes the typical degenerate Fermi-Dirac form

f me = θ

[
–

√
π�n
F

 (ψ)
|p| + ν(p) · u

|u| sinψ + cosψ

]
, ()
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where θ denotes the Heaviside function and ψ(u) is given by (). Using (), () and
() we obtain the following expressions of Pij and Qij and Sj for a degenerate electron gas:

Pij =
n

|u|
[
Y
(|u|)uiuj +

(
 – Y

(|u|))u⊥
i u⊥

j
]
,

Qij =
√

n
�
√

π |u|
[
Z
(|u|)uiuj + Z⊥

(|u|)u⊥
i u⊥

j
]
,

Sj = W
(|u|)neuj

|u| ,

()

where

Y
(|u|) =

F
 (ψ) + F

 (ψ)
F

 (ψ)
, Z

(|u|) =
F 

(ψ) – F 
(ψ)


√

F
 (ψ)

,

Z⊥
(|u|) =

F 
(ψ) + F 

(ψ)


√

F
 (ψ)

, W
(|u|) =

F
 (ψ)

F
 (ψ)

,

and ψ = ψ(|u|) is given by Eq. ().
By using the techniques developed in Ref. [], it is not difficult to calculate the asymp-

totic behavior of the functions Y (|u|), Z(|u|), Z⊥(|u|) and W (|u|) in the two limits |u| → 
(diffusion) and |u| →  (collimation).

For |u| →  we obtain:

Y
(|u|) =




+


|u| + O

(|u|),

Z
(|u|) =




–


|u| + O

(|u|),

Z⊥
(|u|) =




–


|u| + O

(|u|),

W
(|u|) =



|u| + O

(|u|).

()

For |u| →  we obtain

Y
(|u|) =  – 

(
 – |u|) + O

((
 – |u|)),

Z
(|u|) =

() 
√

π

(
 – |u|) 

 + O
((

 – |u|) 

)
,

Z⊥
(|u|) =

√
() 

√
π

(
 – |u|) 

 + O
((

 – |u|) 

)
,

W
(|u|) =  –



(
 – |u|) + O

((
 – |u|)).

()

5.3 Collimation regime
The collimation limit corresponds to the absence of spread in the particle directions, i.e. to
|u| → . It can be shown [, ] that this limit is equivalent to A + B → ∞ with A/B → –.
However, there is a completely different behavior when the critical line A = –B is ap-
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proached from below (Maxwell-Boltzmann collimation) of from above (degenerate gas
collimation).

The first case corresponds to taking the limit B → ∞ in the ‘Maxwellian’ distribution
(), which produces a delta in the angle between p and u, namely

f me =
πn
nT

exp

[
–

c
kBT

|p|
]
δ

(
ν(p) –

u
|u|

)
. ()

Moreover, since X(|u|) →  as |u| →  (see Eq. ()), from Eq. () we obtain

Pij → nuiuj, Qij → c
e

nu⊥
i u⊥

j

and the pseudo-momentum balance equation reduces to

∂t(nui) + c ∂j(nuiuj) ± c
e

nu⊥
i u⊥

j ∂jV = .

By using the continuity equation ∂tn + c ∂j(nuj) the latter can be rewritten as

∂tui + cuj ∂jui ± c
e

u⊥
i u⊥

j ∂jV =  ()

which is decoupled from the continuity equation for n. As pointed out in Refs. [, ],
this equation reveals that collimated electrons in graphene have the properties of a
geometrical-optics system, with ‘refractive index’

N(x) = e∓ 
e V (x) = e∓ 

kBT V (x).

By also considering the energy balance equation (), we finally obtain the system

⎧
⎨

⎩
∂tui + cuj ∂jui ± c

e u⊥
i u⊥

j ∂jV = ,

∂te + cuj ∂je ± cuj ∂jV = .
()

In order to derive the collimation equations for a degenerate gas, we start from the ex-
pression () of Pij, Qij and Sj, and use the asymptotic relations () to obtain that

Pij → nuiuj, Qij → , Sj → neuj,

as |u| → . But then, the hydrodynamic system () degenerates into the decoupled system

⎧
⎪⎪⎨

⎪⎪⎩

∂tn + c ∂j(nuj) = ,

∂tui + cuj ∂jui = ,

∂te + cuj ∂je ± cuj ∂jV = .

Such a ‘trivial’ asymptotic behavior of collimated degenerate electrons has already been
pointed out in Ref. [] in the isothermal case, and is due to the vanishing effective-mass
tensor Q.
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5.4 Diffusion regime
The diffusion regime corresponds to the limit |u| →  of vanishing mean velocity. In order
to observe the diffusive behavior we have to introduce in () a current-relaxation term
–nu/τ , and to rescale time and velocity as

t∗ = τ t, u∗ =

τ

u.

In this way we obtain the system

⎧
⎪⎪⎨

⎪⎪⎩

∂t∗n + c ∂j(nu∗
j ) = ,

τ  ∂t∗ (nu∗
i ) + c ∂jPij ± Qij ∂jV = –nu∗

i ,

τ ∂t∗ (ne) + c ∂jSj ± cτnu∗
j ∂jV = ,

()

where the terms Pij, Qij and Sj, depending only on u/|u| = u∗/|u∗|, remain unchanged ex-
cept that the Lagrange multipliers must satisfy

I
 (A, B)

I
 (A, B)

= τ
∣
∣u∗∣∣. ()

In the diffusive limit τ →  we obtain the condition I
 (A, B) = , which is satisfied if and

only if B =  []. Since

I s
N (A, ) =

⎧
⎨

⎩
φs(A), if N = ,

, if N ≥ ,
()

from the first of () with B =  we obtain

A = φ–


(
n

nT

)
()

and, moreover,

Pij(A, ) =
n

δij,

Qij(A, ) =
cnT

kBT
φ

(
φ–



(
n

nT

))
δij,

Sj(A, ) = .

()

Letting τ →  in Eq. () yields, therefore, the diffusive system

⎧
⎨

⎩
∂t∗n + c ∂j(nu∗

j ) = ,

nu∗
i = –(c ∂jPij ± Qij ∂jV ),

()

with P = P(A, ) and Q = Q(A, ) given by (), that is, in terms of the original time variable,

∂tn =
τc


∂j

[
∂jn ± nT

kBT
φ

(
φ–



(
n

nT

))
∂jV

]
. ()
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It is not difficult to check that the diffusion equation () takes the specific form

∂tn =
τc


∂j

(
∂jn ± n

kBT
∂jV

)
()

in the Maxwell-Boltzmann limit and

∂tn =
τc


∂j

(
c ∂jn ± 

�
√

π

√
n ∂jV

)
. ()

in the degenerate gas limit.
We remark that, owing to the conical dispersion relation (), the drift-diffusion equa-

tions (), () and () have a ‘specular’ structure with respect to the drift-diffusion equa-
tions for Fermions with the usual parabolic dispersion relation [, , ]. Indeed, the
diffusion coefficient (which is proportional to the variance of the velocity distribution), is
here independent of the temperature T , because the particles move with constant speed
c, while it is proportional to T in the parabolic case. On the other hand, the mobility co-
efficient (which is related to the distribution of the second derivative of the energy, i.e. to
the effective-mass tensor) is here temperature-dependent while in the parabolic case is
constant. Also the nonlinearity, which in the parabolic case affects the diffusive term, in
Eqs. () and () is found in the drift term.

6 Conclusions
We have presented the systematic derivation from the Maximum Entropy Principle of hy-
drodynamic equations describing a population of electrons subject to spin-orbit interac-
tions. In the second part of the paper we have treated more extensively the case of electrons
on a single-layer graphene sheet.

The hydrodynamic equations have the form of a Euler-like system of conservation laws
for density, n, momentum, u, and energy, e, in each of the two bands (the band indices
are here omitted). Such system is of hyperbolic character, which ensures its (at least) local
well-posedness. It is worth to remark that the full nonlinear structure of the MEP-state
is retained, so that no assumptions of linear response or quasi-isotropic distribution are
needed.

The system, in general, is not explicitly closed, i.e. no explicit constitutive relations, ex-
pressing the higher-order moments Pij, Qij and Sj as functions of n, u and e, can be given.
However, in the case of graphene and for particular asymptotic regimes (namely, the limits
of high and zero temperature, the limit of collimated directions and the diffusive limit),
the closure is fully explicit.

As already mentioned in the Introduction, our results are not able to capture the physics
of the system when the semiclassical approximation is not valid, that is when the quantum
coherence becomes important. This typically happens in presence of rapid potential varia-
tions, such as potential steps or barriers. In these cases one expects the equations derived
here to be a good approximation in a ‘semiclassical region’, far enough from the poten-
tial steps (constituting instead the ‘quantum region’). The semiclassical regions could be
coupled to the quantum ones by means of quantum-classical interface conditions, analo-
gous to those developed for standard, i.e. scalar and parabolic, particles (see Ref. [] and
references therein).
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