
Haddad et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:131
http://asp.eurasipjournals.com/content/2012/1/131

RESEARCH Open Access

Complexity adaptive iterative receiver
performing TBICM-ID-SSD
Salim Haddad*, Amer Baghdadi and Michel Jezequel

Abstract
Flexible and iterative baseband receivers with advanced channel codes like turbo codes are widely adopted
nowadays, ensuring promising error rate performances. Extension of this principle with an additional iterative
feedback loop to the demapping function has proven to provide substantial error performance gain at the cost of
increased complexity. However, this complexity overhead constitutes commonly an obstacle for its consideration in
real implementations. This article illustrates the opposite of what is commonly assumed and proposes a complexity
adaptive iterative receiver performing iterative demapping with turbo decoding (TBICM-ID-SSD). Targeting identical
error rate, the article shows that for certain system configurations TBICM-ID-SSD presents lower complexity than
TBICM-SSD (without iterative demapping). This original result is obtained when considering the equivalent number of
iterations through detailed analysis of the corresponding computational and memory access complexity. The analysis
is conducted for different parameters in terms of modulation orders and code rates and independently from the
architecture for a fair comparison. Considering the proposed adaptive receiver which is able to perform both
TBICM-ID-SSD and TBICM-SSD modes, results demonstrate a reduced complexity with TBICM-SSD for high modulation
orders. However, for low modulation orders as for QPSK, results show a reduction in arithmetic operations and read
access memory up to 45.9% and 47%, respectively for using the TBICM-ID-SSD mode rather than TBICM-SSD
performing six turbo decoding iterations over Rayleigh fading channel with erasures.

Introduction
Advanced wireless communication standards impose the
use of modern techniques to improve spectral efficiency
and reliability. Among these techniques, bit-interleaved
coded modulation (BICM) [1] with different modula-
tion orders and Turbo Codes with various code rates are
frequently adopted.
The BICM principle currently represents the state-of-

the-art in coded modulations over fading channels. The
BICM with iterative demapping (BICM-ID) scheme pro-
posed in [2] is based on BICM with additional soft feed-
back from the soft-input soft-output (SISO) convolutional
decoder to the constellation demapper. In [3], the convo-
lutional code classically used in BICM-ID schemes was
replaced by a turbo code. Only a small gain of 0.1 dB
was observed. This result makes BICM-ID with turbo-like
coding solutions (TBICM-ID) unsatisfactory with respect
to the added decoding complexity.
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On the other hand, signal space diversity (SSD) tech-
nique, which consists of a rotation of the constellation
followed by a signal space component interleaving, has
been recently proposed [4,5]. It increases the diversity
order of a communication system without using extra
bandwidth.
Combining SSD technique with TBICM-ID at the

receiver side has shown excellent error rate performance
results particularly in severe channel conditions (erasure,
multi-path, real fading models) [6,7]. These results were
behind the adoption of this system in DVB-T2 standard
(using LDPC channel code). These results will also lead for
further adoption discussions in the upcoming standards
using turbo codes [6]. The TBICM and TBICM-ID modes
applying the SSD technique are denoted by TBICM-SSD
and TBICM-ID-SSD.
In fact, almost all related works using these techniques

have focused only on error rate performance without
considering the implementation perspective. This is due
mainly to the commonly assumed impact in terms of
complexity overhead. In this article, we demonstrate the
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effectiveness of the iterative demapping even in terms
of complexity for certain system configurations (modu-
lation orders and code rates). In this context, a novel
complexity adaptive iterative receiver, performing either
in TBICM-ID-SSD mode or in TBICM-SSD mode, is pro-
posed. This original proposal is based on a thorough
analysis of the corresponding computational and memory
access complexity.
It is worth to note that the article does not provide a

comparison in terms of area, as one iterative receiver is
considered to perform both modes (TBICM-ID-SSD and
TBICM-SSD).
The rest of the article is organized as follows.

Section Systemmodel and algorithms presents the system
model with the associated parameters and gives a brief
description of the underlined algorithms for iterative
demapping and turbo decoding. Section Complexity eval-
uation and normalization presents an evaluation of the
receiver complexity in terms of number and type of arith-
metic operations and memory access. Section Number of
iterations analysis for identical complexity analyzes the
number of TBCIM-SSD and TBCIM-ID-SSD iterations
for identical complexity. Section Complexity analysis for
identical performance shows a complexity analysis for
identical TBCIM-SSD and TBCIM-ID-SSD error rate
performances. Finally, Section Conclusion concludes the
article.

Systemmodel and algorithms
This section describes the system model and the
considered parameters of the transmitter, channel, and
receiver of Figure 1. In addition, it gives a brief pre-
sentation of the underlined algorithms for the iterative
demapping and decoding.

Systemmodel
On the transmitter side, information bits U which are
called systematic bits are regrouped into symbols ui con-
sisting of q bits, and encoded with an q-binary turbo
encoder. It consists of a parallel concatenation of two iden-
tical convolutional codes (PCCC). The output codeword
C is then punctured to reach a desired coding rate Rc. We
consider in this work the 8-state double binary (q = 2) [8]
turbo code adopted in the WiMax standard.
In order to gain resilience against error bursts, the

resulting sequence is interleaved using an S-random inter-
leaver �2 with S = √

N/4. Punctured and interleaved bits
denoted by vi are then gray mapped to complex channel
symbols sq chosen from a 2M-ary constellation X, where
M is the number of bits per modulated symbol.
Applying the SSD consists first of the rotation of the

mapped symbols sq. The resulting rotated symbols are
denoted as sr,q. The performance gain obtained when
using a rotated constellation Xr depends on the choice of
the rotation angle. The optimum rotation angle depends

Figure 1 The systemmodel of the transmitter, channel, and TBICM-ID-SSD receiver.
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on the chosen modulation and channel type. In this
regard, a thorough analysis has been done for the 2nd-
generation terrestrial transmission system developed by
the DVB Project (DVB-T2) which adopted the rotated
constellation technique. A single rotation angle [7] has
been chosen for each constellation size independently of
the channel type. These angle values are presented in
Table 1 and are adopted in this work.
The second step when applying SSD at the transmitter

consists of signal space component interleaving. A simple
delay is introduced between the transmission of I and Q
components. Mapped and shifted symbols s′r,q are then
transmitted over a noisy and Rayleigh fast fading channel
with or without erasure. The erasure channel model has
been used in the case of the DVB-T2 standard to model
the destructive interferences caused by the existence of
a single-frequency network (SFN). Each received symbol
x′
r,q is affected by a different fading coefficient, an erasure
coefficient, and an additive Gaussian noise.
The channel model considered is a frequency non-

selective memoryless channel with erasure probability.
The received discrete time baseband complex signal can
be written as:

x′
r,q = hq.ρq.s′r,q + nq

= h′
q.s′r,q + nq (1)

where hq is the Rayleigh fast fading coefficient, ρq is the
erasure coefficient probability taking value 0 with a prob-
ability Pρ and value 1 with a probability of 1 − Pρ . nq
is a complex white Gaussian noise with spectral den-
sity N0/2 in each component axes, and h′

q is the channel
attenuation.

Max-log-map demapping algorithm
At the receiver side, the complex received symbols x′

r,q
have their Q-components re-shifted resulting in xr,q. An
extrinsic log-likelihood ratio Lext,Dem(ck,q/xr,q) is calcu-
lated for each bit ck,q corresponding to the kth bit of the
received rotated and modulated symbol xr,q. After de-
interleaving, de-puncturing and turbo decoding, extrinsic
information from the turbo decoder Lext,Dec(ck,q) is passed
through the interleaver, punctured and fed back as a
priori information Lapr,Dem(ck,q) to the demapper in
a turbo demapping scheme. The extrinsic information

Table 1 Rotation angle values in DVB-T2, adopted in this
work

Modulation Rotation angle (degrees)

QPSK 29

16-QAM 16.8

64-QAM 8.6

256-QAM 3.6

Lext,Dem(ck,q/xr,q) is the difference between the soft out-
put a posteriori LDem(ck,q/xr,q) and the soft input a priori
Lapr,Dem(ck,q) at the demapper side. It was originally com-
puted in [9] and given by the expression below:

Lext,Dem(ck,q/xr,q) = LDem(ck,q/xr,q) − Lapr,Dem(ck,q)

= log
(
Z1
Z2

)
(2)

Zl(l=0,1) can be expressed as:

Zl(l=0,1) =
∑

sr,j∈Xk
r,l

e−Aq .
M−1∏

i=0,i�=k
P(ci,q) (3)

where Xk
r,l, with l ∈ {0, 1}, are the symbol sets of the

constellation for which symbols have their kth bit equal
to l. P(ci,q) is the probability of the ith bit of constella-
tion symbol sr,q computed through a priori information
Lapr,Dem(ck,q). Reducing the complexity of the expres-
sions above can be performed by applying the max-log
approximation. Thus, Equation (2) can be written as [9]:

Lext,Dem(ck,q/xr,q)= min
sr,j∈Xk

r,0

(Aq−Bk,q)− min
sr,j∈Xk

r,1

(Aq−Bk,q)

(4)

where

Aq = h′2
q

σ 2 |xIr,q − sIr,j|2 + h′2
q−1
σ 2 |xQr,q − sQr,j|2 (5)

and

Bk,q =
⎛
⎝ M−1∑

i=0,ci,q=1
Lapr,Dem(ci,q)

⎞
⎠ − Lapr,Dem(ck,q) (6)

All demapping equations are valid for erasure and no
erasure channel. In fact, the channel coefficient h′

q will
take into consideration the erasure coefficient given by
the channel detector. These simplified expressions exhibit
three main computation steps: (a) Euclidean distance
computation referred by Aq, (b) a priori adder referred
by Bk,q, and (c) minimum finder referred by the min
operation of Equation (4).

Max-log-MAP decoding algorithm
Following the demapping function at the receiver side, the
turbo decoding is applied. The max-log-MAP algorithm
[10] is considered for the SISO convolutional decoders.
Using input symbols and a priori decoding information,
each SISO decoder computes extrinsic information. The
SISO decoder computes first the branch metrics γk . Then
it computes the forward αk and backward βk metrics
between two trellis states s and s′. Max-log-MAP decoding
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equations, originally proposed in [10], are expressed as
follows:

αk(s) = max
(s′ ,s)

(αk−1(s
′
) + γk(s

′
, s)) (7)

βk(s) = max
(s′ ,s)

(βk+1(s
′
) + γk+1(s

′
, s)) (8)

where

γk(s
′
, s) = γ

Sys
k (s

′
, s) + γ

Parity
k (s

′
, s) + γ Ext

k (s
′
, s) (9)

Finally the soft output so(dk = i) and extrinsic infor-
mation z(dk = i) of the kth coded symbol are computed
[10]:

so(dk = i)= max
(s′ ,s)/d(s′ ,s)=i

(
αk−1(s

′
)+γk(s

′
, s)+βk(s)

)
(10)

z(dk = i) = SF. max
(s′ ,s)/d(s′ ,s)=i

(
αk−1(s

′
) + γ Ext

k (s
′
, s) + βk(s)

)
(11)

where SF is the constant scale factor for the Max-Log-
MAP decoding algorithm.
In case of iterative demapping and only by one SISO

decoder, the bit-level extrinsic information of system-
atic symbols dk = cpcp+1 are computed using (12) and
(13). Similar computations are needed for parity symbols
cp+2cp+3.

Lapr,Dem(cp) = max[ z(dk = 11), z(dk = 10)]

− max[ z(dk = 01), z(dk = 00)] (12)

Lapr,Dem(cp+1) = max[ z(dk = 11), z(dk = 01)]

− max[ z(dk = 10), z(dk = 00)] (13)

These expressions exhibit three main computation
steps: (a) branch metrics computation referred by γk , (b)
state metrics computation referred by (αk and βk), and (c)
extrinsic information computation referred by Lapr,Dem
and z.

Complexity evaluation and normalization
In order to appreciate the complexity of the two itera-
tive modes, an accurate evaluation of the complexity in
terms of number and type of operations and memory
accesses is required. In this section, we consider the two
main blocks of the TBICM-SSD and TBICM-ID-SSD sys-
tem configurations which are the SISO demapper and the
SISO decoder. The proposed evaluation considers the low
complexity algorithms presented in Section Systemmodel
and algorithms.
This evaluation will be presented independently from

the architecture (serial, or shuffle, or parallel architecture).
It will be based on counting operations without quoting
prior SISO demapper and decoder implementation
results. A typical fixed-point representation of channel
inputs and various metrics is considered. Table 2

Table 2 Total number of required quantization bits for
each parameter of theMax-Log-MAP algorithms

Parameter Number of bits

SISO demapper

Received complex input (xIr,q , x
Q
r,q) (10,10)

Coeff. fading & variance (h′
q)/(σ ) 8

Constellation complex symbol (sIr,j , s
Q
r,j) (8,8)

Euclidean distance Aq 19

SISO decoder

Received 4 LLRs 4 × 5

Branch metric γk 10

State metric αk ,βk 10

Extrinsic information z 10

summarizes the total number of required quantization
bits for each parameter.

Complexity evaluation of SISO demapper
The complexity of SISO demapping depends on the
modulation order (in the context of the above fixed
parameters). In fact, for each received modulated sym-
bol xr,q composed of M coded bits, 2M Euclidean dis-
tances are computed. With iterative demapping, a priori
information coming from the decoder should be added
to the associated Euclidean distance. The minimum dis-
tance finder is then applied to search for the closest
symbol between the 2M constellation symbols. Thus, the
SISO demapper complexity is composed of three princi-
pal units: Euclidean distance, a priori adder, andminimum
finder functions. For each of these functions we will now
consider the equations of Section Max-log-map demap-
ping algorithm (1) the required number and type of arith-
metic computations and (2) the required number of read
memory access (load) and write memory access (store).
The result of this evaluation is summarized in Table 3
and explained below. We use the following notation
operation(NbOfBitsOfOperand1,NbOfBitsOfOperand2) for arith-
metic operations, and load(NbOfBits)/store(NbOfBits) for
read/write memory operations. Thus, add(8,10) indicates
an addition operation of two operands; one quantized
on 8 bits and the second on 10 bits. Similarly, load(8)
indicates a read access memory of 8-bit word length.

(1) Euclidean distance computation
For each modulated symbol (input of the demapper):

• One load(8) to access the fading channel
coefficient normalized by the channel variance h′

q
σ• Two load(10) to access the channel symbols xIr,q

and xQr,q.
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Table 3 Complexity evaluation of the SISO demapper and SISO decoder in terms of number and type of arithmetic
computations andmemory access

SISO rotated demapper with a priori input

Computation units Number and type of operations per modulated symbol per demapping iteration

Euclidean distance 2MAdd(18, 18) + 2M+1Sub(8, 10) + 2M+1Mul(18, 18) + 2M+1Mul(8, 10) + 2load(10) +
(1 + 2M+1)load(8)

A priori adder
(2M − 2){E[ M−1

2 ]Add(8, 8) + E[ M−1
4 ]Add(9, 9) + E[ M−1

8 ]Add(10, 10) + MSub(8, 11) +
MSub(11, 19)} + Mload(8) + (2M − 2)load(M)

For QPSKM(2M − 2)Sub(11, 19) + Mload(8) + (2M − 2)load(M)

Minimum finder MSub(8, 8) + M.2MSub(19, 19) + Mstore(8)

SISO double binary turbo decoder

Computation units Number and type of operations per coded symbol per turbo decoding iteration

Branch metric 4Add(5, 5) + 38Add(5, 10) + 4Sub(5, 5) + 8load(5) + 6load(10)

State metric 64Add(10, 10) + 48Sub(9, 9) + 8store(10)

Extrinsic information 32Add(10, 10) + 32Sub(9, 9) + 9Sub(10, 10) + 3Mul(4, 10) + 8load(10) + 5store(10)

• For each one of the 2M symbols of the
constellation (sIr,j, s

Q
r,j):

– Two load(8) to access the constellation
symbols sIr,j and sQr,j

– Two Sub(8,10) to compute (xIr,q − sIr,j)
and (xQr,q − sQr,j)

– Two Mul(8,10) to multiply with the
channel coefficients h′

q
σ
and

h′
q−1
σ

– Two Mul(18,18) to compute the square of
the results above

– One Add(18,18) to realize the sum of the
two Euclidean distance terms

(2) A priori adder
For each modulated symbol (input of the demapper):

• M load(8) to access the a priori information
Lapr,Dem(ci,q)

• For each one of the 2M symbols of the
constellation (sIr,j, s

Q
r,j), except two symbols

corresponding to all zeros and all ones:

– One load(M) to access constellation
symbol bits ci,q. i = 0, 1, . . . ,M − 1

– One addition of M a priori information
to compute

∑M−1
i=0,ci,q=1 Lapr,Dem(ci,q) of

Equation (6). Lapr,Dem(ci,q) are quantized
on 8 bits as shown in Table 2. This
addition of M operands is equivalent to
the sum of the following 2-input addition
operations:

∗ E[ M−1
2 ] Add(8,8) to realize the

sum of the couples of
Lapr,Dem(ci,q). Results are
quantized on 9 bits.

∗ E[ M−1
4 ] Add(9,9) to realize the

sum of the couples of the results
above. Results are quantized on
10 bits.

∗ E[ M−1
8 ] Add(10,10) to realize the

final 2-input addition of the
results above. Note that E[ M−1

8 ]
equals 0 except for QAM64 and
QAM256 where it is equal to 1.
The result is quantized on 11 bits.
E[ x] represents here the ordinary
rounding of the positive number
x to the nearest integer. Taking
the example of QAM16 (M = 4),
E[ M−1

2 ]=2, E[ M−1
4 ]=1,

E[ M−1
8 ]=0.

– M Sub(8,11) to subtract the LLR of the
specific kth bit and thus obtain Bk,q

– M Sub(11,19) to realize Aq − Bk,q

However, for the simple QPSK modulation the
above operations can be simplified as only two LLRs
exist for one modulated symbol. In fact, in Equation
(6) there is no need to execute an addition followed by
a subtraction of the same LLR. Thus, the total num-
ber of required arithmetic operations in this case is 4
Sub(11,19).

(3) Minimum finder
For each one of theM bits per modulated symbol:

• 2M Sub(19,19) to realize the two min operations
of Equation (4)

• One Sub(8,8) to subtract the above found two
minimum values

• One store(8) to store the extrinsic information
value
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Complexity evaluation of SISO decoder
The SISO decoder complexity is composed of three prin-
cipal units: branch metric, state metric, and extrinsic
information functions. As for the SISO demapper, the
result of the complexity evaluation is summarized in
Table 3 and explained below. As stated before, the con-
sidered turbo code is an 8-state double binary one. At the
turbo decoder side, each double binary symbol should be
decoded to take a decision over the four possible values
(00, 01, 10, 11).

(1) Branch metrics (γ )
For each coded symbol (input of the decoder):

• 4 load(5) to access systematic and parity LLRs
• 3 load(10) to access demapper normalized

extrinsic informations
• 2 Add(5,5) and 2 Sub(5,5) to compute systematic

and parity branch metrics γ
Sys
11 , γ Sys

10 , γ Parity
11 and

γ
Parity
10• 19 Add(5,10) to compute branch metrics γk and

γ
Sys
k + γ

Parity
k

Operations above should be multiplied by 2 to gener-
ate forward and backward branch metrics.

(2) State metrics (α,β)
For each coded symbol (input of the decoder):

• 32 Add(10,10) to compute αk−1(s
′
) + γk(s

′ , s) for
the 32 trellis transitions (8-state double binary
trellis)

• 24 Sub(9,9) to realize the 8 max (4-input)
operations of Equation (7). In fact, finding the
maximum of N values can be implemented as
N-1 max (2-input) operations

• 8 store(10) to store computed state metrics only
for left butterfly algorithm

Operations above should be multiplied by 2 to gener-
ate forward α and backward β state metrics.

(3) Extrinsic information (z)
For each coded symbol (input of the decoder):

• 8 load(10) to access state metric values
• 32 Add(10,10) to compute the second required

addition operation in Equation (10) for the 32
trellis transitions

• 28 Sub(9,9) to realize the 4 max (8-input)
operations of Equation (10)

• 4 Sub(10,10) to subtract symbol-level intrinsic
information from the computed soft value
(generating symbol-level extrinsic information)

• 8 Sub(9,9) and 4 Sub(10,10) to realize the 8 max
(2-input) operations and compute 4 bit-level
(systematic and parity) extrinsic information as
demapper a priori information (Equations (12)
and (13)). This computation is done only for one
of the two SISO decoders

• 4 store(10) to store the computed bit-level
(systematic and parity) extrinsic information

• 3 Sub(10,10) to normalize symbol-level extrinsic
information by subtracting the one related to
decision 00

• 3 Mul(4,10) to multiply the symbol-level extrinsic
information by a scaling factor SF

• 3 store(10) to store the computed DEC1

symbol-level extrinsic information as DEC2 a
priori symbol-level information

Complexity normalization
A fair comparison between the two modes (TBICM-SSD
and TBICM-ID-SSD) requires arithmetic and memory
access operations normalization. For arithmetic opera-
tions, normalization has been done in terms of 2-input
one bit full adders (Add(1,1)). Each one of the adders,
subtractors, and multipliers can be converted into equiv-
alent number of Add(1,1). For adders and subtractors,
bit-to-bit half and full adders are used and generalized
for operand sizes n1 and n2. Obtained formulas are sum-
marized in Table 4 with simple, yet accurate, analysis of
all corner cases. Similarly, multiplication operations are
normalized using successive addition operations.Memory
access operation ofmword of size n are normalized to one
memory access operation ofm × n bits.
Applying the proposed complexity normalization

approach to Table 3 leads to the results shown in Table 5.
This table summarizes the number of normalized opera-
tions required to process one modulated and one coded
symbol per iteration for all the functional units of the
SISO demapper and SISO decoder. Using this table, it
becomes possible to compare the complexity of these
heterogeneous components. As an example, the pro-
cessing of one symbol by the SISO decoder incurs a
complexity equivalent to 2104 Add(1,1), load(180) and
store(130) operations per iteration. On the other hand,
and considering a QPSK configuration (M = 2), the com-
plexity of the SISO demapper per modulated symbol per

Table 4 Normalization of basic arithmetic operations in
terms of Add(1,1) when n2 > n1
Arithmetic operations Normalized arithmetic operations

1 Add(n1, n2) 0.5 × (n1 + n2 − 1) Add(1, 1)

1 Sub(n1, n2) 0.5 × (n1 + n2) Add(1, 1)

1Mul(n1, n2) [(n1 − 1)(n2 − 1) + 1 − 0.5 × n1]Add(1, 1)
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Table 5 Complexity evaluation of the SISO demapper and SISO decoder in terms of number and type of arithmetic
computations andmemory access after normalization

SISO rotated demapper with a priori input

Computation units Number and type of operations per modulated symbol per demapping iteration

Euclidean distance 358.75 × 2M+1Add(1, 1) + load(28 + 2M+4)

A priori adder (2M − 2){7.5E[ M−1
2 ]+ 8.5E[ M−1

4 ] + 9.5E[ M−1
8 ] + 24.5.M}Add(1, 1) + load(8M) + load(M(2M − 2))

For QPSK 15M(2M − 2)Add(1, 1) + load(8.M + M(2M − 2))

Minimum finder (8 + 19.2M)MAdd(1, 1) + store(8.M)

SISO double binary turbo decoder

Computation units Number and type of operations per coded symbol per turbo decoding iteration

Branch metric 304Add(1, 1) + load(100)

State metric 1040Add(1, 1) + store(80)

Extrinsic information 760Add(1, 1) + load(80) + store(50)

iteration is equivalent to 1470 Add(1,1), load(116) and
store(16) operations. This table will thus enable us in the
following sections to compute and to compare the over-
all complexity of the TBICM-SSD and TBICM-ID-SSD
systems. It is worth noting from this table how the com-
plexity of SISO demapping depends on the modulation
orderM while that of SISO decoding is independent from
the system configuration.

Number of iterations analysis for identical
complexity
This section discusses and analyzes the complexity of the
two iterative modes at different modulation orders and
code rates. The first subsection defines the complexity
of each mode, while the second subsection analyzes the
required number of iterations assuming identical com-
plexity.

TBICM-SSD and TBICM-ID-SSD complexity definition
If the TBICM-SSD mode requires x iterations to pro-
cess a frame composed of NMSymb modulated symbols
(equivalent to NCSymb coded symbol), the complexity C1
for TBICM-SSD can be calculated as the sum of the
complexity of one demapping process and x decoding
processes.

C1 = C−
dem(M).NMSymb + xCdec.NCSymb (14)

where C−
dem(M) designates the complexity of processing

one modulated symbol, which depends on the constella-
tion size, without taking into consideration the a priori
computation, and Cdec designates the complexity of pro-
cessing one coded symbol.
Regarding the complexity of TBICM-ID-SSD, we con-

sider the work of [11] which proposes an original iteration
scheduling by reducing two demapping iterations with
reasonable performance loss of less than 0.15 dB for all

configurations. The authors have also shown that omit-
ting only one demapping iteration will keep the error
rate performance almost identical for number of iter-
ations y > 3. This latter scheme is adopted in this
work and we denote the required number of iterations
by yIDem zEIDec, where z designates the extra decoding
iterations.
Thus, the complexity C2 for TBICM-ID-SSD can be

calculated as the sum of the complexity of y demapping
processes and (y + z) decoding processes.

C2 = C−
dem(M).NMSymb + (y − 1)

× C+
dem(M).NMSymb + (y + z)Cdec.NCSymb (15)

where C+
dem(M) designates the complexity of processing

one modulated symbol taking into consideration the a
priori computation.
For the complexity evaluation of Cdec and Cdem(M), the

low complexity algorithms presented in Section System
model and algorithms were thoroughly analyzed.
Considering the code rate Rc and the number of bits per

modulated symbol M, the relation between the number
of double binary coded symbols (NCSymb) and the corre-
sponding number of modulated symbols (NMSymb) can be
written as follows.

NMSymb = 2.NCSymb

M.Rc
(16)

In addition to the modulation order and the code rate, a
third parameter should be considered regarding the iter-
ative demapping implementation choice. In this regard,
two configurations should be analyzed. In the first con-
figuration, denoted CASE 1, the Euclidean distances are
re-calculated at each demapping iteration. While in the
second configuration, denoted CASE 2, the computation
of the Euclidean distances are done only once, at the
first iteration, then stored and reused in later demap-
ping iterations. Thus, CASE 1 implies higher arithmetic
computations, however less memory access, than CASE 2.



Haddad et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:131 Page 8 of 12
http://asp.eurasipjournals.com/content/2012/1/131

Number of iterations for identical complexity
The final objective of this work is to illustrate for which
system configuration it is more interesting to use TBICM-
ID-SSD rather than TBICM-SSD. This means for which
system configuration the complexity of TBICM-ID-SSD
becomes lower than TBICM-SSD. Towards this objective,
we analyze in this subsection the corresponding num-
ber of iterations if both modes have identical complexity.
Identical complexity can be expressed as C1 = C2. Using
this equality and replacing C1 and C2 by their expres-
sions from equations (14) and (15) lead to the following
equation:

xCdec.NCSymb = (y − 1)C+
dem(M).NMSymb

+ (y + z)Cdec.NCSymb (17)

This last equation allows to obtain the number of
TBICM-ID-SSD iterations y = yLim corresponding to
identical complexity for both modes. In fact, by replacing
NMSymb with equivalent number of NCSymb (as expressed
in Equation (16)) and by simplifying, Equation (17)
becomes:

yLim = (x − z)Cdec + 2
M.Rc C

+
dem(M)

Cdec + 2
M.Rc C

+
dem(M)

(18)

This equation can be used to compute individually yLim
for identical arithmetic, identical read memory access or
identical write memory access operations.
If we consider x = 6, and for different modulation

orders and code rates, Table 6 shows the required number
of iterations yLim with no extra decoding iteration (z = 0).
yLim can have positive values as well as negative values.

Negative values mean that for the chosen configura-
tion, TBICM-ID-SSD has always a higher complexity
than TBICM-SSD. The positive values represent the lim-
its for which performing less demapping iterations will
lead to a lower complexity than TBCIM-SSD, and the
inverse is true. Hence, it might be possible to perform
less y iterations (y < yLim) with less complexity while
having the same error correction capability than TBICM-
SSD. In fact, Table 6 shows that this last situation can

potentially happen for QPSK and QAM16 configurations
where yLim varies in a higher range (between 2.9 and
5.8) than QAM64 andQAM256 configurations (most yLim
values are around 2 corresponding to identical arithmetic
operations). This analysis will be extended in the next
section taking into consideration error rate performance
simulations.

Complexity analysis for identical performance
The main motivation behind this analysis is to improve
the receiver implementation quality by choosing themode
with the less complexity depending on each system con-
figuration. In order to appreciate this study, an accurate
evaluation of the complexity in terms of number and
type of operations and memory access has been done
in Section Number of iterations analysis for identical
complexity.
TBICM-ID-SSD iterations, xIDec and yIDem respec-

tively, iterative processing at the demapper side is shown
to provide additional error correction [6]. Thus, for a
considered number of x iterations, identical error rate per-
formance results can be reached by using y iterations with
y < x.

Complexity analysis for a chosen x
Figure 2 shows a BER comparison between the two
iterative modes TBICM-SSD and TBICM-ID-SSD for two
configurations: (1) QPSK, code rate 4

5 , erasure probability
0.15 and (2) QAM64, code rate 2

3 , non erasure. These
parameters are chosen to represent clearly the two sets of
curves in the same figure, the same behavior is seen for
other configurations. The BER for x = 6 iterations and
for different configurations, can be seen as the result of
y = 3 and y = 4 iterations for erasure and non erasure
channel respectively. However, using results in [11], the
complexity of 4IDem could be reduced to 3IDem zEIDec
with z = 1.
On the other hand, Table 6 shows that for QPSK modu-

lation, the minimum number of required TBICM-ID-SSD
iterations yLim for all code rates and for identical required

Table 6 Required number of demapping iterations yLim for different modulation schemes and code rates to achieve
identical complexity (arithmetic operations, or read, or write access memory) as for x = 6 and z = 0

Modulation scheme CASE1 (with recomputed Euclidean distances) CASE2 (with stored Euclidean distances)

Rc = 1/2 Rc = 6/7 Rc = 1/2 Rc = 6/7
yLim yLim yLim yLim

Arith Load Store Arith Load Store Arith Load Store Arith Load Store

QPSK 4.2 4.4 5.5 4.8 4.9 5.7 5.6 4.2 4.9 5.8 4.8 5.3

QAM16 2.9 3.9 5.5 3.6 4.6 5.7 4.1 3.4 4.4 4.7 4 5

QAM64 1.8 2.8 5.5 2.2 3.4 5.7 2.4 2.2 2.7 2.9 2.8 4

QAM256 1.3 1.7 5.5 1.4 2.1 5.7 1.4 1.5 −2.9 1.7 1.8 0.6
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Figure 2 BER performance comparison between TBICM-SSD and TBICM-ID-SSD for the transmission of 1536 information bits frame over
Rayleigh fading channel with and without erasure. Different modulation schemes and code rates are considered, for 1 to 8 iterations.

arithmetic operations as 6IDec is yLim = 4.2 with z = 0.
So using y = 3 < 4.2 iterations will lead to less arithmetic
complexity, meanwhile it has the same error correction
capacity as illustrated in Figure 2 for (1).
Complexity improvements have been computed and

summarized in Tables 7 and 8. These tables resume the
achieved improvements comparing 6IDec to 3IDem
1EIDec and 3IDem 0EIDec respectively for all configura-
tions. In the following we will explain first how these val-
ues are computed and then discuss the obtained results.
The complexity reduction ratio (G) is defined as the

ratio of the difference in complexity between the two
iterative modes to the complexity of TBICM-SSD. It cor-
responds to the gain ratio of using TBICM-ID-SSD rather
than TBICM-SSD. G can be expressed as follows:

G = C1 − C2
C1

(19)

Using this equation and replacing C1 and C2 by their
expressions from Equations (14) and (15) lead to the
following equation:

G = (x − y − z)Cdec.NCSymb − (y − 1)C+
dem(M).NMSymb

xCdec.NCSymb + C−
dem(M).NMSymb

(20)

By replacing NMSymb with equivalent number of NCSymb
(as expressed in Equation (16)) and by simplifying,
Equation (20) becomes:

G = (x − y − z)Cdec − 2
M.Rc (y − 1)C+

dem(M)

xCdec + 2
M.Rc C

−
dem(M)

(21)

This last equation has been used to obtain individu-
ally the complexity reduction ratios of Tables 7 and 8

Table 7 Achieved reduction values in terms of number of operations, read/write access memory for considering
“3IDem 1EIDec” rather than “6IDec” for different modulation schemes, code rates and no erasure events

Modulation
scheme

CASE1 (with recomputed Euclidean distances) CASE2 (with stored Euclidean distances)

Rc = 1/2 Rc = 6/7 Rc = 1/2 Rc = 6/7
Complexity reduction Complexity reduction Complexity reduction Complexity reduction

Arith Load Store Arith Load Store Arith Load Store Arith Load Store

QPSK 13.5% 16.8% 28.6% 21.4% 23.5% 30.6% 28% 14% 19.1% 30.1% 21.8% 25%

QAM16 −15.6% 9.3% 28.6% 2.7% 18.9% 30.6% 10.7% −3.5% 9.5% 19.2% 11.2% 19.3%

QAM64 −89.5% −22.9% 28.6% −50.9% −1.5% 30.6% −35.8% −58.6% −22.3% −14% −23.7% 0.6%

QAM256 −207.4% −108.4% 28.6% −158.5% −62.3% 30.6% −117.9% −195.6% −124.1% −87.2% −121.1% −59.3%
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Table 8 Achieved reduction values in terms of number of operations, read/write access memory for considering
“3IDem 0EIDec” rather than “6IDec” for different modulation schemes, code rates and erasure events

Modulation
scheme

CASE1 (with recomputed Euclidean distances) CASE2 (with stored Euclidean distances)

Rc = 1/2 Rc = 6/7 Rc = 1/2 Rc = 6/7
Complexity reduction Complexity reduction Complexity reduction Complexity reduction

Arith Load Store Arith Load Store Arith Load Store Arith Load Store

QPSK 28.9% 32.6% 45% 37.2% 39.6% 47% 43.3% 29.8% 35.4% 45.9% 38% 41.4%

QAM16 −1.6% 24.9% 45% 17.7% 34.9% 47% 24.7% 12.1% 25.9% 34.2% 27.2% 35.8%

QAM64 −78.8% −8.6% 45% −38.3% 13.7% 47% −25.1% −44.3% −5.9% −1.5% −8.5% 17.1%

QAM256 −201.4% −97.2% 45% −150.4% −49.3% 47% −111.9% −184.4% −107.8% −79% −108.1% −42.8%

in terms of arithmetic, read memory access and write
memory access operations. Positive values correspond to
a decreasing in complexity, meanwhile negative values
correspond to a an increasing in complexity.
In the following, we analyze the values of Table 7 which

correspond to a no erasure channel. Similar behavior is
seen in Table 8 for erasure channel.
For CASE 1, results show improvements in terms of

number of arithmetic operations (up to 21.4%) and read
access memory (up to 23.5%) for QPSK scheme. Higher
modulation orders require the demapper to fetch symbols
from higher constellation memory sizes, which lead to
more complexity computations and memory accesses. An
increasing in complexity is shown for QAM256 in terms
of number of arithmetic operations (−207%) and read
access memory (−108%). Moreover, Equation (21) shows
that higher the code rate is, higher the benefits are. On
the other hand, the improvements in write memory access

(28.6% for Rc = 1/2 and 30.6% for Rc = 6/7) are positive
for all modulations orders.
In fact, in the SISO demapper, write memory access

is required only to store the extrinsic information which
is composed of M × 8 bits. This term is required per
modulated symbol and when converted to the equiv-
alent number per coded symbol (Equation (16)) for a
fixed code rate, a constant value independent from M is
obtained.
Similar behavior is shown for CASE 2, except for

two points. The first one concerns the improvements
in arithmetic operations and read memory access. In
fact, compared to CASE 1, this configuration implies
less arithmetic and more memory access operations in
the SISO demapper which lead to more benefits for the
former operations and less benefits for the latter (Equation
(21)). The second point concerns the benefits in write
memory access. In fact, besides the term M × 8 bits, a

Figure 3 BER performance comparison between TBICM-SSD and TBICM-ID-SSD as a function of number of iterations for the transmission
of 1536 information bits frame over Rayleigh fading channel with erasure probability equals to 0.15. QPSK modulation scheme with code
rate 4

5 and Eb/N0=9.5 dB are considered.
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Table 9 Equivalent number of TBICM-ID-SSD iterations y
for a considered TBICM-SSD x iterations to achieve
identical BER performances for QPSK, code rate 4

5 and
erasure probability equals to 0.15

x 1 2 3 4 5 6 7 8

y 1 1.7 2.2 2.5 2.75 2.9 2.95 3

value of 19 × 2M is required to store the 2M Euclidean
distances quantized on 19 bits each. Therefore the bene-
fits in write access memory operations will be less for high
constellation sizes.
Taking an example of QAM64 and code rate 6

7 for
CASE 1 with no erasure. Table 8 shows an increasing in
complexity in terms of arithmetic operations (−38.3%),
meanwhile positive ratios are seen for read/write access
memory. However, it should be noted that the num-
ber of required memory access are much less than the
arithmetic operations. Thus, those latter are considered
as the primary criteria for choosing between the two
modes.
We can conclude from the results above that using

TBICM-ID-SSD rather than TBICM-SSD for QPSK and
QAM16 orders will lead to a significant complexity reduc-
tion for almost all code rates.
Finally, as the proposed adaptive iterative receiver

targets to reduce the overall normalized processing com-
plexity, this should lead a priori to improved power con-
sumption, throughput and latency. However, analyzing
the detailed gains in terms of throughput and latency
depends on the heterogeneous architecture and the par-
allelism degree of the considered demapper and decoder
algorithms.

Complexity analysis for different values of x
The second part of this study is to look to the gains for
different values of x. To that end, and for presentation
simplicity, we consider one system configuration which
corresponds to QPSK, code rate 4

5 and erasure probability
0.15.
Figure 3 illustrates the BER performance for bothmodes

as a function of the number of iterations at Eb/N0=9.5 dB.
From this figure, we obtain Table 9 which illustrates the
equivalent y iterations for different x values for identical
error rate performances.
Using Table 9 and Equation (21), we obtain the complex-

ity reduction curves of Figure 4. Only CASE 2 is consid-
ered for presentation simplicity, however the results are
similar for CASE 1. The curves of Figure 4 show the vari-
ation of the benefits in number of arithmetic operations,
read and write memory access as a function of the number
of iterations x. In fact, Table 9 shows that for TBICM-SSD
number of iterations x = 1 the corresponding number
of TBICM-ID-SSD iterations y = 1. This corresponds to
no feedback loop to the demapper, and thus, to identical
complexity of the two modes TBICM-SSD and TBICM-
ID-SSD. This result is illustrated by Figure 4 where the
complexity reduction ratioG = 0 for x = 1. For x = 2, the
complexity reduction in terms of arithmetic operations
and read access memory is about 10 and 2%, respectively.
However, an increased need of write access memory is
shown. This is due to the added complexity for storing the
2M Euclidean distances computed at the first iteration.
In fact, the difference in equivalent number of iterations
x and y is not big enough to recover this memory write
access overhead. However, for x > 2, this difference
becomes significant and the complexity reduction ratio
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increases almost linearly with x to reach between 50 to
60% for x = 8. This can be explained from Table 9 where
increasing x will increase y but with less speed to attain
identical error rate performances.

Conclusion
In this article we have proposed a complexity adaptive
iterative receiver performing TBICM-ID-SSD. For low
and medium constellation sizes, feedback to the SISO
demapper has shown to reduce the complexity in terms
of computation and access memory at the receiver side
for identical error rate performances. This constitutes a
very interesting result as it demonstrates the opposite
of what is commonly assumed. In fact, the number of
normalized arithmetic operations is reduced in a range
between 28.9 and 45.9% for QPSK configuration for using
TBICM-ID-SSD rather than TBICM-SSD with 6 itera-
tions over fading channel with erasures. Similarly, the
number of read/write access memory is reduced in a
range between 29.8% and 47%. This complexity reduction
increases significantly for higher turbo decoding iterations
and reduces consequently the power consumption of the
iterative receiver. On the other had, for high modulation
orders, as for QAM64 and QAM256, the TBICM-ID-SSD
receiver should be configured in TBICM-SSDmode which
provide less complexity for identical error rate perfor-
mances.
Finally, it is worth to note that for very low error rates,

TBICM-ID-SSD configuration should be used as it pro-
vides more error correction in the error floor region.
Future work targets the extension of this analysis to other
baseband iterative applications and its integration into
available hardware prototypes.
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