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Abstract
In this paper, we develop existence and stability theorems for strong vector set-valued
equilibrium problems in reflexive Banach spaces. Based on asymptotic cone theory,
we present the equivalent characterizations on the nonemptiness and boundedness
of the solution set for strong vector set-valued equilibrium problems. Furthermore,
stability results are established for strong vector set-valued equilibrium problems,
when both the mapping and the constraint set are perturbed by different parameters.

MSC: 49K30; 90C29

Keywords: strong vector set-valued equilibrium problems; nonemptiness and
boundedness; stability analysis

1 Introduction
Let X be a real reflexive Banach space with its dual space X∗ and K ⊆ X be a closed set.
Let F : K × K → R be a real-valued bifunction. The equilibrium problems (for short EP)
is to find x̄ ∈ K such that

(EP) F(x̄, y) ≥ , ∀y ∈ K .

The equilibrium problems play an important role in economics, finance, image recon-
struction, ecology, transportation, network, and so on (see, e.g., [–]). Later, many re-
searchers extended (EP) to the vector set-valued case in different ways; see [–] and the
references therein.

Let F : K × K → Y be a set-valued mapping, where Y is a real normed space with an
ordered cone C, that is, a pointed, closed, and convex cone. It is well known that weak
vector set-valued equilibrium problems (for short WVSEP) include two basic types. The
first type is to find x̄ ∈ K such that

(FWVSEP) F(x̄, y) � – int C, ∀y ∈ K .

The second type is to find x̄ ∈ K such that

(SWVSEP) F(x̄, y) ∩ – int C = ∅, ∀y ∈ K ,

where int C denotes the interior of C.
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It is worth noting that strong vector set-valued equilibrium problems (for short SVSEP)
include two basic types, too. The first type is to find x̄ ∈ K such that

(FSVSEP) F(x̄, y) ⊆ C, ∀y ∈ K .

The second type is to find x̄ ∈ K such that

(SSVSEP) F(x̄, y) ∩ C 
= ∅, ∀y ∈ K .

The issues of nonemptiness and boundedness of the solution set are among the most in-
teresting and important problems in the theory of (WVSEP), as they can guarantee the
weak convergence of some solution algorithms [, ] in infinite dimensional spaces. For
(FWVSEP), based on dual formulations, Ansari et al. [, ] proved the existence theo-
rems under generalized pseudomonotonicity conditions. For (SWVSEP), several neces-
sary and/or sufficient conditions for the solution set to be nonempty and bounded were
established in [, ]. Furthermore, the semicontinuity and connectedness of (approxi-
mate) solution sets can be found in [–] for weak vector set-valued equilibrium prob-
lems. On the other hand, if int C = ∅, then (WVSEP) cannot be studied. It is well known
that for the classical Banach spaces lp, Lp, where  < p < +∞, the standard ordered cone
has an empty interior []. Thus, for C-monotone-type (SVSEP), finding sufficient and/or
necessary conditions for the nonemptiness and boundedness of the solution set is very
important. To our knowledge, existence results proposed in [] can be considered as a
pioneering work for (SVSEP). Characterizations of nonemptiness and boundedness of the
solution set for strong vector equilibrium problems were derived in different spaces [,
]. Recently, Long et al. [] obtained the existence theorems for the generalized strong
vector quasi-equilibrium problems by the Kakutani-Fan-Glicksberg fixed point theorem
on compact sets. For (FSVSEP), on noncompact sets, Wang et al. [] obtained some ex-
istence theorems by virtue of the Brouwer fixed point theorem in general real Hausdorff
topological vector spaces. Since the characterizations of nonemptiness and boundedness
of the solution set for strong vector equilibrium problems can be derived when F is a
single-valued map, it is natural to ask whether characterizations on nonemptiness and
boundedness of the solution set for (SVSEP) can be obtained in the case that F is multi-
valued, which constitutes the motivation of this article. In this paper, we present equivalent
characterizations on the nonemptiness and boundedness of the solution set for (SVSEP)
by means of the asymptotic cone theory in which the decision space is a real reflexive
Banach space. Then we apply the equivalent characterizations to establish the stability
theorems for (SVSEP) on a noncompact set, when both the mapping and the constraint
set are perturbed by different parameters.

The rest of the paper is organized as follows. In Section , we introduce some basic
notations and preliminary results. In Section , under suitable conditions we investigate
the equivalence between the nonemptiness and boundedness of the solution set and the
asymptotic cone R = {} for (SSVSEP). Stability results are presented for (SVSEP) on a
noncompact set, when both the mapping and the constraint set are perturbed by different
parameters in Section . Our results generalize and extend some results of [–, –,
–] in some sense.
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2 Notations and preliminaries
In this section, we introduce some basic notations and preliminary results.

Consider the following modeling: The first type strong vector set-valued equilibrium
problems, abbreviated by (FSVSEP), is to find x̄ ∈ K such that

(FSVSEP) F(x̄, y) ⊆ C, ∀y ∈ K .

For (FSVSEP), its dual problem is to find x̄ ∈ K such that

(DFSVSEP) F(y, x̄) ⊆ –C, ∀y ∈ K .

We denote the solution set of (FSVSEP) and the solution set of (DFSVSEP) by SSK and
SSD

K , respectively.
The second type strong vector set-valued equilibrium problems, abbreviated by

(SSVSEP), is to find x̄ ∈ K such that

(SSVSEP) F(x̄, y) ∩ C 
= ∅, ∀y ∈ K .

For (SSVSEP), its dual problem is to find x̄ ∈ K such that

(DSSVSEP) F(y, x̄) ∩ –C 
= ∅, ∀y ∈ K .

We denote the solution set of (SSVSEP) and the solution set of (DSSVSEP) by SK and SD
K ,

respectively.
It is easy to see SSK ⊆ SK and SSD

K ⊆ SD
K .

Definition . [] Let K be a nonempty, closed, and convex subset of a real reflexive
Banach space X with dual space X∗. The dual cone K∗ of K is defined as

K∗ =
{

x∗ ∈ X∗ :
〈
x∗, x

〉 ≥ ,∀x ∈ K
}

.

It is well known that

int K∗ =
{

x∗ ∈ X∗ :
〈
x∗, x

〉
> ,∀x ∈ K\{}},

where ‘int’ means the interior of a set. The asymptotic cone K∞ and the barrier cone
barr(K) of K are, respectively, defined by

K∞ =
{

d ∈ X
∣∣∣ ∃tk → +∞,∃xk ∈ K with

xk

tk
⇀ d

}

and

barr(K) =
{

x∗ ∈ X∗ ∣∣ sup
x∈K

〈
x∗, x

〉
< +∞

}
,

where ⇀ stands for the weak convergence.
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The asymptotic cone K∞ has the following useful properties.

Lemma . [] Let K ⊂ X be nonempty and closed. Then the following conclusions hold:
(i) K∞ is a closed cone.

(ii) If K is convex, then K∞ = {d ∈ X | x + td ∈ K ,∀t > }, for all x ∈ K .
(iii) If K is a convex cone, then K∞ = K .

The following result can be found in Proposition . of [] showing the property of K .

Lemma . Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space X. If barr(K) has a nonempty interior, then there does not exist {xn} ⊆ K with ‖xn‖ →
+∞ such that the origin is a weak limit of { xn

‖xn‖ }. If K is a cone, then there does not exist
{dn} ⊂ K with each ‖dn‖ =  such that dn ⇀ .

To obtain the characterization of the solution sets for (SSVSEP) and (FSVSEP), we recall
generalized monotonicity and generalized convexity [].

Definition . [] Let K be a nonempty, closed, and convex subset of X. A mapping
F : K × K → Y is said to be

(i) type I C-pseudomonotone if, for all x, y ∈ K ,

F(x, y) ⊆ C ⇒ F(y, x) ⊆ –C;

(ii) type II C-pseudomonotone if, for all x, y ∈ K ,

F(x, y) ∩ C 
= ∅ ⇒ F(y, x) ∩ –C 
= ∅.

It is easy to verify that type I C-pseudomonotonicity implies type II C-pseudomonoton-
icity. However, the converse is not true.

Example . Let X = R, K = [, +∞), Y = R, C = R
+. Let F : K × K → Y be defined by

F(x, y) =

{
[–|y – x|, |y – x|], ∀x, y ∈ [, +∞),
[–, ], ∀x, y ∈ [, +∞).

Clearly, its dual is

F(y, x) =

{
[–|x – y|, |x – y|], ∀x, y ∈ [, +∞),
[–, ], ∀x, y ∈ [, +∞).

For all x, y ∈ K , we have

F(x, y) ∩ C 
= ∅ ⇒ F(y, x) ∩ –C 
= ∅.

However, we cannot find x, y ∈ K such that

F(x, y) ⊆ C.

Thus, F is not type I C-pseudomonotone.
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Definition . [] The mapping F : K × K → Y is said to be strongly
(i) type I C-diagonally quasi-convex in the first argument if, for any finite

{x, x, . . . , xn} ⊆ K and any ti ≥  with
∑n

i= ti = , x =
∑n

i= tixi, and for some
xi ∈ K , one has

F(xi, x) ⊆ –C;

(ii) type II C-diagonally quasi-convex in the first argument if, for any finite
{x, x, . . . , xn} ⊆ K and any ti ≥  with

∑n
i= ti = , x =

∑n
i= tixi, and for some

xi ∈ K , one has

F(xi, x) ∩ –C 
= ∅;

(iii) C-convex in the second argument if, for any y, y ∈ K and t ∈ (, ), one has

tF(x, y) + ( – t)F(x, y) ⊆ F
(
x, ty + ( – t)y

)
+ C.

The following lemma is the well-known KKM theorem, we refer the reader to Lemma 
of [].

Lemma . [] Let K ⊆ X be a nonempty convex of a topological vector space X and
F : K → X be a set-valued mapping from K into X satisfying the following properties:

(i) F is a KKM mapping: For every finite subset A of E, co(A) ⊆ ⋃
x∈A F(x), where co(·)

stands for the convex hull;
(ii) F(x) is closed in X for every x ∈ K ;

(iii) F(x) is compact in X for some x ∈ K .
Then

⋂
x∈K F(x) 
= ∅.

3 The nonemptiness and boundedness of the solution sets for (FSVSEP) and
(SSVSEP)

In this section, we present the equivalent characterizations of the solution set for strong
vector set-valued equilibrium problems to be nonempty and bounded based on asymp-
totic cone theory.

Theorem . Let K be a nonempty, closed, and convex subset of X with int(barr(K)) 
= ∅.
Suppose that F : K × K → Y satisfies the following:

(i) F is type II C-pseudomonotone and F(x, x) ⊂ C ∩ –C, ∀x ∈ K ;
(ii) the set {x ∈ K : F(x, y) ∩ C 
= ∅} is closed for any y ∈ K and F is strongly type II

C-diagonally quasi-convex in the first argument;
(iii) the set {y ∈ K : F(x, y) ∩ –C 
= ∅} is closed for any x ∈ K and F is C-convex in the

second argument.
Then the following statements are equivalent:

(I) (SSVSEP) has a nonempty, convex, closed, and bounded solution set;
(II) (DSSVSEP) has a nonempty, convex, closed, and bounded solution set;

(III) R = {d ∈ K∞ : F(y, y + td) ∩ –C 
= ∅,∀y ∈ K , t > } = {};
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(IV) there exists a bounded set D ⊂ K such that for every x ∈ K\D, there exists some
y ∈ D such that

F(y, x) ∩ –C = ∅.

Proof (I) ⇔ (II). Suppose that (SSVSEP) has a nonempty, convex, closed, and bounded
solution set. By the type II C-pseudomonotonity of F , we obtain SK ⊆ SD

K .
On the other hand, let us verify SD

K ⊆ SK . Take any x∗ ∈ SD
K , obviously

F
(
y, x∗) ∩ –C 
= ∅. (.)

For every y ∈ K , consider xt = x∗ + t(y – x∗), ∀t ∈ (, ). Clearly, xt ∈ K . The C-convexity of
F(xt , ·) implies that

( – t)F
(
xt , x∗) + tF(xt , y) ⊆ F(xt , xt) + C ⊆ C + C ⊆ C. (.)

Let us by contradiction show tF(xt , y) ∩ C 
= ∅. Suppose the contrary, then tF(xt , y) ⊆ Y\C.
Consequently,

( – t)F
(
xt , x∗) ⊆ Y\ – C + C ⊆ Y\ – C,

which contradicts (.). Noting that Y\C is a cone, we deduce

F(xt , y) ∩ C 
= ∅. (.)

By assumption (ii), letting t →  in (.), one has

F
(
x∗, y

) ∩ C 
= ∅, ∀y ∈ K .

Hence, (SSVSEP) has a nonempty, convex, closed, and bounded solution set if and only if
(DSSVSEP) has a nonempty, convex, closed, and bounded solution set.

(II) ⇒ (III). We know

SD
K =

⋂

y∈K

{
x ∈ K : F(y, x) ∩ –C 
= ∅}

.

For fixed y ∈ K , one has

S(y) =
{

x ∈ K : F(y, x) ∩ –C 
= ∅}
,

SD
K =

⋂

y∈K

K ∩ S(y).

Since (DSSVSEP) has a nonempty, convex, closed, and bounded solution set, we have

(
SD

K
)∞ =

(⋂

y∈K

K ∩ S(y)
)∞

=
⋂

y∈K

(
K ∩ S(y)

)∞ =
⋂

y∈K

K∞ ∩ S(y)∞.
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On the other hand, one has

{
d ∈ K∞ : F(y, y + td) ∩ –C 
= ∅,∀y ∈ K , t > 

}

=
⋂

y∈K

{
d ∈ K∞ : F(y, y + td) ∩ –C 
= ∅,∀t > 

}

=
⋂

y∈K

{
d ∈ K∞ : y + td ∈ S(y),∀t > 

}

=
⋂

y∈K

{
d ∈ K∞ : d ∈ S(y)∞

}
=

⋂

y∈K

K∞ ∩ S(y)∞.

Thus, (III) holds.
(III) ⇒ (IV). If (III) does not hold, then there exists a sequence {xn} ⊂ K such that n <

‖xn‖ with

F(y, xn) ∩ –C 
= ∅,

for y ∈ K with ‖y‖ ≤ n. For fixed y ∈ K and t > , without loss of generality, we may take a
subsequence {xnk } of {xn} such that

t
‖xnk – y‖ ∈ (, ), lim

k→+∞
xnk – y

‖xnk – y‖ = lim
k→+∞

xnk

‖xnk ‖
⇀ d ∈ K∞.

Noting that X is a reflexive Banach space and int(barr(K)) 
= ∅, from Lemma ., we have
d 
= . The C-convexity of F(x, ·) implies

(
 –

t
‖(xnk – y)‖

)
F(y, y) +

t
‖(xnk – y)‖F(y, xnk ) ⊆ F

(
y, y +

t(xnk – y)
‖(xnk – y)‖

)
+ C.

From F(y, y) ⊆ C and F(y, xnk ) ∩ –C 
= ∅, one has

F
(

y, y +
t(xnk – y)
‖(xnk – y)‖

)
∩ –C 
= ∅. (.)

By assumption (iii), letting t →  in (.), we obtain

F(y, y + td) ∩ –C 
= ∅,

which contradicts (III). So (IV) holds.
(IV) ⇒ (II). Set M : K × K → K by

M(y) =
{

x ∈ K : F(y, x) ∩ –C 
= ∅}
, ∀y ∈ K .

It is easy to verify that M(y) is a closed subset of K . We shall show that M is a KKM
mapping. We may assume that D is a bounded, closed, and convex set (otherwise, consider
the closed convex hull of D instead of D). Let {y, . . . , ym} be finite number of points in K
and let L = co(D ∪ {y, . . . , ym}). So, L is a weakly compact convex set, since X is a reflexive
Banach space. Consider the set-valued mapping M(y) defined by

M(y) =
{

x ∈ L : F(y, x) ∩ –C 
= ∅}
, ∀y ∈ L.
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Obviously, M(y) is a weakly compact convex subset of L. We claim M(y) has the finite
intersection property.

Indeed, for all {x, x . . . , xp} ⊂ L,
∑p

ti
= , ti ≥ , and x̄ =

∑p
i= tixi, it follows from as-

sumption (ii) that there exists xi ∈ L such that

F(xi, x̄) ∩ –C 
= ∅,

namely, x̄ ∈ ⋃p
i= M(xi). Hence, M(y) has the finite intersection property. Noting that M(y)

has the finite intersection property and M(y) is a weakly compact convex subset, we obtain,
from Lemma .

∅ 
=
⋂

y∈L

M(y). (.)

Let x̄ ∈ ⋂
y∈L M(y), we have

F(y, x̄) ∩ –C 
= ∅, ∀y ∈ L. (.)

We assert that x̄ ∈ D. Suppose to the contrary that if there exists some x̄ ∈ M(y) but x̄ /∈ D,
by the assumption (IV), one has

F(y, x̄) ∩ –C = ∅, for some y ∈ D.

Consequently, x̄ /∈ M(y), which is a contradiction with (.). Thus,

∅ 
=
⋂

y∈L

M(y) ⊂ D. (.)

For x̄ ∈ ⋂
y∈L M(y), by (.), we deduce x̄ ∈ ⋂m

i=(M(yi) ∩ D), which implies the collection
{M(y) ∩ D : y ∈ K} has the finite intersection property. Since for each y ∈ K , (M(y) ∩ D)
is weakly compact, it follows from Lemma . that

⋂
y∈K (M(y) ∩ D) 
= ∅, which coincides

with the solution set of (DSSVSEP). Notice that

SD
K =

⋂

y∈K

{
x ∈ K : F(y, x) ∩ –C 
= ∅}

.

From assumption (iii), it is easy to see that SD
K is closed. Next, we shall show that SD

K is
convex. For all x, x ∈ SD

K and t ∈ [, ], from the C-convexity of F(y, ·), we have

tF(y, x) + ( – t)F(y, x) ⊆ F
(
y, tx + ( – t)x

)
+ C.

It is easy to verify F(y, tx + ( – t)x) ∩ –C 
= ∅. Thus, (DSSVSEP) has a nonempty, convex,
closed, and bounded solution set. �

Remark . When F is a single-valued and C = R
+, a similar result to (III) can be obtained

in [] for equilibrium problems and in [] for the variational inequality. Furthermore, if D
is closed, convex, and bounded, the result (IV) was proved in [] for equilibrium problems.
It is worth to stress that Theorem . is a new result for (SSVSEP), since similar results
cannot be found in [, ].
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Now by the following example we illustrate Theorem ..

Example . Let X = R, K = [, +∞), Y = R, C = R
+. Let F : K × K → Y be defined by

F(x, y) =

{
[–(y – x), y – x], ∀x, y ∈ [, +∞),
〈x, y – x〉, ∀x, y ∈ [, +∞).

Clearly, its dual problem is

F(y, x) =

{
[–(x – y), (x – y)], ∀x, y ∈ [, +∞),
〈y, x – y〉, ∀x, y ∈ [, +∞).

It is easy to see that assumptions (i)-(iii) are satisfied. We can verify that (I) ⇔ (II), that is,
SK = SD

K = {}; (III) holds, namely, R = {}; and if we take the bounded set {} = D ⊂ K ,
then (IV) is true.

Similar to the proof of Theorem ., the following result holds for (FSVSEP).

Theorem . Let K be a nonempty, closed, and convex subset of X with int barr(K) 
= ∅.
Suppose that F : K × K → Y satisfies the following:

(i) F is type I C-pseudomonotone and F(x, x) ⊂ C ∩ –C, ∀x ∈ K ;
(ii) the set {x ∈ K : F(x, y) ⊆ C} is closed for any y ∈ K and F is strongly type I

C-diagonally quasi-convex in the first argument;
(iii) the set {y ∈ K : F(x, y) ⊆ –C} is closed for any x ∈ K and F is C-convex in the second

argument.
Then the following statements are equivalent:

(I) (FSVSEP) has a nonempty, convex, closed, and bounded solution set;
(II) (DFSVSEP) has a nonempty, convex, closed, and bounded solution set;

(III) R = {d ∈ K∞ : F(y, y + td) ⊆ –C,∀y ∈ K , t > } = {};
(IV) there exists a bounded set D ⊂ K such that for every x ∈ K\D, there exists some

y ∈ D such that

F(y, x) � –C.

4 Stability analysis for (FSVSEP) and (SSVSEP)
In this section, we shall establish the stability theorems for (FSVSEP) and (SSVSEP) when
the mapping F and the domain set K are simultaneously perturbed by different parame-
ters. We take (SSVSEP) and (DSSVSEP) as examples to present the stability theorems.

First recall some important notions and results. Let (Z, d) and (Z, d) be two metric
spaces. Let K(p) be perturbed by a parameter p, which varies over (Z, d), that is, K : Z →
X is a set-valued mapping with nonempty, closed, and convex values. Let F be perturbed
by a parameter z, which varies over (Z, d), that is, F : Z × K × K → Y is a parametric
set-valued mapping.

Consider the perturbed second type strong vector set-valued equilibrium problems, de-
noted by (PSSVSEP), which consists in finding x̄ ∈ K(p) such that

(PSSVSEP) F(z, x̄, y) ∩ C 
= ∅, ∀y ∈ K(p).
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Its dual problem is to find x̄ ∈ K(p) such that

(PDSSVSEP) F(z, y, x̄) ∩ –C 
= ∅, ∀y ∈ K(p).

We denote the solution set of (PSSVSEP) and solution set of (PDSSVSEP) by SK (p)(z) and
SD

K (p)(z), respectively.

Definition . Let X and Y be topological spaces. A set-valued mapping T : X → Y is
said to be

(i) upper semicontinuous at x ∈ X if and if only, for any neighborhood U(T(x)) of
T(x), there exists a neighborhood U(x) of x such that

T(x) ⊂ U
(
T(x)

)
, ∀x ∈ U(x);

(ii) lower semicontinuous at x ∈ X if and if only, for any y ∈ T(x) and any
neighborhood U(y) of y, there exists a neighborhood U(x) of x such that

T(x) ∩ U(y) 
= ∅, ∀x ∈ U(x);

(iii) continuous at x if and if only it is both upper and lower semicontinuous at x.

It is evident that T is lower semicontinuous at x ∈ Y if and if only, for any net {xβ} with
xβ → x and y ∈ T(x), there exists a net {yβ} with yβ ∈ T(xβ ) such that yβ → y.

The following lemma will be useful for proving our results.

Lemma . [] Let (Z, d) be a metric space and u ∈ Z be a given point. Let L : Z → X

be a set-valued mapping with nonempty values and be upper semicontinuous at u. Then
there exists a neighborhood U of u such that L(u)∞ ⊂ L(u)∞ for all u ∈ U .

Theorem . Let (Z, d), (Z, d) be metric spaces and let K : Z → X be a set-valued
mapping with nonempty, closed, and convex values. Suppose that

(i) K(p) is continuous at p and int(barr K(p)) 
= ∅, ∀p ∈ Z;
(ii) F(z, x, x) ⊆ C ∩ –C, ∀x ∈ K(p), z ∈ Z;

(iii) the set {(z, y) ∈ (Z, K(p)) : F(z, x, y) ∩ –C 
= ∅} is closed for any x ∈ K(p); F is
C-convex in the third argument for any x ∈ K(p) and z ∈ Z, and F is strongly type II
C-diagonally quasi-convex in the second argument for any z ∈ Z, y ∈ K(p);

(iv) SD
K (p)(z) is nonempty and bounded.

Then
(I) there exists a neighborhood U × U of (p, z) such that (PDSSVSEP) has a

nonempty and bounded solution set for all (p, z) ∈ (U, U);
(II) lim sup(p,z)→(p,z) SD

K (p)(z) ⊆ SD
K (p)(z).

Proof Since SD
K (p)(z) is nonempty and bounded, from Theorem ., we deduce

R(p) =
⋂

y∈K (p)

{
d ∈ K(p)∞ : F(z, y, y + td) ∩ –C 
= ∅, t > 

}
= {}. (.)
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We claim that there exists a neighborhood (U, U) of (p, z) such that

R(p) =
⋂

y∈K (p)

{
d ∈ K(p)∞ : F(z, y, y + td) ∩ –C 
= ∅, t > 

}
= {}.

Assume by contradiction that there exists (pn, zn) → (p, z) such that R(pn) 
= {}. Noting
that K is lower semicontinuous at p, for any y ∈ K(p), we have yn ∈ K(pn) such that
yn → y. Together with zn → z, we have (yn, zn) → (y, z). Thus, we can select a sequence
{dn} such that

⋂

y∈K (pn)

{
dn ∈ K(pn)∞ : F(zn, yn, yn + tdn) ∩ –C 
= ∅, t > 

}
, (.)

with ‖dn‖ =  for all n = , , . . . , n. As X is reflexive, without loss of generality, we can as-
sume that dn ⇀ d. It follows from Lemma . that d 
= . We claim that d ∈ K(p)∞.
Since K is upper semicontinuous at p and dn ∈ K(pn)∞, from Lemma ., one has
dn ∈ K(p)∞, for all sufficiently large n. By the closure of K(p)∞, we have d ∈ K(p)∞.
Noticing assumption (iii), taking the limit in (.), we have

F(z, y, y + td) ∩ –C 
= ∅,

which contradicts (.). Thus, the result (I) holds.
For the result (II), we need to prove that for any (p, z) → (p, z),

lim sup
(p,z)→(p,z)

SD
K (p)(z) ⊆ SD

K (p)(z).

Let x ∈ lim sup(p,z)→(p,z) SD
K (p)(z). Then there exists a sequence xnk ∈ SD

K (pnk )(znk ) such that
xnk ⇀ x as k ∈ ∞. Since K is upper semicontinuous at p, we obtain

K(pn) ⊂ K(p) +

n

B, for all sufficiently large n,

where B denotes the closed unit ball. This together with xnk ∈ K(pnk ) implies that

d
(
xnk , K(p)

) ≤ 
nk

→ .

Since xnk ⇀ x and K(p) is closed and convex, one has x ∈ K(p).
For any y ∈ K(p), it follows from the lower semicontinuity of K at p that there exists

yn ∈ K(pn) with yn → y. By the assumption xnk ∈ SD
K (pnk )(znk ), we have

F(zn, yn, xn) ∩ –C 
= ∅. (.)

From assumption (iii), taking the limit in (.), one has

F(z, y, x) ∩ –C 
= ∅.

This yields x ∈ SD
K (p)(z). �



Wang Journal of Inequalities and Applications  (2015) 2015:239 Page 12 of 14

Remark .
(i) In Theorem ., F is vector set-valued mapping, including the scalar variational

inequality and scalar equilibrium problems. Thus, Theorem . generalizes and
extends Theorem . of [], Theorem . of [], and Theorem . of [] in some
sense.

(ii) We establish the stability theorem for (DSSVSEP) in Theorem ., when the
mapping F and the domain set K are simultaneously perturbed by different
parameters. Theorem . of [] and Theorem . of [] only show that the
mapping F or the domain set K is perturbed, respectively.

As a consequence of Theorem . and Theorem ., the following results follow imme-
diately.

Corollary . Let (Z, d), (Z, d) be metric spaces and let K : Z → X be a set-valued
mapping with nonempty, closed, and convex values. Suppose that

(i) K(p) is continuous at p and int(barr K(p)) 
= ∅, ∀p ∈ Z;
(ii) F(z, x, x) ⊆ C ∩ –C, ∀x ∈ K(p), z ∈ Z;

(iii) the set {(z, x) ∈ (Z, K(p)) : F(z, x, y) ∩ –C 
= ∅} is closed for any y ∈ K(p); F(z, ·, ·) is
type II C-pseudomonotone for any z ∈ Z;

(iv) the set {(z, y) ∈ (Z, K(p)) : F(z, x, y) ∩ –C 
= ∅} is closed for any x ∈ K(p); F is
C-convex in the third argument for any x ∈ K(p) and z ∈ Z, and F is strongly type II
C-diagonally quasi-convex in the second argument for any z ∈ Z, y ∈ K(p);

(v) SK (p)(z) is nonempty and bounded.
Then
(I) there exists a neighborhood U × U of (p, z) such that (PSSVSEP) has a nonempty

and bounded solution set for all (p, z) ∈ (U, U);
(II) lim sup(p,z)→(p,z) SK (p)(z) ⊆ SK (p)(z).

Consider the perturbed the first type strong vector set-valued equilibrium problems,
denoted by (PFSVSEP), which consists in finding x̄ ∈ K(p) such that

(PFSVSEP) F(z, x̄, y) ⊆ C, ∀y ∈ K(p).

Its dual problem is to find x̄ ∈ K(p) such that

(PDFSVSEP) F(z, y, x̄) ⊆ –C, ∀y ∈ K(p).

We denote the solution set of (PFSVSEP) and the solution set of (PDFSVSEP) by SSK (p)(z)
and SSD

K (p)(z), respectively.
Similar to the proof of Theorem ., we have the following stability results for (FSVSEP)

and (DFSVSEP).

Theorem . Let (Z, d), (Z, d) be metric spaces and let K : Z → X be a set-valued
mapping with nonempty, closed, and convex values. Suppose that

(i) K(p) is continuous at p and int(barr K(p)) 
= ∅, ∀p ∈ Z;
(ii) F(z, x, x) ⊆ C ∩ –C, ∀x ∈ K(p), z ∈ Z;
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(iii) the set {(z, y) ∈ (Z, K(p)) : F(z, x, y) ⊆ –C} is closed for any x ∈ K(p); F is C-convex
in the third argument for any x ∈ K(p), z ∈ Z, and F is strongly type I C-diagonally
quasi-convex in the second argument for any z ∈ Z, y ∈ K(p);

(iv) SSD
K (p)(z) is nonempty and bounded.

Then
(I) there exists a neighborhood U × U of (p, z) such that (PDFSVSEP) has a

nonempty and bounded solution set for all (p, z) ∈ (U, U);
(II) lim sup(p,z)→(p,z) SSD

K (p)(z) ⊆ SSD
K (p)(z).

As a consequence of Theorem . and Theorem ., the following results follow imme-
diately.

Corollary . Let (Z, d), (Z, d) be metric spaces and let K : Z → X be a set-valued
mapping with nonempty, closed, and convex values. Suppose that

(i) K(p) is continuous at p and int(barr K(p)) 
= ∅, ∀p ∈ Z;
(ii) F(z, x, x) ⊆ C ∩ –C, ∀x ∈ K(p), z ∈ Z;

(iii) the set {(z, x) ∈ (Z, K(p)) : F(z, x, y) ⊆ –C} is closed for any y ∈ K(p); F(z, ·, ·) is
type I C-pseudomonotone for any z ∈ Z;

(iv) the set {(z, y) ∈ (Z, K(p)) : F(z, x, y) ⊆ –C} is closed for any x ∈ K(p); F is C-convex
in the third argument for any x ∈ K(p), z ∈ Z, and F is strongly type I C-diagonally
quasi-convex in the second argument for any z ∈ Z, y ∈ K(p);

(v) SSK (p)(z) is nonempty and bounded.
Then
(I) there exists a neighborhood U × U of (p, z) such that (PFSVSEP) has a nonempty

and bounded solution set for all (p, z) ∈ (U, U);
(II) lim sup(p,z)→(p,z) SK (p)(z) ⊆ SK (p)(z).
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