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1 Introduction

The effect of higher order corrections to supergravity solutions is of considerable interest,

perhaps most notably for our understanding of quantum corrections to black holes. This

is important in determining how string theory may resolve black hole singularities, as well

as the investigation of the properties of black holes away from the limit α′ → 0. In higher

dimensions the four dimensional uniqueness theorems [1–7] no longer hold, and there are

exotic types of black hole solutions, such as the five dimensional black rings [8]. For ten and

eleven dimensional supergravity, it is expected that there is a particularly rich structure of

black objects, and the classification of these is ongoing. Progress has recently been made

in the classification of the near-horizon geometries of supersymmetric black holes. Near-

horizon geometries of extremal black holes in supergravity are known to generically undergo

supersymmetry enhancement. This has been proven by analysing the global properties of

such solutions via generalized Lichnerowicz theorems [9–12], and making use of index theory

arguments [13]. One consequence of the supersymmetry enhancement is that all such near-

horizon geometries exhibit an sl(2,R) symmetry. However, it is not apparent that these

properties persist after including string theory corrections.

There are several approaches to investigate how α′ corrections can change the event

horizons of black holes. Many black holes have AdSp × Sq near-horizon geometries and as

it is expected that the symmetries of such backgrounds persist in quantum theory, only the

radii of the sphere and AdS receive α′ corrections. However, we expect that exotic black

holes in higher dimensions need not necessarily have such near-horizon geometries.

Another approach, in the context of supersymmetric black holes in four and five di-

mensions, is to assume that the corrected near horizon geometries undergo an enhancement

of supersymmetry in the near-horizon limit, which simplifies considerably the analysis of

the Killing spinor equations. It is known that all supergravity D = 4 and D = 5 black
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holes undergo supersymmetry enhancement in the near-horizon limit [14–16]. In partic-

ular, the five dimensional BMPV black hole [17] undergoes supersymmetry enhancement

from N = 4 to N = 8 (maximal supersymmetry) in the near-horizon limit [18]. Also,

the supersymmetric asymptotically AdS5 black hole of [19] undergoes supersymmetry en-

hancement from N = 2 to N = 4 (half-maximal supersymmetry) in the near-horizon limit.

However it is not clear in general why one expects that the α′ corrections should preserve

this property.

The first systematic classification of supersymmetric near-horizon geometries in a

higher derivative theory in five dimensions [20] was done in [21], in which the only assump-

tion made was that the solutions should preserve the minimal amount of supersymmetry.

The five dimensional theory reduces to ungauged five-dimensional supergravity coupled to

arbitrarily many vector multiplets when the higher derivative corrections are set to zero.

In this limit, it is known that near-horizon geometries are maximally supersymmetric with

constant scalars [22], which is consistent with the standard picture of the attractor mech-

anism. In contrast, when higher derivative terms are turned on, the list of near-horizon

geometries determined in [21] includes not only the maximally supersymmetric geometries

(which were classified in [23]), but also a set of regular non-maximally supersymmetric

solutions, on making use of a result of [24]. Although it is unclear if these particular

near-horizon geometries can be extended to a full black hole solution, the existence of such

a solution proves that for certain supergravity theories, the presence of higher derivative

terms can change how supersymmetry is enhanced for near-horizon solutions.

In this paper, we consider how higher derivative corrections to ten dimensional super-

gravity affect the geometry and supersymmetry of near-horizon solutions. We shall choose

to begin this work by investigating heterotic theory which includes α′ corrections up to two

loops in sigma model perturbation theory. This choice is motivated by two factors. Firstly,

from the perspective of the standard supergravity, much more is known about the geometric

structure of generic supersymmetric solutions, and near-horizon geometries. In particular,

as a consequence of the spinorial geometry classification techniques developed in [25, 26]

which were then combined with a global analysis of near-horizon geometries in [27], there

exists a full classification of all possible supersymmetric near-horizon geometries in the

heterotic supergravity. Secondly, the structure of higher derivative correction terms in the

field equations, and in the Killing spinor equations, is significantly simpler for the heterotic

theory when compared to the types of terms which arise in type II supergravity [29–32],

and associated references.

The method we shall use to prove our results is that first we solve the Killing spinor

equations in the near-horizon lightcone directions, and then simplify the remaining condi-

tions as much as possible using both the local field equations and Bianchi identities, as well

as global analysis. For the global analysis, we shall assume that the spatial cross-section

of the event horizon is smooth and compact, without boundary, and that all near-horizon

fields are also smooth. As a result of this analysis, we find that there are no AdS2 solutions

(at zero and first order in α′) to heterotic supergravity, which completes the classification

of heterotic AdS solutions in [33]. We also show that all of the conditions of supersym-

metry reduce to a pair of gravitino KSEs and a pair of algebraic KSEs on the spatial
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horizon sections. The latter are associated to the dilatino KSE. Throughout, we allow for

all near-horizon data, including the spinors, to receive α′ corrections.

Using these conditions, we show that there is automatic supersymmetry enhancement

at both zero and first order in α′ in the case for which there exists negative light-cone

chirality Killing spinor η− up to O(α′2) which does not vanish at zeroth order in α′. In

this case the supersymmetry enhancement is obtained via the same mechanism as for the

near-horizon geometries considered in [27] without α′ corrections, and the solution admits

an sl(2,R) symmetry. Such horizons admit 2, 4, 6 and 8 Killing spinors and their geometry

is similar to that of horizons with vanishing anomaly contribution examined in [27]. The

remaining case, for which the negative light-cone chirality spinors vanish at zeroth order in

α′ remains open. We have investigated global aspects of these solutions by considering α′

corrections to the global analysis carried out in [27], and also by constructing generalized

Lichnerowicz theorems analogous to those proven in [9–12], again incorporating α′ correc-

tions. However, in both cases, there is an undetermined sign in the O(α′2) terms appearing,

which precludes the extension of the maximum principle arguments to first order in α′.

We also consider a class of near-horizon solutions which are “nearly” supersymmetric.

These are not supersymmetric but some of their KSEs are satisfied. This is motivated by

the existence of WZW type of solutions to the heterotic theory with constant dilaton. It is

known that such solutions solve the gravitino KSE but not the dilatino one. In the present

case, we consider horizons for which one of the gravitino KSEs is satisfied1 on the spatial

horizon section up order O(α′2) but not the other and the algebraic KSEs. After some

assumptions on the form of the fields, we give a complete description of the geometry of

such solutions.

This paper is organized as follows. In section 2, we present the fields of heterotic

near-horizon geometries and we integrate up the KSEs along the lightcone directions. In

sections 3 and 4, we identify the independent KSEs by examining the various cases that

can occur and in the process, prove that there are no AdS2 solutions. In section 5, we

determine the conditions under which the horizons exhibit supersymmetry enhancement,

and in section 6 we give the geometry of the horizon sections. In section 7, we generalize

the global analysis presented near-horizon geometries in [27] to include α′ corrections.

However because of a O(α′2) sign ambiguity, it is not possible to prove that the horizon

section admits a G2 structure compatible with a connection with skew-symmetric torsion,

as is the case at zeroth order in α′. We also generalize the Lichnerowicz type theorems to

higher orders in α′. Once again, O(α′2) sign ambiguity means that it is not possible to

prove that zero modes of the horizon Dirac equation (at zero and first order in α′) satisfy

the Killing spinor equations to the same order in α′, although the algebraic Killing spinor

involving the 2-form gauge field is satisfied to the required order in α′. In sections 8 and 9,

we examine the geometry of nearly supersymmetric horizons focusing on those that admit

a solution to the gravitino KSE on the horizon spatial section, and in section 10 we give

our conclusions.

1Such solutions are not supersymmetric, and furthermore the spacetime gravitino KSE is not necessarily

satisfied.
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The paper contains several appendices. In appendix A, we summarize some key for-

mulae that are used throughout in the computations of the paper and present the field

equations of the theory. In appendix B, we provide the details of part of the proof to

identify the independent KSEs on the spatial horizon section. In section C, we present

a formula which relates the gravitino KSE to the gaugino KSE which is instrumental in

the investigation of the geometry of nearly supersymmetric horizons. In appendix D, we

present further detail of the proof of the Lichnerowicz type theorem for the heterotic the-

ory, and in appendix E, we describe how AdSn+1 can be written as a warped product over

AdSn, and describe how such constructions are inconsistent with our assumptions on the

global structure and regularity of the solutions.

2 Supersymmetric heterotic near-horizon geometries

2.1 Near horizon fields

The metric near a smooth killing horizon expressed in Gaussian null co-ordinates [34, 35]

can be written as

ds2 = 2e+e− + δije
iej , (2.1)

where we have used the frame

e+ = du , e− = dr + rh−
1

2
r2∆du , ei = eiJdy

J , (2.2)

i, j = 1, . . . , 8, u, r are the lightcone coordinates, and the 1-form h, scalar ∆ and ei depend

only on the coordinates yI , I = 1, . . . , 8, transverse to the lightcone. The black hole

stationary Killing vector field is identified with ∂u. The induced metric on S is

ds2S = δije
iej , (2.3)

and S is taken to be compact, connected without boundary. We denote the Levi-Civita

connection of S by ∇̃, and the Levi-Civita connection of the D=10 spacetime as ∇.

For the other heterotic fields, we assume that the dilaton Φ, and the real 3-form H,

and non-abelian gauge potential A admit well-defined near-horizon limits, and that ∂u is

a symmetry of the full solution:

L∂uΦ = 0, L∂uH = 0, L∂uA = 0 . (2.4)

In particular, this means that Φ = Φ(y), and also

H = e+ ∧ e− ∧N + re+ ∧ Y +W , (2.5)

where N , Y and W are u, r-independent 1, 2 and 3-forms on S respectively, and we do not

assume dH = 0. Moreover,

A = rPe+ + B , (2.6)

where P and B are a r, u-independent G-valued scalar and 1-form on S respectively. The

non-abelian 2-form field strength F is given by

F = dA+A ∧A . (2.7)
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Our conventions for the heterotic theory including α′ corrections are consistent with those

of [29]. We assume that the near-horizon data admit a Taylor series expansion in α′. We

denote this expansion by

∆ = ∆[0] + α′∆[1] +O(α′2) , (2.8)

and similarly for all near-horizon data, including spinors. For the supersymmetric solutions,

we shall assume that that there is at least one zeroth order in α′ Killing spinor, ǫ[0] 6= 0.

2.2 Supersymmetry

In the previous treatments of heterotic near-horizon geometries [27], it was assumed that

the anomaly vanishes and so the Bianchi identity dH = 0 was used to further simplify

the structure of the 3-form. Here, we shall not take dH = 0 as there is a non-trivial

contribution from the heterotic anomaly, and so the 3-form takes the more general form

given in (2.5).

We remark that the KSE of heterotic supergravity have been solved in [25] and [26],

and so, the solutions to the KSEs which we consider here correspond to a subclass of the

solutions in [25, 26]. However for horizons the global assumptions on the spatial section

S, like compactness, allow the derivation of additional conditions on the spinors and on

the geometry. So it is particularly useful to re-solve the KSEs, decomposing the spinors

into positive and negative lightcone chiralities adapted for the Gaussian null basis (2.2),

ǫ = ǫ+ + ǫ−, where

Γ±ǫ± = 0, Γ+−ǫ± = ±ǫ± . (2.9)

We shall then extract from the KSEs the conditions imposed on ǫ± that will be useful to

apply the global conditions on S.

2.2.1 The gravitino equation

We begin by considering the gravitino equation

∇̂M ǫ ≡ ∇M ǫ−
1

8
HMN1N2Γ

N1N2ǫ = O(α′2) . (2.10)

First, on examining the M = − component of (2.10) we find that

ǫ+ = φ+ +O(α′2) , ǫ− = φ− +
1

4
r(h−N)iΓ−Γ

iφ+ +O(α′2) , (2.11)

where ∂rφ± = 0. Next, on examining the M = + component of (2.10), we find

φ− = η− +O(α′2) , φ+ = η+ +
1

4
u(h+N)iΓ+Γ

iη− +O(α′2) , (2.12)

where ∂rη± = ∂uη± = 0. In additon, the M = + component of (2.10) implies a number of

algebraic conditions:

(

1

2
∆ +

1

8
(h2 −N2)−

1

8
(dh+ Y + h ∧N)ijΓ

ij

)

φ+ = O(α′2) , (2.13)
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and
(

−
1

2
∆−

1

8
(h2 −N2)−

1

8
(dh+ Y + h ∧N)ijΓ

ij

)

η− = O(α′2) , (2.14)

and
(

1

4
(∆hi − ∂i∆)Γi −

1

32
(dh+ Y )ijΓ

ij(h−N)kΓ
k

)

φ+ = O(α′2) . (2.15)

We remark that (2.13) and (2.14) are equivalent to

1

2
∆ +

1

8
(h2 −N2) = O(α′2) , (2.16)

(dh+ Y + h ∧N)ijΓ
ijφ+ = O(α′2) , (2.17)

and

(dh+ Y + h ∧N)ijΓ
ijη− = O(α′2) , (2.18)

respectively. Furthermore, using these conditions, (2.15) can also be rewritten as

(

1

4
(∆hj − ∂j∆)−

1

8
(h−N)k

(

dh+ Y + 2h ∧N)jk

)

Γjφ+ = O(α′2) . (2.19)

Next, we consider the M = i components of (2.10). This implies

∇̃iφ+ +

(

1

4
(N − h)i −

1

8
WijkΓ

jk

)

φ+ = O(α′2) , (2.20)

and

∇̃iη− +

(

1

4
(h−N)i −

1

8
WijkΓ

jk

)

η− = O(α′2) , (2.21)

together with the algebraic condition

(

∇̃i(h−N)j +
1

2
(hiNj − hjNi)−

1

2
(hihj −NiNj)

− (dh− Y )ij −
1

2
Wijk(h−N)k

)

Γjφ+ = O(α′2) . (2.22)

These conditions exhaust the content of (2.10).

2.2.2 Dilatino and gaugino KSEs

Next again ignoring O(α′2) terms we consider the dilatino KSE

(

ΓM∇MΦ−
1

12
HN1N2N3Γ

N1N2N3

)

ǫ = O(α′2) . (2.23)

On making use of the previous conditions, it is straightforward to show that the dilatino

KSE is equivalent to the following three conditions

(

Γi∇̃iΦ+
1

2
NiΓ

i −
1

12
WijkΓ

ijk

)

φ+ = O(α′2) , (2.24)
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and
(

Γi∇̃iΦ−
1

2
NiΓ

i −
1

12
WijkΓ

ijk

)

η− = O(α′2) , (2.25)

and

((

Γi∇̃iΦ−
1

2
NiΓ

i −
1

12
WijkΓ

ijk

)

(h−N)ℓΓ
ℓ + YijΓ

ij

)

φ+ = O(α′2) . (2.26)

It remains to consider the gaugino KSE

FMNΓMN ǫ = O(α′) . (2.27)

This implies the following conditions

(

2P + F̃ijΓ
ij

)

φ+ = O(α′) , (2.28)

and
(

− 2P + F̃ijΓ
ij

)

η− = O(α′) , (2.29)

and

(

1

4

(

− 2P + F̃ijΓ
ij
)

(h−N)ℓΓ
ℓ + 2

(

hP + PB − BP − dP
)

i
Γi

)

φ+ = O(α′) , (2.30)

where

F̃ = dB + B ∧ B . (2.31)

The conditions (2.28) and (2.29) imply that

P = O(α′) , (2.32)

and so F = F̃ +O(α′). Therefore (2.27) is equivalent to

F̃ijΓ
ijφ+ = O(α′) , (2.33)

and

F̃ijΓ
ijη− = O(α′) , (2.34)

and

F̃ijΓ
ij(h−N)ℓΓ

ℓφ+ = O(α′) . (2.35)

In order to simplify these conditions further, we shall first consider the two cases for

which either φ
[0]
+ ≡ 0 or φ

[0]
+ 6≡ 0.

– 7 –
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3 Solutions with φ
[0]
+ ≡ 0

Suppose that there exists a Killing spinor ǫ with ǫ[0] 6≡ 0, but φ
[0]
+ ≡ 0. Such a spinor must

therefore have η
[0]
− 6≡ 0, and hence it follows that

h[0] +N [0] = 0 . (3.1)

Then (2.21) implies that

d ‖ η
[0]
− ‖2= − ‖ η

[0]
− ‖2 h[0] . (3.2)

In particular, this condition implies that if η
[0]
− vanishes at any point on the horizon section,

then η
[0]
− = 0 everywhere. So, η

[0]
− must be everywhere non-vanishing.

On taking the divergence of (3.2), and making use of the N1 = +, N2 = − component

of the 2-form gauge potential field equation (A.13), one obtains the following condition

∇̃[0]i∇̃
[0]
i ‖ η

[0]
− ‖2 −

(

2∇̃iΦ[0]+ ‖ η
[0]
− ‖−2 ∇̃[0]i ‖ η

[0]
− ‖2

)

∇̃
[0]
i ‖ η

[0]
− ‖2= 0 . (3.3)

As ‖ η
[0]
− ‖2 is nowhere vanishing, an application of the maximum principle implies that

‖ η
[0]
− ‖2= const., and hence (3.2) gives that

h[0] = 0 , N [0] = 0 . (3.4)

These conditions, together with (2.16), imply that

∆ = O(α′2) . (3.5)

Then the dilaton field equation (A.15) implies that

∇̃i∇̃i(e
−2Φ) =

1

6
e−2ΦWijkW

ijk +O(α′) , (3.6)

and hence it follows that

Φ[0] = const, W [0] = 0 . (3.7)

Furthermore, this then implies that

H = du ∧ dr ∧N + rdu ∧ Y +W +O(α′2) , (3.8)

and hence

dH = du ∧ dr ∧ (dN − Y )− rdu ∧ dY + dW +O(α′2) . (3.9)

As the ruij component on the r.h.s. of the Bianchi identity is O(α′2) this implies that

Y = dN +O(α′2) , (3.10)

and in particular, Y [0] = 0.

Next consider the gauge equations. The +− component of the 2-form gauge potential

field equations (A.13) is

∇̃iNi = O(α′2) . (3.11)
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Also, the u-dependent part of (4.18) implies that

∇̃i(h+N)jΓ
jη− = O(α′2) , (3.12)

which gives that

∇̃i(h+N)j = O(α′2) . (3.13)

Taking the trace of this expression, and using (3.14) yields

∇̃ihi = O(α′2) . (3.14)

Next, recall that the gravitino KSE (4.22) implies

∇̃i ‖ η− ‖2= −
1

2
(h−N)i ‖ η− ‖2 +O(α′2) . (3.15)

Taking the divergence yields, together with (3.11) and (3.14) the condition

∇̃i∇̃i ‖ η− ‖2= O(α′2) , (3.16)

which implies that ‖ η− ‖2= const + O(α′2). Substituting back into (3.15) gives the

condition N = h+O(α′2), and hence (3.13) implies that

∇̃ihj = O(α′2) . (3.17)

So, to summarize, for this class of solutions, we have obtained the following conditions

on the fields

N = h+O(α′2), h[0] = 0, Y = O(α′2), ∇̃ihj = O(α′2),

∆ = O(α′2), H [0] = 0, Φ[0] = const , (3.18)

and it is straightforward to check that the generic conditions on φ+ then simplify to

∇̃iφ+ −
1

8
WijkΓ

jkφ+ = O(α′2) , (3.19)

and
(

Γi∇̃iΦ+
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

φ+ = O(α′2) , (3.20)

and

F̃ijΓ
ijφ+ = O(α′) . (3.21)

The generic conditions on η− also simplify to

∇̃iη− −
1

8
WijkΓ

jkη− = O(α′2) , (3.22)

and
(

Γi∇̃iΦ−
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

η− = O(α′2) , (3.23)

and

F̃ijΓ
ijη− = O(α′) . (3.24)

In the next section, we shall consider the case for which there exists a Killing spinor

with φ
[0]
+ 6≡ 0. It will be shown that the conditions (3.18) on the bosonic fields and the

simplified KSEs listed above correspond to special cases of the corresponding conditions

on the fields and simplified KSEs of φ
[0]
+ 6≡ 0. In particular, this will allow the KSEs for

φ
[0]
+ ≡ 0 and φ

[0]
+ 6≡ 0 to be written in a unified way.
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4 Solutions with φ
[0]
+ 6≡ 0

Suppose that there exists a Killing spinor ǫ, with ǫ[0] 6≡ 0 and φ
[0]
+ 6≡ 0. Then consider (2.20);

this implies that

∇̃i ‖ φ+ ‖2=
1

2
(hi −Ni) ‖ φ+ ‖2 +O(α′2) , (4.1)

and (2.22) gives that

∇̃i(h−N)j +
1

2
(hiNj − hjNi)−

1

2
(hihj −NiNj)

− (dh− Y )ij −
1

2
Wijk(h−N)k = O(α′2) . (4.2)

Taking the divergence of (4.1), and using (2.20) together with the trace of (4.2), we find that

∇̃i∇̃i ‖ φ+ ‖2 −hi∇̃i ‖ φ+ ‖2= O(α′2) . (4.3)

An application of the maximum principle (see e.g. [36]) then yields the condition

∇̃i ‖ φ+ ‖2= O(α′2) . (4.4)

To see this, note that to zeroth order in α′, (4.3) implies that ∇̃
[0]
i ‖ φ

[0]
+ ‖2= 0,

on applying the maximum principle. Then (4.1) and (4.2) imply that N [0] = h[0] and

Y [0] = dh[0]; and from (2.16) we also have ∆[0] = 0. Then it is useful to consider the field

equations of the 2-form gauge potential (A.13), which imply that

∇̃i

(

e−2Φhi

)

= O(α′) , (4.5)

and

e2Φ∇̃j
(

e−2Φdhji
)

+
1

2
Wijkdh

jk + hjdhji = O(α′) , (4.6)

and the Einstein equations imply that

R̃ij + ∇̃(ihj) −
1

4
WimnWj

mn + 2∇̃i∇̃jΦ = O(α′) . (4.7)

Using (4.5), (4.6) and (4.7) it follows that2

∇̃i∇̃ih
2 + (h− 2dΦ)j∇̃jh

2 = 2∇̃(ihj)∇̃(ihj)

+
1

2
(dh− ihW )ij(dh− ihW )ij +O(α′) . (4.8)

In particular, (4.8) implies that ∇̃[0]ih
[0]
i = 0 on applying the maximum principle. It follows

from (4.3) that

∇̃[0]i∇̃
[0]
i 〈φ

[0]
+ , φ

[1]
+ 〉 − h[0]i∇̃

[0]
i 〈φ

[0]
+ , φ

[1]
+ 〉 = 0 . (4.9)

2We remark that the condition (4.8) was also obtained in [27]. In that case, a bilinear matching condition

was imposed in order to find N [0] = h[0], Y [0] = dh[0]. Here we do not assume such a bilinear matching

condition, but nevertheless we find the same condition.
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On multiplying this condition by 〈φ
[0]
+ , φ

[1]
+ 〉 and integrating by parts, using ∇̃[0]ih

[0]
i = 0,

one finds that ∇̃
[0]
i 〈φ

[0]
+ , φ

[1]
+ 〉 = 0 as well. So, it follows that ∇̃i ‖ φ+ ‖2= O(α′2).

Then, (4.1) also implies that N = h + O(α′2). Substituting these conditions back

into (2.16), we find that ∆[1] = 0 as well, so ∆ = O(α′2). Also, (4.2) implies that

Y − dh = O(α′2) . (4.10)

To summarize the conditions on the bosonic fields; we have shown that for solutions

with φ
[0]
+ 6= 0, we must have

∆ = O(α′2), N = h+O(α′2), Y = dh+O(α′2) (4.11)

which implies that

H = d(e− ∧ e+) +W +O(α′2) . (4.12)

The field equation (A.13) of the 2-form gauge potential can then be rewritten in terms of

the near-horizon data as

∇̃i
(

e−2Φhi
)

= O(α′2) , (4.13)

e2Φ∇̃j
(

e−2Φdhji
)

+
1

2
Wijkdh

jk + hjdhji = O(α′2) , (4.14)

and

e2Φ∇̃k
(

e−2ΦWkij

)

+ dhij − hkWkij = O(α′2) . (4.15)

In addition, P = O(α′) and so F = F̃ +O(α′). The i, j component of the Einstein equation

then simplifies to

R̃ij + ∇̃(ihj) −
1

4
WimnWj

mn + 2∇̃i∇̃jΦ

+
α′

4

(

− 2dhiℓdhj
ℓ + ˇ̃Riℓ1,ℓ2ℓ3

ˇ̃Rj
ℓ1,ℓ2ℓ3 − F̃iℓ

abF̃j
ℓ
ab

)

= O(α′2) . (4.16)

Furthermore, dilaton field equation can be written as

∇̃i∇̃iΦ− hi∇̃iΦ− 2∇̃iΦ∇̃iΦ−
1

2
hih

i +
1

12
WijkW

ijk

+
α′

16

(

2dhijdh
ij + F̃ij

abF̃ ij
ab −

ˇ̃Rℓ1ℓ2,ℓ3ℓ4
ˇ̃Rℓ1ℓ2,ℓ3ℓ4

)

= O(α′2) . (4.17)

On making use of the conditions (4.11) on the bosonic fields, the KSEs on φ+ then

simplify further to

∇̃iφ+ −
1

8
WijkΓ

jkφ+ = O(α′2) , (4.18)

dhijΓ
ijφ+ = O(α′2) , (4.19)

(

Γi∇̃iΦ+
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

φ+ = O(α′2) , (4.20)

and

F̃ijΓ
ijφ+ = O(α′) . (4.21)

– 11 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
1

Furthermore, KSEs on η− also simplify to

∇̃iη− −
1

8
WijkΓ

jkη− = O(α′2) , (4.22)

dhijΓ
ijη− = O(α′2) , (4.23)

(

Γi∇̃iΦ−
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

η− = O(α′2) , (4.24)

and

F̃ijΓ
ijη− = O(α′) . (4.25)

In both cases above, (4.18) and (4.22) are a consequence of the gravitino KSE, (4.20)

and (4.24) are associated to the dilatino KSE, while (4.21) and (4.25) are derived from

the gaugino KSE. The two additional conditions (4.19) and (4.23) can be thought of as

integrability conditions.

4.1 Independent KSEs

The KSEs we have stated in the previous sections (3.19)–(3.24) and (4.18)–(4.25) are not

all independent. It turns out that the independent KSEs are

ˆ̃∇η± ≡ ∇̃iη± −
1

8
WijkΓ

jkη± = O(α′2) (4.26)

and
(

Γi∇̃iΦ±
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

η± = O(α′2) . (4.27)

This is the case irrespectively on whether φ
[0]
+ ≡ 0 or φ

[0]
+ 6= 0 though the conditions on the

bosonic fields are somewhat different. The proof of this independence of the KSEs requires

the use of field equations and Bianchi identities and it is rather involved. The details can

be found in appendix B.

5 Supersymmetry enhancement

A key ingredient in the investigation of heterotic horizons is that supersymmetry always

enhances. As a result horizons preserve 2, 4, 6 and 8 supersymmetries [27]. However this

is based on a global argument which we shall see does not necessarily apply to O(α′2).

As a consequence we shall seek some alternative conditions to guarantee that su-

persymmetry enhances. In particular we shall show that if there exists a Killing spinor

ǫ = ǫ(η+, η−) up to O(α′2), ie η− solves (4.26) and (4.27) up to O(α′2), such that η
[0]
− 6= 0,

and the horizon has h[0] 6= 0, then there is automatic supersymmetry enhancement.

To prove this, it suffices to demonstrate that h leaves all fields invariant and that it

is covariantly constant with respect to the connection with torsion ˆ̃∇ on S. Indeed, first

note that (B.15) implies that

ˆ̃∇ihj ≡ ∇̃ihj −
1

2
Wijkh

k = O(α′2) . (5.1)
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In particular, to both zeroth and first order in α′, h defines an isometry on S, with h2 =

const +O(α′2). Then the gauge equation (4.13) implies

LhΦ = O(α′2) . (5.2)

Also, the u-dependent part of (4.21) implies

(ihF̃ )iΓ
iη− = O(α′) , (5.3)

which implies that ihF̃ = O(α′). So in the gauge for which ihB = 0, one has

LhF̃ = O(α′) . (5.4)

Next we consider LhW , where

LhW = −
α′

2

(

tr
(

(ihŘ) ∧ Ř
)

)

+O(α′2) , (5.5)

because dh = ihW + O(α′2). To evaluate this expression, note first that the integrability

conditions of
ˆ̃∇iη− = O(α′2), ˆ̃∇i(hℓΓ

ℓη−) = O(α′2) (5.6)

are
ˆ̃RijpqΓ

pqη− = O(α′2), ˆ̃RijpqΓ
pq(hℓΓ

ℓη−) = O(α′2) (5.7)

from which we obtain the condition

hℓ ˆ̃Rijℓq = O(α′2) , (5.8)

and hence, as a consequence of (A.4),

hℓ ˇ̃Rℓqij = O(α′) . (5.9)

Moreover,

hℓ ˇ̃Rℓq+− = hi(dh)iq = O(α′2) . (5.10)

It follows that the contribution of ihŘ to the r.h.s. of (5.5) is of at least O(α′), and hence

LhW = O(α′2) . (5.11)

So, we have shown that to both zero and first order in α′, the Lie derivative of the metric

on S, as well as h,Φ and W with respect to h vanishes, and the Lie derivative of F̃ with

respect to h vanishes to zeroth order in α′.

Supersymmetry is therefore enhanced, because if η+ satisfies (4.26) and (4.27), then

so does η′− = Γ−hiΓ
iη+. Conversely, if η− satisfies (4.26) and (4.27), then so does

η′+ = Γ+hiΓ
iη−. The proof of this makes use of the conditions (5.1), together with (5.2)

and (4.19) and (4.23), and the reasoning is identical to that used in [27]. This establishes a

1-1 correspondence between spinors η+ and η− satisfying (4.26) and (4.27), so the number

of supersymmetries preserved is always even.
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Next we wish to determine whether a similar supersymmetry enhancement argument

holds for η+ spinors. In particular if there exists a solution to (4.26) and (4.27) with η
[0]
+ 6= 0

and h[0] 6= 0, does this imply that the number of η+ solutions is equal to the number of η−
solutions? This does not follow from a local analysis of (4.26) and (4.27), because there is

no analogue of the condition (B.15) acting on η+. Nevertheless, in [27] a global analysis

was used in order to establish such a correspondence, by computing the Laplacian of h2

and applying a maximum principle argument, in order to obtain (5.1) to zeroth order in

α′. We shall revisit this analysis in section 7.1 including the α′ corrections.

6 Geometry

It is a consequence of the results of [27], see also section 7.1, that horizons with non-trivial

fluxes preserve an even number of supersymmetries up to O(α′). Furthermore we have

also demonstrated that such horizons with η− Killing spinors preserve an even number of

supersymmetries up to O(α′2). It is straightforward to see that horizons with more than

8 supersymmetries are trivial, ie the rotation h vanishes. Therefore, the heterotic horizons

of interest preserve 2, 4, 6 and 8 supersymmetries.

Up to O(α′), the investigation of the geometry of all such horizons is identical to

that given in [27] for heterotic horizons with closed 3-form field strength. Here we shall

describe the geometry of the horizons that admit a η− Killing spinor up to O(α′2). We

have seen that for such horizons h is parallel with respect to the connection with torsion

up to O(α′2). Because of this, the geometry of such horizons is very similar to that of

horizons with closed 3-form flux. The only differences between the geometries of the two

cases are solely located in the modified Bianchi identity for the 3-form flux. As the two

cases are similar, the description of the geometry will be brief.

6.1 Horizons with G2 structure

Such horizons admit two supersymmetries up to O(α′2). In particular h satisfies (5.1). The

spacetime locally can be described as a (principal) SL(2,R) fibration over a 7-dimensional

manifold B7 which admits a metric ds̃2(7) and a 3-form H̃(7) such that the connection ˆ̃∇(7)

with torsion H̃(7) has holonomy contained in G2. The spacetime metric and 3-form flux

can be written as

ds2 = ηabλ
aλb + ds̃2(7) +O(α′2) ,

H = CS(λ) + H̃(7) +O(α′2) , (6.1)

where CS(λ) is the Chern-Simons form3 of the principal bundle connection,

λ− = e− , λ+ = e+ −
1

2
k2u2e− − uh , λ1 = k−1

(

h+ k2ue−
)

, (6.2)

k2 = h2 is constant up to O(α′2) and

H̃(7) = kϕ+ e2Φ ⋆7 d
(

e−2Φϕ
)

+O(α′2) . (6.3)

3Note that CS(λ) = du ∧ dr ∧ h+ rdu ∧ dh+ k−2h ∧ dh.
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The 3-form ϕ is the fundamental G2 form and it is related to the fundamental Spin(7) form

of the η+ Killing spinor via ϕ = k−1ihφ+O(α′2). The associated vector fields to λ−, λ+, λ1

satisfy a sl(2,R) algebra. The dilaton Φ depends only on the coordinates of B7.

To find solutions, one has to solve the remaining equations

d[e−2Φ ⋆7 ϕ] = O(α′2) ,

k−2 dh∧dh+dH̃(7) = −
α′

4

(

− 2dh ∧ dh+ tr(Ř(8) ∧ Ř(8) − F ∧ F )

)

+O(α′2) ,

(dh)ij =
1

2
⋆7 ϕij

kl(dh)kl +O(α′2) , Fij =
1

2
⋆7 ϕij

klFkl +O(α′2) . (6.4)

The first condition in (6.4) is required for B7 to admit a G2 structure compatible with a

connection with skew-symmetric torsion. The second condition is the anomalous Bianchi

identity of the 3-form field strength written in terms of B7 data. The curvature Ř(8) is

that of the near horizon section S with metric and skew symmetric torsion given by

ds̃2(8) = k−2h⊗ h+ ds̃2(7) +O(α′2) , H̃(8) = k−2h ∧ dh+ H̃(7) +O(α′2) . (6.5)

As Ř(8) is invariant under h and ihŘ(8) = O(α′2), it descends on B7. Finally, the last two

equations in (6.4) imply that both dh and F are g2 instantons on B7.

6.2 Horizons with SU(3) structure

Such horizons preserve 4 supersymmetries. Locally the spacetime is a principal bundle

with fibre SL(2,R) × U(1) over a Kähler with torsion manifold (KT) B6 with Hermitian

form ω(6). The metric and 3-form field strength of the spacetime can be written as

ds2 = ηabλ
aλb + ds̃2(6) +O(α′2) , H = CS(λ) + H̃(6) +O(α′2) , (6.6)

where λa, a = +,−, 1, 6 is the principal bundle connections whose a = +,−, 1 components

are as in (6.2) and

λ6 = k−1ℓ , (6.7)

which is along the u(1) direction in the Lie algebra. h2 = k2 is constant up to O(α′2). The

curvature of the principal bundle connection λa is expressed in terms of dh and dℓ which

are 2-forms on B6 and it is required to satisfy that

dh2,0 = dℓ2,0 = O(α′2) , dhijω
ij
(6) = O(α′2) , dℓijω

ij
(6) = −2k2 +O(α′2) , (6.8)

ie h is a su(3) instanton on B6 while ℓ is a u(3) instanton on B6.

The KT manifold B6 is in addition conformally balanced, ie

θω(6)
= 2dΦ+O(α′2) , (6.9)

where θ is the Lee form and the torsion is

H̃(6) = −iIdω +O(α′2) = e2Φ ⋆6 d[e
−2Φω(6)] +O(α′2) . (6.10)
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The dilaton Φ depends only on the coordinates of B6. The gauge connection is a su(3)

instanton on B6, i.e.

F 2,0 = O(α′) , Fijω
ij
(6) = O(α′) . (6.11)

To find examples for such horizons two additional conditions should be satisfied. One

is the restriction that
ˆ̃R(6)ijω

ij
(6) = −2k2dℓ+O(α′2) . (6.12)

This arises from requirement that the U(3) structure on B6 lifts to a SU(3) structure on the

spacetime or equivalent the spatial horizon section S. The other is the anomalous Bianchi

identity which now reads

k−2dh ∧ dh+ k−2dℓ ∧ dℓ+ d
(

e2Φ ⋆6 d[e
−2Φω]

)

=

−
α′

4

(

− 2dh ∧ dh+ tr(Ř(8) ∧ Ř(8) − F ∧ F )

)

+O(α′2) , (6.13)

where Ř(8) is the curvature of the connection with torsion on S for which the metric and

torsion are given by

ds̃2 = k−2(h⊗ h+ ℓ⊗ ℓ) + ds̃2(6) +O(α′2) ,

H̃ = k−2(h ∧ dh+ ℓ ∧ dℓ) + H̃(6) +O(α′2) . (6.14)

Note that ∇̂(8) has holonomy contained in SU(3) and so Ř(8) is a well defined form on B6.

6.3 Horizons with SU(2) structure and 6 supersymmetries

The spacetime is locally a SL(2,R) × SU(2) principal fibration over a 4-dimensional anti-

self-dual Weyl Einstein manifold B4 with metric d̊s2(4) and quaternionic Kähler structure

2-forms ωr′

(4). The spacetime metric and 3-form field strength can be expressed as

ds2 = ηabλ
aλb + δr′s′λ

r′λs′ + e2Φd̊s2(4) +O(α′2) ,

H = CS(λ) + H̃(4) +O(α′2) , (6.15)

where H̃(4) = −̊⋆4de
2Φ, the principal bundle connection λa for a = +,−, 1 coincides with

that of (6.2) while

λr′ = k−1ℓr
′

, (6.16)

are the components along the su(2) subalgebra of the fibre. Furthermore the dilaton

depends only on the coordinates of B4, dh as well as the curvature (F sd)r
′

of λr′ are

2-forms on B4. In addition, we have that

dhsd = O(α′2) , (F sd)r
′

=
k

4
ωr′

(4) +O(α′2) , F sd = O(α′) (6.17)

and dhad, (Fad)r
′

and F ad are not restricted, where the self-dual and anti-self dual com-

ponents are appropriately denoted. Geometrically, the set up is such that the SO(4) =

SU(2) ·SU(2) structure of B4 when lifted the 7-dimensional manifold which is the principal

bundle with fibre SU(2) reduces to SU(2) as required from supersymmetry.
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The only remaining condition to find solutions is

∇̊2e2Φ = −
1

2
(Fad)r

′

ij(F
ad)ijr′ −

k−2

2
dhijdh

ij +
3

8
k2e4Φ

+
α′

8

(

− 2dhijdh
ij + tr

(

Ř(8)ijŘ(8)
ij − FijF

ij
)

)

+O(α′2) . (6.18)

Again Ř(8) is the curvature of the connection with torsion of the horizon section S which

has metric and 3-form field strength

ds̃2 = k−2h⊗ h+ δr′s′λ
r′λs′ + e2Φd̊s2(4) +O(α′2) ,

H̃ = k−2h ∧ dh+CS(λr′) + H̃(4) +O(α′2) . (6.19)

As R̂(8) has holonomy contained in SU(2), Ř(8) is a 2-form on B4. For more details on

the geometry of heterotic backgrounds that preserve 6 supersymmetries and have SU(2)

holonomy see [27, 28].

6.4 Horizons with SU(2) structure and 8 supersymmetries

This class of horizons have a similar geometry to those of the previous section that preserve

6 supersymmetries. The differences are that

(F sd)r
′

= O(α′2) , (6.20)

so Fr′ is an anti-self dual instanton on B4 which now is a hyper-Kähler manifold with

respect to the metric d̊s2(4). Furthermore the equation for the dilaton (6.18) now reads

∇̊2e2Φ = −
1

2
Fr′

ijF
ij
r′ −

k−2

2
dhijdh

ij

+
α′

8

(

− 2dhijdh
ij + tr

(

Ř(8)ijŘ(8)
ij − FijF

ij
)

)

+O(α′2) . (6.21)

Therefore at zeroth order, a partial integration argument reveals that

dh = O(α′) , Fr′ = O(α′) . (6.22)

Thus B4 up to a local isometry is AdS3 × S3 × T 4 or AdS3 × S3 ×K3 and the dilaton is

constant. One does not expect additional α′ corrections to the geometry in the case that

the Ř(8) is identified with F . Though additional corrections are expected otherwise. In

the absence of 5-branes, consistency requires that the Pontryagin number of the tangent

bundle of B4 cancels that of the gauge bundle which is the vanishing condition for the

global anomaly.

7 Global properties

7.1 Maximum principle on h2

We shall revisit the global analysis of [27] by calculating the Laplacian of h2, but including

also α′ correction terms. Then we shall examine the conditions imposed on the geometry

by this expression. To avoid the trivial case when h2 = O(α′2), we take h[0] 6= 0.
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Next we calculate the Laplacian of h2 to find that

∇̃i∇̃ih
2+(h−2dΦ)j∇̃jh

2 = 2∇̃(ihj)∇̃(ihj) +
1

2
(dh− ihW )ij(dh− ihW )ij

−
α′

4
hihj

(

− 2dhiℓdhj
ℓ+ ˇ̃Riℓ1ℓ2ℓ3

ˇ̃Rj
ℓ1ℓ2ℓ3−F̃iℓ

abF̃j
ℓ
ab

)

+O(α′2) .

(7.1)

In computing this expression, we made use of the Einstein equation (4.16) together with the

gauge field equations (4.13) and (4.14). We remark that the calculation proceeds in exactly

the same way as in [27]; the α′ terms in (7.1) originate from the α′ terms in 2hihjR̃ij . It

should be noted that in order to fully control O(α′2) terms in this expression, one would

require to know the Einstein equations up to and including α′2.

To begin, we consider (7.1) to zeroth order in α′. We then re-obtain the conditions

found in [27] via a maximum principle argument, i.e.

h2 = const +O(α′) , ∇̃(ihj) = O(α′) , dh− ihW = O(α′) . (7.2)

In particular, it follows from these conditions that

ihdh = O(α′) , (7.3)

and also

LhΦ = O(α′), LhW = O(α′) . (7.4)

Furthermore, it also follows that if η+ satisfies (4.26), then Γ−hiΓ
iη+ also satisfies (4.26)

to zeroth order in α′. The integrability conditions therefore imply that

ˆ̃Rijmnh
mΓnφ+ = O(α′) , (7.5)

and hence
ˇ̃Rmnijh

m = O(α′) . (7.6)

On substituting these conditions back into (7.1) one finds that the remaining content

of (7.1) is

∇̃i

(

e−2Φ∇̃ih
2

)

+ e−2Φhj∇̃jh
2 =

α′

2
e−2ΦhihjF̃iℓ

abF̃j
ℓ
ab +O(α′2) . (7.7)

On integrating the O(α′) part of (7.7) over the zeroth order horizon section, one finds that

ihF̃ = O(α′) , (7.8)

and furthermore

h2 = const +O(α′2) . (7.9)

It should be noted however that (7.1) does not in general imply (5.1). In particular, the

conditions obtained from the analysis of the properties of h2 are not sufficient to imply that

if η+, with η
[0]
+ 6= 0, satisfies (4.26) and (4.27), then η′′− = Γ−hiΓ

iη+ also satisfies (4.26)

and (4.27). Thus although (7.1) implies the horizons exhibit supersymmetry enhancement

at O(α′), it does not imply the same at O(α′2).
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7.2 Lichnerowicz type theorems

Next we shall investigate whether it is possible to identify Killing spinors with the zero

modes of a suitable Dirac-like operator, by constructing a generalized Lichnerowicz type

theorem which incorporates the near-horizon fluxes. Such Lichnerowicz type theorems have

been established for near-horizon geometries in D=11 supergravity [9], type IIB [10] and

type IIA supergravity (both massive and massless) [11, 12], as well as for AdS geometries

in ten and eleven dimensional supergravity [33, 37–39].

To begin, let us first define the modified connection with torsion and the modified

horizon Dirac operator, respectively

∇
(κ)
i ≡ ˆ̃∇i + κΓiA , D ≡ Γi ˆ̃∇i + qA , (7.10)

where κ, q ∈ R, and

ˆ̃∇iη± = ∇̃iη± −
1

8
WijkΓ

jkη± ,

A = WijkΓ
ijk − 12Γi∇̃iΦ∓ 6Γihi . (7.11)

It is clear that if η± is a Killing spinor, i.e.

ˆ̃∇iη± = O(α′2), and Aη± = O(α′2) , (7.12)

then Dη± = O(α′2) also. Here we want to investigate the extent to which the converse is

true. We shall show that if Dη± = O(α′2), then

ˆ̃∇iη± = O(α′), and Aη± = O(α′) , (7.13)

and moreover

dhijΓ
ijη± = O(α′), and F̃ ab

ij Γ
ijη± = O(α′) . (7.14)

In order to obtain this result, we begin by considering the following functional

I ≡

∫

S

ecΦ
(

〈∇
(κ)
i η±,∇

(κ)iη±〉 − 〈Dη±,Dη±〉

)

, (7.15)

where c ∈ R, and we assume all the field equations. After some algebra, which is described

in appendix D, we find

I =

(

8κ2 −
1

6
κ

)
∫

S

e−2Φ ‖ A η± ‖2 +

∫

S

e−2Φ〈η±,ΨDη±〉

−
α′

64

∫

S

e−2Φ
(

2 ‖ /dh η± ‖2 + ‖ /̃Fη± ‖2 −〈 ˇ̃Rℓ1ℓ2, ijΓ
ℓ1ℓ2η±,

ˇ̃Rij
ℓ3ℓ4,

Γℓ3ℓ4η±〉
)

+O(α′2) ,

(7.16)

which is true if and only if q = 1
12 +O(α′2) and c = −2 +O(α′2), and the Ψ is defined as

follows

Ψ ≡ 2

(

κ−
1

12

)

A† − 2Γi∇̃iΦ−
1

6
Γℓ1ℓ2ℓ3Wℓ1ℓ2ℓ3 +O(α′2) . (7.17)
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The values of q and c are fixed by requiring that certain terms in the functional (7.15),

which cannot be rewritten in terms of the Dirac operator D, or A†A, and which have no

fixed sign, should vanish.

The part of (7.16) which is of zeroth order in α′ implies that if 0 < κ < 1
48 , then

Dη± = O(α′2) =⇒ (7.13) (7.18)

and establishes the first part of the theorem. Next the integrability condition of
ˆ̃∇η± = O(α′) is

ˆ̃Rmn,ℓ1ℓ2Γ
ℓ1ℓ2η± = O(α′) , (7.19)

which in turn implies that
ˇ̃Rℓ1ℓ2,mnΓ

ℓ1ℓ2η± = O(α′) . (7.20)

Hence we shall neglect the term in (7.16) which is quadratic in ˇ̃R, as this term is O(α′3).

Then, assuming (7.18), the part of (7.16) which is first order in α′ further implies (7.14).

This completes the proof.

8 Nearly supersymmetric horizons

8.1 Description of the backgrounds

We have proven that for near horizon geometries the necessary and sufficient conditions

imposed by supersymmetry on the spinors can be reduced to (4.26) and (4.27). In this sec-

tion, we shall consider the case for which the supersymmetry is explicitly partially broken,

in the sense that the gravitino KSE (4.26) admits solutions but not dilatino one (4.27).

We also assume that the fields satisfy

∆ = O(α′2), H = d(e− ∧ e+) +W +O(α′2) . (8.1)

These conditions were previously obtained via the supersymmetry analysis; here we shall

assume them. In particular, all of the conditions obtained from the global analysis of the

Laplacian of h2 in section 7 remain true. As a consequence of this,

ˆ̃∇ihj = O(α′) . (8.2)

However we do not assume that ˆ̃∇h = O(α′2).

One consequence of these assumptions is that none of the spacetime Killing spinor

equations are satisfied even at O(α′). In particular, the spacetime gravitino KSE requires

in addition the condition that dhijΓ
ijη+ = O(α′) which is not one of our requirements.

In what follows, we shall investigate the consequences of the above assumptions on the

geometry of the spatial horizon sections S. We shall also comment on the special case

where ˆ̃∇h = O(α′2).

– 20 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
1

8.2 Additional parallel spinors

A key property of backgrounds that satisfy the gravitino KSE but not the dilatino one is

the existence of additional parallel spinors, see also appendix C. In the present context to

show this focus on the spinor η+; a similar analysis can be undertaken for the η− spinors.

To proceed, it will be useful to define

A = WijkΓ
ijk − 12Γi∇̃iΦ− 6hiΓ

i , (8.3)

so that the algebraic condition (4.27) on η+ is equivalent to Aη+ = O(α′2). We then note

the useful identity

∇̃iWℓ1ℓ2ℓ3Γ
ℓ1ℓ2ℓ3η+ = ∇̃i(Aη+)−

1

8
Wiℓ1ℓ2Γ

ℓ1ℓ2(Aη+)

+ 3Wℓ1ℓ2qWiℓ3
qΓℓ1ℓ2ℓ3η+ −

(

6∇̃mΦ+ 3hm
)

WmiℓΓ
ℓη+

+
(

12Γℓ∇̃i∇̃ℓΦ+ 6∇̃ihℓΓ
ℓ
)

η+ . (8.4)

The integrability conditions of (4.26) imply that

1

6

(

∇̃i(Aη+)−
1

8
Wiℓ1ℓ2Γ

ℓ1ℓ2(Aη+)

)

−
α′

8
(F̃iℓ)abΓ

ℓ(F̃q1q2)
abΓq1q2η+

−
α′

16
dhiℓΓ

ℓdhq1q2Γ
q1q2η+ = O(α′2) , (8.5)

and hence

1

6
〈η+,Γ

i∇̃i(Aη+)−
1

8
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3(Aη+)〉+
α′

8
〈((F̃ℓ1ℓ2)abΓ

ℓ1ℓ2η+, (F̃q1q2)
abΓq1q2η+〉

+
α′

16
〈dhℓ1ℓ2Γ

ℓ1ℓ2φ+, dhq1q2Γ
q1q2η+〉 = O(α′2) . (8.6)

Integrating this expression over S yields the conditions

F̃ijΓ
ijη+ = O(α′), dhijΓ

ijη+ = O(α′) , (8.7)

and substituting these conditions back into (8.5) then implies that

∇̃i(Aη+)−
1

8
Wiℓ1ℓ2Γ

ℓ1ℓ2(Aη+) = O(α′2) . (8.8)

Therefore the spinor τ+ = Aη+ is also ˆ̃∇-parallel. As τ+ has opposite chirality from η+
cannot be identified as an additional Killing spinor within the heterotic theory. Nevertheless

it is instrumental in the description of the geometry of S.

8.3 Nearly supersymmetric horizons with G2 holonomy

8.3.1 A symmetry of horizon section

Suppose that we consider solutions for which there exists a single solution η+ to the grav-

itino KSE
ˆ̃∇η+ = O(α′2) , (8.9)
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for which
(

Aη+
)[0]

6= 0. This implies that the horizon section S [0] at zeroth order in α′

admits a G2 structure.

We begin by defining τ+ = Aη+, with τ
[0]
+ 6= 0. It will be particularly useful to define

Vi = 〈η,Γiτ+〉 . (8.10)

In what follows we shall show that V is a symmetry of all the fields of the spatial horizon

section.

As τ
[0]
+ 6= 0, this implies that V [0] 6= 0. In addition, as η+ and τ+ satisfy

ˆ̃∇η+ = O(α′2) , ˆ̃∇τ+ = O(α′2) , (8.11)

it follows that
ˆ̃∇V = O(α′2) , (8.12)

so that V 2 = const.+O(α′2), and V is an isometry of S to both zero and first order in α′.

Next, we consider the relationship of V to h. In particular, the spinors hiΓ
iAη+ and

ViΓ
iAη+ are both parallel with respect to ˆ̃∇ at zeroth order in α′. As we have assumed

that (8.9) admits only one solution, there must be a nonzero constant c such that

V = ch+O(α′) . (8.13)

In addition, we have

LV W = iV dW +O(α′2) , (8.14)

because dV = iV W +O(α′2). Also, as V = ch+O(α′) it follows that

LV W = cihdW +O(α′2) . (8.15)

As a consequence of (8.2), one has that ihdh = O(α′), and from the global analysis of

the Laplacian of h2, we find ihF̃ = O(α′) as well as ˇ̃Rmnijh
m = O(α′). These conditions

imply that

LV W = O(α′2) , (8.16)

and so W is invariant.

Next we consider LV Φ. As V = ch+O(α′) it follows that

LV dh = cLhdh+O(α′) = O(α′) . (8.17)

Also we have

LV R̃ij,pq = O(α′2) , (8.18)

and
(

LV F̃
)

ij
a
bF̃

ijb
a = O(α′) , (8.19)

which follows from

LV F̃ = c[F̃ , ihB] +O(α′) . (8.20)
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Hence we have

LV

(

α′
(

− 2dhijdh
ij + ˇ̃Rij,pq

ˇ̃Rij,pq − (F̃ij)
ab(F̃ ij)ab

)

)

= O(α′2) . (8.21)

So, on taking the Lie derivative of the trace of (4.16) with respect to V we find

LV

(

∇̃ihi + 2∇̃i∇̃
iΦ

)

= O(α′2) , (8.22)

and hence, as a consequence of the field equation (4.13), we find

LV

(

hi∇̃iΦ+ ∇̃i∇̃iΦ

)

= O(α′2) . (8.23)

Also, on taking the Lie derivative of the dilaton field equation (4.17), we get

LV

(

− hi∇̃iΦ− 2∇̃iΦ∇̃
iΦ+ ∇̃i∇̃iΦ

)

= O(α′2) . (8.24)

On taking the sum of (8.23) and (8.24), we find

LV

(

∇̃i∇̃iΦ− ∇̃iΦ∇̃iΦ

)

= O(α′2) , (8.25)

and hence if f = LV Φ we have

∇̃i∇̃
if − 2∇̃iΦ∇̃if = O(α′2) . (8.26)

We know LhΦ = O(α′) as a consequence of the analysis of the Laplacian of h2, so f =

α′f [1] +O(α′2). Then, on integrating, (8.26) implies that
∫

S[0]

e−2Φ[0]
∇̃if

[1]∇̃if [1] = 0 , (8.27)

so f [1] = β for constant β, and so

LV Φ = βα′ +O(α′2) . (8.28)

As we require that Φ must attain a global maximum on S, at this point LV Φ = 0 to all

orders in α′, for any V . This fixes β = 0, so

LV Φ = O(α′2) , (8.29)

which proves the invariance of Φ.

Next, we consider LV h. On taking the Lie derivative of the field equation of the 2-form

gauge potential (4.15) we find

d(LV h)ij − (LV h)
kWijk = O(α′2) , (8.30)

and on taking the Lie derivative of the Einstein equation (4.16) we get

∇̃(i(LV h)j) = O(α′2) , (8.31)
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where we have used

Lh

(

F̃iℓ
abF̃j

ℓ
ab

)

= O(α′) . (8.32)

It follows that
ˆ̃∇(LV h)j = O(α′2) . (8.33)

As V = ch+O(α′), it is convenient to write

LV h = α′Λ +O(α′2) , (8.34)

where
ˆ̃∇Λ = O(α′) . (8.35)

As ΛjΓ
jAη+ and hjΓ

jAη+ are both parallel with respect to ˆ̃∇ at zeroth order in α′, it

follows as a consequence of (ii) that we must have

Λ = bh+O(α′) , (8.36)

for constant b. It is also useful to compute

hi(LV hi) = hi
(

V j∇̃jhi + hj∇̃iV
j

)

=
1

2
LV h

2 + hihj∇̃iVj = O(α′2) , (8.37)

which follows because h2 = const + O(α′2), and ˆ̃∇V = O(α′2). This implies that b = 0,

and hence

LV h = O(α′2) . (8.38)

So V is a symmetry of the full solution to both zeroth and first order in α′.

8.3.2 Geometry

We have shown that V is a symmetry of the backgrounds up O(α′2). To investigate further

the geometry of the horizon section S, let us first consider the consequences of the existence

of the η+ Killing spinor. As the isotropy group of η+ in Spin(8) is Spin(7), the fundamental

self-dual 4-form φ of Spin(7) on S is ˆ̃∇-parallel. It is known that in such a case, the torsion

3-form W can be uniquely determined in terms of φ and the metric without any additional

conditions on the Spin(7) structure of S [40]. Next the condition ˆ̃∇τ+ = O(α′2) with

τ+ = Aη+ is equivalent to requiring that

ˆ̃∇i

(

(2dΦ+ h)j − (θφ)j
)

= O(α′2) , (8.39)

where θφ is the Lee form of φ, see [25]. As a result 2dΦ+ h− θφ is a parallel 1-form. If it

is not linearly dependent on V , it will give rise to an additional solution for the gravitino

KSE S. As we have assumed that there is strictly one parallel spinor of the same chirality

as η+, we have to require that

2dΦ+ h− θφ = λV +O(α′2) , (8.40)

for some non-zero constant λ; for λ = 0 the dilatino KSE is satisfied as well.
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Let us next turn to investigate the G2 structure on S. As V is an isometry on S and

iV W = dV , setting V 2 = ℓ2 + O(α′2) for ℓ constant, we can decompose the metric and

3-form as

ds̃2 =
1

ℓ2
V ⊗ V + ds2(7) +O(α′2) , W = ℓ−2V ∧ dV +W(7) +O(α′2) , (8.41)

where ds2(7) is the metric on the space orthogonal to V and iV W(7) = 0. The data

(ds2(7),W(7)) are thought (locally) as the metric torsion on the space of orbits M7 of V . For

this observe that LV W(7) = 0 and as iV W(7) = 0, W(7) descends as a 3-form on the space

of orbits.

The spatial horizon section S admits aG2 structure with fundamental form ϕ = ℓ−1iV φ

as ˆ̃∇ϕ = O(α′2). The question is whether this G2 structure descends on the space of orbits

of V . First observe that iV ϕ = 0. So it remains to investigate whether LV ϕ = O(α′2). For

this notice that under G2 representations dV decomposes as dV = dV 7 + dV 14 + O(α′2)

because iV dV = O(α′2). Then use (C.3) together with ˆ̃∇ϕ = ˆ̃∇V = O(α′2) and iV dW =

O(α′2) to show that
ˆ̃∇dV 7 = O(α′2) . (8.42)

As dV 7 is a vector in S orthogonal to V , if it is not vanishing will generate an additional
ˆ̃∇-parallel spinor on S of the same chirality as η+. As we have restricted the number of such

spinors to one, we have to set dV 7 = O(α′2). It has been shown in [25] that a ˆ̃∇-parallel

k-form α is invariant under the action of a ˆ̃∇-parallel vector V , iff the rotation iV W leaves

the form invariant. As iV W = dV +O(α′2) and dV takes values in g2, we conclude that

LV ϕ = O(α′2) . (8.43)

and so M7 admits a G2 structure compatible with connection with skew-symmetric torsion

given by the data (ds2(7),W(7)). In such a case W(7) can be determined uniquely in terms

of ϕ and ds2(7) provided a certain geometric constraint is satisfied [41].

It remains to explore (8.40) from the perspective of M7. Let us decompose h = V +h⊥,

where g(V, h⊥) = 0. Then (8.40) can be written as

ℓ−1g(V, h)−
1

6
(W(7))ijkϕ

ijk = λℓ+O(α′2) ,

2dΦ+ h⊥ − θϕ = O(α′2) , (8.44)

where θϕ is the Lee form of ϕ on M7. The former determines the singlet part of W(7) in

terms of V and h while the latter imposes the dilatino KSE on M7.

9 Nearly supersymmetric horizons with additional parallel spinors

9.1 Nearly supersymmetric horizons with SU(3) holonomy

9.1.1 Symmetries of horizon section

Suppose there are exactly two linearly independent spinors η
(1)
+ , η

(2)
+ such that

ˆ̃∇η
(a)
+ = O(α′2), a = 1, 2 , (9.1)
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for which
(

Aη
(a)
+

)[0]
6= 0, (a = 1, 2). It follows that the horizon section S [0] admits a SU(3)

structure at zeroth order in α′.

We set τ
(a)
+ = Aη

(a)
+ which are non-vanishing spinors that satisfy

ˆ̃∇τ
(a)
+ = O(α′2) , a = 1, 2 . (9.2)

Using these we define the 1-form and 2-form spinor bilinears V and ω by

Vi = 〈η
(1)
+ ,Γiτ

(1)
+ 〉 , ωij = 〈η

(1)
+ ,Γijη

(2)
+ 〉 , (9.3)

and also let

Ṽ = iV ω . (9.4)

Observe that
ˆ̃∇V = O(α′2) , ˆ̃∇ω = O(α′2) , ˆ̃∇Ṽ = O(α′2) . (9.5)

We also define h̃ by

h̃ = ihω , (9.6)

which satisfies
ˆ̃∇h̃ = O(α′) . (9.7)

The main task below is to show that both V and Ṽ leave invariant all the fields on S, and

that they generate a R⊕ R lie algebra.

As V and Ṽ are ˆ̃∇-parallel, they are Killing. Next consider the invariance of W . The

spinors V jΓjAη
(a)
+ , hjΓjAη

(a)
+ and h̃jΓjAη

(a)
+ are all parallel with respect to ˆ̃∇ to zeroth

order in α′. In order for (9.1) to have exactly two solutions, we must have

V = ch+ c̃h̃+O(α′) , (9.8)

for some constants c, c̃. Thus

LV W = cihdW + c̃ih̃dW +O(α′2) . (9.9)

To continue, since the two spinors η
(1)
+ and η

(2)
+ must satisfy (8.7), it follows that, at zeroth

order in α′, F̃ and dh are (1, 1) traceless with respect to the almost complex structure

obtained from ω. This, together with the conditions ihdh = O(α′) and ihF̃ = O(α′), which

follow from the global analysis of the Laplacian of h2, implies that

ih̃dh = O(α′) , ih̃F̃ = O(α′) , (9.10)

and hence

iV dh = O(α′) , iV F̃ = O(α′) . (9.11)

It is also useful to consider the spinors η
(a)
+ and h̃ℓΓ

ℓη
(a)
+ . The integrability conditions of

ˆ̃∇η
(a)
+ = O(α′2) , ˆ̃∇

(

h̃ℓΓ
ℓη

(a)
+

)

= O(α′) , (9.12)
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are
ˆ̃Rij,pqΓ

pqη
(a)
+ = O(α′2) , ˆ̃Rij,pqΓ

pq
(

h̃ℓΓ
ℓη

(a)
+

)

= O(α′) , (9.13)

which imply

h̃p ˇ̃Rpq,ij = O(α′) . (9.14)

It follows that ihdW = O(α′2) and ih̃dW = O(α′2), as a consequence of the Bianchi

identity, and therefore iV dW = O(α′2). Thus we have shown that

LV W = O(α′2) . (9.15)

This proves the invariance of W .

Next we consider LV Φ. It follows from (9.7) that

ih̃dh̃ = O(α′) , (9.16)

and also

Lh̃W = O(α′) . (9.17)

Since h̃ is an isometry of S to zeroth order in α′, we also have

Lh̃R̃ij,pq = O(α′) . (9.18)

On taking the Lie derivative of the trace of (4.16) with respect to h̃, we find

Lh̃

(

∇̃i∇̃
iΦ

)

= O(α′) , (9.19)

which is equivalent, if g = Lh̃Φ, to

∇̃i∇̃
ig = O(α′) . (9.20)

On integrating the zeroth order of (9.20), we find

∫

S[0]

∇̃ig
[0]∇̃ig[0] = 0 , (9.21)

so g[0] = γ, for constant γ. Thus

Lh̃Φ = γ +O(α′) . (9.22)

Since Φ must attain a global maximum on S, at this point Lh̃Φ = 0 to all orders in α′.

This fixes the constant γ = 0, and so

Lh̃Φ = O(α′) , (9.23)

which implies

LV Φ = O(α′) . (9.24)

As V = ch+ c̃h̃+O(α′), it follows that

LV dh = cLhdh+ c̃Lh̃dh+O(α′) = O(α′) . (9.25)
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Since V is an isometry of S to first order in α′, we have

LV R̃ij,pq = O(α′2) . (9.26)

Also we have

(LV F̃ )ij
a
bF̃

ij b
a = O(α′) , (9.27)

which follows from

LV F̃ = c[F̃ , ihB] + c̃[F̃ , ih̃B] +O(α′) . (9.28)

Using the conditions (9.24), (9.25), (9.26) and (9.27), we follow the analysis for the G2 case

of the previous section undertaken from the equation (8.22) to (8.29), and conclude that

LV Φ = O(α′2) , (9.29)

which proves the invariance of the dilaton Φ.

Next we consider LV h. Equations (8.30) and (8.31), which have been established in

the previous section, hold here as well after using in the addition that

Lh̃

(

F̃iℓ
abF̃j

ℓ
ab

)

= O(α′) . (9.30)

Then it follows that
ˆ̃∇i (LV h)j = O(α′2) . (9.31)

Furthermore we notice that

Lh̃h = O(α′) . (9.32)

As V = ch+ c̃h̃+O(α′), it is convenient to write

LV h = α′Ψ+O(α′2) , (9.33)

where
ˆ̃∇Ψ = O(α′) . (9.34)

Then it follows that the spinors ΨjΓ
jAη+, hjΓ

jAη+ and h̃jΓ
jAη+ are all parallel with

respect to ˆ̃∇ at zeroth order in α′. In order for (9.1) to admit exactly two solutions, we

must have

Ψ = bh+ b̃h̃+O(α′) , (9.35)

for constants b and b̃. Then using ihLV h = O(α′2), which has been computed in (8.37),

and h2 = const.+O(α′2), it follows that b = O(α′) and therefore

LV h = α′b̃h̃+O(α′2) . (9.36)

Next we consider the symmetries generated by Ṽ . Since V = ch + c̃h̃ + O(α′), then

we have

Ṽ = ch̃− c̃h+O(α′) . (9.37)
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Since V and ω are both parallel with respect to ˆ̃∇ to first order in α′, we also have

ˆ̃∇Ṽ = O(α′2) . (9.38)

Then the analysis undertaken for V holds as well for Ṽ , because the only properties of V

used through the analysis are that V , at zeroth order in α′, is a linear combination of h

and h̃ with constant coefficients, and V is parallel with respect to ˆ̃∇ to first order in α′.

Thus we argue in a similar way that

LṼ W = O(α′2) , LṼ Φ = O(α′2) , LṼ h = α′q̃h̃+O(α′2) , (9.39)

for a constant q̃.

Finally, the V and Ṽ commute up to O(α′2). To see this observe that since iV Ṽ = 0

and iV W = dV +O(α′2), we have that

LṼ V = iṼ iV W +O(α′2) . (9.40)

Using (C.3) adapted to S as well as iV dW = iṼ dW = O(α′2), we conclude that

ˆ̃∇iṼ iV W = O(α′2) . (9.41)

Therefore the vector iṼ iV W is ˆ̃∇-parallel and moreover is orthogonal to both V and Ṽ .

So if it is non-zero, it will generate additional ˆ̃∇-parallel η+ spinors on S. As we have

restricted those to be strictly two, we conclude that iṼ iV W vanishes and so

[V, Ṽ ] = O(α′2) . (9.42)

In particular as iV Ṽ = 0, we have that

iV dṼ = iṼ dV = O(α′2) . (9.43)

This concludes the examination of the symmetries of S.

9.1.2 Geometry

It is clear from the examination of the symmetries of the fields on S and in particular (9.5)

and (9.43) that we can set

ds̃2 = ℓ−2V ⊗ V + ℓ−2Ṽ ⊗ Ṽ + ds2(6) +O(α′2) ,

W = ℓ−2V ∧ dV + ℓ−2Ṽ ∧ dṼ +W(6) +O(α′2) , (9.44)

where V 2 = Ṽ 2 = ℓ2 + O(α′2) and ℓ is constant, ds2(6) is the metric in the orthogonal

complement of V and Ṽ and iV W(6) = iṼ W(6) = O(α′2).

From construction S admits an SU(3) structure. We shall now investigate whether

this (locally) descends on the space of orbits M6 of V and Ṽ . First the data (ds2(6),W(6))

define a Riemannian geometry on M6 with skew-symmetric torsion. In particular for the

torsion this follows from iV W(6) = iṼ W(6) = O(α′2) and LV W(6) = LṼ W(6) = O(α′2).
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Next consider the reduction of the (almost) Hermitian form ω. Choosing without loss

of generality V and Ṽ orthogonal, one can write

ω = ℓ−2V ∧ Ṽ + ω(6) +O(α′2) , (9.45)

where iV ω(6) = iṼ ω(6) = O(α′2). For ω(6) to descend to a Hermitian structure on M6, it

must be invariant under the action of both V and Ṽ . Observe that ˆ̃∇ω(6) = O(α′2) and

also ˆ̃∇V = ˆ̃∇Ṽ = O(α′2). Thus ω(6) is invariant iff the rotations iV W = dV +O(α′2) and

iṼ W = dṼ +O(α′2) leave ω(6) invariant [25]. In turn this implies that the (2,0) and (0,2)

parts of the rotations which we denote with [dV ]2,0 and [dṼ ]2,0, respectively, must vanish.

Using (C.3), ˆ̃∇ω(6) = O(α′2) and iV dW = iṼ dW = O(α′2), we find that

ˆ̃∇[iV W ]2,0 = ˆ̃∇[iṼ W ]2,0 = O(α′2) . (9.46)

As S has an SU(3) structure compatible with ˆ̃∇, contracting with the (3,0)-form both

[iṼ W ]2,0 and [iṼ W ]2,0 give rise to vector fields in S orthogonal to both V and Ṽ which

are ˆ̃∇-parallel. Thus the requirement of strictly two η+
ˆ̃∇-parallel spinors leads to setting

[iṼ W ]2,0 = [iṼ W ]2,0 = O(α′2) which in turn implies that

LV ω(6) = LṼ ω(6) = O(α′2) . (9.47)

Thus M6 admits an almost Hermitian structure compatible with a connection ˆ̃∇(6) with

skew-symmetric torsion W(6). It is well known that in this case W(6) is determined in terms

of the almost complex structure on M6 and the metric, see eg [42].

To find whether M6 inherits a SU(3) structure as well, let investigate whether the

(3,0) fundamental SU(3) form χ of S descends on M6. It can always be arranged such

that iV χ = iṼ χ = 0. So it remains to see whether χ is invariant under the action of V

and Ṽ . For this a similar argument to that explained above for ω(6) leads to the assertion

that χ is invariant iff the ω-traces iṼ W · ω and iṼ W · ω of iṼ W and iṼ W , respectively,

vanish. Furthermore, an application of (C.3) implies that both iṼ W · ω and iṼ W · ω are

constant but not necessarily zero. Thus M6 has generically a U(3) structure instead of an

SU(3) one.

It remains to investigate the rest of the content of the conditions ˆ̃∇τ
(a)
+ = O(α′2). First

consider the (3,0) part of W(6) denoted by W 3,0
(6) . An application of (C.3) using that dW is

a (2,2) form yields that
ˆ̃∇W 3,0

(6) = O(α′2) . (9.48)

Thus W 3,0
(6) is another globally defined ˆ̃∇-parallel (3,0)-form on S and so it can either be

set to zero or be identified with χ. In the former case, the complex structure on M6 is

integrable and so M6 is a KT manifold [43].

Writing h = λ1V +λ2Ṽ +h⊥, where h⊥ is orthogonal to both V and Ṽ and λ1 and λ2

are constants, we find using (C.3) that

ˆ̃∇
(

2dΦ+ h⊥ − θω(6)

)

= O(α′2) . (9.49)
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Now if 2dΦ + h⊥ − θω(6)
in non-vanishing and since it is orthogonal to V and Ṽ will give

rise to more than two η+
ˆ̃∇-parallel spinors on S. Since we have assumed that there are

just two, we set

2dΦ+ h⊥ − θω(6)
= O(α′2) . (9.50)

This concludes the investigation of the geometry.

9.2 Nearly supersymmetric horizons with SU(2) holonomy

9.2.1 Assumptions and definitions

It is known that if one requires the existence of an additional ˆ̃∇-parallel spinor η+ to those

of the SU(3) backgrounds on S, then the isotropy algebra of the all the five spinors reduces

to su(2). As a result, S admits 8 ˆ̃∇-parallel spinors and the holonomy group reduces to a

subgroup SU(2). To describe the geometry of backgrounds with exactly 8 such spinors, we

consider four linearly independent spinors η
(a)
+ , and impose the condition

ˆ̃∇η
(a)
+ = O(α′2), a = 0, 1, 2, 3 , (9.51)

for which
(

Aη
(a)
+

)[0]
6= 0, (a = 0, 1, 2, 3). It follows that the horizon section S [0] admits

a SU(2) structure at zeroth order in α′. We continue by setting τ
(a)
+ = Aη

(a)
+ . These are

non-vanishing and satisfy

ˆ̃∇τ
(a)
+ = O(α′2), a = 0, 1, 2, 3 . (9.52)

Furthermore, we also define 1-form and 2-form spinor bilinears V (a) and ωr, respectively, by

Vi ≡ V
(0)
i = 〈η

(0)
+ ,Γiτ

(0)
+ 〉, (ωr)ij = 〈η

(0)
+ ,Γijη

(r)
+ 〉 , r = 1, 2, 3 , (9.53)

and also let

Ṽr = iV ωr . (9.54)

In fact ωr together with the metric and W define an almost HKT structure [43] on S as

ˆ̃∇V = O(α′2), ˆ̃∇ωr = O(α′2), ˆ̃∇Ṽr = O(α′2) , (9.55)

and the almost complex structures associated to ωr satisfy the algebra of unit quaternions.

These follow from (8.8) and the su(2) isotropy of the parallel spinors.

9.2.2 Symmetries of the horizon section

It is clear from (9.55) that V (a), V (r) = Vr, generate isometries on S and that

iaW = dV (a) +O(α′2) , (9.56)

where ia denotes inner-derivation with respect to V (a). Without loss of generality we choose

g(V (a), V (b)) = ℓ2δab+O(α′2) for ℓ constant. An investigation similar to the one explained

in section 9.1.1 reveals that

LaΦ = O(α′2) , LaW = O(α′2) , Lah = O(α′) , iadh = O(α′) ,

iaF = O(α′) . (9.57)
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Next let us consider the commutator [V (a), V (b)] = iaibW . An application of (C.3) together

with the conditions above reveal that

ˆ̃∇[V (a), V (b)] = O(α′2) . (9.58)

Thus the commutator is either linear dependent on V (a) or it will lead to further reduction

of the holonomy of ˆ̃∇ to {1}. In the latter case, the horizon section S will admit more

than four η+
ˆ̃∇-parallel spinors violating our assumptions. Thus, we conclude that

[V (a), V (b)] = fab
cV

(c) +O(α′2) , (9.59)

for some constants f with ℓ2fab
c = iaibicW + O(α′2). As f is skew-symmetric, the Lie

algebra spanned by V (a) is a metric (compact) Lie algebra. As it has dimension 4, it is

either isomorphic to ⊕4u(1) or to u(1)⊕ su(2).

Therefore the horizon section S can be viewed locally as a fibration with fibre either

×4U(1) or U(1) × SU(2) over the space of orbits M4 of V (a). We shall determine the

geometry of S by specifying the geometry of M4.

9.2.3 Geometry

To simplify the analysis, we choose up to an so(4) rotation V to be along a u(1) direction

in either ⊕4u(1) or u(1)⊕ su(2). This in particular implies that i0irW = O(α′2). Then the

metric and torsion of S can be written as

ds̃2 = ℓ−2δabV
(a) ⊗ V (b) + ds̃2(4) +O(α′2) ,

W = ℓ−2V ∧ dV +CS(Vr) +W(4) +O(α′2) , (9.60)

where V (a) is viewed as a principal bundle connection and CS(Vr) is the Chern-Simons

form which for the ⊕4u(1) case is

CS(Vr) = ℓ−2
∑

r

Vr ∧ dVr . (9.61)

The data (ds2(4),W(4)) define a geometry on M4 with skew-symmetric torsion.

First, let us investigate the reduction of the almost HKT structure of S on M4. For

this observe that

ωr = ℓ−2V ∧ Vr +
ℓ−2

2
ǫr

stVs ∧ Vt + ω(4)
r +O(α′2) , (9.62)

where iaω
(4)
r = O(α′2). Next consider Laω

(4)
r . As both V (a) and ω

(4)
r are ˆ̃∇-parallel, Laω

(4)
r

is specified by the properties of the rotation iaW . In particular if iaW is invariant under

ω
(4)
r , the Lie derivative vanishes.

Next let us investigate the two cases ⊕4u(1) and u(1)⊕su(2) separately. In the abelian

case, as iaibW = O(α′2), iaW is a 2-form on M4. Furthermore Laω
(4)
r vanishes iff the

self-dual part, iaW
sd, of iaW is zero. However in general this may not be the case. An

application of (C.3) implies that

ˆ̃∇iaW
sd = O(α′2) , (9.63)
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and so there exist some constants u such that

iaW
sd = ua

rω(4)
r +O(α′2) , (9.64)

otherwise the holonomy of ˆ̃∇ will be reduced further and it will admit more than four η+
parallel spinors. Then

Laω
(4)
r = 2ua

sǫsr
tω

(4)
t +O(α′2) . (9.65)

The identity [La,Lb] = L[V (a),V (b)] gives

(urau
s
b − urbu

s
a) = O(α′2) . (9.66)

The covariant constancy condition on M4 now reads

ˆ̃∇(4)ω(4)
r = 2ℓ−2V (a)usaǫsr

tω
(4)
t +O(α′2) , (9.67)

where now V (a) should be thought as the pull back of the principal bundle connection V (a)

with a local section. It is clear that the relevant connection that determines the geometry

of M4 is Zs = V (a)usa.

If ura = 0, M4 is a HKT manifold. It is easy to see this as ωr are covariantly constant

with respect to a connection with skew-symmetric torsion and all three almost complex

structures are integrable. The latter follows because of dimensional reasons. Otherwise

one of the 3-vectors ua must be non-zero. Without loss of generality take u0 6= 0. In such

a case the above equation can be solved as (ura) = (ur0, u
r
0vs), where vs = |u0|

−2
∑

r u
r
su

r
0.

Using these data, the covariant constancy condition of ω
(4)
r on M4 can be written as

ˆ̃∇(4)ω(4)
r = 2ℓ−2(V 0 + V pvp)u

s
0ǫsr

tω
(4)
t +O(α′2) . (9.68)

It is clear from this that M4 is a KT manifold with respect to the Hermitian form

|u0|
−1ur0ωr. In fact M4 is an (almost)4 QKT manifold [44] for which the holonomy of

the Sp(1) connection has been reduced to U(1).

Next let us turn to examine the non-abelian u(1)⊕ su(2) case. It is easy to see that

(urau
s
b − urbu

s
a) =

1

2
fab

cu
t
cǫtr

s +O(α′2) . (9.69)

If the 3-vector u0 6= 0, then all the rest of the components of u vanish. In such a case, M4 is

an KT manifold. This class of solutions includes the WZW type of solution AdS3×S3×M4

where M4 = S1 × S3 with the bi-invariant metric and constant dilaton. Such a horizon is

not supersymmetric but it is nearly supersymmetric.

It remains to consider the case u0 = 0. One can then show that detu 6= 0 and so

(urs) is invertible. Thus Zs = V (a)usa takes values in the sp(1) Lie algebra. M4 is a QKT

manifold, see also [28].

To conclude we remark that in all HKT and KT cases, there is an analogue of the

condition (9.49) for every Hermitian form ωr that determines these structures. If the

4In the definition of QKT structure in [44] an additional integrability condition was considered.
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associated 2dΦ + h⊥ − θr forms do not vanish, then the holonomy of the connection with

torsion reduces to {1} and the number of parallel spinors enhance to 16. The solutions are

the group manifolds. The solution AdS3 × S3 × S3 × S1 mentioned above belongs to the

class where the holonomy of the connection with torsion is {1}.

There is an analogue of this in the QKT case but in such a case the condition from the

perspective of M4 twists with sp(1). If 2dΦ + h⊥ − θr do not vanish, again the holonomy

of the connection with torsion on S reduces to {1}. However now some of the data like

the Hermitian forms are not (bi-)invariant under the action of the group. It would be of

interest to explore his further to see whether there are actual solutions.

We conclude the examination of the geometry of nearly supersymmetric backgrounds

in the G2, SU(3) and SU(2) cases by pointing out that they exhibit an sl(2,R) up to order

O(α′) but not up to order O(α′2). For the latter, h must be a symmetry of the theory up

to the same order and so it can be identified with V . The description of the geometry of

this special class of nearly supersymmetric backgrounds is very similar to the one we have

given above. The only difference is that now we can identify h with V .

10 Conclusions

We have investigated the supersymmetric near-horizon geometry of heterotic black holes

up to and including two loops in sigma model perturbation theory. Using a combination

of local and global techniques, together with the bosonic field equations and Bianchi iden-

tities, we have proven that the conditions obtained from the KSEs are equivalent to a

pair of gravitino equations (4.26) and a pair of algebraic conditions, related to the dilatino

KSE, (4.27), which are required to hold at zeroth and first order in α′. In particular, we

have shown that the KSE related to the gaugino is implied by the other KSEs and field

equations.

In all cases, we have also shown that there are no regular AdS2 solutions with compact

without boundary internal space by demonstrating that ∆ = O(α′2). This is not in contra-

diction with the fact that one can locally write AdS3 as a warped product over AdS2 [45],

see also appendix E. This is because our assumptions on the internal space of AdS2 are

violated in such a case.

Furthermore, we have demonstrated that horizons that admit a non-vanishing η−
Killing spinor up to order O(α′2), which does not vanish at zeroth order in α′, exhibit

supersymmetry enhancement via the same mechanism as described in [27], and so preserve

2, 4, 6 and 8 supersymmetries. We have described the geometry of such horizons in all

cases and this is similar to that presented in [27] for the horizons with dH = 0.

We have also considered in some detail the global properties of our solutions. The

analysis of the global properties of h2 proceeds in much the same way as in the heterotic

theory with dH = 0. However in the presence of anomaly, the consequences of the global

restrictions on the geometry of the horizons are somewhat weaker. For example, it is only

possible to prove that h is an isometry of the horizon section to zeroth order in α′. So one

cannot establish a direct algebraic relation between η+ and η− spinors to order O(α′2), and
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therefore it is not possible to directly show that there is supersymmetry enhancement via

this mechanism, as was done in [27] for the theory with dH = 0.

We have also constructed generalized Lichnerowicz type theorems, which relate spinors

which are parallel with respect to a certain type of near-horizon supercovariant derivative,

to zero modes of near-horizon Dirac operators. We have shown that if η is a zero mode of

the near-horizon Dirac operator to both zero and first order in α′, then the Lichnerowicz

theorems imply that η only satisfies the KSE (4.26) and (4.27) to zero order in α′. Hence,

the types of arguments used to show supersymmetry enhancement via Lichnerowicz type

theorems in [9–12] also do not work to the required order in α′ for the heterotic theory.

Finally, we have examined a class of nearly supersymmetric horizons for which the

gravitino KSE is allowed to admit solutions on the spatial horizon section but not the

rest of the KSEs. Such solutions in general do not admit any spacetime Killing spinors

including solutions of the gravitino KSE. Under some conditions on the fluxes, we investi-

gate the geometry of the spatial horizon sections using a combination of local and global

techniques as well as the field equations. We find that those with a G2, SU(3) and SU(2)

structure admit 1, 2 and 4 parallel vectors on the spatial horizon sections with respect to

the connection with torsion. The geometry on the orbit spaces of these isometries is fully

specified.

The spacetime of both supersymmetric, and nearly supersymmetry horizons considered

here admits a SL(2,R) symmetry at zeroth order in α′. In the supersymmetric case for

which there is a η− Killing spinor to order O(α′2) such that η− does not vanish at zeroth

order, η
[0]
− 6= 0, this symmetry persists at first order in α′. The nearly supersymmetric

horizons also admit an SL(2,R) symmetry provided that h is parallel with respect to the

connection with torsion up to O(α′2).

It is not apparent whether the properties of the heterotic horizons described here are

going to persist to higher than two loops in sigma model perturbation theory. It is likely

though that the presence of an sl(2,R) symmetry will persist after perhaps a suitable choice

of a scheme in perturbation theory. There is no apparent reason to hypothesize that such

a symmetry can be anomalous at higher loops. What happens to global properties of the

horizons, for example the Lichnerowicz type theorems, is less clear. We have already seen

that these theorems do not hold to the expected order in α′ even at two loops. This can

be taken as an indication that additional higher order corrections may further weaken the

consequences of such theorems.
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A Useful formulae

A.1 Spin connection and curvature

In our conventions, the curvature of a connection Γ is given by

RAB,
C
D = ∂AΓ

C
BD − ∂BΓ

C
AD + ΓC

ANΓN
BD − ΓC

BNΓN
AD . (A.1)

We define connections ∇̌ and ∇̂ as follows

∇̌MξN = ∇MξN −
1

2
HN

MLξ
L, ∇̂MξN = ∇MξN +

1

2
HN

MLξ
L (A.2)

for vector field ξ, where ∇ is the Levi-Civita connection. In particular, the Ř curvature

tensor can be written as

ŘAB,CD = RABCD−
1

2
∇AHCBD+

1

2
∇BHCAD+

1

4
HCANHN

BD−
1

4
HCBNHN

AD , (A.3)

where R is the Riemann curvature tensor. Also, note that

ŘAB,CD − R̂CD,AB =
1

2
(dH)ABCD . (A.4)

We also define connections ˇ̃∇ and ˆ̃∇ on the horizon section S via

ˇ̃∇iY
j = ∇̃iY

j −
1

2
W j

ikY
k, ˆ̃∇iY

j = ∇̃iY
j +

1

2
W j

ikY
k , (A.5)

for vector fields Y on S, and where ∇̃ is the Levi-Civita connection of S, and we denote

the curvatures of the connections ∇̃, ˇ̃∇ and ˆ̃∇ by R̃, ˇ̃R and ˆ̃R respectively.

The non-vanishing components of the spin connection in the frame basis (2.2) of the

near horizon metric (2.1) are

Ω−,+i = −
1

2
hi , Ω+,+− = −r∆, Ω+,+i =

1

2
r2(∆hi − ∂i∆),

Ω+,−i = −
1

2
hi, Ω+,ij = −

1

2
rdhij , Ωi,+− =

1

2
hi, Ωi,+j = −

1

2
rdhij ,

Ωi,jk = Ω̃i,jk , (A.6)

where Ω̃ denotes the spin-connection of the spatial horizon section S in the ei basis. If f

is any function of spacetime, then frame derivatives are expressed in terms of co-ordinate

derivatives as

∂+f = ∂uf +
1

2
r2∆∂rf , ∂−f = ∂rf , ∂if = ∂̃if − r∂rfhi . (A.7)

The non-vanishing components of the Ricci tensor is the basis (2.2) are

R+− =
1

2
∇̃ihi −∆−

1

2
h2 , Rij = R̃ij + ∇̃(ihj) −

1

2
hihj

R++ = r2
(

1

2
∇̃2∆−

3

2
hi∇̃i∆−

1

2
∆∇̃ihi +∆h2 +

1

4
(dh)ij(dh)

ij

)

R+i = r

(

1

2
∇̃j(dh)ij − (dh)ijh

j − ∇̃i∆+∆hi

)

, (A.8)

where R̃ is the Ricci tensor of the horizon section S in the ei frame.
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We remark that the non-vanishing components of the Hessian of Φ, are given by

∇+∇−Φ = −
1

2
hi∇̃iΦ ,

∇+∇iΦ = −
1

2
r(dh)i

j∇̃jΦ ,

∇i∇jΦ = ∇̃i∇̃jΦ , (A.9)

where in the above expression, we have set ∆ = 0.

The non-vanishing components of the Ř curvature tensor in the basis (2.2) are

Ř−i,+j = ∇̃jhi +
1

2
hℓWℓij , Řij,+− = dhij ,

Řij,+k = r

(

∇̃kdhij − hkdhij +
1

2
(dh)i

mWmjk −
1

2
(dh)j

mWmik

)

,

Řij,kℓ = R̃ijkℓ −
1

2
∇̃iWkjℓ +

1

2
∇̃jWkiℓ +

1

4
WkimWm

jℓ −
1

4
WkjmWm

iℓ

= ˇ̃Rij,kℓ , (A.10)

where in the above expression, we have set ∆ = 0, N = h and Y = dh. Note that the

Ř−i,+j and Řij,+k terms give no contribution to the Bianchi identity of H or to the Einstein

equations, because ŘMN,−i = 0 for all M,N .

A.2 Bosonic field equations

The Bianchi identity associated with the 3-form is

dH = −
α′

4

(

tr(Ř ∧ Ř)− tr(F ∧ F )

)

+O(α′2) , (A.11)

where tr(F ∧ F ) = F a
b ∧ F b

a (a, b are gauge indices on F ).

The Einstein equation is

RMN −
1

4
HML1L2HN

L1L2 + 2∇M∇NΦ

+
α′

4

(

ŘML1,L2L3ŘN
L1,L2L3 − FMLabFN

Lab

)

= O(α′2) . (A.12)

The gauge field equations are

∇M

(

e−2ΦHMN1N2

)

= O(α′2) , (A.13)

and

∇M

(

e−2ΦFMN

)

+
1

2
e−2ΦHNL1L2F

L1L2 = O(α′) . (A.14)

The dilaton field equation is

∇M∇MΦ = 2∇MΦ∇MΦ−
1

12
HN1N2N3H

N1N2N3

+
α′

16

(

ŘN1N2,N3N4Ř
N1N2,N3N4 − FN1N2abF

N1N2ab

)

+O(α′2) . (A.15)

This completes the list of field equations. We have followed the conventions of [46].
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B Further simplification of the KSEs

Here we shall show that the independent KSEs are given in (4.26) and (4.27). We first

note that the conditions on the bosonic fields (3.18) (obtained from the case when φ
[0]
+ ≡ 0)

actually imply those of (4.11) (corresponding to the φ
[0]
+ 6≡ 0 case). Furthermore, the

KSEs (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24) are identical to the KSE (4.18), (4.20),

(4.21), (3.22), (4.24) and (4.25). Hence, we shall concentrate on the simplification of the

KSEs associated with the case φ
[0]
+ 6≡ 0, as the simplification of the KSEs in the case φ

[0]
+ ≡ 0

follows in exactly the same way.

B.1 Elimination of conditions (4.19), (4.21), (4.23), (4.25)

Let us assume (4.18), (4.20), (4.22) and (4.24). Then acting on the algebraic condi-

tions (4.20) and (4.24) with the Dirac operator Γℓ∇̃ℓ, one obtains

(

∇̃i∇̃
iΦ∓ hi∇̃iΦ− 2∇̃iΦ∇̃iΦ−

1

2
hih

i +
1

12
WijkW

ijk +
1

4
(1± 1)dhijΓ

ij

+
1

4
(−1± 1)hkWkijΓ

ij −
1

48
dWℓ1ℓ2ℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4

)

φ± = O(α′2) , (B.1)

where we have made use of the field equations (4.13) and (4.15), together with the algebraic

conditions (4.20) and (4.24). Next, on substituting the dilaton equation and the Bianchi

identity into the above expression, one finds

(

1

2
(1∓ 1)∇̃ihi +

1

4
(1± 1)dhijΓ

ij +
1

4
(−1± 1)(ihW )ijΓ

ij

+
α′

32

(

2dhijΓ
ijdhpqΓ

pq+F̃ij
abΓijF̃pqabΓ

pq− ˇ̃Rij,
mnΓij ˇ̃Rpq,mnΓ

pq
)

)

φ± = O(α′2) . (B.2)

Further simplification can be obtained by noting that the integrability conditions of the

KSE (4.18) and (4.22) are
ˆ̃Rij,pqΓ

pqφ± = O(α′2) , (B.3)

and hence
ˇ̃Rpq,ijΓ

pqφ± = O(α′) , (B.4)

from which it follows that the final term on the r.h.s. of (B.2) is O(α′2) and hence can be

neglected. So, (B.2) is equivalent to

(

1

2
(1∓ 1)∇̃ihi +

1

4
(1± 1)dhijΓ

ij +
1

4
(−1± 1)(ihW )ijΓ

ij

+
α′

16
dhijΓ

ijdhpqΓ
pq +

α′

32
F̃ij

abΓijF̃pqabΓ
pq

)

φ± = O(α′2) . (B.5)

We begin by considering the condition which (B.5) imposes on φ+:

(

1

2
dhijΓ

ij +
α′

16
dhijΓ

ijdhpqΓ
pq +

α′

32
F̃ij

abΓijF̃pqabΓ
pq

)

φ+ = O(α′2) . (B.6)
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To zeroth order this gives

dhijΓ
ijφ+ = O(α′) , (B.7)

which implies that the second term on the l.h.s. of (B.6) is of O(α′2), and hence can be

neglected. Using this, (B.6) gives that

α′〈F̃ij
abΓijφ+, F̃pqabΓ

pqφ+〉 = O(α′2) , (B.8)

which implies that

F̃ij
abΓijφ+ = O(α′) . (B.9)

Using this the third term on the l.h.s. of (B.6) is also of O(α′2). So, the remaining content

of (B.6) is

dhijΓ
ijφ+ = O(α′2) . (B.10)

Hence, we have proven that the KSE (4.18) and (4.20) imply the algebraic KSE (4.19)

and (4.21).

Next, we consider the condition which (B.5) imposes on φ−, which is

(

∇̃ihi −
1

2
(ihW )ijΓ

ij +
α′

32

(

2dhijΓ
ijdhpqΓ

pq + F̃ij
abΓijF̃pqabΓ

pq
)

)

φ− = O(α′2) . (B.11)

However, note also that the u-dependent part of (4.18), with (4.22), implies that

(

∇̃ihj −
1

2
Wijkh

k

)

Γjφ− = O(α′2) . (B.12)

On contracting this expression with Γi, we find

(

∇̃ihi +
1

2
dhijΓ

ij −
1

2
(ihW )ijΓ

ij

)

φ− = O(α′2) , (B.13)

and on substituting this expression into (B.11) we get

(

−
1

2
dhijΓ

ij +
α′

16
dhijΓ

ijdhpqΓ
pq +

α′

32
F̃ij

abΓijF̃pqabΓ
pq

)

φ− = O(α′2) . (B.14)

Hence, we find from exactly the same reasoning which was used to analyse the conditions

on φ+, that (4.22) and (4.24) imply (4.23) and (4.25).

So, on making use of the field equations, it follows that the necessary and sufficient

conditions for supersymmetry simplify to the conditions (4.18) and (4.20) on φ+, and

to (4.22) and (4.24) on η−. We remark that the u-dependent parts of the conditions (4.18)

and (4.20) also impose conditions on η−. We shall examine the conditions on η− further

in the next section, and show how these may be simplified.
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B.2 Elimination of u-dependent parts of (4.18) and (4.20)

We begin by considering the u-dependent parts of (4.18) and (4.20), assuming that (4.22)

and (4.24) hold. The u-dependent part of the condition on φ+ obtained from (4.18) is
(

∇̃ihj −
1

2
Wijkh

k

)

Γjη− = O(α′2) , (B.15)

and the u-dependent part of the algebraic condition (4.20) is given by
(

Γi∇̃iΦ+
1

2
hiΓ

i −
1

12
WijkΓ

ijk

)

hℓΓ
ℓη− = O(α′2) . (B.16)

On adding hℓΓ
ℓ acting on (4.24) to the above expression, we find that (B.16) is equivalent

to the condition
(

∇̃ihi −
1

2
hiWijkΓ

jk

)

η− = O(α′2) , (B.17)

where we have also made use of the field equation (4.13). On contracting (B.15) with Γi,

it then follows that (B.17) is equivalent to

dhijΓ
ijη− = O(α′2) . (B.18)

However, as shown in the previous section, this condition is implied by (4.22) and (4.24)

on making use of the field equations.

So, it remains to consider the condition (B.15). First, recall that the integrability

conditions of the gravitino equation of (4.22) is given by

ˆ̃Rij,kℓΓ
kℓη− = O(α′2) . (B.19)

On contracting with Γj , one then obtains
((

− 2R̃ij +
1

2
WimnWj

mn − 2∇̃kΦWkij + dhij − hkWkij

)

Γj

+

(

−
1

6
(dW )ijkℓ −

1

3
∇̃iWjkℓ +

1

2
Wij

mWkℓm

)

Γjkℓ

)

η− = O(α′2) , (B.20)

where we have used the gauge equation (4.15). Also, on taking the covariant derivative

of the algebraic condition (4.24), and using (4.22), one also finds the following mixed

integrability condition
((

∇̃i∇̃jΦ−
1

2
∇̃ihj +

1

2
Wikj∇̃

kΦ−
1

4
Wikjh

k

)

Γj

+ Γjkℓ

(

−
1

12
∇̃iWjkℓ +

1

8
WjkmWiℓ

m

))

η− = O(α′2) . (B.21)

On eliminating the ∇̃iWjkℓΓ
jkℓ terms between (B.20) and (B.21), one obtains the condition

((

− 2R̃ij +
1

2
WimnWj

mn + dhij − 2hkWkij − 4∇̃i∇̃jΦ+ 2∇̃ihj

)

Γj

−
1

6
dWijkℓΓ

jkℓ

)

η− = O(α′2) . (B.22)
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Next, we substitute the Einstein equation (4.16) in order to eliminate the Ricci tensor,

and also use the Bianchi identity for dW . One then obtains, after some rearrangement of

terms, the following condition

((

4∇̃ihj − 2hkWkij

)

Γj + α′

(

1

2
dhijΓ

jdhkℓΓ
kℓ +

1

4
F̃ijabΓ

jF̃kℓ
abΓkℓ

−
1

4
ˇ̃Rij,

mnΓj ˇ̃Rkℓ,mnΓ
kℓ

))

η− = O(α′2) . (B.23)

The α′ terms in the above expression can be neglected, as they all give rise to terms which

are in fact O(α′2). This is because of the conditions (4.23) and (4.25), which we have

already shown follow from (4.22) and (4.24), together with the bosonic conditions, as well

as the fact that
ˇ̃Rkℓ,mnΓ

kℓη− = O(α′) , (B.24)

which follows from the integrability condition of (4.22). It follows that (B.23) implies (B.15).

C A consistency condition

Suppose that we consider the Bianchi identity associated with the 3-form as

dH = −
α′

4

(

tr(R∧R)− tr(F ∧ F )

)

+O(α′2) , (C.1)

where R is a spacetime curvature which will be specified later. Also observe that the 2-form

gauge potential and the Einstein equation can be written together as

R̂MN + 2∇̂M∇NΦ+
α′

4

(

RML1,L2L3RN
L1,L2L3 − FMLabFN

Lab

)

= O(α′2) . (C.2)

Then one can establish by direct computation that

R̂M [N,PQ] = −
1

3
∇̂MHNPQ −

1

6
dHMNPQ . (C.3)

Using this and the field equations of the theory, one can derive the relation

R̂MN,PQΓ
NΓPQǫ = −

1

3
∇̂M

(

HLPQΓ
LPQ − 12∂LΦΓ

L
)

ǫ

−
α′

4

[

RMN,EFRPQ,
EF − FMNabFPQ

ab
]

ΓNΓPQǫ+O(α′2) . (C.4)

If ǫ satisfies that gravitino KSE, the left hand side of this relation vanishes. Furthermore

the right-hand-side vanishes as well provided that dilatino and gaugino KSEs are satisfied,

and in addition

RPQ,
EFΓPQǫ = O(α′) . (C.5)

Of course in heterotic string perturbation theory

ŘPQ,
EFΓPQǫ = O(α′) , (C.6)
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as a consequence of the gravitino KSE and the closure of H at that order. Thus one can

set R = Ř and the identity (C.4) will hold up to order α′2.

One consequence of the identity (C.4) is that if the gravitino KSE and gaugino KSEs are

satisfied as well as (C.5) but the dilatino is not, then the gravitino KSE admits an additional

parallel spinor of the opposite chirality. Such kind of identities have been established before

for special cases in [42]. Here we have shown that such a result is generic in the context of

heterotic theory.

D Lichnerowicz theorem computation

In this appendix, we present the details for the calculation of the functional I defined

in (7.15), and show how the constants q and c are fixed by requiring that certain types of

terms which arise in the calculation should vanish. We begin by considering the calculation

at zeroth order in α′, and then include the corrections at first order in α′. We remark that

we shall retain terms of the type hi∇̃iΦ throughout. This is because although these terms

vanish at zeroth order in α′ as a consequence of the analysis in section 8, it does not follow

from this analysis that LhΦ = O(α′2). However, as we shall see, it turns out that the

coefficient multiplying the terms hi∇̃iΦ, which depends on the constants q and c, vanishes

when one requires that several other terms in I vanish as well. So these terms do not give

any contribution to I at either zeroth or first order in α′.

D.1 Computations at zeroth order in α′

Throughout the following analysis, we assume Einstein equations, dilaton field equation

and Bianchi identity at zeroth order in α′. To proceed, we expand out the definition of

∇
(κ)
i and D in I, obtaining the following expression

I =

∫

S

ecΦ2(κ− q)〈ΓiAη±,
ˆ̃∇iη±〉+ ecΦ(8κ2 − q2)〈η±,A

†Aη±〉

− ecΦ〈 ˆ̃∇iη±,Γ
ij ˆ̃∇jη±〉 . (D.1)

Now, after writing ˆ̃∇ in terms of the Levi-Civita connection ∇̃ and after integrating

by parts, the expression (D.1) decomposes into

I = I1 + I2 + I3 , (D.2)

where

I1 =

∫

S

ecΦ2(κ− q)〈η±,A
†Dη±〉+ ecΦ(8κ2 − 2κq + q2)〈η±,A

†Aη±〉 (D.3)

−
1

64
ecΦ〈η±,Γ

ℓ1ℓ2ΓijΓℓ3ℓ4Wiℓ1ℓ2Wjℓ3ℓ4η±〉 , (D.4)

and

I2 =

∫

S

cecΦ〈η±,Γ
ij∇̃jη±〉+

1

8
ecΦ〈∇̃iη±,Γ

ijΓℓ1ℓ2Wjℓ1ℓ2η±〉

−
1

8
ecΦ〈η±,Γ

ℓ1ℓ2ΓijWjℓ1ℓ2∇̃η±〉 , (D.5)
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and

I3 =

∫

S

−ecΦ〈∇̃iη±,Γ
ij∇̃jη±〉 . (D.6)

In particular, we note the identity

Γℓ1ℓ2ΓijΓℓ3ℓ4Wiℓ1ℓ2Wjℓ3ℓ4 = 8W i
ℓ1ℓ2Wiℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4 − 4WijkW
ijk , (D.7)

which simplifies I1. After integrating by parts the second term in I2, we have

I2 =

∫

S

cecΦ〈η±,Γ
ij∇̃jη±〉 −

1

8
ecΦ〈η±,

(

ΓijΓmn − ΓmnΓ
ij
)

Wj
mn∇̃iη±〉

−
c

8
ecΦ〈η±,Γ

iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉 −
1

8
ecΦ〈η±,Γ

ℓ1ℓ2ℓ3ℓ4∇̃ℓ1Wℓ2ℓ3ℓ4η±〉 , (D.8)

where the last term is order α′, so we shall neglect it. Now we shall focus on the second

term of (D.8). First note that

(

ΓijΓmn − ΓmnΓ
ij
)

Wj
mn = −4ΓmnW i

mn =
4

3
Wℓ1ℓ2ℓ3

(

Γℓ1ℓ2ℓ3Γi + Γiℓ1ℓ2ℓ3
)

. (D.9)

Then, after an integration by parts and after writing ∇̃ in terms of D, we have

∫

S

−
1

8
ecΦ〈η±,

(

ΓijΓmn − ΓmnΓ
ij
)

Wj
mn∇̃iη±〉 =

∫

S

−
1

6
ecΦ〈η±,Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3Dη±〉

+
q

6
ecΦ〈η±,Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3Aη±〉 −
1

48
ecΦ〈η±,Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3WijkΓ
ijkη±〉

+
c

12
ecΦ〈η±,Γ

iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+
1

12
ecΦ〈η±,Γ

ℓ1ℓ2ℓ3ℓ4∇̃ℓ1Wℓ2ℓ3ℓ4η±〉 . (D.10)

The last term of (D.10) is order α′, so we shall neglect it. To proceed further, we shall

substitute WijkΓ
ijk in terms of A, using its definition. This produces terms proportional to

the norm squared of A η±, together with a number of counterterms. In detail, one obtains

∫

S

−
1

8
ecΦ〈η±,

(

ΓijΓmn − ΓmnΓ
ij
)

Wj
mn∇̃iη±〉 =

∫

S

−
1

6
ecΦ〈η±,Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3Dη±〉

+ ecΦ
(

1

48
−

q

6

)

〈η±,A
†Aη±〉+ ecΦ

(

1

2
− 2q

)

〈η±,Γ
i∇̃iΦAη±〉

± ecΦ
(

1

4
− q

)

〈η±,Γ
ihiAη±〉+ 3ecΦ〈η±, ∇̃iΦ∇̃

iΦη±〉 ± 3ecΦ〈η±, h
i∇̃iΦη±〉

+
3

4
ecΦ〈η±, hih

iη±〉+
c

12
ecΦ〈η±,Γ

iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+O(α′) . (D.11)

Let us focus now on the first term of (D.8). After writing Γij as ΓiΓj − δij and after

integrating by parts, we have

∫

S

cecΦ〈η±,Γ
ij∇̃jη±〉 =

∫

S

cecΦ〈η±,Γ
ℓ∇̃ℓΦΓ

i∇̃iη±〉

+
c

2
ecΦ〈η±, ∇̃i∇̃

iΦη±〉+
c2

2
ecΦ〈η±, ∇̃iΦ∇̃

iΦη±〉 . (D.12)
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The first term in the r.h.s. of (D.12) can be rewritten in terms of the modified Dirac operator

D after subtracting suitable terms. The second term on the r.h.s. can be further simplified

using the dilaton field equation at zeroth order in α′. On performing these calculations,

we have
∫

S

cecΦ〈η±,Γ
ij∇̃jη±〉 =

∫

S

cecΦ〈η±,Γ
ℓ∇̃ℓΦDη±〉 −

c

24
ecΦ〈η±,WijkW

ijkη±〉

+ c

(

1

8
− q

)

ecΦ〈η±,Γ
iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+

c

4
ecΦ〈η±, hih

iη±〉

+ 12c

(

1

12
+

c

24
+ q

)

ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉

+ 6c

(

1

12
± q

)

ecΦ〈η±, h
i∇̃iΦη±〉+O(α′) . (D.13)

Let us now focus on I3. Recall that

Γij∇̃i∇̃jη± = −
1

4
R̃ η± . (D.14)

Therefore after integrating by parts and using (D.14) neglecting α′ corrections from Einstein

equations, I3 becomes

I3 =

∫

S

−
5

48
ecΦ〈η±,WijkW

ijkη±〉+ ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉+

1

4
ecΦ〈η±, hih

iη±〉

+ ecΦ〈η±, h
i∇̃iΦη±〉+O(α′) . (D.15)

Collecting together all terms and substituting hih
i by inverting the zeroth order in α′

dilaton filed equation, one finally gets

I =

∫

S

ecΦ〈η±,

(

cΓℓ∇̃ℓΦ−
1

6
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3 + 2(κ− q)A†

)

Dη±〉

+
(

8κ2 − 2κq −
q

12
+ q2

)

ecΦ〈η±,A
†Aη±〉

+
3

4

(

q −
1

12

)

ecΦ〈η±,W
i
ℓ1ℓ2W

iℓ3ℓ4Γℓ1ℓ2ℓ3ℓ4η±〉

− c

(

q −
1

12

)

ecΦ〈η±,Γ
iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉

+ 6

(

1

12
+ q +

c

12

)

ecΦ〈η±, ∇̃i∇̃
iΦη±〉

+ 12c
(

q +
c

24

)

ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉

+

(

1

2
− 6q ± 6q(c+ 2)

)

ecΦ〈η±, h
i∇̃iΦη±〉+O(α′) . (D.16)

In order to eliminate the term 〈η±,W
i
ℓ1ℓ2Wiℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4η±〉, which has no sign and cannot

be rewritten in terms of D or A†A, we must set

q =
1

12
+O(α′) . (D.17)
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and then in order to eliminate the 〈η±, ∇̃
i∇̃iΦη±〉 term we must further set

c = −2 +O(α′) . (D.18)

Then (D.16) simplifies to

I =

∫

S

e−2Φ〈η±,ΨDη±〉+
(

8κ2 −
κ

6

)

∫

S

e−2Φ ‖ A η± ‖2 +O(α′) , (D.19)

where

Ψ ≡ −2Γℓ∇̃ℓΦ−
1

6
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3 + 2

(

κ−
1

12

)

A† . (D.20)

D.2 Computations at first order in α′

In this section we shall consider corrections at first order in α′. I2 and I3 gain α′ corrections

from bosonic field equations and Bianchi identity, while I1 does not. Therefore we have

I1 =

∫

S

ecΦ2(κ− q)〈η±,A
†Dη±〉+ ecΦ(8κ2 − 2κq + q2)〈η±,A

†Aη±〉

−
1

8
ecΦ〈η±,W

i
ℓ1ℓ2Wiℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4η±〉+
1

16
ecΦ〈η±,WijkW

ijkη±〉+O(α′2) , (D.21)

and

I2 =

∫

S

cecΦ〈η±,

(

Γℓ∇̃ℓΦ−
1

6
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3

)

Dη±〉 −
c

24
ecΦ〈η±,WijkW

ijkη±〉

+ c

(

5

24
− q

)

ecΦ〈η±,Γ
iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+ ecΦ

(

1

48
−

q

6

)

〈η±,A
†Aη±〉

+ ecΦ
(

1

2
− 2q

)

〈η±,Γ
i∇̃iΦAη±〉 ± ecΦ

(

1

4
− q

)

〈η±,Γ
ihiAη±〉

+

(

3

4
+

c

4

)

ecΦ〈η±, hih
iη±〉+

(

c+
c2

2
+ 12cq + 3

)

ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉

+
( c

2
± 6cq ± 3

)

ecΦ〈η±, h
i∇̃iΦη±〉

−
1

24
ecΦ〈η±,Γ

ℓ1ℓ2ℓ3ℓ4∇̃ℓ1Wℓ2ℓ3ℓ4η±〉+ α′ c

32
ecΦ

(

− 2〈η±, dhijdh
ijη±〉

+ 〈η±,
ˇ̃Rℓ1ℓ2,ℓ3ℓ4

ˇ̃Rℓ1ℓ2,ℓ3ℓ4η±〉 − 〈η±, F̃ij
abF̃ ij

abη±〉

)

+O(α′2) , (D.22)

and

I3 =

∫

S

−
5

48
ecΦ〈η±,WijkW

ijkη±〉+ ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉+

1

4
ecΦ〈η±, hih

iη±〉

+ ecΦ〈η±, h
i∇̃iΦη±〉+ α′ 3

32
ecΦ

(

− 2〈η±, dhijdh
ijη±〉

+ 〈η±,
ˇ̃Rℓ1ℓ2,ℓ3ℓ4

ˇ̃Rℓ1ℓ2,ℓ3ℓ4η±〉 − 〈η±, F̃ij
abF̃ ij

abη±〉

)

+O(α′2) . (D.23)
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Combining all together and considering α′ corrections from substituting hih
i by inverting

the dilaton field equations, we have

I =

∫

S

ecΦ〈η±,

(

cΓℓ∇̃ℓΦ−
1

6
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3 + 2(κ− q)A†

)

Dη±〉

+
(

8κ2 − 2κq −
q

12
+ q2

)

ecΦ〈η±,A
†Aη±〉

+
3

4

(

q −
1

12

)

ecΦ〈η±,W
i
ℓ1ℓ2W

iℓ3ℓ4Γℓ1ℓ2ℓ3ℓ4η±〉

− c

(

q −
1

12

)

ecΦ〈η±,Γ
iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+ 12c

(

q +
c

24

)

ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉

+ 6

(

1

12
+ q +

c

12

)

ecΦ〈η±, ∇̃i∇̃
iΦη±〉+

(

1

2
− 6q ± 6q(c+ 2)

)

ecΦ〈η±, h
i∇̃iΦη±〉

+
α′

64
ecΦ

(

2〈η±,Γ
ℓ1ℓ2ℓ3ℓ4dhℓ1ℓ2dhℓ3ℓ4〉 − 〈η±,Γ

ℓ1ℓ2ℓ3ℓ4 ˇ̃Rℓ1ℓ2,ij
ˇ̃Rℓ3ℓ4,

ijη±〉

+ 〈η±,Γ
ℓ1ℓ2ℓ3ℓ4F̃ℓ1ℓ2, abF̃ℓ3ℓ4

abη±〉

)

+ α′ 3

8

(

1

6
− q

)

ecΦ
(

− 2〈η±, dhijdh
ijη±〉

+ 〈η±,
ˇ̃Rℓ1ℓ2,ℓ3ℓ4

ˇ̃Rℓ1ℓ2,ℓ3ℓ4η±〉 − 〈η±, F̃ij
abF̃ ij

abη±〉

)

+O(α′2) . (D.24)

To further simplify (D.24), we note the following identity

〈η±,Γ
ℓ1ℓ2ℓ3ℓ4dhℓ1ℓ2dhℓ3ℓ4η±〉 = 〈η±,Γ

ℓ1ℓ2dhℓ1ℓ2Γ
ℓ3ℓ4dhℓ3ℓ4η±〉

+ 2〈η±, dhijdh
ijη±〉 . (D.25)

Identities analogous to (D.25) hold also for the terms which involve ˇ̃Rij,kℓ and F̃ij
ab. This

leads to

I =

∫

S

ecΦ〈η±,

(

cΓℓ∇̃ℓΦ−
1

6
Wℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3 + 2(κ− q)A†

)

Dη±〉

+ (8κ2 − 2κq −
q

12
+ q2)ecΦ〈η±,A

†Aη±〉

+
3

4

(

q −
1

12

)

ecΦ〈η±,W
i
ℓ1ℓ2W

iℓ3ℓ4Γℓ1ℓ2ℓ3ℓ4η±〉

− c

(

q −
1

12

)

ecΦ〈η±,Γ
iℓ1ℓ2ℓ3∇̃iΦWℓ1ℓ2ℓ3η±〉+ 12c

(

q +
c

24

)

ecΦ〈η±, ∇̃iΦ∇̃
iΦη±〉

+ 6

(

1

12
+ q +

c

12

)

ecΦ〈η±, ∇̃i∇̃
iΦη±〉+

(

1

2
− 6q ± 6q(c+ 2)

)

ecΦ〈η±, h
i∇̃iΦη±〉

+
3

8
α′

(

q −
1

12

)

ecΦ
(

2dhijdh
ij + F̃ij

abF̃ ij
ab −

ˇ̃Rℓ1ℓ2,ℓ3ℓ4
ˇ̃Rℓ1ℓ2,ℓ3ℓ4

)

‖ η± ‖2

−
α′

32
ecΦ ‖ /dh η± ‖2 −

α′

64
ecΦ ‖ /̃F η± ‖2 +

α′

64
ecΦ〈 ˇ̃Rℓ1ℓ2, ijΓ

ℓ1ℓ2η±,
ˇ̃Rij
ℓ3ℓ4,

Γℓ3ℓ4η±〉

+ O(α′2) . (D.26)
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In order to eliminate the term 〈η±,W
i
ℓ1ℓ2Wiℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4η±〉, which has no sign and cannot

be rewritten in terms of D or A†A, we must set

q =
1

12
+O(α′2) . (D.27)

and then in order to eliminate the 〈η±, ∇̃
i∇̃iΦη±〉 term we must further set

c = −2 +O(α′2) . (D.28)

Then (D.26) is significantly simplified to

I =

(

8κ2 −
1

6
κ

)
∫

S

e−2Φ ‖ A η± ‖2 +

∫

S

e−2Φ〈η±,ΨDη±〉

−
α′

64

∫

S

e−2Φ
(

2 ‖ /dh η± ‖2 + ‖ /̃Fη± ‖2 −〈 ˇ̃Rℓ1ℓ2, ijΓ
ℓ1ℓ2η±,

ˇ̃Rij
ℓ3ℓ4,

Γℓ3ℓ4η±〉
)

+O(α′2) ,

(D.29)

where Ψ is defined in (D.20).

E AdSn+1 as warped product over AdSn

The AdSn+1 space can be written as a warped product over AdSn. This has been observed

before in [45] for AdS3 and elsewhere, see eg [47]. For this, we label all geometrical objects

defined on AdSn+1 and AdSn by n + 1 and n respectively, e.g. ds2n+1 is the metric on

AdSn+1 and ds2n is the metric on AdSn. In principle AdSn+1 and AdSn can have different

radii, which are indicated by ℓn+1 and ℓn respectively. Coordinates on AdSn+1 are taken

to be as follows

xI = (x0, xi) , x0 ≡ y , i = 1, . . . , n . (E.1)

We shall begin with an Ansätz for the metric on AdSn+1 as a warped product over

AdSn, i.e.

ds2n+1 = dy2 + f(y)2ds2n . (E.2)

We want to determine the necessary and sufficient conditions to impose on f(y) in order

for ds2n+1 to be the metric on AdSn+1. To succeed, we have to impose the fact AdSn+1 is

a maximally symmetric space. Locally, the necessary and sufficient condition is that the

Riemann tensor must assume the following form

R
(n+1)
IJKL = −

1

ℓ2n+1

(

g
(n+1)
IK g

(n+1)
JL − g

(n+1)
JK g

(n+1)
IL

)

, (E.3)

Equation (E.3) implies also that the metric (E.2) is Einstein and the curvature scalar is

constant and negative, i.e.

R
(n+1)
IJ = −

n

ℓ2n+1

g
(n+1)
IJ , R(n+1) = −

1

ℓ2n+1

n(n+ 1) . (E.4)
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The non-vanishing Christoffel symbols of (E.2) are:

Γ
(n+1) k

i 0 =
f ′(y)

f(y)
δki , Γ

(n+1) 0
i j = −f(y)f ′(y)g

(n+1)
ij , Γ

(n+1) k
i j = Γ

(n) k
i j . (E.5)

The non-vanishing Riemann tensor components are:

R(n+1)
i0,

k
0 = −

f ′′(y)

f(y)
δki ,

R(n+1)
i0,

0
ℓ = f(y)f ′′(y)g

(n)
iℓ ,

R(n+1)
ij,

k
ℓ = R(n)

ij,
k
ℓ + f ′(y)2

(

δkjg
(n)
iℓ − δkig

(n)
jℓ

)

, (E.6)

and

R
(n+1)
i0,k0 = −f(y)f ′′(y)g

(n)
ik ,

R
(n+1)
ij,kl = f(y)2R

(n)
ij,kl − f(y)2f ′(y)2

(

g
(n)
ik g

(n)
jl − g

(n)
jk g

(n)
il

)

. (E.7)

The non-vanishing Ricci tensor components are:

R
(n+1)
00 = −n

f ′′(y)

f(y)
,

R
(n+1)
ij = R

(n)
ij +

[

f ′(y)2(1− n)− f(y)f ′′(y)
]

g
(n)
ij . (E.8)

The Riemann tensor on AdSn must assume the following form

R
(n)
ijkℓ = −

1

ℓ2n

(

g
(n)
ik g

(n)
jℓ − g

(n)
jk g

(n)
iℓ

)

. (E.9)

Now we impose (E.3). The (i0, k0)-components provide the first ordinary differential equa-

tion for f

f ′′(y) =
1

ℓ2n+1

f(y) . (E.10)

The (ij, kl)-components provide the second ordinary differential equation for f

f ′(y)2 −
1

ℓ2n+1

f(y)2 +
1

ℓ2n
= 0 . (E.11)

Since equations in (E.4) are derived from (E.3), they would imply again (E.10) and (E.11),

so there is nothing further to be learned from those conditions. The general solution

of (E.10) and (E.11) is

f(y) = α cosh

(

y

ℓn+1

)

+ β sinh

(

y

ℓn+1

)

, (E.12)

where α and β are constants which satisfy

α2 − β2 =
ℓ2n+1

ℓ2n
. (E.13)
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The solution (E.12) leads us to the following conclusions

1. if y ∈ (−∞,+∞), then locally the AdS3 metric can be written as AdS2 ×w R.

2. if y ∈ [0, 1], then locally the AdS3 metric can be written as AdS2×w [0, 1] as the warp

factor is not periodic.

3. if y ∈ [0, 1] and force periodicity on y, then the metric of AdS2×w S1 is discontinuous

as the warp factor is not periodic.

From the perspective of near horizon geometries, the first case violates the compactness

condition of the partial horizon section. The second case implies that the spatial horizon

section has a boundary. The third case violates smoothness condition since (E.12) is not

periodic. Hence all cases violate one or more of the assumptions required to prove that

there are no AdS2 horizons in the heterotic theory.
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