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1 Introduction

The effect of higher order corrections to supergravity solutions is of considerable interest,
perhaps most notably for our understanding of quantum corrections to black holes. This
is important in determining how string theory may resolve black hole singularities, as well
as the investigation of the properties of black holes away from the limit o’ — 0. In higher
dimensions the four dimensional uniqueness theorems [1-7] no longer hold, and there are
exotic types of black hole solutions, such as the five dimensional black rings [8]. For ten and
eleven dimensional supergravity, it is expected that there is a particularly rich structure of
black objects, and the classification of these is ongoing. Progress has recently been made
in the classification of the near-horizon geometries of supersymmetric black holes. Near-
horizon geometries of extremal black holes in supergravity are known to generically undergo
supersymmetry enhancement. This has been proven by analysing the global properties of
such solutions via generalized Lichnerowicz theorems [9-12], and making use of index theory
arguments [13]. One consequence of the supersymmetry enhancement is that all such near-
horizon geometries exhibit an s[(2, R) symmetry. However, it is not apparent that these
properties persist after including string theory corrections.

There are several approaches to investigate how o’ corrections can change the event
horizons of black holes. Many black holes have AdS, x S? near-horizon geometries and as
it is expected that the symmetries of such backgrounds persist in quantum theory, only the
radii of the sphere and AdS receive o/ corrections. However, we expect that exotic black
holes in higher dimensions need not necessarily have such near-horizon geometries.

Another approach, in the context of supersymmetric black holes in four and five di-
mensions, is to assume that the corrected near horizon geometries undergo an enhancement
of supersymmetry in the near-horizon limit, which simplifies considerably the analysis of
the Killing spinor equations. It is known that all supergravity D = 4 and D = 5 black



holes undergo supersymmetry enhancement in the near-horizon limit [14-16]. In partic-
ular, the five dimensional BMPV black hole [17] undergoes supersymmetry enhancement
from N = 4 to N = 8 (maximal supersymmetry) in the near-horizon limit [18]. Also,
the supersymmetric asymptotically AdSs black hole of [19] undergoes supersymmetry en-
hancement from N = 2 to N = 4 (half-maximal supersymmetry) in the near-horizon limit.
However it is not clear in general why one expects that the o corrections should preserve
this property.

The first systematic classification of supersymmetric near-horizon geometries in a
higher derivative theory in five dimensions [20] was done in [21], in which the only assump-
tion made was that the solutions should preserve the minimal amount of supersymmetry.
The five dimensional theory reduces to ungauged five-dimensional supergravity coupled to
arbitrarily many vector multiplets when the higher derivative corrections are set to zero.
In this limit, it is known that near-horizon geometries are maximally supersymmetric with
constant scalars [22], which is consistent with the standard picture of the attractor mech-
anism. In contrast, when higher derivative terms are turned on, the list of near-horizon
geometries determined in [21] includes not only the maximally supersymmetric geometries
(which were classified in [23]), but also a set of regular non-maximally supersymmetric
solutions, on making use of a result of [24]. Although it is unclear if these particular
near-horizon geometries can be extended to a full black hole solution, the existence of such
a solution proves that for certain supergravity theories, the presence of higher derivative
terms can change how supersymmetry is enhanced for near-horizon solutions.

In this paper, we consider how higher derivative corrections to ten dimensional super-
gravity affect the geometry and supersymmetry of near-horizon solutions. We shall choose
to begin this work by investigating heterotic theory which includes o’ corrections up to two
loops in sigma model perturbation theory. This choice is motivated by two factors. Firstly,
from the perspective of the standard supergravity, much more is known about the geometric
structure of generic supersymmetric solutions, and near-horizon geometries. In particular,
as a consequence of the spinorial geometry classification techniques developed in [25, 26]
which were then combined with a global analysis of near-horizon geometries in [27], there
exists a full classification of all possible supersymmetric near-horizon geometries in the
heterotic supergravity. Secondly, the structure of higher derivative correction terms in the
field equations, and in the Killing spinor equations, is significantly simpler for the heterotic
theory when compared to the types of terms which arise in type II supergravity [29-32],
and associated references.

The method we shall use to prove our results is that first we solve the Killing spinor
equations in the near-horizon lightcone directions, and then simplify the remaining condi-
tions as much as possible using both the local field equations and Bianchi identities, as well
as global analysis. For the global analysis, we shall assume that the spatial cross-section
of the event horizon is smooth and compact, without boundary, and that all near-horizon
fields are also smooth. As a result of this analysis, we find that there are no AdSy solutions
(at zero and first order in o) to heterotic supergravity, which completes the classification
of heterotic AdS solutions in [33]. We also show that all of the conditions of supersym-
metry reduce to a pair of gravitino KSEs and a pair of algebraic KSEs on the spatial



horizon sections. The latter are associated to the dilatino KSE. Throughout, we allow for
all near-horizon data, including the spinors, to receive o’ corrections.

Using these conditions, we show that there is automatic supersymmetry enhancement
at both zero and first order in ' in the case for which there exists negative light-cone
chirality Killing spinor _ up to O(a’?) which does not vanish at zeroth order in o’. In
this case the supersymmetry enhancement is obtained via the same mechanism as for the
near-horizon geometries considered in [27] without o’ corrections, and the solution admits
an 5[(2,R) symmetry. Such horizons admit 2, 4, 6 and 8 Killing spinors and their geometry
is similar to that of horizons with vanishing anomaly contribution examined in [27]. The
remaining case, for which the negative light-cone chirality spinors vanish at zeroth order in
o’ remains open. We have investigated global aspects of these solutions by considering o/
corrections to the global analysis carried out in [27], and also by constructing generalized
Lichnerowicz theorems analogous to those proven in [9-12], again incorporating o’ correc-
tions. However, in both cases, there is an undetermined sign in the O(a'?) terms appearing,
which precludes the extension of the maximum principle arguments to first order in /.

We also consider a class of near-horizon solutions which are “nearly” supersymmetric.
These are not supersymmetric but some of their KSEs are satisfied. This is motivated by
the existence of WZW type of solutions to the heterotic theory with constant dilaton. It is
known that such solutions solve the gravitino KSE but not the dilatino one. In the present
case, we consider horizons for which one of the gravitino KSEs is satisfied! on the spatial
horizon section up order O(a’?) but not the other and the algebraic KSEs. After some
assumptions on the form of the fields, we give a complete description of the geometry of
such solutions.

This paper is organized as follows. In section 2, we present the fields of heterotic
near-horizon geometries and we integrate up the KSEs along the lightcone directions. In
sections 3 and 4, we identify the independent KSEs by examining the various cases that
can occur and in the process, prove that there are no AdSs solutions. In section 5, we
determine the conditions under which the horizons exhibit supersymmetry enhancement,
and in section 6 we give the geometry of the horizon sections. In section 7, we generalize
the global analysis presented near-horizon geometries in [27] to include o' corrections.
However because of a O(a?) sign ambiguity, it is not possible to prove that the horizon
section admits a G structure compatible with a connection with skew-symmetric torsion,
as is the case at zeroth order in o/. We also generalize the Lichnerowicz type theorems to
higher orders in o’. Once again, O(a'?) sign ambiguity means that it is not possible to
prove that zero modes of the horizon Dirac equation (at zero and first order in o) satisfy
the Killing spinor equations to the same order in ', although the algebraic Killing spinor
involving the 2-form gauge field is satisfied to the required order in o/. In sections 8 and 9,
we examine the geometry of nearly supersymmetric horizons focusing on those that admit
a solution to the gravitino KSE on the horizon spatial section, and in section 10 we give
our conclusions.

!Such solutions are not supersymmetric, and furthermore the spacetime gravitino KSE is not necessarily
satisfied.



The paper contains several appendices. In appendix A, we summarize some key for-
mulae that are used throughout in the computations of the paper and present the field
equations of the theory. In appendix B, we provide the details of part of the proof to
identify the independent KSEs on the spatial horizon section. In section C, we present
a formula which relates the gravitino KSE to the gaugino KSE which is instrumental in
the investigation of the geometry of nearly supersymmetric horizons. In appendix D, we
present further detail of the proof of the Lichnerowicz type theorem for the heterotic the-
ory, and in appendix E, we describe how AdS,,;1 can be written as a warped product over
AdS,,, and describe how such constructions are inconsistent with our assumptions on the
global structure and regularity of the solutions.

2 Supersymmetric heterotic near-horizon geometries

2.1 Near horizon fields

The metric near a smooth killing horizon expressed in Gaussian null co-ordinates [34, 35]
can be written as

ds* = 2eTe” + §;je'e (2.1)
where we have used the frame
1 A A
e"=du, e =dr+rh— §r2Adu, el = el jdy” | (2.2)
i,j =1,...,8, u,r are the lightcone coordinates, and the 1-form h, scalar A and e’ depend

only on the coordinates y!, I = 1,...,8, transverse to the lightcone. The black hole
stationary Killing vector field is identified with 0,,. The induced metric on § is

ds% = d;je'el (2.3)

and S is taken to be compact, connected without boundary. We denote the Levi-Civita
connection of S by V, and the Levi-Civita connection of the D=10 spacetime as V.

For the other heterotic fields, we assume that the dilaton ®, and the real 3-form H,
and non-abelian gauge potential A admit well-defined near-horizon limits, and that 0, is
a symmetry of the full solution:

Loy, =0, Ly, H =0, Ly, A=0. (2.4)
In particular, this means that ® = ®(y), and also
H=e"Ne  AN+ret ANY + W, (2.5)

where N, Y and W are u, r-independent 1, 2 and 3-forms on & respectively, and we do not

assume dH = 0. Moreover,
A=rPet +B, (2.6)

where P and B are a r, u-independent G-valued scalar and 1-form on S respectively. The
non-abelian 2-form field strength F' is given by

F=dA+AAA. (2.7)



Our conventions for the heterotic theory including o’ corrections are consistent with those
of [29]. We assume that the near-horizon data admit a Taylor series expansion in o/. We
denote this expansion by

A=A L o/ A L 00, (2.8)

and similarly for all near-horizon data, including spinors. For the supersymmetric solutions,
we shall assume that that there is at least one zeroth order in o/ Killing spinor, €% £ 0.

2.2 Supersymmetry

In the previous treatments of heterotic near-horizon geometries [27], it was assumed that
the anomaly vanishes and so the Bianchi identity dH = 0 was used to further simplify
the structure of the 3-form. Here, we shall not take dH = 0 as there is a non-trivial
contribution from the heterotic anomaly, and so the 3-form takes the more general form
given in (2.5).

We remark that the KSE of heterotic supergravity have been solved in [25] and [26],
and so, the solutions to the KSEs which we consider here correspond to a subclass of the
solutions in [25, 26]. However for horizons the global assumptions on the spatial section
S, like compactness, allow the derivation of additional conditions on the spinors and on
the geometry. So it is particularly useful to re-solve the KSEs, decomposing the spinors
into positive and negative lightcone chiralities adapted for the Gaussian null basis (2.2),
€ = €4 + €e_, where

I'ier =0, Iy_er = Feyr. (2.9)

We shall then extract from the KSEs the conditions imposed on €4 that will be useful to
apply the global conditions on S.

2.2.1 The gravitino equation

We begin by considering the gravitino equation

- 1
VME = VMG - g MNINQFNlNQE = 0(04/2) . (2.10)

First, on examining the M = — component of (2.10) we find that

€ =i +0(02), =6+ ir(h CNWD_Tigy +0?),  (2.11)
where 0,¢4+ = 0. Next, on examining the M = + component of (2.10), we find

b= +O0%), by =nit ulht NN £ 0(?),  (212)

where 9,m+ = 9,n+ = 0. In additon, the M = + component of (2.10) implies a number of
algebraic conditions:

(;A + é(iﬂ — N?) - é(dh +Y +hA N)ijrij> by = 0(a?), (2.13)



and
1 1 1 g
< — A — = (h* = N? — g(dh +Y +hA N)ijr”>n_ = 0(a?),

and

1 |

We remark that (2.13) and (2.14) are equivalent to

(dh +Y )T (h — N)kl“’“> by =0(?).

SO+ L - N = 0(a?),

(dh+Y + hAN);;T9¢, = 0O(?),

and
(dh+Y +hAN)T9n_ = 0(a?),

respectively. Furthermore, using these conditions, (2.15) can also be rewritten as

<1(Ah]~ —0;7)

i (h—N)k(dh+Y+2h/\N)jk>Fj¢+ = 0(a?).

1
8
Next, we consider the M = i components of (2.10). This implies

1 1

Vids + <4(N —h); — 3 Z‘jkrjk) ¢4 = O(a'?),

and

_ 1 1 A

Vin- + <4(h - N)i — 3 iij]k>77 = 0(a?),
together with the algebraic condition

~ 1 1
(Vi(h = N)j + 5 (hilNj — hjNi) = 5 (hilj — NiNj)
1 .
~ (dh = Y)y; = 3Wn(h = N)F )6, = Ofa”).

These conditions exhaust the content of (2.10).

2.2.2 Dilatino and gaugino KSEs

Next again ignoring O(a’?) terms we consider the dilatino KSE

1
(PMchb - melNzNgFNlNQNS')e = 0(a?).

(2.14)

(2.15)

(2.16)
(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

On making use of the previous conditions, it is straightforward to show that the dilatino

KSE is equivalent to the following three conditions

s 1 1
<F’V,-<I> + §Ni1” aED)

QWiijijk> ¢+ = 0(a”),

(2.24)



and
. 1 ) 1 -
(FZVZ-(I) — 5Nirz — mWijkr”k)n_ = 0(a'?),

and

. 1 . 1 L -
<<rlviq> — _N,T! erﬂ’f) (h — N)I'* + Yijw>¢+ = 0(a?).

27 12

It remains to consider the gaugino KSE
FMNFMNE = O(Ozl) .

This implies the following conditions

<27D + FijFij>¢+ = O(O/) ,

and
< —2P + Fijrij>77 =0(d),
and
(1( — 2P + Fy;I') (h — N),I* + 2(hP + PB - BP — dp)iri>¢+ =0(d),
where

F=dB+BAB.

The conditions (2.28) and (2.29) imply that
P=0(),
and so F = F + O(a/). Therefore (2.27) is equivalent to
FT¢, = 0(d),

and

FyTiin_ = O(a),

and

FyI'(h — N);I¢, = O(a) .

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

In order to simplify these conditions further, we shall first consider the two cases for

which either qﬁ[f] =0or gb[f] = 0.



3 Solutions with (bEg] =0

Suppose that there exists a Killing spinor e with ¢ 2 0, but qb[f} = 0. Such a spinor must
therefore have ?7[,0} # 0, and hence it follows that

plol 1 NIOT = ¢, (3.1)

Then (2.21) implies that
0 0
d || g |2= = | 2 Al (3.2)

[0]

In particular, this condition implies that if _"' vanishes at any point on the horizon section,

[0] 0]

then =" = 0 everywhere. So, —' must be everywhere non-vanishing.

On taking the divergence of (3.2), and making use of the Ny = +, Ny = — component
of the 2-form gauge potential field equation (A.13), one obtains the following condition

VORGE | |2 = (29 0l | o =2 S 2w =0, 33)

As || n[_o} |2 is nowhere vanishing, an application of the maximum principle implies that

I 7][,0] |>= const., and hence (3.2) gives that

=9, NO=p, (3.4)
These conditions, together with (2.16), imply that
A =0(a"). (3.5)

Then the dilaton field equation (A.15) implies that
1

ViVi(e 2®) = 6e*Q‘I’M/MV[/Z‘J"c + O(a), (3.6)
and hence it follows that
3% = const, wlol=op. (3.7)
Furthermore, this then implies that
H=duNdr AN +rduNY + W + O(a/?), (3.8)
and hence
dH = duNdr A (AN =Y) — rdu AdY + dW + O(a/?). (3.9)

As the ruij component on the r.h.s. of the Bianchi identity is O(a'?) this implies that
Y =dN + 0(a?), (3.10)

and in particular, Y0 = 0.
Next consider the gauge equations. The +— component of the 2-form gauge potential
field equations (A.13) is

VIN; = O(a/?). (3.11)



Also, the u-dependent part of (4.18) implies that

Vi(h + N);T9n_ = 0(a?), (3.12)
which gives that
Vi(h+ N); = 0(a?). (3.13)
Taking the trace of this expression, and using (3.14) yields
Vih; = 0(a?). (3.14)

Next, recall that the gravitino KSE (4.22) implies
~ 1
Villn- [*= =5 (h = N)i | n- |* +O(a”). (3.15)
Taking the divergence yields, together with (3.11) and (3.14) the condition
VVi |- |P= 0(a”), (3.16)

which implies that || 7— ||?= const + O(a’?). Substituting back into (3.15) gives the
condition N = h + O(a'?), and hence (3.13) implies that

@ih]’ == (9(0/2) . (317)

So, to summarize, for this class of solutions, we have obtained the following conditions
on the fields

N=h+0?, hlh=0 v=00?), Vihj=0("?),

A= 0(a?), HO =0, &l = const, (3.18)
and it is straightforward to check that the generic conditions on ¢4 then simplify to
- 1 .
Vibr — ¢ k7P = 0(?), (3.19)
and . )
<ri%q> + 5hiri ~ 12vvijkr@'ﬂ“> by = 0(a?), (3.20)
and
ET9¢, = O(d). (3.21)
The generic conditions on 7_ also simplify to
- 1 .
Vin- — W0 = 0(a”), (3.22)
and .
(ri%@ - §h,-ri -5 ijkrijk>n = 0(a?), (3.23)
and
FyTin_ = 0(d). (3.24)

In the next section, we shall consider the case for which there exists a Killing spinor
with gb[E} # 0. It will be shown that the conditions (3.18) on the bosonic fields and the
simplified KSEs listed above correspond to special cases of the corresponding conditions
on the fields and simplified KSEs of qb[f] % 0. In particular, this will allow the KSEs for

¢[£] =0 and gb[fr)] # 0 to be written in a unified way.



4 Solutions with ¢E(|:] %0

Suppose that there exists a Killing spinor ¢, with €/ # 0 and qﬁ[f:} # 0. Then consider (2.20);
this implies that

~ 1
Vil ¢+ |I>= 5 (hi = Ni) || o+ 1> +0(a), (4.1)
and (2.22) gives that

Vilh — N); + 5 (hiNy — hsN:) — 5 (hahs — Nily)
— (dh =)y~ 5 Wign(h — N)* = O(a”) (1.2)
Taking the divergence of (4.1), and using (2.20) together with the trace of (4.2), we find that
VVi |l 4 1P =BV || 64 [IP= O(a”). (4.3)
An application of the maximum principle (see e.g. [36]) then yields the condition
il 64 2= O(a). (1.4)

To see this, note that to zeroth order in o/, (4.3) implies that @EO} I gb[f] =0,
on applying the maximum principle. Then (4.1) and (4.2) imply that N = hl% and
Y = @hl; and from (2.16) we also have Al = 0. Then it is useful to consider the field
equations of the 2-form gauge potential (A.13), which imply that

v (e_mhi) = 0(d), (4.5)
and ]
e2®VI (e 2P dhy;) + §Wijkdhjk + hdhj; = O(d), (4.6)
and the Einstein equations imply that
- - 1 -
Rij + V(ihj) — ZWimnijn + 2V2‘Vj(1) = O(O/) . (4.7)

Using (4.5), (4.6) and (4.7) it follows that?

ViVh? + (h — 2d®) V;h* = 2V Y ;h
1

)

+ (dh — th)ij(dh — th)ij + O(O/) . (48)

O |

In particular, (4.8) implies that @[O]ih,go] = 0 on applying the maximum principle. It follows
from (4.3) that

=[0]i <10 0 1 iv0 0 1

VTP, o)) — n 6l o) = 0. (4.9)

#We remark that the condition (4.8) was also obtained in [27]. In that case, a bilinear matching condition
was imposed in order to find N o — h[o], YO = gnl%. Here we do not assume such a bilinear matching
condition, but nevertheless we find the same condition.

,10,



On multiplying this condition by (qb[f}, ¢[+1]> and integrating by parts, using @[O}ihz[o] =0,
one finds that @EO]@S[E], ¢E]) = 0 as well. So, it follows that V; || ¢ ||>= O(a’?).

Then, (4.1) also implies that N = h + O(a’?). Substituting these conditions back
into (2.16), we find that Al =0 as well, so A = O(a/?). Also, (4.2) implies that

Y —dh = O(a’?). (4.10)

To summarize the conditions on the bosonic fields; we have shown that for solutions
with qﬁ[f] # 0, we must have

A=0(?), N=h+0(?), Y =dh+0(? (4.11)

which implies that
H=d(e" AeT)+W + 0O(a?). (4.12)

The field equation (A.13) of the 2-form gauge potential can then be rewritten in terms of
the near-horizon data as

v (e_mhi) = 0(a?), (4.13)
. 1 . .
2PV (e 2P dhy;) + iw,-jkdhﬂ’“ + hidhj; = O(?), (4.14)
and
PRAvA (6_2¢Wki]’) +dhi; — thkij = 0(0/2) . (4.15)

In addition, P = O(a’) and so F = F+O(c/). The i,j component of the Einstein equation
then simplifies to

= 1 -
Rij + v(zh]) - ZWzmnW]mn + 2V1VJQ>
/ . . ~ ~
+ az ( = 2dhigdh;® + Rig, 1,0, R — Fiﬁaijeab) =0(a). (4.16)

Furthermore, dilaton field equation can be written as

. . N 1 ) 1 -
VIVid = h'V,® = 2V OV ® — Jhih' + ﬁwijkww’f
/

+ 5 (2dhigdh¥ + By By — Ry, 0, RA0) = 0(0?). (417)

On making use of the conditions (4.11) on the bosonic fields, the KSEs on ¢4 then
simplify further to

- 1 )
Vier — 2 kDR, = 0(a'?), (4.18)
dhi ;T ¢, = O(a?), (4.19)
. 1 ) 1 y
<rzviq> + hil" = 12M/l-jkrwk) by = O(a'?), (4.20)
and
E T, = 0O(d). (4.21)

— 11 —



Furthermore, KSEs on 7_ also simplify to

- 1 .
Vi — c Wil = 0(a”), (4.22)
dhiiT"n_ = 0(a"?), (4.23)
. 1 ) 1 .
(FZVZ%I) = ghil" = 55 ijkrlﬂk>n_ = 0(a?), (4.24)
and
FyTn_ = 0(d). (4.25)

In both cases above, (4.18) and (4.22) are a consequence of the gravitino KSE, (4.20)
and (4.24) are associated to the dilatino KSE, while (4.21) and (4.25) are derived from
the gaugino KSE. The two additional conditions (4.19) and (4.23) can be thought of as
integrability conditions.

4.1 Independent KSEs

The KSEs we have stated in the previous sections (3.19)—(3.24) and (4.18)—(4.25) are not
all independent. It turns out that the independent KSEs are

2 ~ 1 .
Ve = Vine — gWiij]kn:I: = 0(0/2) (4.26)
and
s 1 i 1 ijk 2

This is the case irrespectively on whether qﬁ[f:} =0or gb[f] # 0 though the conditions on the
bosonic fields are somewhat different. The proof of this independence of the KSEs requires
the use of field equations and Bianchi identities and it is rather involved. The details can
be found in appendix B.

5 Supersymmetry enhancement

A key ingredient in the investigation of heterotic horizons is that supersymmetry always
enhances. As a result horizons preserve 2, 4, 6 and 8 supersymmetries [27]. However this
is based on a global argument which we shall see does not necessarily apply to O(a?).

As a consequence we shall seek some alternative conditions to guarantee that su-
persymmetry enhances. In particular we shall show that if there exists a Killing spinor
€ = €(ny,n—) up to O(a'?), ie n_ solves (4.26) and (4.27) up to O(a’?), such that 0% o0,
and the horizon has k% # 0, then there is automatic supersymmetry enhancement.

To prove this, it suffices to demonstrate that h leaves all fields invariant and that it
is covariantly constant with respect to the connection with torsion V on S. Indeed, first
note that (B.15) implies that

1

%ih]’ = @ih]’ — 5 Z‘jkhk = O(O/2) . (5.1)
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In particular, to both zeroth and first order in o/, h defines an isometry on S, with h? =
const + O(a’?). Then the gauge equation (4.13) implies

Lp® = 0(a?). (5.2)
Also, the u-dependent part of (4.21) implies
(inF)il'n- = O(d), (5.3)
which implies that i, F' = O(a/). So in the gauge for which i, 8 = 0, one has
LLF=0(). (5.4)

Next we consider £, W, where

a/

LaW =~ <tr((ihR) A R)) + 0(a?), (5.5)
because dh = i, W + O(a'?). To evaluate this expression, note first that the integrability
conditions of

Vi = 0(?),  Vi(hI'n) = 0(a?) (5.6)

are

Ry = 0(@™),  RippgD"(hiT"n-) = O(a’) (57)
from which we obtain the condition
hzﬁiﬂq = 0(a”), (5.8)
and hence, as a consequence of (A.4),
hﬂéfqij =0(d). (5.9)
Moreover, 5
R Rygy— = h'(dh)iy = O(?). (5.10)

It follows that the contribution of i R to the r.h.s. of (5.5) is of at least O(a’), and hence
LW = 0(a?). (5.11)

So, we have shown that to both zero and first order in o/, the Lie derivative of the metric
on S, as well as h, ® and W with respect to h vanishes, and the Lie derivative of F' with
respect to h vanishes to zeroth order in o’.

Supersymmetry is therefore enhanced, because if 1, satisfies (4.26) and (4.27), then
so does . = T'_h;I''n,. Conversely, if n_ satisfies (4.26) and (4.27), then so does
n'. = T'yh;T%n_. The proof of this makes use of the conditions (5.1), together with (5.2)
and (4.19) and (4.23), and the reasoning is identical to that used in [27]. This establishes a
1-1 correspondence between spinors 74 and 7n_ satisfying (4.26) and (4.27), so the number
of supersymmetries preserved is always even.
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Next we wish to determine whether a similar supersymmetry enhancement argument
holds for 74 spinors. In particular if there exists a solution to (4.26) and (4.27) with 17[+0] #0
and % =£ 0, does this imply that the number of 77, solutions is equal to the number of 1_
solutions? This does not follow from a local analysis of (4.26) and (4.27), because there is
no analogue of the condition (B.15) acting on 7. Nevertheless, in [27] a global analysis
was used in order to establish such a correspondence, by computing the Laplacian of h?
and applying a maximum principle argument, in order to obtain (5.1) to zeroth order in
o’. We shall revisit this analysis in section 7.1 including the o/ corrections.

6 Geometry

It is a consequence of the results of [27], see also section 7.1, that horizons with non-trivial
fluxes preserve an even number of supersymmetries up to O(«’). Furthermore we have
also demonstrated that such horizons with n_ Killing spinors preserve an even number of
supersymmetries up to O(a'?). It is straightforward to see that horizons with more than
8 supersymmetries are trivial, ie the rotation h vanishes. Therefore, the heterotic horizons
of interest preserve 2, 4, 6 and 8 supersymmetries.

Up to O(a/), the investigation of the geometry of all such horizons is identical to
that given in [27] for heterotic horizons with closed 3-form field strength. Here we shall
describe the geometry of the horizons that admit a 7_ Killing spinor up to O(a’?). We
have seen that for such horizons A is parallel with respect to the connection with torsion
up to O(a’?). Because of this, the geometry of such horizons is very similar to that of
horizons with closed 3-form flux. The only differences between the geometries of the two
cases are solely located in the modified Bianchi identity for the 3-form flux. As the two
cases are similar, the description of the geometry will be brief.

6.1 Horizons with G5 structure

Such horizons admit two supersymmetries up to O(a’?). In particular h satisfies (5.1). The
spacetime locally can be described as a (principal) SL(2,R) fibration over a 7-dimensional

manifold B” which admits a metric d§%7) and a 3-form H (7) such that the connection %(7)

with torsion ﬁm has holonomy contained in Gs. The spacetime metric and 3-form flux

can be written as

ds® = nap A\ + d§%7) +0(a’?),
H = CS(\) + Hzy+ 0(0?), (6.1)

where CS()) is the Chern-Simons form? of the principal bundle connection,
1
A=e, A=ef- 5k:?u?e— —uh, A =k (h+kue), (6.2)
k% = h? is constant up to O(a'?) and

ﬁ(7) = ko +e2? %7 d(e_wap) +0(a?). (6.3)

#Note that CS(\) = du Adr A h+rdu A dh+ k™>h A dh.
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The 3-form ¢ is the fundamental G form and it is related to the fundamental Spin(7) form
of the 1 Killing spinor via ¢ = k™ i,¢+ O(a’?). The associated vector fields to A=, A*, A!
satisfy a s[(2,R) algebra. The dilaton ® depends only on the coordinates of B”.

To find solutions, one has to solve the remaining equations

d[6_2q) *7 90] = 0(0/2) )
/

k~? dhAdh+dH 7y = 7% ( —2dh A dh + tr(Regy A Ry — F A F)) +0(a?),

1 1
(dh)i]’ = 5 *7 (pijkl(dh)kl + O(Oé/2) s Fij = § *7 Spijlekl + O(O/Q) . (64)
The first condition in (6.4) is required for B” to admit a Gy structure compatible with a
connection with skew-symmetric torsion. The second condition is the anomalous Bianchi
identity of the 3-form field strength written in terms of B7 data. The curvature R(S) is

that of the near horizon section & with metric and skew symmetric torsion given by
d5ly) =k h @ h+dil) + O(a”),  Hgy =k *h Adh+ Hey + O(a?). (6.5)

As R(g) is invariant under h and ihR(S) = O(a’?), it descends on B”. Finally, the last two
equations in (6.4) imply that both dh and F are gy instantons on B”.

6.2 Horizons with SU(3) structure

Such horizons preserve 4 supersymmetries. Locally the spacetime is a principal bundle
with fibre SL(2,R) x U(1) over a Kihler with torsion manifold (KT) B% with Hermitian
form wg). The metric and 3-form field strength of the spacetime can be written as

ds® = nu AN’ + d5j + O(®),  H = CS(\) + Hg + 0(a?), (6.6)

where \*, a = +, —, 1,6 is the principal bundle connections whose a = 4, —, 1 components
are as in (6.2) and
M=kt (6.7)

which is along the u(1) direction in the Lie algebra. h? = k? is constant up to O(a'?). The
curvature of the principal bundle connection \* is expressed in terms of dh and df which
are 2-forms on B® and it is required to satisfy that

A = d*0 = 0(a”),  dhjwy = 0(a”),  dlijwg = =2k + 0(a), (6.8)
ie h is a su(3) instanton on B® while £ is a u(3) instanton on BS.
The KT manifold BY is in addition conformally balanced, ie
Oy = 2d® + O(a?), (6.9)
where 6 is the Lee form and the torsion is
ﬁ(ﬁ) = —irdw + O(a'?) = €2 x4 d[e_Qq)w(G)] + O(a?). (6.10)
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The dilaton ® depends only on the coordinates of B®. The gauge connection is a su(3)
instanton on BY, i.e.

F??=0(d)), Fjwg = 0(). (6.11)
To find examples for such horizons two additional conditions should be satisfied. One

is the restriction that

R(ﬁ)”wzé) = —QkQCM + O(O/2) . (6.12)

This arises from requirement that the U(3) structure on BS lifts to a SU(3) structure on the
spacetime or equivalent the spatial horizon section §. The other is the anomalous Bianchi
identity which now reads

k=2dh A dh + k~2d0 A dE + d(em - d[e—2%]) -
/

— QZ ( — 2dh A dh + tr(Rgg) A Ry — F A F)) +0(a?), (6.13)

where R(S) is the curvature of the connection with torsion on S for which the metric and
torsion are given by

d5? = k2 (h@ h+ L ® () + dij + O(a”),
H =k ?(hAdh+CAdl)+ Hg) + O(a”). (6.14)
Note that @(8) has holonomy contained in SU(3) and so R(g) is a well defined form on BS.

6.3 Horizons with SU(2) structure and 6 supersymmetries

The spacetime is locally a SL(2,R) x SU(2) principal fibration over a 4-dimensional anti-
self-dual Weyl Einstein manifold B* with metric d§%4) and quaternionic Kahler structure

2-forms wa). The spacetime metric and 3-form field strength can be expressed as

d82 _ nab)\aAb + 67"5’>\Tl)\8l + 62¢)d§%4) + O(a/2) ,

H = CS(\) + Hyyy + 0(a?), (6.15)
where I:I(4) = —%4de*®, the principal bundle connection A* for a = +, —, 1 coincides with
that of (6.2) while

A=l (6.16)

are the components along the su(2) subalgebra of the fibre. Furthermore the dilaton
depends only on the coordinates of B%, dh as well as the curvature (Pd)T/ of X' are
2-forms on B*. In addition, we have that

! k /
dh = 0(a”), ()" = gy + 0(a”), F=0() (6.17)

and dh?d, (F24)" and F?! are not restricted, where the self-dual and anti-self dual com-
ponents are appropriately denoted. Geometrically, the set up is such that the SO(4) =
SU(2)-SU(2) structure of B* when lifted the 7-dimensional manifold which is the principal
bundle with fibre SU(2) reduces to SU(2) as required from supersymmetry.
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The only remaining condition to find solutions is

° 1 , k2 3
2 20 ad\r ad\?. i 9 4d
Vie™™ = _§<]: )z](]: )TJ/ - 7dhijdh] + gk e
/
* % < = 2dhyydh" + tr (s Rg)? — FiyF) > +0(a?). (6.18)

Again R(g) is the curvature of the connection with torsion of the horizon section & which
has metric and 3-form field strength

d3® =k Ph @ h+ 6,9 XX + e2Pd3,) + O(a?)
H=Fk2hAdh+CS(\") + Hyyy + O(?). (6.19)
As ]:2(8) has holonomy contained in SU(2), R(g) is a 2-form on B*. For more details on
the geometry of heterotic backgrounds that preserve 6 supersymmetries and have SU(2)
holonomy see [27, 28|.
6.4 Horizons with SU(2) structure and 8 supersymmetries

This class of horizons have a similar geometry to those of the previous section that preserve
6 supersymmetries. The differences are that

(F)" = 0(a"), (6.20)

so F"' is an anti-self dual instanton on B* which now is a hyper-Kéhler manifold with
respect to the metric d§%4). Furthermore the equation for the dilaton (6.18) now reads

—2 2P 1. ij k2 ij
Ve = _5]:%-7:74/ - Tdh”dh
/
+ % ( — 2dhijdh" + tr(Rg)i; Rg)” — FijF”)> +0(a'?). (6.21)

Therefore at zeroth order, a partial integration argument reveals that
dh=0(), F'=0(@). (6.22)

Thus B* up to a local isometry is AdSs x S3 x T or AdSs x S3 x K3 and the dilaton is
constant. One does not expect additional o’ corrections to the geometry in the case that
the R(S) is identified with F'. Though additional corrections are expected otherwise. In
the absence of 5-branes, consistency requires that the Pontryagin number of the tangent
bundle of B* cancels that of the gauge bundle which is the vanishing condition for the
global anomaly.

7 Global properties

7.1 Maximum principle on h?

We shall revisit the global analysis of [27] by calculating the Laplacian of h2, but including
also o/ correction terms. Then we shall examine the conditions imposed on the geometry
by this expression. To avoid the trivial case when h? = O(a'?), we take hl% # 0.
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Next we calculate the Laplacian of A% to find that

. . = 5y ) 1 ‘ ) y
ViVih* 4 (h—2d®)V jh? = 2VURIV ;hj) + 5 (@ — i W)ij(dh — iy W)
/ X X ~ ~
— O‘Zhw (- 2dhiedh;* + Rig, g0, R; 412 —F,-gaijfaQ +0(a’?).
(7.1)

In computing this expression, we made use of the Einstein equation (4.16) together with the
gauge field equations (4.13) and (4.14). We remark that the calculation proceeds in exactly
the same way as in [27]; the o/ terms in (7.1) originate from the o/ terms in 2h*h/ R;;. Tt
should be noted that in order to fully control O(a’?) terms in this expression, one would
require to know the Einstein equations up to and including o2

To begin, we consider (7.1) to zeroth order in /. We then re-obtain the conditions
found in [27] via a maximum principle argument, i.e.

h? = const + O(a), @(Z—hj) =0(), dh—i,W=0(). (7.2)
In particular, it follows from these conditions that
indh = O(d), (7.3)
and also
Lp® = 0O(d), LW =0(d). (7.4)

Furthermore, it also follows that if 1, satisfies (4.26), then T'_h;T''n, also satisfies (4.26)
to zeroth order in /. The integrability conditions therefore imply that

Rijmnh™ "¢y = O(), (7.5)

and hence

Rmm‘jhm == O(O/) . (76)
On substituting these conditions back into (7.1) one finds that the remaining content
of (7.1) is
/

A& <e_2¢’Vih2) +e PRIV h? = %e—”hihjﬂﬂb@ﬁb +0(a?). (7.7)
On integrating the O(a’) part of (7.7) over the zeroth order horizon section, one finds that
inEF = 0O(a), (7.8)

and furthermore
h? = const + O(a/?). (7.9)

It should be noted however that (7.1) does not in general imply (5.1). In particular, the
conditions obtained from the analysis of the properties of h? are not sufficient to imply that
if 4, with nL?] # 0, satisfies (4.26) and (4.27), then n” = I'_h;I"'n, also satisfies (4.26)
and (4.27). Thus although (7.1) implies the horizons exhibit supersymmetry enhancement
at O(a/), it does not imply the same at O(a'?).
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7.2 Lichnerowicz type theorems

Next we shall investigate whether it is possible to identify Killing spinors with the zero
modes of a suitable Dirac-like operator, by constructing a generalized Lichnerowicz type
theorem which incorporates the near-horizon fluxes. Such Lichnerowicz type theorems have
been established for near-horizon geometries in D=11 supergravity [9], type IIB [10] and
type ITA supergravity (both massive and massless) [11, 12], as well as for AdS geometries
in ten and eleven dimensional supergravity [33, 37-39].

To begin, let us first define the modified connection with torsion and the modified
horizon Dirac operator, respectively

VZ(H) E%i"‘firz’fta DEFi%i—i-qA, (7.10)

where k,q € R, and

>

- 1 )
Vit = Vit = cWigl s
A = Wi % — 12T°V,® F 6T7h; . (7.11)
It is clear that if ny is a Killing spinor, i.e.
Vine =0(”), and  Ans = 0(a), (7.12)

then Dy = O(a’?) also. Here we want to investigate the extent to which the converse is
true. We shall show that if Dny = O(a’?), then

%Mi = 0(d), and Ang = O(d), (7.13)

and moreover

dhiiTns = O()),  and  FPTpe = O(d). (7.14)

In order to obtain this result, we begin by considering the following functional

7= /Se@ ((Vgﬁ)ni, V(“)ini> — <D77i77)77i>> ) (7.15)

where ¢ € R, and we assume all the field equations. After some algebra, which is described
in appendix D, we find

1 _ _
7= <8/{2 — 6/@> /Se 20 | Ans || —|—/S€ > (g, UDny)

o B . o
- 64/56 0 <2 | dhne |* + || B | _<R€1£2,ijrglé277:|:,R2j3€47rgse477i>> +O(?),
(7.16)

which is true if and only if ¢ = &5 + O(e/?) and ¢ = —2 + O(a’?), and the U is defined as

follows . .
U=2 (n — 12) Al — 2TV, @ — grgl%wglmg +0(a?). (7.17)
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The values of ¢ and ¢ are fixed by requiring that certain terms in the functional (7.15),
which cannot be rewritten in terms of the Dirac operator D, or Af A, and which have no
fixed sign, should vanish.

The part of (7.16) which is of zeroth order in o/ implies that if 0 < k < é, then

Dne = 0(a?) = (7.13) (7.18)

and establishes the first part of the theorem. Next the integrability condition of
Ve = O(d) is
R, D201 = O(d), (7.19)

which in turn implies that
Rglgzjmnr‘zl&ni = O(O/) . (7.20)

Hence we shall neglect the term in (7.16) which is quadratic in ]L%, as this term is O(a/3).
Then, assuming (7.18), the part of (7.16) which is first order in o/ further implies (7.14).
This completes the proof.

8 Nearly supersymmetric horizons

8.1 Description of the backgrounds

We have proven that for near horizon geometries the necessary and sufficient conditions
imposed by supersymmetry on the spinors can be reduced to (4.26) and (4.27). In this sec-
tion, we shall consider the case for which the supersymmetry is explicitly partially broken,
in the sense that the gravitino KSE (4.26) admits solutions but not dilatino one (4.27).
We also assume that the fields satisfy

A=0(?), H=dle Ae")+W +0(?). (8.1)

These conditions were previously obtained via the supersymmetry analysis; here we shall
assume them. In particular, all of the conditions obtained from the global analysis of the
Laplacian of h? in section 7 remain true. As a consequence of this,

Vihj = O(d). (8.2)

However we do not assume that Vi = O(a'?).

One consequence of these assumptions is that none of the spacetime Killing spinor
equations are satisfied even at O(a/). In particular, the spacetime gravitino KSE requires
in addition the condition that dh;;I"“n; = O(a’) which is not one of our requirements.
In what follows, we shall investigate the consequences of the above assumptions on the
geometry of the spatial horizon sections S. We shall also comment on the special case
where Vh = O(a/?).
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8.2 Additional parallel spinors
A key property of backgrounds that satisfy the gravitino KSE but not the dilatino one is

the existence of additional parallel spinors, see also appendix C. In the present context to
show this focus on the spinor 74 ; a similar analysis can be undertaken for the 7_ spinors.
To proceed, it will be useful to define

A = Wi D% — 121°V,;® — 6k, (8.3)

so that the algebraic condition (4.27) on 7, is equivalent to An, = O(a/?). We then note
the useful identity

- - 1
ViWeitse, D250, = Vi(Ang) — < Wig 0, T2 (Any)

8
+ BWe, 0y Wie, T2, — (6V™D + 30™ )Wo'
+ (120°V, V@ + 6V,;h, T ) 1 . (8.4)

The integrability conditions of (4.26) imply that

1/~ 1 o - -
8 (Vz'(f“H) - gW’MleQFelZZ («477+)> - g(-Fif)abFZ(FQIQQ)aququn+
/
a %dhwfedhquprqmzn_i_ = (’)(0/2) ) (8.5)
and hence
1 /

. 1 o ~ ~
6<n+7 ["Vi(Any) — §W€1€2£3F€1£2€3 (Any)) + §<((F£1€2)abF£1€277+> (Fyrqp) T %7, )

O[,
+ T6<dhflégrele2¢+a dhgy g, T %11) = O(a) . (8.6)
Integrating this expression over S yields the conditions
FyTn = O(d!),  dhiTn, = O(a'), (8.7)

and substituting these conditions back into (8.5) then implies that

- 1 ,
Vi(Any) = sWin e, T (Any) = O(a). (88)

Therefore the spinor 7, = A7, is also V-parallel. As 7, has opposite chirality from 7
cannot be identified as an additional Killing spinor within the heterotic theory. Nevertheless
it is instrumental in the description of the geometry of S.

8.3 Nearly supersymmetric horizons with Go holonomy

8.3.1 A symmetry of horizon section

Suppose that we consider solutions for which there exists a single solution 7 to the grav-
itino KSE R
Vi = 0(a”), (8.9)
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for which (Amr)[o} # 0. This implies that the horizon section S at zeroth order in o’
admits a G5 structure.
We begin by defining 7, = Any, with 7'_[8} = 0. It will be particularly useful to define

Vi (nTiry). (8.10)

In what follows we shall show that V' is a symmetry of all the fields of the spatial horizon
section.
As TJ[P} # 0, this implies that VI £ 0. In addition, as 7, and 7, satisfy

Vig = 0(?), Vi =0(?), (8.11)
it follows that A
VV = 0(a?), (8.12)

so that V2 = const. + O(a'?), and V is an isometry of S to both zero and first order in o/
Next, we consider the relationship of V to h. In particular, the spinors h;I*An, and

VI An, are both parallel with respect to V at zeroth order in o/. As we have assumed
that (8.9) admits only one solution, there must be a nonzero constant ¢ such that

V =ch+0O(d). (8.13)
In addition, we have
LyW =iydW + O(a?), (8.14)
because dV = iy W + O(a’?). Also, as V = ch + O(c) it follows that

LyW = cipdW + O(a'?). (8.15)

As a consequence of (8.2), one has that ip,dh = O(d/), and from the global analysis of
the Laplacian of h?, we find i, F = O(a/) as well as }:Emm-jhm = O(d'). These conditions
imply that

LyW = 0(a'?), (8.16)

and so W is invariant.
Next we consider Ly ®. As V = ch + O(d) it follows that

Lydh = cLydh + O(d) = O(d). (8.17)
Also we have
,Cvﬁiij,pq = O(O/2) s (8.18)
and
(EVF)ijabFijba = 0(d), (8.19)
which follows from
LyF =c[F,ipB] +0(d). (8.20)
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Hence we have
Ly <o/< — 2dhijdh + Ry pq RPT — (i)™ (F'9 )ab)> — O(a?). (8.21)
So, on taking the Lie derivative of the trace of (4.16) with respect to V' we find
Ly (@"hi + 2%@'@) = 0(?), (8.22)
and hence, as a consequence of the field equation (4.13), we find
Ly (hi@icb + @'Wb) = 0(a"?). (8.23)
Also, on taking the Lie derivative of the dilaton field equation (4.17), we get
Ly ( HiYi0 - 29,0V + wi@> — 0(a). (8.24)
On taking the sum of (8.23) and (8.24), we find
oy (990 - Tove) - 0?). (8.25)
and hence if f = Ly ® we have
ViVif —2VioV,f = O(a?). (8.26)

We know L£,® = O(a’) as a consequence of the analysis of the Laplacian of h%, so f =
o f 4+ O(a/?). Then, on integrating, (8.26) implies that

/ efzé[o]@if[llﬁif[ﬂ =0, (8.27)
Slo]

so flI = B for constant 3, and so
Ly® = Bd +0O(?). (8.28)

As we require that ® must attain a global maximum on &, at this point Lyy® = 0 to all
orders in o/, for any V. This fixes 3 = 0, so

Ly®=0(?), (8.29)

which proves the invariance of ®.
Next, we consider Ly h. On taking the Lie derivative of the field equation of the 2-form
gauge potential (4.15) we find

d(ﬁvh)i]’ - (ﬁvh)kWijk = (’)(0/2), (8.30)
and on taking the Lie derivative of the Einstein equation (4.16) we get
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where we have used
Ly <Fizabﬁj€ab) =0(d). (8.32)
It follows that .
V(Lyh); = O(?). (8.33)
As V = ch+ O(d/), it is convenient to write
Lyvh=dA+0(?), (8.34)
where .
VA = 0(d). (8.35)

As ATV Any and hyTI Any are both parallel with respect to V at zeroth order in o/, it
follows as a consequence of (ii) that we must have

A =bh+0(d), (8.36)

for constant b. It is also useful to compute
. S - 1 S
h{(Lyh;) = h' (Vﬂvjhi + hjviw> = 5£vh2 + RV, V; = O(a?), (8.37)

which follows because h? = const + O(a'?), and VV = O(a'?). This implies that b = 0,
and hence
Lyh=0(a?). (8.38)

So V' is a symmetry of the full solution to both zeroth and first order in o’.

8.3.2 Geometry

We have shown that V is a symmetry of the backgrounds up O(a'?). To investigate further
the geometry of the horizon section S, let us first consider the consequences of the existence
of the n; Killing spinor. As the isotropy group of 74 in Spin(8) is Spin(7), the fundamental
self-dual 4-form ¢ of Spin(7) on S is V-parallel. It is known that in such a case, the torsion
3-form W can be uniquely determined in terms of ¢ and the metric without any additional
conditions on the Spin(7) structure of S [40]. Next the condition V7, = O(a/?) with
T+ = An4 is equivalent to requiring that

~

Vi((2d® + h); — (0);) = O(?), (8.39)

where 6 is the Lee form of ¢, see [25]. As a result 2d® + h — 04 is a parallel 1-form. If it
is not linearly dependent on V', it will give rise to an additional solution for the gravitino
KSE S. As we have assumed that there is strictly one parallel spinor of the same chirality
as 14, we have to require that

240 +h — 0y = \V + 0(a”?), (8.40)

for some non-zero constant \; for A = 0 the dilatino KSE is satisfied as well.

— 924 —



Let us next turn to investigate the Go structure on S. As V' is an isometry on S and
iyW = dV, setting V? = (2 + O(a/?) for £ constant, we can decompose the metric and
3-form as
1
02

where d3%7) is the metric on the space orthogonal to V and iyWi = 0. The data

d5* = SV @V +dsiy) +O(a?), W =LV AdV + W)+ O(a?), (8.41)

<d5%7)’ W(7)) are thought (locally) as the metric torsion on the space of orbits M " of V. For
this observe that Ly W) = 0 and as iy W7y = 0, W(7) descends as a 3-form on the space
of orbits.

_The spatial horizon section S admits a G structure with fundamental form ¢ = 0 Liy e
as Vo = O(a’?). The question is whether this G structure descends on the space of orbits
of V. First observe that iy = 0. So it remains to investigate whether Ly ¢ = O(a/?). For
this notice that under G representations dV decomposes as dV' = dV7 + dV14 4+ O(a”?)

because iy dV = O(a/?). Then use (C.3) together with Vo = VV = O(a’?) and iydW =
O(a'?) to show that

VdvT = 0(a?). (8.42)
As dV7 is a vector in S orthogonal to V/, if it is not vanishing will generate an additional
%—parallel spinor on S of the same chirality as 7. As we have restricted the number of such
spinors to one, we have to set dV7 = (’)(0/2). It has been shown in [25] that a %—parallel

k-form « is invariant under the action of a V-parallel vector V, iff the rotation iy W leaves
the form invariant. As iy W = dV + O(a/?) and dV takes values in g2, we conclude that

Lyp=0(a?). (8.43)

and so M7 admits a G structure compatible with connection with skew-symmetric torsion
given by the data (ds%ﬂ, W(7)). In such a case W(7) can be determined uniquely in terms
of ¢ and d5%7) provided a certain geometric constraint is satisfied [41].

It remains to explore (8.40) from the perspective of M7. Let us decompose h = V +h*,
where g(V, ht) = 0. Then (8.40) can be written as

B 1 y
(g(Voh) = c(Wir)igre?™ = M+ 0(a),

2d® + ht — 0, = O(?), (8.44)
where 0, is the Lee form of p on M". The former determines the singlet part of W) in
terms of V and h while the latter imposes the dilatino KSE on M.

9 Nearly supersymmetric horizons with additional parallel spinors

9.1 Nearly supersymmetric horizons with SU(3) holonomy
9.1.1 Symmetries of horizon section

Suppose there are exactly two linearly independent spinors 7]5:), nf) such that

V' = 0@?),  a=1,2, (9.1)
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for which (Anf))[o] #0, (a =1,2). Tt follows that the horizon section S\ admits a SU(3)
structure at zeroth order in «’.
We set Tia) = Anf) which are non-vanishing spinors that satisfy

Vi = 0@?),  a=1,2. (9.2)

Using these we define the 1-form and 2-form spinor bilinears V' and w by

1 1 1 2
Vi={ Sr),riﬂ(r)% wij = <775r)aFij7]5r)>, (9.3)
and also let
V=iyw. (9.4)
Observe that R K X
VV =0(a?), Vw = 0(a?), VV = 0(a"?). (9.5)
We also define h by
h=ipw, (9.6)
which satisfies A
Vh=0(d). (9.7)

The main task below is to show that both V and V leave invariant all the fields on S, and
that they generate a R & R lie algebra.

As V and V are V-parallel, they are Killing. Next consider the invariancerf W. The
spinors V7 FjAnﬁf), hiT j.AnEf) and hi FjAnSf) are all parallel with respect to V to zeroth
order in o/. In order for (9.1) to have exactly two solutions, we must have

V =ch+éh+0(d), (9.8)
for some constants ¢, ¢. Thus
Ly W = cipdW + &z dW + O(c?) . (9.9)

To continue, since the two spinors 17(+1) and nf) must satisfy (8.7), it follows that, at zeroth

order in o/, F and dh are (1,1) traceless with respect to the almost complex structure
obtained from w. This, together with the conditions ipdh = O(¢/) and i, F = O(a), which
follow from the global analysis of the Laplacian of k%, implies that

irdh = O(d), i;F=0(d), (9.10)

and hence
ivdh = O(d), ivF =0(d). (9.11)

It is also useful to consider the spinors nf) and ﬁgfﬁnf). The integrability conditions of

V'@ = 0(a?), v (her's) = 0o, (9.12)
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are

~

Rijqurpqngf) = O(a/2) ) Rij,pqrpq <B£F€nf)) = O(Oél) 5 (913)

which imply i}
WP Rpyii = O(d). (9.14)

It follows that idW = O(a?) and i;dW = O(a’?), as a consequence of the Bianchi
identity, and therefore iy, dW = O(a’?). Thus we have shown that

LyW = 0(a'?). (9.15)

This proves the invariance of W.
Next we consider Ly ®. It follows from (9.7) that

irdh = O(a), (9.16)

and also
LW =0(d). (9.17)

Since h is an isometry of S to zeroth order in o/, we also have
LiRijpq = 0()). (9.18)
On taking the Lie derivative of the trace of (4.16) with respect to h, we find
i (@Nﬁ'@) — 0(d), (9.19)
which is equivalent, if g = L; ®, to
ViVig=0(d). (9.20)

On integrating the zeroth order of (9.20), we find

/ gOVigll =0, (9.21)
So g[O] = =, for constant . Thus
Li®=~v+0(). (9.22)

Since ® must attain a global maximum on S, at this point £;® = 0 to all orders in «'.
This fixes the constant v = 0, and so

L;d=0(d), (9.23)

which implies

Ly®=0(). (9.24)
As V = ch 4 éh + O(d), it follows that

Lydh = cLydh + éﬁﬁdh + (9(0/) = O(O/) . (9.25)
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Since V is an isometry of S to first order in o/, we have

LyvRijp, = O(?). (9.26)
Also we have
(LyF)i"F9%, = O(d), (9.27)
which follows from
Ly F = c[F,iyB] + &[F,i; Bl + O(d). (9.28)

Using the conditions (9.24), (9.25), (9.26) and (9.27), we follow the analysis for the G case
of the previous section undertaken from the equation (8.22) to (8.29), and conclude that

Ly® = 0(a?), (9.29)

which proves the invariance of the dilaton ®.
Next we consider Ly h. Equations (8.30) and (8.31), which have been established in
the previous section, hold here as well after using in the addition that

L <F,~g“bﬁfab> =0(d). (9.30)
Then it follows that X
Vi(Lyh); = O(a?). (9.31)
Furthermore we notice that
Lih=0(d). (9.32)

As V = ch + éh + O(), it is convenient to write
Lyh=a'V+0(?), (9.33)
where R
VU =0(d). (9.34)

Then it follows that the spinors ;I Any, h;IV An, and IN”Lij.An+ are all parallel with

respect to V at zeroth order in o/. In order for (9.1) to admit exactly two solutions, we
must have

U = bh + bh + O(), (9.35)

for constants b and b. Then using i, Lyh = O(a'?), which has been computed in (8.37),
and h? = const. + O(a'?), it follows that b = O(a/) and therefore

Lyh = a'bh + O(a?). (9.36)

Next we consider the symmetries generated by V. Since V = ch + éh + O(a/), then
we have

V =ch—¢ch+0(). (9.37)
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Since V and w are both parallel with respect to % to first order in o, we also have
VV = 0(a?). (9.38)

Then the analysis undertaken for V' holds as well for f/, because the only properties of V'
used through the analysis are that V, at zeroth order in o/, is a linear combination of h
and h with constant coefficients, and V is parallel with respect to V to first order in o'
Thus we argue in a similar way that

LW =0?), Lg®=0(?), Lyh=dgh+0(?), (9.39)

for a constant q.
Finally, the V and V commute up to O(a’2). To see this observe that since iy, V = 0
and iy W = dV + O(a’?), we have that

LV =igivW +0(a?). (9.40)
Using (C.3) adapted to S as well as iydW = ipdW = O(a'?), we conclude that
VigiyW = 0(a’2). (9.41)

Therefore the vector igiy W is V-parallel and moreover is orthogonal to both V and V.

So if it is non-zero, it will generate additional V-parallel 74 spinors on §. As we have
restricted those to be strictly two, we conclude that iyiy W vanishes and so

[V, V] = 0(a). (9.42)
In particular as iy V = 0, we have that
ivdV =igdV = 0(a’?). (9.43)
This concludes the examination of the symmetries of S.

9.1.2 Geometry

It is clear from the examination of the symmetries of the fields on S and in particular (9.5)
and (9.43) that we can set

A5 =V @V + L7V @V +ds + 0(a?),

W = L2V AdV + L2V AdV + W + O(a”), (9.44)
where V2 = V2 = (2 4+ O(a’?) and /¢ is constant, ds%(i) is the metric in the orthogonal
complement of V and V and ivWie) = igWe) = O(a?).

From construction § admits an SU(3) structure. We shall now investigate whether
this (locally) descends on the space of orbits M% of V and V. First the data (ds%@, Wie))
define a Riemannian geometry on M with skew-symmetric torsion. In particular for the
torsion this follows from iy Wg) = iy W) = O(a’?) and Ly W) = LW g = O(a?).
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Next consider the reduction of the (almost) Hermitian form w. Choosing without loss
of generality V' and V orthogonal, one can write

w=L2VAV + w(e) + 0(a"?), (9.45)

where iywg) = iywe) = O(a'?). For w(e) to descend to a Hermitian structure on M6, it
must be invariant under the action of both V and V. Observe that %w(ﬁ) = 0(a’?) and
also VV = VV = O(a'?). Thus w(g) is invariant iff the rotations iy W = dV 4+ O(a’?) and
ipW = dV + O(a?) leave w(e) invariant [25]. In turn this implies that the (2,0) and (0,2)
parts of the rotations which we denote with [dV]?? and [dV]*°, respectively, must vanish.
Using (C.3), %UJ(G) = O(a’?) and iydW =i ;dW = O(a’?), we find that

VIiv W20 = V[ie W20 = O(0?) . (9.46)

As S has an SU(3) structure compatible with %, contracting with the (3,0)-form both
[i; W]*0 and [ip;W]*0 give rise to vector fields in S orthogonal to both V' and V which

are V-parallel. Thus the requirement of strictly two Nt V-parallel spinors leads to setting
[i WA = [ip W]?0 = O(a'?) which in turn implies that

Lywey = Lywe) = 0(0/2) . (9.47)

Thus M® admits an almost Hermitian structure compatible with a connection V(® with
skew-symmetric torsion Wg). It is well known that in this case W g is determined in terms
of the almost complex structure on M® and the metric, see eg [42].

To find whether M5 inherits a SU(3) structure as well, let investigate whether the
(3,0) fundamental SU(3) form x of S descends on MS. It can always be arranged such
that iy x = ipx = 0. So it remains to see whether y is invariant under the action of V
and V. For this a similar argument to that explained above for w(e) leads to the assertion
that x is invariant iff the w-traces iy, W - w and i, W - w of iy W and iy, W, respectively,
vanish. Furthermore, an application of (C.3) implies that both iy W - w and iy W - w are
constant but not necessarily zero. Thus M® has generically a U(3) structure instead of an
SU(3) one. A

It remains to investigate the rest of the content of the conditions @TJ(FG) = O(a’?). First
consider the (3,0) part of W) denoted by I/V(?’G’)0 . An application of (C.3) using that dW is
a (2,2) form yields that

VW = 0(a”). (9.48)

Thus W(?’G’;) is another globally defined V-parallel (3,0)-form on S and so it can either be
set to zero or be identified with y. In the former case, the complex structure on M9 is
integrable and so M° is a KT manifold [43].

Writing h = AV 4+ AoV + k', where h' is orthogonal to both V and V and A; and A
are constants, we find using (C.3) that

%(26@ +ht - Ous) = O(a). (9.49)
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Now if 2d® + ht+ — 6,

(g N non-vanishing and since it is orthogonal to V and V will give

rise to more than two 7, V-parallel spinors on S. Since we have assumed that there are
just two, we set
2d® + ht — 0, = O(a?). (9.50)

wee)

This concludes the investigation of the geometry.
9.2 Nearly supersymmetric horizons with SU(2) holonomy

9.2.1 Assumptions and definitions

It is known that if one requires the existence of an additional V-parallel spinor 714 to those
of the SU(3) backgrounds on S, then the isotropy algebra of the all the five spinors reduces

to su(2). As a result, S admits 8 @-parallel spinors and the holonomy group reduces to a
subgroup SU(2). To describe the geometry of backgrounds with exactly 8 such spinors, we
consider four linearly independent spinors 7 f , and impose the condition

vl = 0(a?), a=0,1,2,3, (9.51)

for which (Angfl))[o] # 0, (a = 0,1,2,3). It follows that the horizon section S O] admits
a SU(2) structure at zeroth order in o/. We continue by setting TJ(ra) = An(f). These are
non-vanishing and satisfy

vl = 0(?),  a=0,1,23. (9.52)
Furthermore, we also define 1-form and 2-form spinor bilinears V(@ and w,., respectively, by
V=V = ), @y =0 ), r=1,2.3, (9-53)

and also let )
Ve =iyw,. (9.54)

In fact w, together with the metric and W define an almost HKT structure [43] on S as
VV =0?),  Vu,=0@?), VV,=0("?), (9.55)

and the almost complex structures associated to w, satisfy the algebra of unit quaternions.
These follow from (8.8) and the su(2) isotropy of the parallel spinors.

9.2.2 Symmetries of the horizon section
It is clear from (9.55) that V(@) ) =V, generate isometries on S and that
W =dV® + 0(a"?), (9.56)

where i, denotes inner-derivation with respect to V(@ . Without loss of generality we choose
g(V(@) VO = 252 1 O(a/?) for £ constant. An investigation similar to the one explained
in section 9.1.1 reveals that

LoD =07, LWV =07, Lsh=0(), i,dh=0(),

ioF = O(d). (9.57)
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Next let us consider the commutator [V(®), V)] =i, . An application of (C.3) together
with the conditions above reveal that

VIV @, v = o). (9.58)

Thus the commutator is either linear dependent on V(@ or it will lead to further reduction
of the holonomy of V to {1}. In the latter case, the horizon section S will admit more

than four n4 V-parallel spinors violating our assumptions. Thus, we conclude that
VO, V0] = v+ 0(a?), (9-59)

for some constants f with £2f%, = iziyi.W + O(a/?). As f is skew-symmetric, the Lie
algebra spanned by V() is a metric (compact) Lie algebra. As it has dimension 4, it is
either isomorphic to @*u(1) or to u(1) @ su(2).

Therefore the horizon section S can be viewed locally as a fibration with fibre either
x4U(1) or U(1) x SU(2) over the space of orbits M* of V(®). We shall determine the
geometry of S by specifying the geometry of M4,

9.2.3 Geometry

To simplify the analysis, we choose up to an so(4) rotation V' to be along a u(1) direction
in either ©%u(1) or u(1) @ su(2). This in particular implies that igi, W = O(a’?). Then the
metric and torsion of § can be written as

d3® = %6V @ VO +dsty) + 0(a”),
W =072V AdV + CS(V;) + Wiy + 0(?), (9.60)

where V(@) is viewed as a principal bundle connection and CS(V;) is the Chern-Simons
form which for the ©*u(1) case is

CS(V,) =£72) "V, AdV. (9.61)

The data (ds%4), W(4)) define a geometry on M 4 with skew-symmetric torsion.
First, let us investigate the reduction of the almost HKT structure of S on M*. For
this observe that

5_2
wy = L2V AV, + e Ve A Vit w® +0(a?), (9.62)

where iawq(fl) = (’)(0/2). Next consider an7(14). As both V(@ and w,(«4) are %—parallel, anq(fl)
is specified by the properties of the rotation i,W. In particular if i,V is invariant under
w,(«4), the Lie derivative vanishes.

Next let us investigate the two cases @*u(1) and u(1) @ su(2) separately. In the abelian
case, as i,i,W = O(a'?), i,W is a 2-form on M*. Furthermore L’awﬁﬁ‘) vanishes iff the
self-dual part, i,W*4, of i,W is zero. However in general this may not be the case. An
application of (C.3) implies that

VigW™ = 0(a’?), (9.63)
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and so there exist some constants « such that
oW = ug"w® + O0(a'?) (9.64)

otherwise the holonomy of % will be reduced further and it will admit more than four 7,
parallel spinors. Then
L’awﬁ) = 2uases,«twt(4) + 0(0/2) . (9.65)

The identity [Lq, Lp] = Ly vy gives
(uluf — ujus) = O(a'?). (9.66)
The covariant constancy condition on M* now reads
%(4)%("4) = 26_2V(“)uflesrtw£4) +0(a?), (9.67)

where now V(@ should be thought as the pull back of the principal bundle connection V(@)
with a local section. It is clear that the relevant connection that determines the geometry
of M*is 75 = V(@ys.

If u? = 0, M* is a HKT manifold. It is easy to see this as w, are covariantly constant
with respect to a connection with skew-symmetric torsion and all three almost complex
structures are integrable. The latter follows because of dimensional reasons. Otherwise
one of the 3-vectors u, must be non-zero. Without loss of generality take ug # 0. In such
a case the above equation can be solved as (ul)) = (ufj, ufvs), where vy = |up| 2>, uluf.

Using these data, the covariant constancy condition of w§4) on M* can be written as
%(4)%(4) =22V + vap)ugesrtw§4) +0(a?). (9.68)

It is clear from this that M?* is a KT manifold with respect to the Hermitian form
luo| “uphw,. In fact M* is an (almost)* QKT manifold [44] for which the holonomy of
the Sp(1) connection has been reduced to U(1).

Next let us turn to examine the non-abelian u(1) @ su(2) case. It is easy to see that

1
(ugup — ujug) = 5 fCeugen® +O(a”). (9.69)

If the 3-vector ug # 0, then all the rest of the components of « vanish. In such a case, M? is
an KT manifold. This class of solutions includes the WZW type of solution AdSz x S3 x M*
where M4 = S! x §3 with the bi-invariant metric and constant dilaton. Such a horizon is
not supersymmetric but it is nearly supersymmetric.

It remains to consider the case ug = 0. One can then show that detu # 0 and so
(uf) is invertible. Thus Z* = V(®y$ takes values in the sp(1) Lie algebra. M* is a QKT
manifold, see also [28].

To conclude we remark that in all HKT and KT cases, there is an analogue of the
condition (9.49) for every Hermitian form w, that determines these structures. If the

*In the definition of QKT structure in [44] an additional integrability condition was considered.
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associated 2d® + h+ — 6, forms do not vanish, then the holonomy of the connection with
torsion reduces to {1} and the number of parallel spinors enhance to 16. The solutions are
the group manifolds. The solution AdSs x S3 x S§% x S! mentioned above belongs to the
class where the holonomy of the connection with torsion is {1}.

There is an analogue of this in the QKT case but in such a case the condition from the
perspective of M* twists with sp(1). If 2d® + h*+ — 6, do not vanish, again the holonomy
of the connection with torsion on S reduces to {1}. However now some of the data like
the Hermitian forms are not (bi-)invariant under the action of the group. It would be of
interest to explore his further to see whether there are actual solutions.

We conclude the examination of the geometry of nearly supersymmetric backgrounds
in the G2, SU(3) and SU(2) cases by pointing out that they exhibit an sl(2,R) up to order
O(a') but not up to order O(a’?). For the latter, h must be a symmetry of the theory up
to the same order and so it can be identified with V. The description of the geometry of
this special class of nearly supersymmetric backgrounds is very similar to the one we have
given above. The only difference is that now we can identify h with V.

10 Conclusions

We have investigated the supersymmetric near-horizon geometry of heterotic black holes
up to and including two loops in sigma model perturbation theory. Using a combination
of local and global techniques, together with the bosonic field equations and Bianchi iden-
tities, we have proven that the conditions obtained from the KSEs are equivalent to a
pair of gravitino equations (4.26) and a pair of algebraic conditions, related to the dilatino
KSE, (4.27), which are required to hold at zeroth and first order in /. In particular, we
have shown that the KSE related to the gaugino is implied by the other KSEs and field
equations.

In all cases, we have also shown that there are no regular AdS, solutions with compact
without boundary internal space by demonstrating that A = O(a/?). This is not in contra-
diction with the fact that one can locally write AdSs as a warped product over AdSs [45],
see also appendix E. This is because our assumptions on the internal space of AdS, are
violated in such a case.

Furthermore, we have demonstrated that horizons that admit a non-vanishing 7_
Killing spinor up to order O(a'?), which does not vanish at zeroth order in o/, exhibit
supersymmetry enhancement via the same mechanism as described in [27], and so preserve
2, 4, 6 and 8 supersymmetries. We have described the geometry of such horizons in all
cases and this is similar to that presented in [27] for the horizons with dH = 0.

We have also considered in some detail the global properties of our solutions. The
analysis of the global properties of h? proceeds in much the same way as in the heterotic
theory with dH = 0. However in the presence of anomaly, the consequences of the global
restrictions on the geometry of the horizons are somewhat weaker. For example, it is only
possible to prove that h is an isometry of the horizon section to zeroth order in o’. So one
cannot establish a direct algebraic relation between 1, and 7_ spinors to order O(a/?), and
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therefore it is not possible to directly show that there is supersymmetry enhancement via
this mechanism, as was done in [27] for the theory with dH = 0.

We have also constructed generalized Lichnerowicz type theorems, which relate spinors
which are parallel with respect to a certain type of near-horizon supercovariant derivative,
to zero modes of near-horizon Dirac operators. We have shown that if 7 is a zero mode of
the near-horizon Dirac operator to both zero and first order in o', then the Lichnerowicz
theorems imply that 7 only satisfies the KSE (4.26) and (4.27) to zero order in o/. Hence,
the types of arguments used to show supersymmetry enhancement via Lichnerowicz type
theorems in [9-12] also do not work to the required order in o/ for the heterotic theory.

Finally, we have examined a class of nearly supersymmetric horizons for which the
gravitino KSE is allowed to admit solutions on the spatial horizon section but not the
rest of the KSEs. Such solutions in general do not admit any spacetime Killing spinors
including solutions of the gravitino KSE. Under some conditions on the fluxes, we investi-
gate the geometry of the spatial horizon sections using a combination of local and global
techniques as well as the field equations. We find that those with a G, SU(3) and SU(2)
structure admit 1, 2 and 4 parallel vectors on the spatial horizon sections with respect to
the connection with torsion. The geometry on the orbit spaces of these isometries is fully
specified.

The spacetime of both supersymmetric, and nearly supersymmetry horizons considered
here admits a SL(2,R) symmetry at zeroth order in /. In the supersymmetric case for
which there is a 7_ Killing spinor to order O(a/?) such that n_ does not vanish at zeroth
order, n[_o} # 0, this symmetry persists at first order in o’. The nearly supersymmetric
horizons also admit an SL(2,R) symmetry provided that h is parallel with respect to the
connection with torsion up to O(a'?).

It is not apparent whether the properties of the heterotic horizons described here are
going to persist to higher than two loops in sigma model perturbation theory. It is likely
though that the presence of an s[(2, R) symmetry will persist after perhaps a suitable choice
of a scheme in perturbation theory. There is no apparent reason to hypothesize that such
a symmetry can be anomalous at higher loops. What happens to global properties of the
horizons, for example the Lichnerowicz type theorems, is less clear. We have already seen
that these theorems do not hold to the expected order in o even at two loops. This can
be taken as an indication that additional higher order corrections may further weaken the
consequences of such theorems.
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A Useful formulae

A.1 Spin connection and curvature
In our conventions, the curvature of a connection I' is given by

Rap“p = 0alp — 98T%p + TAnTEp — TEnTlp - (A.1)
We define connections V and V as follows

. 1 - 1
VN = veN — QHNMLgLa Ve = vue + §HNML§L (A.2)

for vector field &, where V is the Levi-Civita connection. In particular, the R curvature
tensor can be written as

. 1 1 1 1
Rapcp = RABCD_§VAHCBD+§VBHCAD+ZHCANHNBD_ZHCBNHNAD7 (A.3)

where R is the Riemann curvature tensor. Also, note that
. . 1
Rapcp — Rep.as = §(dH)ABCD : (A.4)

We also define connections % and % on the horizon section S via
x . ~ . 1 . 2 . ~ . 1 .
V.YI =V,Yi - §WﬂikY’“, V.YI =V, Y7 + 5WJikY’f, (A.5)

for vector fields Y on S, and where ? is theALeVi—Civvita conAnection of §, and we denote
the curvatures of the connections V, V and V by R, Rand R respectively.

The non-vanishing components of the spin connection in the frame basis (2.2) of the
near horizon metric (2.1) are

1 1
Q_7+i = —ihz, Q+7+_ = —TA, Q+7+i = §T2(Ahz — BZA),
1 1 1 1
- =—ghi, Q= —grdhi, Q- =chi, Qi =—grdhy,
Qijr = Qiji (A.6)

where Q denotes the spin-connection of the spatial horizon section S in the e’ basis. If f
is any function of spacetime, then frame derivatives are expressed in terms of co-ordinate
derivatives as

1 ~
0+f:8uf—i—§r2A8rf, O_f=0.f, 0if =0;f —ro-fh;. (A.7)
The non-vanishing components of the Ricci tensor is the basis (2.2) are
1o, 1 ~ ~ 1
Ry =5V'hi —A— 5h2, Rij = Rij + V(ihj) — 5hih;

1~ 3 - 1~ 1 ¥
Ry =12 <2V2A = ShViA = SAVIh; + AR + 4(dh)¢j(dh)”>
1. S
Ry = T(ij(dh)ij — (dh)i;h) — VA + Ahi) ’ (A-8)

where R is the Ricci tensor of the horizon section S in the e’ frame.
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We remark that the non-vanishing components of the Hessian of ®, are given by
1 ..
ViV_d = —ihzviq),
1 .
V+VZ(I) = —ir(dh)ﬂva,
ViVj(I) = @iﬁj@, (A.Q)

where in the above expression, we have set A = 0.
The non-vanishing components of the R curvature tensor in the basis (2.2) are

- ~ 1
R_itj = Vjhi+ §hZW£ij o Rij— = dhy,

~ 1 1
Rij 1 = T(dehij — hidh;j + §(dh)z‘m mjk — i(dh)jm mzlc) :

- 1~ 1~ 1 1
Rijre = Rijre — iviijé + EijkiZ + EWkimejé — EWkJmeM
= Rij (A.10)
where in the above expression, we have set A = 0, N = h and Y = dh. Note that the

R_i’ﬂ- and Rij,Jrk terms give no contribution to the Bianchi identity of H or to the Einstein
equations, because RMM_Z- =0 for all M, N.

A.2 Bosonic field equations

The Bianchi identity associated with the 3-form is

/

dH = —% <tr(R A R) —tr(F A F)> +0(a’), (A.11)

where tr(F A F) = F% A F°, (a,b are gauge indices on F).
The Einstein equation is

Run — iHMLlLQHNLlLQ +2Vy Vy®
+ Z(RMLMLgRNLIszLs — FMLabFNL“b) =0(a”). (A.12)
The gauge field equations are
vM (e_mHMNlNQ) =0, (A.13)
and
vM <e—2‘1>FMN> + %e_wHNLlMFLlLQ =0(d). (A.14)

The dilaton field equation is

1
VMVM@ = 2VM(I)VM¢’ _ E N1N2N3HN1N2N3

o [ .
+ 16 <RN1N2,N3N4R NiN2,NaNa _ FNlNQGbFN1N2ab> + O(O/Q) . (A.15)

This completes the list of field equations. We have followed the conventions of [46].
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B Further simplification of the KSEs

Here we shall show that the independent KSEs are given in (4.26) and (4.27). We first
note that the conditions on the bosonic fields (3.18) (obtained from the case when d)EE] =0)

actually imply those of (4.11) (corresponding to the qb[f] # 0 case). Furthermore, the
KSEs (3.19), (3.20), (3.21), (3.22), (3.23) and (3.24) are identical to the KSE (4.18), (4.20),
(4.21), (3.22), (4.24) and (4.25). Hence, we shall concentrate on the simplification of the
KSEs associated with the case qb[f] Z# 0, as the simplification of the KSEs in the case qb[f] =0
follows in exactly the same way.

B.1 Elimination of conditions (4.19), (4.21), (4.23), (4.25)

Let us assume (4.18), (4.20), (4.22) and (4.24). Then acting on the algebraic condi-
tions (4.20) and (4.24) with the Dirac operator 'V, one obtains

L L . 1 . 1 ) 1 y
<VZVZ(I) + hzvzq) — QVZ(I)qu) — §h1hz + E‘/Vijkwwk + Z(l + l)dhijl“”
1 . 1
+nﬁ—1i1wﬁw@MWJ—4§ﬂwﬂﬂﬂgﬁb%&>¢i:cxa0% (B.1)

where we have made use of the field equations (4.13) and (4.15), together with the algebraic
conditions (4.20) and (4.24). Next, on substituting the dilaton equation and the Bianchi
identity into the above expression, one finds

(3007 D90+ 102 Db + 31 101
/

+ ;% (thijrijdhqupq+EjabFijquabrpq_ﬁij7mnrij qu7mnrpq)> qbi — (’)(0/2) ) (BQ)

Further simplification can be obtained by noting that the integrability conditions of the
KSE (4.18) and (4.22) are

éijmqrpq‘?ﬁi = 0(a?), (B.3)

and hence

Rpq,ijI"ds = O(a), (B.4)

from which it follows that the final term on the r.h.s. of (B.2) is O(a'?) and hence can be
neglected. So, (B.2) is equivalent to

1 - 1 1 .

<2(1 F 1)V1h,- + 1(1 + l)dhijF” + 1(—1 + 1)(th)ij1“”
o ij Pq o = abij Iy Pq 2

+ Edhijl“ dhqu + 3—2Fij T quabf oL = (’)(a ) (B.5)

We begin by considering the condition which (B.5) imposes on ¢ :

1 ) ! » ’ L
@Mﬂw+%Mﬂ%&ﬂm+;EﬁW&wﬁgm:0m%. (B.6)
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To zeroth order this gives

dhiiT? ¢4 = O(a'), (B.7)

which implies that the second term on the Lh.s. of (B.6) is of O(a/?), and hence can be
neglected. Using this, (B.6) gives that

O/<Fijabrij¢+v quabrpq¢+> = O(O/2) ) (BS)

which implies that

FyTi, = 0(a'). (B.9)
Using this the third term on the Lh.s. of (B.6) is also of O(a/?). So, the remaining content
of (B.6) is

dhi;T7 ¢, = O(a?). (B.10)

Hence, we have proven that the KSE (4.18) and (4.20) imply the algebraic KSE (4.19)
and (4.21).

Next, we consider the condition which (B.5) imposes on ¢_, which is

a/

. 1 g
ino_ 2y Tid
<V h; 2(th)UF + D

(2dh; T dhy TPT + Ejabrijﬁpqabrm)>¢_ =0("?). (B.11)
However, note also that the u-dependent part of (4.18), with (4.22), implies that
. 1 .
<vihj - 2Wijkhk) Mg =0?). (B.12)
On contracting this expression with I'¥, we find
i 1 gL ij 2
Vh; + §dhijr J - §(ZhW)ijF J o = O(Oé ) , (B.13)
and on substituting this expression into (B.11) we get
1 oo ij o = b 7 2
— idhijf T+ Edhijl“ thqupq + @Fz‘j r Jquaprq ¢ = O(Oz ) . (B.14)

Hence, we find from exactly the same reasoning which was used to analyse the conditions
on ¢, that (4.22) and (4.24) imply (4.23) and (4.25).

So, on making use of the field equations, it follows that the necessary and sufficient
conditions for supersymmetry simplify to the conditions (4.18) and (4.20) on ¢, and
to (4.22) and (4.24) on n—. We remark that the u-dependent parts of the conditions (4.18)
and (4.20) also impose conditions on 7_. We shall examine the conditions on 7_ further
in the next section, and show how these may be simplified.
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B.2 Elimination of u-dependent parts of (4.18) and (4.20)

We begin by considering the u-dependent parts of (4.18) and (4.20), assuming that (4.22)
and (4.24) hold. The u-dependent part of the condition on ¢4 obtained from (4.18) is

. 1 .
(Vihj - 2W¢jkhk)F]n— = 0(a?), (B.15)
and the u-dependent part of the algebraic condition (4.20) is given by
. 1 1 g
(Plvirb + bl = 5 ijkrw’“> hfn_ = O(?). (B.16)

On adding h,T'* acting on (4.24) to the above expression, we find that (B.16) is equivalent
to the condition

y 1. :
(v%i — QhZWijerk) n- = 0(a?), (B.17)
where we have also made use of the field equation (4.13). On contracting (B.15) with I'?,
it then follows that (B.17) is equivalent to
dhi;Tn_ = 0(a?). (B.18)

However, as shown in the previous section, this condition is implied by (4.22) and (4.24)
on making use of the field equations.

So, it remains to consider the condition (B.15). First, recall that the integrability
conditions of the gravitino equation of (4.22) is given by

Rijueln_ = O(a?) . (B.19)
On contracting with I/, one then obtains
- 1 - ,
<( — QRZ']' + §Wimnijn — QVkCI)Wkij + dhij — thkij>Fj
1 l& Lo m jke 2
+{ - g(dW)iij - gVinke + §Wij Wim | T )0 = O(a7), (B.20)

where we have used the gauge equation (4.15). Also, on taking the covariant derivative
of the algebraic condition (4.24), and using (4.22), one also finds the following mixed
integrability condition

- 1 1 - 1 :
(<vivjr1> — 5 Vihj + iwikjvkcb - 4Wikjh’f> J
: 1= 1
+ FJM< = 15 ViWike + 8ijmWizm>>"7— = 0(a). (B.21)

On eliminating the V;W;xI7* terms between (B.20) and (B.21), one obtains the condition

_ 1 o 5 .
<< — 2Rij + §Wimnijn + dhij — Qthkij — 4V,»Vj<I> + 2Vz‘hj>1_‘]

1

— 6dWWrW) n-=0?). (B.22)
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Next, we substitute the Einstein equation (4.16) in order to eliminate the Ricci tensor,
and also use the Bianchi identity for dWW. One then obtains, after some rearrangement of
terms, the following condition

- . 1 . 1 - .
<<4vihj — 2h’€W,m-j>rﬂ +d (2dhijF]dhngM +3 viap D) Frg TR
1= . x
— 4Rij,m"FJng,mnr’ff)>n = 0(a?). (B.23)

The o/ terms in the above expression can be neglected, as they all give rise to terms which
are in fact O(a’?). This is because of the conditions (4.23) and (4.25), which we have
already shown follow from (4.22) and (4.24), together with the bosonic conditions, as well
as the fact that §

RitmnTHn_ = O(), (B.24)

which follows from the integrability condition of (4.22). It follows that (B.23) implies (B.15).

C A consistency condition

Suppose that we consider the Bianchi identity associated with the 3-form as

Ct/

dH = 1 (tr(R/\R) — tr(F/\F)) +0(a?), (C.1)

where R is a spacetime curvature which will be specified later. Also observe that the 2-form
gauge potential and the Einstein equation can be written together as

/

- A o
Ryn +2VyVND + i (RMLl,LQLgRNLl’L2L3 — FMLabFNLab> = 0(a?). (C.2)
Then one can establish by direct computation that

~ 12 1
Ryin,pgr = —3VuHNpg — gdHMNPQ : (C.3)

Using this and the field equations of the theory, one can derive the relation

A 1.
Rupn ol TP = — Vs (Hppglt P9 — 120,01 )e

O/

-5 [RMN’EFRPQEF _ FMNabFPQab] INIPQe 1+ O(a?).  (C.4)

If € satisfies that gravitino KSE, the left hand side of this relation vanishes. Furthermore
the right-hand-side vanishes as well provided that dilatino and gaugino KSEs are satisfied,

and in addition
Rpo FITPR = 0(a). (C.5)

Of course in heterotic string perturbation theory

Rpo FFTPRe = 0(a), (C.6)
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as a consequence of the gravitino KSE and the closure of H at that order. Thus one can
set R = R and the identity (C.4) will hold up to order o/?.

One consequence of the identity (C.4) is that if the gravitino KSE and gaugino KSEs are
satisfied as well as (C.5) but the dilatino is not, then the gravitino KSE admits an additional
parallel spinor of the opposite chirality. Such kind of identities have been established before
for special cases in [42]. Here we have shown that such a result is generic in the context of
heterotic theory.

D Lichnerowicz theorem computation

In this appendix, we present the details for the calculation of the functional Z defined
in (7.15), and show how the constants ¢ and ¢ are fixed by requiring that certain types of
terms which arise in the calculation should vanish. We begin by considering the calculation
at zeroth order in o/, and then include the corrections at first order in o/. We remark that
we shall retain terms of the type hiV;® throughout. This is because although these terms
vanish at zeroth order in o’ as a consequence of the analysis in section 8, it does not follow
from this analysis that £,® = O(a?). However, as we shall see, it turns out that the
coefficient multiplying the terms hiV,;®, which depends on the constants ¢ and ¢, vanishes
when one requires that several other terms in Z vanish as well. So these terms do not give
any contribution to Z at either zeroth or first order in o’.

D.1 Computations at zeroth order in o’

Throughout the following analysis, we assume Einstein equations, dilaton field equation
and Bianchi identity at zeroth order in o/. To proceed, we expand out the definition of

VEH) and D in Z, obtaining the following expression

7— / P — q) (T An, Vine) + e® (852 — ¢) (4, AT A
S

- ec¢)<Vmi,Fij@jni) . (D.1)

Now, after writing V in terms of the Levi-Civita connection V and after integrating
by parts, the expression (D.1) decomposes into

I=11+1,+ 15, (D2)
where
T, = /S P21 — ) (1, ATDL) + ¢ (852 — g + ) (1, ATA)  (D.3)
1 5
- 6746& (g, DTS WL, o Wipome) (D.4)
and

o 1 -~
I, = [9066¢<ﬁi,FZJani> + §66©<vi771,FZ]F£1€2W]'Z1€2771>

1 y -
- gecq)(%, TRTW,, 0, Vi), (D.5)
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and
Ig = /S —€Cq><vl'77:|:, FZJan:t> . (DG)

In particular, we note the identity
DD,y 0 Winse, = SWie, g, Wigge, D255 — 4, Wik | (D.7)

which simplifies Z;. After integrating by parts the second term in Z,, we have

o 1 - -~ _
Ty = / cecq)(ni, I'Vng) — éecq)(ni, (F”I‘mn — anF”) W™V in+)
S
c : ~ 1 L~
— gecq)(ni, D07, 0W, p,0,m+) — §€Cq><77i, %2547, Wieane),  (D.8)

where the last term is order o, so we shall neglect it. Now we shall focus on the second
term of (D.8). First note that

(F”an - anFU) ijn = _4anWlmn = §W€1€2Z3 (théafZ + lebzg) . (D'g)
Then, after an integration by parts and after writing V in terms of D, we have

1 - - N 1
/ —gecq)(ﬂi, (DY, — D I7) W™ Vi) = / —gecq}@i, Woyep0, D255 Dy )
S s

1 -
+ %€Cq><77i, Wiy epe, T2 Ang) — ZSBC®<U17 Woytpe, T2, TR L)
c . - 1 o~
+ TQGC©<U17 D7 OWy, 1,0,m2) + Tzecq)(ni, P8, Weypene) . (D.10)

The last term of (D.10) is order o/, so we shall neglect it. To proceed further, we shall
substitute Wl-jkfij *in terms of A, using its definition. This produces terms proportional to
the norm squared of A7, together with a number of counterterms. In detail, one obtains

1 . . _ 1
/ —ge“l’m,(F”Pmn—rmnr”)wjmnvim = / —66’@(7&,Welzge:,»FEIZQZSDUQ
S S

1 1 s
+ e <48 - Z) (e, ATAnL) + e® (2 - 2(J> (e, 'V @A)

1 ) - . .
et <4 - q> (0, T hiAnz) + 3¢ (e, Vi@V 1) £ 3¢ (s, h'Vi®rpe)

3 . I . -
+ Zec{:' Ny, hih'ny) + Eec(b N+, Fl€1£2Z3V¢¢W51g2@3ni> + O(O/) . (D.11)

Let us focus now on the first term of (D.8). After writing I'Y as TIV — 6% and after
integrating by parts, we have

/ ce® (e, TV ) = / ce™® (0, TV T Vin)
B s
2

~ ~ . C ~ ~ .
+ ey, ViVidny) + 566%&, VidVidny).  (D.12)

¢
2
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The first term in the r.h.s. of (D.12) can be rewritten in terms of the modified Dirac operator
D after subtracting suitable terms. The second term on the r.h.s. can be further simplified
using the dilaton field equation at zeroth order in o’. On performing these calculations,
we have

e ~ C ..
/S ce®® (112, TV 1) = /S ce™® (112, TV ®Din) — e (e, Wi W 7o)

1 e ¢ |
te (8 - q) e (e, D0V, 0W, gy me) + 17 (s, hilt' )

1 c cd = T
+ 12¢ (12 + o4 —|—q> e Ny, ViOV' Oy)

1 .
+ 6¢ <12 + q) e“® (ne, hiV;®nL) + O(d). (D.13)

Let us now focus on Z3. Recall that

Fij@i@jni = —ZR?H: . (D.14)

Therefore after integrating by parts and using (D.14) neglecting o’ corrections from Einstein
equations, Z3 becomes

5 . SRy 1 :
T3 = / — g€ e Wit W) + €2 (1, Vi@V @) + e (e, hihlps)
S

+ e (e, W'V ns) + O(a) . (D.15)

Collecting together all terms and substituting h;h! by inverting the zeroth order in o
dilaton filed equation, one finally gets

- 1
7= / e® (n, <crewc1> - EW&%F&% +2(k — q)AT> D)
S

+ <8/12 — 2Kq — % + q2> ecq’<ni, AT.Ani>

3 1 , .
_|_ Z <q . 12) eC@ <,'7j:’ WZ£1€2 WZ£3€4F€1€2€3€477i>

1 . -
—c <q - 12) e (4, T 257, 0Wy, 40,14 )

12 12

+12¢ (q + i) e (ny, V; @V Py )

1 .
+ ( — 6g £ 6g(c + 2)) e (ne, BV ) + O(d). (D.16)

1 .
+ 6 ( +q+ C) e® (e, ViV'®ny)

2
In order to eliminate the term (74, Wigl s Wig3g4fele2€3e4ni>, which has no sign and cannot
be rewritten in terms of D or Af A, we must set

q= % +0(d). (D.17)
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and then in order to eliminate the (n4, @i@ﬂ)ni) term we must further set
c=-2+0(). (D.18)

Then (D.16) simplifies to

T [ wn) + (312 - F) [ | Ane | +O(). (.19)
S S
where
- 1 1
= IV, ® — Eng%Ffl% +2 (/1 — 12) AT (D.20)

D.2 Computations at first order in o’

In this section we shall consider corrections at first order in /. Zy and Z3 gain o/ corrections
from bosonic field equations and Bianchi identity, while Z; does not. Therefore we have

I, = / e“®2(k — @) (ne, ATDnL) + e“®(8x% — 2kq + ¢*) (n+, AT Anz)
S

1 ; 1 g
= g0 0y Wty Wiy T4 01) o e (s, Wi WEne) + O(a?), - (D21)

and

~ 1 c .
Iy = / ce® (1, (Feve@ — 6W51e253FhM3> Dny) — ﬂe&(%, Wik W *n.)
s

. o~ 1 q
+c (24 — q) €C¢<77:|:, legﬂsvi@ng@g:‘Ui) + ecq> < - ) <77:E7ATA77:|:>

1

1 L )
+ec® ( — 2q> (ne, 'V, AnL) £ ec® (4 — q) (N, ThiAny)

3 - 2 S B
+ < + c) P (ns, hih'n.) + (c + % +12¢q + 3) e (s, VidV' )

171
+ (g + 6cq + 3) “® (04, hiV;®ny)
1 ) . )
- ﬂe“b(?&, Oy, W, 0,ne) + a'32€C¢< — 2(n+, dhijdh" )
(e Rty gyt B0 0) — (1, E—ﬁ"ﬁif‘abm) 1 0(?), (D.22)

and

: iJ v V&) 1 c i
Iy = / - dec(b(ni,szkW”kni) + e®(ny, V,0VidnL) + 1¢ ®(ni, hihinL)
S
. 3 g
+ P e, BV Prps) + of e ( — 2, dhigdhn.)

+ (Nt Rey oy 050, R0 L) — (14, Fijabﬁ’ijabni>> +0(a?). (D.23)
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Combining all together and considering o/ corrections from substituting h;h* by inverting
the dilaton field equations, we have

~ 1
T = /ecq><77:|:, (CFKVgCI) — 7WZ1£2€3F415253 + Q(H — q)AT> 'D’ni>
S

6
+ (8/12 — 2Kq — % + q2> e“® (e, AT Anz)
3 1 ) )
+ Z <q o 12) eC‘I) <77ia WZ€1£2 W’LZ3Z4FZ1€2€3€4,’,HZ>

1 ) - c - _
—-c (q - 12) eccb(ni, lee?é?’vi@ngngni) +12¢ <q + ﬂ) ec¢<ni, VoV dny)

1 - 1 .
+6 (12 +q+ 1C2> e (ne, ViVidny) + <2 — 6q £ 6q¢(c + 2)) e“® (na, h'V,;®n.)

/

o x x ..
+ Gzecq) <2<77i7 T905%dhy g, dheye,) — (ne, T2 Ry g, 1 Rege, e

+ (g, D0, abF€3€4ab77i>)
Bl N e _ g
+ « s \6 qgle 2<77:|:7dh2]dh 77:|:>
5 50102,0304 o ab pij 2
+ Nty Reyey 050, R nt) — N+, FijF ab77:|:>> +0(a’™). (D.24)

To further simplify (D.24), we note the following identity

(e, D255 any oo dhpge,me) = (e, T2 dhg, 0, T3 dhyye,ma)
+ 2(nx, dhigdh ) . (D.25)

Identities analogous to (D.25) hold also for the terms which involve éijykg and Fij“b. This
leads to

- 1
7= / e“®(ny, (crfwcb - EW&%FMZ& +2(k — q)AT) D)
S

+ (887 = 269 — <5+ 1) e, Al i)

3 1 . .
4 Z (q o 12> ec<I> <7’:|:7 Wzélfg W16364F€1£2€324ni>

1 ) ~ c _ .
—c (q — 12) e (g, T2 Y,0W), 4,0,m4) + 12¢ <q + ﬁ) e®(ng, VOV Oy)

1 ey 1 L
+6 (12 +q+ 1c2> e“®(ne, ViVidny) + <2 — 6g £ 6q¢(c+ 2)> e“®(ne, KV, ®ny)

3 1 .. ~ ~ .. x x
+ go/ <q — 12) ec® <2dhijdh” + Fy % F o — RzleQ,ZBQR’flf%‘f?’&) | ne |2

a/ a/ a/ X X ..
- 33€C¢ | dhns |? —6z€c¢ | e ||? +6*4€C¢<Re1£2,ij1“£1£2ni,RZ@’F%&??Q

+ 0(a?). (D.26)
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In order to eliminate the term (74, Wiglb Wig3g4F£1£263£41’]i>, which has no sign and cannot
be rewritten in terms of D or A A, we must set

1
g=—+0(?). (D.27)
12
and then in order to eliminate the (14, @Zﬁi@ni) term we must further set
c=—-2+0(?). (D.28)

Then (D.26) is significantly simplified to

1 _ -
I = <8/<c2 — 6ﬁ> / e 2% || Ans |2 +/ e 2% (ny, UDny)
S S
a/ B ~ ..
51 Jo ¢ (2 b P4 Fos P (R T, R, D)) + O(),

(D.29)

where W is defined in (D.20).

E AdS,;; as warped product over AdS,,

The AdS,,+1 space can be written as a warped product over AdS,,. This has been observed
before in [45] for AdS3 and elsewhere, see eg [47]. For this, we label all geometrical objects
defined on AdS,;; and AdS,, by n + 1 and n respectively, e.g. ds? 41 is the metric on
AdS,, ;1 and ds? is the metric on AdS,,. In principle AdS,,+; and AdS,, can have different
radii, which are indicated by /¢,,+1 and ¢, respectively. Coordinates on AdS,, 11 are taken
to be as follows

$I=(O,$i)7 =y, 1=1,...,n. (E.1)

We shall begin with an Anséitz for the metric on AdS,,4+1 as a warped product over
AdS,, i.e.

ds2,, = dy? + f(y)%ds2. (E2)

We want to determine the necessary and sufficient conditions to impose on f(y) in order
for ds% 41 to be the metric on AdS, ;1. To succeed, we have to impose the fact AdS, 1 is
a maximally symmetric space. Locally, the necessary and sufficient condition is that the
Riemann tensor must assume the following form
mt1) 1 (n+1) (n+1)  (n+1) (n+1)
Rijkr = 2 ( 1k 95 — 95k 9IL ) ) (E.3)
n+1

Equation (E.3) implies also that the metric (E.2) is Einstein and the curvature scalar is
constant and negative, i.e.

n+1 n n+1 n 1
R = —6279%;“ . RO = —627”(” +1). (E.4)
n+1 n+1
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The non-vanishing Christoffel symbols of (E.2) are:

n k f/ Yy n n n k n)k

The non-vanishing Riemann tensor components are:

Rk f”(y)ék

N,O‘—'_if657
R0, = Fy) " (1) D
R(n—H)ij,kﬁ _ R(n)ij,k£ + f/(y)Q <5k]gz(;) — 51‘319](?)) ) (E.6)

and

RS = 1) " W)ay
n+1 n n n n n
RO = F@)* RGN — F@)* ) (o9 — o) - (B.7)
The non-vanishing Ricci tensor components are:

m+1) _ ")
Hoo = ")

RUHY = RYD 4 [ (1 —n) — F0) " ()] o) (E:3)

The Riemann tensor on AdS,, must assume the following form

m __ 1w m)_ m) ()
Rijne = 7 (953 950"~ 9k 90 ) : (E.9)
n
Now we impose (E.3). The (i0, k0)-components provide the first ordinary differential equa-

tion for f
1

=2
en-i—l

() f(y)- (E.10)

The (ij, kl)-components provide the second ordinary differential equation for f

1

— 5
gn—l—l

F)*+ 55 =0. (E.11)

n

fy)?

Since equations in (E.4) are derived from (E.3), they would imply again (E.10) and (E.11),
so there is nothing further to be learned from those conditions. The general solution
of (E.10) and (E.11) is

f(v) :acosh( 4 ) +ﬂsinh( Y > , (E.12)
€n+1 én—&—l
where v and 3 are constants which satisfy
2 sl
o —p° = 2% . (E.13)
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The

1.

2.

solution (E.12) leads us to the following conclusions
if y € (—00,4+00), then locally the AdSs metric can be written as AdSs X, R.

if y € [0, 1], then locally the AdS3 metric can be written as AdSz x4, [0, 1] as the warp
factor is not periodic.

if y € [0, 1] and force periodicity on y, then the metric of AdSs x,, S is discontinuous
as the warp factor is not periodic.

From the perspective of near horizon geometries, the first case violates the compactness

condition of the partial horizon section. The second case implies that the spatial horizon

section has a boundary. The third case violates smoothness condition since (E.12) is not

periodic. Hence all cases violate one or more of the assumptions required to prove that

there are no AdSy horizons in the heterotic theory.

Open Access. This article is distributed under the terms of the Creative Commons
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