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Abstract Realistic description of fractured reservoirs

demands primarily for a comprehensive understanding of

fracture networks and their geometry including various

individual fracture parameters as well as network con-

nectivities. Newly developed multiple-point geostatistical

simulation methods like SIMPAT and FILTERSIM are

able to model connectivity and complexity of fracture

networks more effectively than traditional variogram-

based methods. This approach is therefore adopted to be

used in this paper. Among the multiple-point statistics

algorithms, FILTERSIM has the priority of less compu-

tational effort than does SIMPAT by applying filters and

modern dimensionality reduction techniques to the pat-

terns extracted from the training image. Clustering is also

performed to group identical patterns in separate parti-

tions prior to simulation phase. Various practices

including principal component analysis, discrete cosine

transform and different data summarizers are used in this

paper to investigate a suitable way of reducing pattern

dimensions using outcrop maps as training image.

Because of non-linear nature of patterns present in frac-

ture networks, linear clustering algorithms fail in deter-

mining the borders between the actual partitions; non-

linear approaches like Spectral methods, however, can act

more efficiently in diagnosing the right clusters. A

complete sensitivity analysis is performed on FILTER-

SIM algorithm regarding search template dimension, type

of filtering technique and the number of clusters for each

clustering approach described above. Interesting results

are obtained for each parameter that is changed during

analysis.

Keywords Discrete fracture network � Geometrical

modeling � Multiple-point geostatistics � Dimensionality

reduction technique � Clustering

Introduction

Naturally fractured reservoirs are one of the most com-

plex structures in petroleum geology. They represent

great heterogeneities in all facets from the geological

structure to the flow responses so that characterization

and modeling of these reservoirs have been a real chal-

lenge for petroleum engineers. Presence of fracture net-

works plays an important role in flow of hydrocarbon

fluids toward the wellbores. They may act as barriers,

hindering the production and thus causing different sce-

narios for economical production. Although the fracture

system can increase the porosity and hence the initial oil

in place, this causes the drilling fluid lost circulation.

Mud invasion through the fracture system gives rise to
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the cost and time of drilling operation; therefore model-

ing of fracture system is crucial for assessing the con-

nectivity of the reservoir. In general, familiarity of the

fracture system model is important for the development

of oil fields, economical issues of geothermal reservoirs

and production from groundwater sources. This knowl-

edge can benefit petroleum engineers for better estimates

of reserves, production forecasts and optimization of oil

recovery factor (Tran et al. 2002; Tran 2004).

Modeling of naturally fractured formations starts from

the geological model, ending to the flow simulation;

therefore modeling of fracture network requires two steps:

fracture geometry characterization and simulation of its

dynamic behavior. Geometrical fracture modeling is thus

the first step in describing the fractured reservoir.

Characterization of highly fractured regions is one of

main purposes of reservoir management, and it is after that

one can design the well locations and their trajectories to

cut through the fractures. Therefore, construction of the

facture intensity distribution models sounds important. In

addition, other properties of the individual fractures as well

as of the network are necessary to be modeled, since

fractures with different properties (like size, dip and con-

nectivity) show different effects on the fluid flow behavior;

more fluids flow through the longer and wider fractures.

Fracture orientation controls the anisotropy and perme-

ability of the reservoir at different directions. For example

subparallel fractures cannot be connected to each other to

form a continuous and connected network for fluid flow; in

this case, the well trajectory must be deviated to pass

through the fractures to increase the production recovery.

Using discrete fracture networks facilitates the numerical

simulation of fluid flow in the reservoir. For example,

where geometric fracture properties (location, orientation,

size and width) are available, finite element or boundary

element methods can be used to obtain the permeability

tensor of the discrete network analytically (Oda et al. 1987;

Lee et al. 1999; Teimoori et al. 2004). Cacas et al. (1990)

used geometrical fracture statistics instead of permeability

tensor to calculate the large-scale hydraulic conductivity of

the fractured rock.

How to use DFN models in the flow simulation of

fractured reservoirs and the estimation of hydraulic prop-

erties are discussed by Bourbiaux et al. (1997), Baker et al.

(2001) and Dershowitz et al. (2002).

This paper aims at geometrical modeling of natural

fracture networks observed on the outcrops. Since the

MPS approaches are capable of reproducing the complex

and curvilinear geological features such as natural frac-

tures (Strebelle 2002; Caers and Arpat 2005; Journel and

Zhang 2006), this technique is adopted to be used in this

work. Utilizing reservoir outcrop maps taken at different

locations and structures as training images, fracture

networks are modeled under geological and tectonically

conditions. We have focused on reproducing the multiple-

point statistics incident to an initial training image

through the FILTERSIM algorithm. Flow simulation

results are finally used to validate the generated realiza-

tions by comparing their production recoveries with that

of the prior model. FILTERSIM has the priority of fast

computations over previously defined algorithms, like

SIMPAT, through the classification of extracted patterns

in separate clusters (Journel and Zhang 2006; Wu 2007).

To reduce dimensionality of pattern space, FILTERSIM

has been designed to classify structural patterns using

selected filter statistics as specific linear combinations of

pattern pixel values that represent different properties.

Instead, patterns could be abbreviated in a small set of

statistical measures called summaries. Data summaries are

also used in this paper to do filtering in FILTERSIM. A

full description of clustering algorithms and their appli-

cations in FILTERSIM algorithm is provided in the fol-

lowing sections. Furthermore, a new classification of

dimensionality reduction practices that could be effec-

tively used in FILTERSIM is provided. Several solutions

would also be developed to improve different parts of the

available FILTERSIM algorithm in line with the simula-

tion of naturally fracture networks. A complete sensitivity

analysis would be finally performed on FILTERSIM

parameters including search template size, kind of filter-

ing practice, type of clustering approach and the number

of clusters used in partitioning the pattern space. Useful

results are induced after this analysis that would help us

with improving the FILTERSIM algorithm in further

applications.

Discrete fracture network models

DFN models simulate the individual fracture properties,

predicting the fluid flow behavior using the fracture

geometry and conductivity. These models can be obtained

either by deterministic or stochastic approaches. Due to

deficiencies inherent to deterministic methods when

applying to modeling of complex fractured media, most

discrete fracture models make use of probabilistic and

stochastic simulation concepts to determine the distribution

and orientation of fractures having access to the structural

growth stress and tectonic history information which can

be obtained with difficulty.

In two-dimensional models (Long et al. 1982; Smith and

Schwartz 1984; Mukhopadhyay and Sahimi 1992), frac-

tures are represented as lines distributed randomly in a

plane. The center of lines of fractures follows a Poisson

distribution while the length and orientation of a fracture

can be selected from any given distribution. Hestir and
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Long (1990) analyzed various two-dimensional models to

determine fracture connectivity and relate the parameters

of fracture networks to standard percolation network

parameters.

More complicated three-dimensional models were

developed (Long and Witherspoon 1985; Charlaix et al.

1987; Pollard et al. 1976) to allow for realistic represen-

tation of fracture networks. Fractures are represented as flat

planes of finite dimensions and in most of the cases as

circular discs.

Fracture data (such as orientation, width and density) are

primarily available at well locations. These data are ana-

lyzed statistically to estimate the distribution of fracture

properties at inter-well locations.

DFN stochastic simulation has many advantages over the

geomechanical and mathematical deterministic methods

(either continuum or discrete). Dealing with these models,

the approximations incident to the continuum models are

eliminated by employing the probability distribution func-

tions. The fracture information from different data sources

can be used to construct the systems with individual fracture

detailed properties in this approach. Stochastic simulation

can be conditioned to identified fractures as well as dynamic

data by taking the variable uncertainties into consideration.

This improves the validity of fracture network models with

respect to the reservoir condition.

In general, there are two stochastic approaches for

modeling of fracture networks (1) object-based approach in

which the fractures are depicted by the closed form objects

with clean edges and (2) pixel-based approach, which

simulates the nodal values one by one and then by com-

bining these values, final fracture network is constructed.

There are other algorithms such as tessellation and Voronoi

grid methods which can be attributed to this class. How-

ever, due to deficiencies for applying these approaches,

they could not be used in practice for modeling natural

fracture networks.

In object-based models, fractures are defined as entities

with specific center, shape, size and orientation, randomly

positioned in space. Random disk models represent the

fractures as two-dimensional convex circular disks. The

radii of disks can be obtained by a log-normal distribution

whose parameters are inferred from trace length distribu-

tion observed on the outcrops. Distribution and location of

the disks, radii and their orientations are assumed uncor-

related from one fracture to another. Modeling of fracture

clusters is difficult with the assumption of random fracture

locations. Clustering is performed by parent and daughter

model in which a spatial density function is used for cluster

modeling. Seed locations of the fractures are determined by

this density function and the fracture clusters are simulated

over a predefined volume near the initial seed locations

(Long et al. 1987).

Fractures are not circular disks; they have elliptical

shapes in reality. Based on Long et al.’s (1987) and Hestir

et al.’s (1987) findings, if there is not enough data to

determine the real shape of the fractures, it is a logical

assumption to imagine the fractures as disks. This

assumption has many disadvantages and outcrop data do

not confirm that.

Many drawbacks are inherent to these models; inde-

pendence assumption between the parameters, difficulties

in inferring the statistical distribution parameters, problems

in soft data conditioning, and convex and planar assump-

tion of individual fractures are limitations of this method.

While object-based techniques construct the features

with clean edges, however, pixel-based algorithms simu-

late the nodal values on a discrete network. Useful algo-

rithms such as SISIM, SGSIM or PFSIM are developed for

modeling continuous (petrophysical data) and discrete

(facies) parameters traditionally. One-point or two-point

statistics are not able to reproduce the objects like

fractures.

Traditional pixel-based algorithms use the primary data

values at their locations as well as univariate statistical

distributions and bivariate moments as the required infor-

mation in the constructed models. This causes the curvi-

linear and continuous structure of geological entities to be

reproduced in a poor manner through the variogram-based

geostatistical algorithms.

Two-point statistical moments like variogram and

covariance between simulation variables take only the two-

point spatial relationships into consideration at one time;

the reproduction of such complex geological images

requires a relationship between more than two points at the

same time and therefore the development of multiple-point

simulation approaches seems to be necessary.

MPS techniques are not only capable of handing the

prior maximum entropy models and performing multivar-

iate Gaussian algorithms, but they can act very effectively

in using the prior structural models of low entropy having

more compatibility with hard conditioning data or prior

geological models.

Guardiano and Srivastava (1993) developed the first

MPS algorithm based on the Journel’s extended normal

equations. In the following section, a short review of

available MPS algorithms with an emphasis on FILTER-

SIM is introduced.

A review of multiple-point geostatistical simulation

algorithms

Various algorithms have been developed for multiple-

point simulation of complex geological phenomena. To

overcome the problems inherent to the two-point
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statistics, the issue of multiple-point geostatistics was

introduced by Deutsch (1992) and Guardiano and Sri-

vastava (1993). Later, development of a practical MPS

simulation algorithm, SNESIM (Strebelle 2002), has led

to the wide adoption of MPS simulation for reservoir

facies or element modeling. SNESIM draws the patterns

of a training image according to the well-defined prob-

abilities and conditioned to the available hard and soft

data. This algorithm utilizes a sequential simulation

approach in its modeling scheme as in traditional pixel-

based simulations: (1) the unknown nodal values of the

simulation grid are visited along a predefined random

path separately in time; (2) in each unknown cell, the

conditional probability is estimated regarding the neigh-

borhood data and the previously simulated values, and

(3) a value is randomly selected from the constructed

probability distribution and assigned to the current sim-

ulation cell. In SNESIM, the conditional probability is

generated from the training image, considering the fre-

quency of replicas of the present data event (Strebelle

2000, 2002).

In SNESIM, the training image is scanned only once; for

each particular search template, all the conditional pro-

portions present in the training image are stored in a smart

search tree data structure to be retrieved as fast as possible

in the next steps. SNESIM is composed of two main parts:

(1) construction of search tree to save all probability pro-

portions, and (2) simulation section where these propor-

tions are read from the tree and used for simulation of

unknown values.

SNESIM can handle only categorical variables such as

facies distributions or discrete fracture networks, and is not

able to use continuous data. This algorithm takes a large

amount of memory especially in the case of large training

images containing many various classes of different pat-

terns; thus SNESIM can make only use of a limited number

of classes (\5). This algorithm appears suitable for mod-

eling discrete fracture networks. However, using the pat-

tern-based algorithms instead can result in more accurate

final realizations. In addition, using quite large scanning

templates to capture the large-scale geological features

increases the levels of constructed search tree and hence

more memory will be required.

Another limitation of SNESIM code is the cost of

retrieving the conditional probability when the conditional

data event is not fully informed (having missing data

locations). At each such missing data location, the SNE-

SIM algorithm will traverse and trace all its children

branches in the search tree for all possible data values. This

cumbersome tree search is extremely memory and CPU

consuming. Indeed, any SNESIM simulation is very slow

at the beginning, and gets faster when more and more

previously simulated nodes become conditioning data (Hu

and Chugunova 2008; Straubhaar 2008; Mariethoz 2010).

Non-stationarity problems are the other major drawbacks

of the SNESIM algorithm (Chugunova and Hu 2008;

DeVries 2009).

To solve the shortcomings of SNESIM algorithm, Caers

and Arpat (2005) presented a new approach based on the

statistical pattern recognition concepts, named as SIMPAT,

in which the simulation is performed using the extracted

patterns from the training image (Caers and Arpat 2005,

2007).

Firstly, the training image TI is scanned through the

search template T to capture all the available patterns

present. A filter may be applied to avoid keeping undesired

or very similar extracted patterns. The filtered patterns are

then stored in a database to be retrieved in the next simu-

lation steps.

During the sequential simulation employed by SIMPAT,

each unknown node u is randomly visited and the local

conditioning data event devT(u) is recorded simultaneously.

Afterward, devT(u) is compared to all available patterns in

the database according to a predefined similarity criterion;

the most common of which are distance functions. The

purpose is to find out the most similar training pattern pat*T

to the local data event devT(u). In other words, the algo-

rithm evaluates the distance d for all existing patterns and

picks up the pattern with the smallest distance as pat*T.

Having selected the most similar pattern, devT(u) is

replaced by pat*T such that part of the values inside patT
* is

pasted onto the simulation grid centered at the current

location u (Caers and Arpat 2005).

Due to global search performed on the training pat-

terns database to find the most similar pattern to the data

event, SIMPAT suffers from a high computational load

(Honarkhah and Caers 2010). This is because of the large

number of stored patterns and their high-dimensional

feature space in the case of using large scanning tem-

plates. A new algorithm known as FILTERSIM was

presented by Zhang in 2006 to alleviate the standard

SIMPAT’s computational intense (Journel and Zhang

2006). The default FILTERSIM starts to decompose each

training pattern to a small number of linear filter scores

(6 in 2D and 9 in 3D) each of which is a weighted

average of the pattern features. These transformed train-

ing patterns will then be classified in the new filter space;

the aim of clustering is to group the identical patterns

into separate classes so that the similarity between them

is defined as their distances to each other. The clustering

is performed only once for each TI prior to the simula-

tion stage. The sequential simulation approach is adopted

later on to see the unknown nodes in a random manner.

For each unknown node, the local conditioning data

event is compared to the training cluster prototypes in

order to select the closest one based on the calculated
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distance measure. A training pattern is picked up from

the selected class in a random manner or conditioned to

the available soft data; an inner part of the pattern (called

‘‘patch’’) is then fixed at the simulation grid centered at

the current node; their location addresses are then

removed from the predetermined random path and the

remaining nodes will be replaced by the future evaluated

values. Like all the geostatistical algorithms, hard data

conditioning is achieved through freezing the corre-

sponding nodal values at their locations not to be chan-

ged ever during the simulation step; these primary values

are preferentially used in estimating the dissimilarity

distances and therefore ensure us that no pattern

involving the structural discontinuities will be selected

(Wu 2007).

Contrary to the first multiple-point simulation algorithm,

SNESIM, in which the single nodal values are modeled

using the pattern data at each simulation step, SIMPAT and

FILTERSIM evaluate patterns from the available pattern

data. Compared to SNESIM, FILTERSIM is not limited to

categorical variables and can be run with continuous values

as well. FILTERSIM looks like the SIMPAT algorithm in

many aspects, except that the latter does not perform any

clustering on the extracted patterns, but searches for the

pattern with the most similarity with the multiple-point

data event.

Clustering in FILTERSIM

Clustering methods haves gained a great application in many

areas such as data mining, document retrieval, image seg-

mentation and pattern classifications. The purpose is to group

the patterns according to a similarity (or dissimilarity) cri-

terion so that each cluster represents a set of similar patterns.

Each pattern is denoted by a set of system characteristics.

There are several books published on classical data cluster-

ing (Anderberg 1973; Jain and Dubes 1988; Duda et al.

2001). Clustering algorithms have also been extensively

studied in data mining and machine learning books (Han and

Kamber 2000; Tan et al. 2005; Bishop 2006). A good survey

of different clustering algorithms could be found in Xu and

Wunsch (2005), Jain (2010).

After implementing the preprocessing step of FILTER-

SIM algorithm, it is required to utilize the appropriate

similarity criteria between the patterns; the most common

similarity measure of standard representation is ‘‘distance’’

(Perner 2007). The distance function used in this paper is of

Euclidean type. Other functions could be also applied in

this manner as fully described in Ahmadi (2011).

Clustering algorithms try to reorganize the set of

training patterns in the database in the form of several

separate classes based on a predefined similarity measure.

Dimensionality of patterns may have been reduced prior

to the clustering. Having accomplished the clustering

stage, the patterns in a particular partition are much

similar to each other than the patterns in other groups.

K-means with a rich and diverse history as it was inde-

pendently discovered in different scientific fields (Stein-

haus 1956; Lioyd, proposed in 1957 but published in

1982; Ball and Hall 1965; MacQueen 1967) is one of the

most commonly used clustering algorithms that was

applied by Journel and Zhang (2006) in the multiple-

point simulation approaches to partition the obtained

normal filter scores. Standard partitional clustering

methods (such as K-means, fuzzy C-means, Self Orga-

nized Maps (SOM) and neural gas) consider the linear

borders between the formed clusters and are not able to

separate the complex and non-linear data. Other meth-

odologies have been presented by the ability of con-

structing the separable hypersurfaces. These algorithms

are classified into two main categories: kernel-based and

Spectral clustering methods.

In the case of kernel-based algorithms, several cluster-

ing techniques such as K-means, C-means and SOM have

been widely used with the aid of kernel functions. Using

kernels, data will be transformed into a new feature space

of higher dimension where data could be linearly separated.

Separability is performed easier in the higher-dimensional

space. This change of coordinate system maintains the

structural principles inside data; but it alters the way in

which they are represented, so that the principles will be

discriminated more straightforwardly. In other words, the

non-linear relationship between the information inside data

is able to be captured via non-linear mapping of data to a

new higher-dimensional space. Correspondingly, the clas-

sical clustering algorithms such as K-means acts better in

the new space and a more accurate and powerful clustering

is achieved henceforth (Shawe and Cristianini 2004; Fil-

ippone et al. 2008).

Using the kernel-based clustering methods, however,

requires the prior determination of the kernel function and

its defining parameters. As an instance, in the case of

choosing the Gaussian kernel as the base function, we

should try in finding the optimal value of the width; since

this parameter which is equivalent to the Gaussian standard

deviation indicates the openness of the Gaussian function

and the neighborhood area affected by the defined kernel

that will influence the final clustering results significantly.

However, due to unsupervised nature of clustering algo-

rithms, optimality of kernel parameters does not appear so

easily; with the manifold assumption of data, the spectral

algorithms could therefore be applied in order for the non-

linear pattern clustering.

Spectral clustering algorithms take advantage of graph

theory concepts. The main idea is to construct a weighted
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graph from the initial data set; each node represents a

pattern while the weighted edges are simply the similarity

degrees between the two patterns on the heads. In this

framework, the clustering could be considered like a graph

cut problem which may be solved through the spectral

graph theory. The fundamental idea is the eigenvalue

decomposition of the Laplacian matrix of the weighted

graph obtained from data; in reality, there is a close rela-

tionship between the second smallest eigenvalue of the

Laplacian and the graph cut problem (Chung 1997; Cris-

tianini et al. 2001).

Dimensionality reduction in FILTERSIM

Scanning a training image using a large template size

brings about a high dimensionality of the extracted pat-

terns; a preprocessing step would therefore be required to

reduce data dimension as much as possible and select part

of the features optimally; running clustering algorithms on

such a high-dimensional dataset demands for a large

computational burden and time.

Dimensionality reduction may be achieved in FIL-

TERSIM through the following classifications:

1. Using image statistics and application of predefined

filters to the training patterns,

2. Extraction of unique features from the training patterns

or using feature transformations such as features

generated from discrete Fourier power spectrum of

each pattern,

3. Using common dimensionality reduction techniques

such as principal component analysis (PCA), linear

discriminant analysis (LDA) and discrete cosine

transform (DCT).

The main contribution of this paper is to make use of (1)

K-Nearest Neighbor Index (a simple but very common

filter, used in the pattern recognition and spatial data

mining tasks (Cover and Hart 1967; Toussaint 2005);

introduced from the first classification above), (2) PCA

(a very common technique in data analysis practices

(Jackson 1991; Jolliffe 2002); proposed from the third

classification above), and finally (3) DCT (a common

transform used in digital image applications (Jain 1989;

Pennebaker and Mitchell 1993); also brought from the third

classification above). Other methods that are not tried in

this paper may be the subject of future works.

Filters

A filter is composed of a set of weights relevant to the

search template nodes TJ. The filter value or the weight of

node uj of the template is denoted by fj; therefore, a J-node

filter is defined as {f(hj); j = 1, 2, 3, …, J}, where hj

represents the coordinates of the search template TJ with

respect to the central node u. The filter is applied to each

local training pattern, pat, centered at node u in the training

image. Application of F filters simultaneously would result

in constructing a vector of F filter scores that summarizes

any of available patterns in F new dimensions:

ST uð Þ ¼
Xn

j¼1

fi hj

� �
:pat u þ hj

� �
; i ¼ 1; 2; . . .:;F ð1Þ

where, ST(u) denotes the computed filter score and hj is the

offset of each template node from the central node u.

Representation of a pattern with its relevant filter score

vector causes a severe dimensionality reduction from the

initial pattern size ðnx � nyÞ to F dimensions. Figure 1

shows the process of filtering a 2D training pattern and

construction of the corresponding filter score value (Wu

2007).

Instead of averaging the values inside the training pat-

terns through a specific filter, we may summarize each

pattern by performing mathematical and statistical opera-

tions on their contents. This would be done through the

application of data summaries.

In general, each pattern extracted from a fracture net-

work training image could be interpreted in three ways: (1)

a digital image, (2) a spatial phenomenon, or (3) a fracture

phenomenon; regarding each perspective, the appropriate

data summary might be designed for the FILTERSIM

algorithm:

1. As a digital image, patterns could be defined by their

statistical moments of different orders; mean as the

first moment and variance with respect to the mean as

the second one are common statistics of a random

phenomenon. Summarizing each pattern in a small set

of its statistical measures might have the potential of

reducing dimensionality of the existing patterns in an

appropriate and unique manner so that patterns of

different occurrences of available categories at their

different nodal locations are easily distinguished from

each other in the new coordinate system of the selected

summaries. No overlapping is expected for the orig-

inally separated patterns in the new dimensionality

space. Where required, using a more number of

efficient measures may benefit to the accuracy of

summarizing practice.

2. From the spatial data mining views, the spatial

correlation indices such as nearest neighbors index

(NNI) (Cover and Hart 1967; Toussaint 2005) and

Moran-I parameter (Moran 1950) are suggested to

summarize the patterns as the spatial phenomena. To

achieve a better and more accurate summarization of

training patterns in this mode, it may be practical to
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use farther points in the neighborhood of fracture cells

inside each pattern.

3. As a fracture network system, it is reasonable to define

some new summaries based on the fractures connec-

tivity and the orientation of the fractures along the

straight lines.

Default FILTERSIM algorithm makes use of three fil-

ters (average, gradient and curvature) in each coordinate

direction (Journel and Zhang 2006). The user could instead

design its own filters depending on the features of interest

in the training image that should be reproduced in the

simulation. For instance, the isotropic or oriented filters can

have great applications in the case of particular geological

structures involving different orientations, such as fracture

networks. Examples are central, edge, diagonal I and

diagonal II filters shown in Fig. 2 (Wu 2007).

In this paper, we have designed two specific data sum-

maries exclusive to fracture networks including

connectivity and direction of individual fractures to obtain

a more accurate geological system involving more realistic

and connected fractures.

New data summaries for fracture networks modeling

One of the most important and challenging issues in

modeling fracture networks and other geological struc-

tures like channel reservoirs is the connectivity

of final realization so that disconnectivity of simulated

nodes belonging to a particular structure is minimal.

Two schematic fracture networks of different connec-

tivities are shown in Fig. 3. Based on a new definition,

connectivity of any specific fracture node in the template is

defined as the number of fracture nodes to which it is

connected immediately. Degree of connectivity of the

whole fracture network would then be equal to the sum of

connectivities of all fracture nodes existing in the network.

Fig. 1 Filtering process of a

training pattern (Wu 2007)

Fig. 2 Four user-defined 2D

filters of size 11 9 11 (Wu

2007)
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The application of connectivity criterion is ranking

and selection of the best patterns. Amongst the

extracted patterns, the one with the larger degree of

connectivity will be won to be selected. How to cal-

culate the connectivity of each pattern network and use

the estimated scores consequently as a selection crite-

rion is demonstrated below for the two typical patterns

illustrated in Fig. 3. The left-hand-side calculations

denote the connectivity of each fracture node in the left

pattern, while the right-hand-side computations evalu-

ate the connectivity of fracture nodes for the right

pattern:

N TI 1; 1ð Þf g ¼ 1 N TI 1; 1ð Þf g ¼ 0

N TI 2; 2ð Þf g ¼ 2 N TI 2; 3ð Þf g ¼ 1

N TI 3; 3ð Þf g ¼ 2 N TI 3; 3ð Þf g ¼ 2

N TI 4; 4ð Þf g ¼ 2 N TI 4; 4ð Þf g ¼ 2

N TI 5; 5ð Þf g ¼ 1 N TI 5; 5ð Þf g ¼ 1

NG1 ¼
X

i;j2F

N TIði; jÞf g ¼ 8 NG2 ¼
X

i;j2F

N TIði; jÞf g ¼ 6

where F denotes the set of nodes belonging to the frac-

ture class; TI is the value of current node in the training

image TI, and N equals the number of neighborhood

nodes in the fracture. For example, the fracture node with

the coordination (2,2) in the left pattern in Fig. 3 con-

nects immediately to fracture nodes of coordinations (1,1)

and (3,3) in the same pattern. So connectivity of the

mentioned fracture node is evaluated as 2. In Fig. 3,

since connectivity measure (NG) of the fracture pattern in

the left is greater than that of the right network, the

former is selected as the preferable pattern; as it is also

clear from Fig. 3, connectivity of the left pattern

is visually more than the right one.

Now consider the third fracture pattern in Fig. 4;

although it seems visually to be less proper than the

pattern in the left part of Fig. 3, however, they have the

same degree of connectivity measures mathematically.

NG3 ¼ NG1 ¼ 8

To solve this problem, a new measure could be designed

by estimating deviation of the fracture nodes from a

straight line. This really investigates orientation of fracture

pixels along a specific extension (including all diagonals of

the pattern matrix). Regarding the disconnectivity quantity,

the left pattern in Fig. 3 will be selected rather than the

network in Fig. 4, because the fracture nodes in the first

pattern are located only along one diagonal (the main

diagonal), while in the second pattern fractures are placed

alongside the two diagonals and hence have a more

disconnectivity than the first one does. To do a right

comparison in the case of all possible fracture patterns, it is

better to consider the total number of network diagonals

with at least a fracture node on those.

Simulation and results

General FILTERSIM algorithm could be broken into four

steps including (1) training image scanning, (2) extracted

patterns filtering, (3) pattern space clustering, and (4)

simulation stage. Simulation is performed through the

sequential simulation algorithm as described previously. A

Fig. 3 Two 5 9 5 fracture

pattern networks with different

connectivities; the blue nodes

are in fracture and the green

color denotes the matrix

Fig. 4 a 5 9 5 pattern of different disconnectivity than the pattern in

the left side of Fig. 3; the blue nodes are in fracture and the green

color denotes the matrix
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sensitivity analysis is, however, performed on the first three

steps of FILTERSIM algorithm as explained below:

1. The training image is scanned four times using four

square templates of different sizes including 17, 21, 25

and 29 grids on each edge.

2. Clustering algorithms require a relatively large com-

putational time when applied to the pattern database of

a very high dimension (depending on the size of search

template). It is therefore strongly suggested to perform

a preprocessing step on the pattern database and reduce

the patterns dimensionality as much as possible.

Dimensionality reduction of the extracted patterns,

prior to the clustering stage, has been achieved through

the application of three different techniques including

PCA, KNN and DCT. DCT is applied to each training

pattern, while the other two techniques are executed

once to the whole set of database. It should be noted

that in the case of using 2D DCT as a dimensionality

reduction technique, those coefficients will be selected

as the transformed features that contain 99 % of the

total energy of the whole pattern image. To see the

effect of filtering on both running times and accuracy

of the simulation algorithm, the models obtained

through the above filtering techniques will be com-

pared with the cases where no filtering has been done

on the patterns (labeled as FILTERLESS case).

3. It is a common practice in FILTERSIM to group the

identical patterns in several clusters prior to the

distance minimization step. Using two common clus-

tering methods, K-means and Spectral techniques,

partitioning the hard training patterns database and

then the modeling tasks are elaborated. Three different

numbers of clusters including 1/200, 1/400 and 1/800

of the total number of training patterns extracted from

the training image have been used in the clustering

algorithm.

Therefore, a complete sensitivity analysis will be

performed on the FILTERSIM algorithm, regarding size

of the scanning template (17, 21, 25 and 29), type of

clustering technique (K-means and Spectral), the number

of clusters (1/200, 1/400 and 1/800 of the total number of

training patterns) and type of filtering method (PCA,

KNN, DCT and Without-Filter). As a result, 48 cases of

FILTERSIM runs will be implemented for each cluster-

ing method.

Figure 5 shows an outcrop map of a naturally frac-

tured reservoir in south west region of Iran. This site is

located in the flank of an anticline structure, next to its

nose. The major feature of this site is a large transverse

fault observed at the right side of the map. In addition,

there are several normal faults as well as many conjugate

fractures more or less parallel to the local fold axis. The

site is affected by two main joint sets perpendicular to

the bedding, oriented at NNE and NS directions. The

sensitivity analysis on FILTERSIM algorithm is per-

formed using this training image.

As an important notation, K-means clustering algorithm

may be stopped at the middle iterations due to convergence

issues posed by improper initial random assignment of data

points to the clusters. Two methods have been adapted to

choose the initial cluster centroid positions, sometimes

known as seeds. The first approach selects k observations

from the dataset X at random. Selecting k points uniformly

at random from the range of X is the second method used in

the present K-means clustering. Another approach is to

perform a preliminary clustering phase on a random 10 %

subsample of X. This phase is itself initialized using the

first technique. This method is, however, not used in the

present study.

In addition, due to dimensionality reduction incident to

the Spectral clustering algorithms themselves (where a

limited number of eigenvectors of the affinity matrix is to

be selected and partitioned), they are expected to have a

higher computational speed with respect to the K-means

algorithm and thus appear to be more suitable in modeling

large fracture networks in this view. This will be tracked

during the sensitivity analysis too.

Results comparison

Simulation results could be evaluated through a compari-

son between the spatial patterns based on several quanti-

tative ways such as MPS, flow simulations or even semi-

variograms. There are many different types of MPS mea-

sures such as connectivity function, lacunarity, the multi-

ple-point density function (MPDF), transition probabilities

Fig. 5 An outcrop map of a naturally fractured reservoir in south

west region of Iran
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and distribution of runs (Boisvert et al. 2008; Pyrcz et al.

2008). Flow simulation curves of oil recovery factor have

been adapted in this work to be used in verification of

results.

A five-spot pattern water flooding with 4 injectors at

the corners and 1 producer at the center of model is

simulated to obtain the oil recovery factor curve as

model performance. Such a flow simulation is designed

for each realization as well as the original training image.

The simulation is done using a commercial ECLIPSE100

simulator, while it is linked to the MATLAB program-

ming environment to read the images, do the required

preprocessing, pass them to the simulator and analyze

and post-process the output results. An E-type is gener-

ated using 10 FILTERSIM realizations for each case of

simulations. Each continuous E-type is converted to a

binary image by a threshold of 0.5. The final image to be

passed to the flow simulator is therefore a two-class

fracture network. The nodes in the fractures are devoted

1,000-millidarcy permeability and full porosity of 1,

while the background facies (i.e., non-fracture locations)

are assumed to have 10-millidarcy permeability and

porosity of 0.1. The training image has a size of

69 9 104 cells in XY coordinates (Fig. 5). The four

injection wells are drilled in (1, 1), (69, 1), (1, 104) and

(69, 104) coordinates, while the production well is

located at (32, 68) coordinate. The wells are allowed to

inject or produce for 7,500 days from the beginning. The

mean squared error (MSE) values are evaluated between

the recovery factor of the original training image and that

of each FILTERSIM case.

Description of figures and tables

The final results of sensitivity analysis include the com-

putational times as well as the MSE values (as the

measures of accuracy) for the implemented simulations.

These data are provided in Tables 1, 2, 3 for the cases

that have used K-means clustering method and in

Tables 4, 5, 6 for the simulations performed through the

Spectral clustering techniques. Simulation times of dif-

ferent parts of FILTERSIM algorithm (including scan-

ning, filtering, clustering and simulation procedures) and

MSE of recovery data are shown in these Tables. The

errors are displayed in the last column of Table 1 for the

realizations obtained through application of K-means

clustering technique and in the last column of Table 4 for

those realizations modeled using Spectral clustering

method. It should be noted that the simulation parameters

as in the second columns of the mentioned Tables indi-

cate the order of ‘‘filtering method, search template size,

ratio of cluster numbers’’, respectively; for example, the

term ‘‘PCA, 25, 400’’ means a FILTERSIM case where

filtering is done by PCA, search template size is 25 in

each direction on a squared grid and the number of

clusters used is equal to 1/400 of the total number of

training patterns.

Ranking of different simulation cases based on running

times of different sections (including scanning, filtering,

clustering and simulation procedures) for realizations

obtained through application of K-means clustering tech-

nique is displayed in Table 2. The same results, but in the

case of applying Spectral technique, are provided in

Table 5. Each column of Tables 2 and 5 indicates the index

of a specified running time in an ascending order. The

numbers indicate the row index of each case as specified in

Tables 1 and 4. The last column displays label of simula-

tion case corresponding to ranking results of total time of

simulation.

In addition, Tables 3 and 6 show ranking results of

different FILTERSIM cases based on MSE values of pro-

duction recoveries in the case of K-means and Spectral

clustering, respectively.

Figure 6 illustrates the most and the least accurate

results of sensitivity analysis for the cases generated by

applying K-means and Spectral clustering techniques.

Figure 6a shows the binary training image that has been

used in the FILTERSIM simulations for the analysis. It

is actually the digital form of the analog outcrop map

displayed in Fig. 5. Red nodes indicate fracture locations

whereas blue nodes are in background facies (i.e., non-

fracture locations). It has a size of 69 9 104 grids on a

two-dimensional coordinate. The modeling area has been

built through selection of 300 data points from the

training image at random. Figure 6b displays the least

accurate E_type obtained through application of K-means

clustering algorithm during sensitivity analysis. As it is

clear in Table 3, the least accurate result of K-means

cases is obtained using KNN as filtering method, a

search template of size 17 9 17, and a number of

clusters equal to 1/800 of the total number of training

patterns (i.e., a total number of 7,176 scanned patterns).

Figure 6c illustrates the most accurate E_type when

using K-means clustering. This is achieved without any

filtering, using a search template of size 21 9 21, and a

number of clusters equal to 1/200 of the total number of

training patterns. The least accurate E_type of FIL-

TERSIM using Spectral clustering method is demon-

strated in Fig. 6d where it comes from KNN as filtering

method, a search template of size 29 9 29, and a

number of clusters equal to 1/200 of the total number of

training patterns. Finally, the most accurate E_type of

Spectral cases is shown in Fig. 6e; using PCA as filter-

ing method, a search template of size 17 9 17, and a

number of clusters equal to 1/200 of the total number of
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Table 1 Simulation times of different sections (including scanning, filtering, clustering and simulation procedures) and mean squared errors of

recovery data for realizations obtained through application of K-means clustering technique

Row Simulation

parameters (label)

Scanning

time (s)

Filtering

time (s)

Clustering

time (s)

Simulation

time, (s)

Total

time (s)

Recovery

MSE

1 pca 17,200 114.6 1.4 148.7 119.3 384.1 5.00E-04

2 pca 17,400 111.5 1.1 104.3 93.6 310.5 5.00E-03

3 pca 17,800 110.7 1.7 98.8 71.8 282.9 9.00E-04

4 pca 21,200 134.7 3.2 185.5 140.4 463.9 4.70E-03

5 pca 21,400 128.5 3.1 164.9 103.1 399.6 2.00E-04

6 pca 21,800 126.8 3.0 96.5 93.0 319.3 4.00E-04

7 pca 25200 168.5 6.8 238.5 185.8 599.6 1.00E-04

8 pca 25,400 168.5 6.8 160.1 180.9 516.2 1.00E-04

9 pca 25,800 170.9 6.9 112.0 115.5 405.4 3.00E-04

10 pca 29,200 219.0 14.5 331.1 302.6 867.1 2.90E-03

11 pca 29,400 217.9 14.4 235.6 212.7 680.7 5.90E-03

12 pca 29,800 218.7 15.0 263.8 222.9 720.3 3.00E-04

13 knn 17,200 104.3 13.5 60.8 61.1 239.7 1.40E-03

14 knn 17,400 113.0 13.4 69.2 65.7 261.4 4.90E-03

15 knn 17,800 111.7 12.9 71.3 68.0 264.0 6.40E-03

16 knn 21,200 130.4 21.8 65.4 64.9 282.5 8.00E-04

17 knn 21,400 134.4 22.2 69.1 63.6 289.3 5.10E-03

18 knn 21,800 130.2 22.5 67.6 62.3 282.6 1.00E-03

19 knn 25,200 172.7 29.2 84.4 76.9 363.1 1.00E-04

20 knn 25,400 169.3 29.1 82.6 75.3 356.2 5.00E-04

21 knn 25,800 168.6 29.0 83.5 76.3 357.5 2.00E-04

22 knn 29,200 224.4 40.1 107.5 97.7 469.7 5.90E-03

23 knn 29,400 226.4 40.0 108.0 98.1 472.5 2.80E-03

24 knn 29,800 222.9 40.0 107.0 97.3 467.2 7.00E-04

25 dct 17,200 112.2 9.5 69.1 64.0 254.7 3.50E-03

26 dct 17,400 106.8 9.5 67.0 63.0 246.3 7.00E-04

27 dct 17,800 112.1 9.4 67.7 64.4 253.6 5.00E-04

28 dct 21,200 132.9 15.7 67.5 62.3 278.4 5.00E-04

29 dct 21,400 138.3 15.9 67.8 62.9 284.9 4.00E-04

30 dct 21,800 138.1 15.8 68.0 62.5 284.4 5.00E-04

31 dct 25,200 172.9 23.3 83.7 75.9 355.8 6.00E-04

32 dct 25,400 178.5 23.2 85.8 78.4 365.9 2.00E-04

33 dct 25,800 172.2 25.2 85.8 78.2 361.4 3.00E-04

34 dct 29,200 259.3 34.0 120.5 108.2 522.0 1.00E-04

35 dct 29,400 226.8 33.6 106.1 96.3 462.7 5.10E-03

36 dct 29,800 249.6 34.9 117.7 105.4 507.6 2.00E-04

37 filterless 17,200 105.8 0.0 180.4 214.9 501.1 4.00E-04

38 filterless 17,400 112.0 0.0 185.3 146.5 443.7 9.00E-04

39 filterless 17,800 127.6 0.0 111.1 115.1 353.8 9.00E-04

40 filterless 21,200 143.7 0.0 304.5 255.2 703.5 0.00E?00

41 filterless 21,400 128.4 0.0 176.0 172.7 477.2 2.00E-04

42 filterless 21,800 126.4 0.0 117.2 98.3 341.9 4.50E-03

43 filterless 25,200 173.1 0.0 359.5 361.4 894.0 1.00E-04

44 filterless 25,400 172.6 0.0 291.6 314.3 778.6 2.90E-03

45 filterless 25,800 171.8 0.0 172.3 187.7 531.7 8.00E-04

46 filterless 29,200 220.9 0.0 542.4 484.9 1,248.2 2.90E-03

47 filterless 29,400 217.4 0.0 470.6 235.8 923.9 2.50E-03

48 filterless 29,800 215.5 0.0 351.5 177.7 744.7 2.90E-03
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Table 2 Ranking of different simulation cases based on running times of different sections (including scanning, filtering, clustering and

simulation procedures) for realizations obtained through application of K-means clustering technique

Scanning time Filtering time Clustering time Simulation time Total time Simulation method

40 26 22 22 1 pca 17,200

39 1 21 20 2 pca 17,400

14 46 17 16 3 pca 17,800

9 10 36 34 4 pca 21,200

7 15 23 23 5 pca 21,400

41 3 31 31 6 pca 21,800

11 33 11 45 7 pca 25,200

32 18 37 48 8 pca 25,400

8 14 39 42 9 pca 25,800

23 36 48 10 10 pca 29,200

12 21 7 11 11 pca 29,400

46 19 44 12 12 pca 29,800

13 37 13 13 13 knn 17,200

2 48 18 29 14 knn 17,400

15 41 27 26 15 knn 17,800

27 40 30 25 16 knn 21,200

6 2 20 3 17 knn 21,400

25 43 25 27 18 knn 21,800

30 27 35 35 19 knn 25,200

28 7 6 32 20 knn 25,400

17 8 3 6 21 knn 25,800

33 28 1 9 22 knn 29,200

44 30 8 1 23 knn 29,400

45 12 34 39 24 knn 29,800

3 47 28 30 25 dct 17,200

37 38 16 28 26 dct 17,400

26 39 26 18 27 dct 17,800

38 42 29 17 28 dct 21,200

42 45 15 15 29 dct 21,400

1 44 14 14 30 dct 21,800

16 4 33 33 31 dct 25,200

29 25 24 24 32 dct 25,400

4 9 2 2 33 dct 25,800

48 32 38 8 34 dct 29,200

20 11 42 36 35 dct 29,400

43 17 41 41 36 dct 29,800

31 16 45 38 37 filterless 17,200

21 13 9 5 38 filterless 17,400

18 5 32 19 39 filterless 17,800

10 20 12 37 40 filterless 21,200

19 29 5 4 41 filterless 21,400

5 6 19 21 42 filterless 21,800

35 24 43 44 43 filterless 25,200

22 34 10 40 44 filterless 25,400

47 31 4 7 45 filterless 25,800

34 22 46 46 46 filterless 29,200

36 23 47 43 47 filterless 29,400

24 35 40 47 48 filterless 29,800
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training patterns has led to the most accurate result

obtained through application of Spectral clustering. Fig-

ure 6 provides only a visual inspection into sensitivity

analysis performed. Other figures, however, exhibit the

complete results including running times and MSE val-

ues evaluated.

Running times of different simulation stages and mean

squared errors of production recoveries of different real-

izations are plotted in Figs. 7 and 8, respectively, in the

case of K-means clustering technique and in Figs. 9 and 10

for models generated by Spectral method. The vertical axes

in Figs. 7 and 9 show time of simulation in seconds, for

each quarterly stages; while the horizontal axes denote

numeric index of each FILTERSIM case as labeled in

Tables 1 and 4.

The vertical axes on Figs. 8 and 10, on the other hand,

show MSE values for each simulation stage; numeric index

of each FILTERSIM case as labeled in Tables 1 and 4 is

displayed on the horizontal axes, however. These two

graphs are simultaneously plotted on Fig.11 with the same

axes description as before for a better comparison between

K-means and Spectral clustering methods.

Results and discussions

As observed from tables of data (Tables 1, 4) and Figs. 7 and

9, scanning process takes the most running time in a simula-

tion procedure. Clustering and simulation sections stand on

the second and third stages, respectively, in this view point.

Filtering process, however, takes a small time compared to

other sections and does not have a substantial impact on total

running time. Yet, the filter type utilized may have a consid-

erable effect on clustering and simulation running times as

well as on the accuracy of final realizations. This is a valid

statement in all cases including use of different filtering and

clustering methods through application of different-sized

scanning templates.

All running times of scanning, filtering, clustering and

simulation procedures increase as search template size is

growing. This could be easily followed up by looking into

the Figs. 7 and 9.

The number of clusters used in Spectral clustering

scheme does not have a considerable effect on any parts

of running time, even on clustering section; on the con-

trary, an increase in the number of clusters decreases

computational load of K-means clustering either when

the training patterns stored in the database have been

filtered through PCA method or they have not been fil-

tered anyway. Accordingly, total time of simulation

decreases as a lower number of partitions is used to

group the training patterns. Running times of simulations

utilizing DCT or KNN techniques in filtering section are

Table 3 Ranking of different simulation cases based on flow simu-

lation recoveries for realizations obtained through application of

K-means clustering technique

Simulation method MSE

filterless 21,200 0.00E?00

dct 29,200 1.00E-04

pca 25,400 1.00E-04

filterless 25,200 1.00E-04

pca 25,200 1.00E-04

knn 25,200 1.00E-04

pca 21,400 2.00E-04

dct 25,400 2.00E-04

knn 25,800 2.00E-04

filterless 21,400 2.00E-04

dct 29,800 2.00E-04

pca 29,800 3.00E-04

pca 25,800 3.00E-04

dct 25,800 3.00E-04

filterless 17,200 4.00E-04

pca 21,800 4.00E-04

dct 21,400 4.00E-04

knn 25,400 5.00E-04

dct 21,200 5.00E-04

pca 17,200 5.00E-04

dct 21,800 5.00E-04

dct 17,800 5.00E-04

dct 25,200 6.00E-04

knn 29,800 7.00E-04

dct 17,400 7.00E-04

filterless 25,800 8.00E-04

knn 21,200 8.00E-04

filterless 17,400 9.00E-04

pca 17,800 9.00E-04

filterless 17,800 9.00E-04

knn 21,800 1.00E-03

knn 17,200 1.40E-03

filterless 29,400 2.50E-03

knn 29,400 2.80E-03

filterless 29,800 2.90E-03

filterless 29,200 2.90E-03

pca 29,200 2.90E-03

filterless 25,400 2.90E-03

dct 17,200 3.50E-03

filterless 21,800 4.50E-03

pca 21,200 4.70E-03

knn 17,400 4.90E-03

pca 17,400 5.00E-03

knn 21,400 5.10E-03

dct 29,400 5.10E-03

knn 29,200 5.90E-03

pca 29,400 5.90E-03

knn 17,800 6.40E-03
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Table 4 Simulation running times of different sections (including scanning, filtering, clustering and simulation) and mean squared errors of

recovery data for realization obtained through application of Spectral clustering technique

Row Simulation parameters Scanning time (s) Filtering time (s) Clustering time (s) Simulation time (s) Total time (s) Recovery MSE

1 pca 17,200 88.9 1.0 89.0 80.7 259.6 4.60E-05

2 pca 17,400 91.4 1.0 90.8 82.1 265.4 1.12E-04

3 pca 17,800 91.1 1.1 90.0 81.4 263.7 3.42E-03

4 pca 21,200 122.8 2.4 112.0 100.7 337.9 2.11E-04

5 pca 21,400 126.2 2.6 114.3 103.5 346.6 1.18E-04

6 pca 21,800 126.1 2.5 113.9 102.8 345.3 1.68E-04

7 pca 25,200 168.4 6.2 145.2 130.5 450.3 3.18E-04

8 pca 25,400 166.2 6.2 143.4 129.3 445.1 2.24E-04

9 pca 25,800 168.2 6.1 143.6 129.1 447.1 1.09E-04

10 pca 29,200 212.0 13.1 177.6 159.5 562.2 4.76E-05

11 pca 29,400 215.9 13.1 180.8 161.4 571.2 1.53E-03

12 pca 29,800 223.4 14.8 184.3 165.2 587.7 1.37E-03

13 knn 17,200 92.3 13.8 71.0 65.0 242.1 2.31E-04

14 knn 17,400 90.5 12.9 71.3 65.6 240.3 5.77E-05

15 knn 17,800 91.3 13.2 71.6 65.6 241.7 5.68E-05

16 knn 21,200 127.3 18.9 85.8 78.1 310.0 1.28E-04

17 knn 21,400 128.6 18.1 86.0 78.5 311.1 2.28E-03

18 knn 21,800 131.2 18.6 86.6 79.0 315.3 2.26E-04

19 knn 25,200 171.1 24.2 103.2 93.4 391.9 2.29E-04

20 knn 25,400 167.1 24.0 101.1 91.3 383.4 3.57E-04

21 knn 25,800 167.3 24.2 101.1 91.5 384.0 4.74E-04

22 knn 29,200 214.7 33.4 121.4 110.1 479.7 3.75E-03

23 knn 29,400 212.9 33.4 121.7 109.6 477.6 2.55E-03

24 knn 29,800 213.4 33.4 121.6 109.9 478.3 2.41E-04

25 dct 17,200 91.2 8.9 72.5 66.0 238.5 1.32E-04

26 dct 17,400 90.4 8.9 72.8 66.6 238.8 8.69E-05

27 dct 17,800 90.1 9.0 71.6 65.5 236.1 2.34E-03

28 dct 21,200 124.9 13.8 87.3 79.1 305.1 7.36E-05

29 dct 21,400 124.6 13.7 87.0 79.1 304.4 1.49E-04

30 dct 21,800 124.3 13.8 86.6 78.6 303.3 1.38E-04

31 dct 25,200 166.2 20.5 105.4 95.0 387.1 1.19E-04

32 dct 25,400 165.7 20.5 105.5 95.5 387.2 4.40E-04

33 dct 25,800 166.6 20.5 105.1 95.4 387.6 8.14E-05

34 dct 29,200 215.0 29.6 126.8 114.3 485.7 2.17E-03

35 dct 29,400 214.9 29.4 127.2 114.9 486.4 5.96E-05

36 dct 29,800 214.2 29.4 126.6 114.3 484.4 5.77E-05

37 filterless 17,200 89.7 0.0 101.0 91.5 282.2 1.34E-04

38 filterless 17,400 90.1 0.0 100.9 91.5 282.5 2.33E-03

39 filterless 17,800 90.6 0.0 100.8 91.5 282.9 2.50E-03

40 filterless 21,200 124.6 0.0 131.8 118.6 375.0 4.65E-05

41 filterless 21,400 124.1 0.0 131.8 118.4 374.3 1.69E-03

42 filterless 21,800 124.4 0.0 131.3 118.5 374.2 6.66E-05

43 filterless 25,200 167.2 0.0 170.0 152.7 489.8 8.33E-05

44 filterless 25,400 166.3 0.0 170.3 152.8 489.4 1.04E-03

45 filterless 25,800 169.6 0.0 174.4 156.1 500.1 1.16E-03

46 filterless 29,200 224.0 0.0 222.2 197.1 643.3 2.41E-04

47 filterless 29,400 192.8 0.0 207.1 182.9 582.8 3.59E-04

48 filterless 29,800 218.7 0.0 213.5 190.7 622.9 1.13E-04
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Table 5 Ranking of different simulation cases based on running times of different sections (including scanning, filtering, clustering and

simulation procedures) for realizations obtained through application of Spectral clustering technique

Scanning time Filtering time Clustering time Simulation time Total time Simulation method

39 47 16 16 1 pca 17,200

25 46 18 30 2 pca 17,400

3 41 17 17 3 pca 17,800

28 9 21 38 4 pca 21,200

5 7 19 19 5 pca 21,400

6 8 20 37 6 pca 21,800

9 12 35 35 7 pca 25,200

43 28 36 36 8 pca 25,400

21 13 34 34 9 pca 25,800

35 35 10 10 10 pca 29,200

34 36 11 11 11 pca 29,400

48 23 47 47 12 pca 29,800

14 40 26 26 13 knn 17,200

38 42 15 15 14 knn 17,400

26 45 25 25 15 knn 17,800

42 4 39 20 16 knn 21,200

40 6 38 21 17 knn 21,400

29 5 37 39 18 knn 21,800

20 30 23 22 19 knn 25,200

32 14 4 4 20 knn 25,400

31 10 6 6 21 knn 25,800

19 16 40 40 22 knn 29,200

7 17 42 41 23 knn 29,400

45 18 41 42 24 knn 29,800

37 39 14 27 25 dct 17,200

27 48 27 14 26 dct 17,400

1 38 13 13 27 dct 17,800

30 3 2 2 28 dct 21,200

41 2 3 3 29 dct 21,400

4 1 1 1 30 dct 21,800

8 11 5 5 31 dct 25,200

44 15 22 23 32 dct 25,400

33 29 24 24 33 dct 25,800

10 33 9 8 34 dct 29,200

23 31 7 7 35 dct 29,400

47 32 8 9 36 dct 29,800

15 43 30 18 37 filterless 17,200

2 44 29 29 38 filterless 17,400

13 37 28 28 39 filterless 17,800

18 27 32 32 40 filterless 21,200

17 26 31 33 41 filterless 21,400

16 25 33 31 42 filterless 21,800

36 21 44 44 43 filterless 25,200

24 20 43 43 44 filterless 25,400

22 19 45 45 45 filterless 25,800

46 22 46 46 46 filterless 29,200

11 34 12 12 47 filterless 29,400

12 24 48 48 48 filterless 29,800
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not sensibly affected by cluster numbers while using

K-means clustering method.

Amongst the filtering approaches used in this study,

PCA takes the smallest time to do a reduction in problem

dimensionality than KNN and DCT techniques. KNN has

slightly brought more running time compared to DCT

practice. Considering total simulation time, however,

Figs. 7 and 9 verify that DCT, KNN, PCA and FILTER-

LESS practices do the filtering in the lowest time,

respectively. This trend is more regular in the case of using

Spectral technique rather than K-means method.

Obviously, time of clustering depends, to some extent,

on the outputs of filtering process. This could be easily

incepted in Tables 1 and 4. Usage of KNN and DCT

techniques in filtering process leads to smaller (and nearly

the same) running times of clustering. Utilizing PCA

method or skipping filtering (FILTERLESS case) increases

running time subsequently. The same conclusion could be

induced about running time of simulation process itself.

Total time of FILTERSIM, from scanning process through

simulation stage, obeys the same trend with the filter type.

The graphs shown in Figs. 8 and 10 are displayed on a

single graph in Fig. 11 for a better comparison of recovery

MSE values for both K-means and the Spectral clustering

techniques. As it is clear from these figures, the realizations

obtained through application of the Spectral clustering

method have shown a better accuracy than those acquired

by applying K-means clustering. This is related to the non-

linear behavior of the pattern database and the fact that

Spectral methods are able to partition the pattern space

through the non-linear boundary, whereas K-means is only

capable of regarding linear borders between the clusters.

The two graphs exhibit nearly the same trend, although

some deviations exist from what we expected.

Another important conclusion is that skipping the filtering

section during the simulation procedure traces a better

accuracy within the simulated realizations obtained through

application of either Spectral or K-means clustering method

in comparison with the cases where dimensionality reduction

has been implemented prior to clustering section. Leaving

extracted patterns without passing them to filtering section,

however, brings about more running times in clustering stage

and hence in total simulation procedure, as observed in

Tables 1 and 4. Moreover, when patterns are filtered through

PCA or DCT method, generated realizations have quite a

reliable agreement with original training image from the

reservoir characteristic point of view, with application of

both clustering methods. The simple KNN method, however,

does fail in reproducing the connected patterns carefully to

capture the flow behavior of the system in a reasonable way

when patterns are clustered through K-means method.

However, when Spectral method is used in clustering scheme,

KNN approach does the filtering more satisfactorily.

Table 6 Ranking of different simulation cases based on flow simu-

lation recoveries for realizations obtained through application of

Spectral clustering technique

Simulation method MSE

pca 17,200 4.60E-05

filterless 21,200 4.65E-05

pca 29,200 4.76E-05

knn 17,800 5.68E-05

dct 29,800 5.77E-05

knn 17,400 5.77E-05

dct 29,400 5.96E-05

filterless 21,800 6.66E-05

dct 21,200 7.36E-05

dct 25,800 8.14E-05

filterless 25,200 8.33E-05

dct 17,400 8.69E-05

pca 25,800 1.09E-04

pca 17,400 1.12E-04

filterless 29,800 1.13E-04

pca 21,400 1.18E-04

dct 25,200 1.19E-04

knn 21,200 1.28E-04

dct 17,200 1.32E-04

filterless 17,200 1.34E-04

dct 21,800 1.38E-04

dct 21,400 1.49E-04

pca 21,800 1.68E-04

pca 21,200 2.11E-04

pca 25,400 2.24E-04

knn 21,800 2.26E-04

knn 25,200 2.29E-04

knn 17,200 2.31E-04

filterless 29,200 2.41E-04

knn 29,800 2.41E-04

pca 25,200 3.18E-04

knn 25,400 3.57E-04

filterless 29,400 3.59E-04

dct 25,400 4.40E-04

knn 25,800 4.74E-04

filterless 25,400 1.04E-03

filterless 25,800 1.16E-03

pca 29,800 1.37E-03

pca 29,400 1.53E-03

filterless 21,400 1.69E-03

dct 29,200 2.17E-03

knn 21,400 2.28E-03

filterless 17,400 2.33E-03

dct 17,800 2.34E-03

filterless 17,800 2.50E-03

knn 29,400 2.55E-03

pca 17,800 3.42E-03

knn 29,200 3.75E-03
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Fig. 6 Some results of FILTERSIM sensitivity analysis. a Training

image of size 69 9 104 grids used in sensitivity analysis; b The least

accurate E_type of FILTERSIM cases obtained through application of

K-means clustering algorithm; c The most accurate E_type of

FILTERSIM cases obtained through application of K-means cluster-

ing algorithm; d The least accurate E_type of FILTERSIM cases

obtained through application of Spectral clustering algorithm; and

e The most accurate E_type of FILTERSIM cases obtained through

application of Spectral clustering algorithm. NB The colorbar next to

each figure represents degree of fracture evidence in it. The more-red

the nodes, the more the probability that the specified node is located

in fracture; on the other hand, more-blue nodes denote less-fractured

areas of the system
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Fig. 7 Running times of different simulation stages (including

scanning, filtering, clustering and simulation procedures) for realiza-

tions obtained through application of K-means clustering technique.

The vertical axis is in seconds, showing running times of each

simulation stage; while the horizontal axis denotes number of each

FILTERSIM case as labeled in Table 1. Vertical solid lines in orange

indicate the boundary of each filtering method; from left to right, the

regions are exclusive to PCA, KNN, DCT and FILTERLESS

techniques

Fig. 8 Mean squared errors of production recoveries of different

realizations obtained through application of K-means clustering

technique. The vertical axis shows MSE value for each simulation

stage; while the horizontal axis denotes number of each FILTERSIM

case as labeled in Table 1
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Fig. 9 Running times of different simulation stages (including

scanning, filtering, clustering and simulation procedures) for realiza-

tions obtained through application of Spectral clustering technique.

The vertical axis is in seconds, showing running times of each

simulation stage; while the horizontal axis denotes number of each

FILTERSIM case as labeled in Table 4. Vertical solid lines in orange

indicate the boundary of each filtering method; from left to right, the

regions are exclusive to PCA, KNN, DCT and FILTERLESS

techniques

Fig. 10 Mean squared errors of production recoveries of different

realizations obtained through application of Spectral clustering

technique. The vertical axis shows MSE value for each simulation

stage; while the horizontal axis denotes number of each FILTERSIM

case as labeled in Table 4

J Petrol Explor Prod Technol (2014) 4:153–174 171

123



Conclusions

1. MPS simulation algorithms are effectively able to

model complex, heterogeneous and curvilinear geo-

logical structures of discrete fracture networks. This is

achieved through capturing the multiple-point patterns

of training images and considering the spatial rela-

tionship between more than two points in the model

simultaneously.

2. Amongst the four steps of FILTERSIM algorithm,

scanning process, clustering section and simulation

procedure take the most part of total simulation time,

respectively. Filtering process, however, takes a small

time compared to other sections and does not have a

significant effect on total running time.

3. Growing search template dimensions will lead to a

corresponding increase in all running times during

scanning, filtering, clustering and simulation

procedures.

4. Changing the number of partitions used in Spectral

clustering algorithm does not affect any parts of total

running time considerably, even including the cluster-

ing section. Using a less number of clusters, however,

raises the computational speed of K-means clustering

technique either when the training patterns stored in

the database have been filtered using PCA method or

they have not been filtered anyway (FILTERLESS

case).

5. PCA takes the smallest time to do a reduction in

problem dimensionality than KNN and DCT tech-

niques which bring nearly the same filtering times.

Regarding FILTERSIM computational time, however,

DCT, KNN, PCA and FILTERLESS practices do the

filtering in the lowest time, respectively.

6. Application of KNN and DCT as filtering techniques

leads to a smaller clustering time. Utilizing PCA

method or skipping filtering (FILTERLESS case)

increases running time subsequently. The same con-

clusion could be induced about running time of

simulation process itself as well as total time of

FILTERSIM.

7. Realizations obtained through application of Spectral

clustering method show a better accuracy than those

generated by K-means clustering.

8. Filtering patterns prior to clustering them may

decrease the accuracy of final realizations, though

they a have a great effect on the reduction of

simulation times. Nevertheless, PCA and DCT

Fig. 11 Mean squared errors of production recoveries of different

realizations obtained through application of a K-means clustering,

and b Spectral clustering technique. As shown on legends, red lines

denote K-means results and blue lines indicate Spectral results. The

vertical axis shows MSE value for each simulation stage; while the

horizontal axis denotes number of each FILTERSIM case as labeled

in Table 1
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methods may lead to quite acceptable results with both

clustering approaches, while at the same time total

simulation time decreases substantially.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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