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Abstract Dynamic traffic simulation models are frequently used to support decisions

when planning an evacuation. This contribution reviews the different (mathematical)

model formulations underlying these traffic simulation models used in evacuation studies

and the behavioural assumptions that are made. The appropriateness of these behavioural

assumptions is elaborated on in light of the current consensus on evacuation travel

behaviour, based on the view from the social sciences as well as empirical studies on

evacuation behaviour. The focus lies on how travellers’ decisions are predicted through

simulation regarding the choice to evacuate, departure time choice, destination choice, and

route choice. For the evacuation participation and departure time choice we argue in favour

of the simultaneous approach to dynamic evacuation demand prediction using the repeated

binary logit model. For the destination choice we show how further research is needed to

generalize the current preliminary findings on the location-type specific destination choice

models. For the evacuation route choice we argue in favour of hybrid route choice models

that enable both following instructed routes and en-route switches. Within each of these

discussions, we point at current limitations and make corresponding suggestions on

promising future research directions.
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Introduction

Society is forced to deal with many natural and man-made disasters. These hurricanes,

wildfires, floods, large storms, mudflows, terrorist attacks, chemical spills, industrial

accidents, and many similar hazards cause massive economic and social damage as well as

loss of lives every year. Studies, such as those by Hooke (2000) and Newkirk (2001), show

that the frequency and intensity of natural disasters has been increasing over the past

decades. Furthermore, other studies, such as those by Plowman (2001) and Barrett et al.

(2000), argue that due to the population and urban development growing faster than road

infrastructure capacity, mass evacuations will become increasingly more difficult and time

consuming. This underlines the importance for hazard prone regions to invest in efficient

disaster management strategies. Such strategies can focus on avoidance, where precau-

tionary measures reduce the probability of such disasters (e.g., reinforcing dams, raising

dikes, clearing fire control lines), or mitigation, where responsive measures reduce the

impact of such disasters (e.g., evacuation). Lave et al. (1990) uses explicit cost-benefit

analyses to show that the responsive option of evacuation allows preserving peoples’ lives

at much lower costs. Nevertheless, in a later study (Lave and Apt 2006) it is argued that

authorities might be reluctant to actually order an evacuation when warranted due to the

uncertainty, lack of experience, and fear of financial liability involved in the process of

evacuation.

The success of an evacuation strongly depends on many factors, such as warning time,

response time, information and instructions dissemination procedure, evacuation routes,

traffic flow conditions, dynamic traffic control measures, etc. (Dash and Gladwin 2007;

Lindell and Prater 2007). Given the complexity of the underlying processes and the

multitude of factors influencing these procedures, traffic simulation models are helpful or

even indispensible for the analysis and planning of emergency evacuations (Barrett et al.

2000; Hardy et al. 2010). These traffic simulation models can be applied to obtain a better

understanding of the evacuation conditions and the effect of traffic regulations and control

measures hereon, by predicting departure and arrival patterns, travel times, average speeds,

queue lengths, traffic flow rates, etc. Insight into this dynamic process is necessary to make

founded decisions on, for instance, the latest possible time to start evacuation, the best

evacuation routes, or the most suitable traffic management measures.

This contribution elaborates on the different (mathematical) model formulations

underlying these traffic simulation models used in evacuation studies and the behavioural

assumptions that are made. We look at both (commercial) traffic simulation models used in

evacuation studies as well as evacuation research and proposed model formulations. The

focus lies on how travellers’ decisions regarding the choice to evacuate, departure time

choice, destination choice and route choice are modelled. Hence, this review article is

complementary to other state-of-the-art review articles on aspects such as how these traffic

simulation models are used to evaluate and design optimal evacuation instructions and

management strategies (e.g., Yusoff et al. 2008; Abdelgawad and Abdulhai 2009), the

issues that must be dealt with once implementing these evacuation plans in practice (e.g.,

Wolshon et al. 2005a, b), the data requirements to manage and model emergency situations

(e.g., Wilmot et al. 2009; Henson et al. 2009), and driving behaviour under adverse

conditions (e.g., Hoogendoorn 2010). In the ensuing discussion we consider the car as the

main mode of transport for evacuation. In this view, this review article is complementary to

other state-of-the-art review articles on other modalities of transport, for instance, pedes-

trian evacuation research (e.g., Schadschneider et al. 2008). Many of the evacuation

modelling and simulation issues relating to car travel behaviour also relate to evacuation by
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public and organized transport, as well as multimodal evacuation. However, these modes

of transport will not be discussed explicitly.

Figure 1 shows the framework of a typical dynamic traffic simulation model that can be

used in evacuation studies. Here, the black boxes on the left-hand side represent the model

components: dynamic travel demand model, dynamic trip distribution model, and dynamic

traffic assignment model. The white boxes on the right-hand side indicate the behaviour

that is described by each of these model components: evacuation participation and

departure time choice, destination choice, and route choice. The outline of the article

follows this model framework as follows. We start with giving an overview of the history

of evacuation simulation models and the current state of the practice in ‘‘Past and current

evacuation traffic simulation models’’ section. After that, we discuss in ‘‘Traveller

behaviour under evacuation conditions’’ section, the current view on travellers’ choice

behaviour in case of evacuation, making reference to both a number of empirical studies on

evacuation behaviour as well as insights from the behavioural sciences related to decision

making under emergency conditions. Then sections ‘‘Travel demand modelling’’, ‘‘Trip

distribution modelling’’ and ‘‘Traffic assignment modelling’’ form the main body of this

article, elaborating on the (implicit) assumptions regarding traveller behaviour that are

generally made in evacuation traffic simulation models or proposed model formulations—

including those models discussed in ‘‘Past and current evacuation traffic simulation

models’’—in light of the view presented in ‘‘Traveller behaviour under evacuation con-

ditions’’ section. More precisely, we discuss travel demand modelling (i.e., travellers’

evacuation and departure time choice decisions) in ‘‘Travel demand modelling’’ section.

We discuss trip distribution modelling (i.e., travellers’ destination choice decisions) in

‘‘Trip distribution modelling’’ section. And we discuss traffic assignment modelling (i.e.,

travellers’ route choice decisions) in ‘‘Traffic assignment modelling’’ section. Each of

these sections ends with a critical discussion on current practices and promising future

research directions. The final section then gives a concluding discussion on the main

findings and makes some final remarks.

Past and current evacuation traffic simulation models

In the late 1970s, a number of simulation models were developed to analyze and evaluate

emergency evacuation plans. Early studies in the 1980s focused mainly on evacuation in

Fig. 1 Framework evacuation traffic simulation model and outline article
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case of nuclear power plant emergency due to the Three Mile Island reactor incident in

1979. Then, after a number of extremely devastating hurricanes hitting the coast line of the

U.S. in the 1990s, much evacuation modelling research shifted focus to hurricane evac-

uation. Since the September 11, 2001, incident in the U.S., also mass evacuation due to

terrorist attacks is getting more attention. Due to tsunamis in China and wildfires in

Australia over the past years, evacuation research in these countries focus on these types of

evacuation. For the Dutch situation, rising sea levels and a perceived increasing threat of

flooding has led to the start of a national program initiating flood evacuation research and

applications within the Netherlands.

In many of the early studies, evacuation is recognized as an exceptional event regarding

different travel demand patterns, driver behaviour, traffic management, etc., resulting in

new traffic models being developed specifically for evacuation studies. A few examples are

NETVAC (Sheffi et al. 1980), DYNEV (KLD 1984), MASSVAC (Hobeika and Jamei

1985; Hobeika and Kim 1998), TEDSS (Sherali et al. 1991), IMDAS (Franzese and Han

2001), OREMS (Rathi and Solanki 1993), and CEMPS (Pidd et al. 1993). Some basic

model characteristics and applications of these models are listed in Table 1. A note can be

made here that TEDSS is set up as a decision support system based on the simulation

model MASSVAC, which in turn can be seen as a successor of NETVAC. And OREMS is

based on the microscopic traffic simulation model CORSIM, which is developed for

regular day-to-day traffic conditions. These early simulation models are typically devel-

oped and customized for the evacuation of specific regions in response to a specific type of

hazard. For instance, NETVAC is designed to plan evacuation in response to a nuclear

power plant accident and therefore models the evacuation of all inhabitants from a pre-

determined area (10 miles radius from plant site) in radial outward direction, while

MASSVAC is developed for hurricane evacuation of a rural area and requires evacuation

routes as model input from all origin locations to all safe destinations, where the origins

and destinations depend on the projected path of the hurricane. A distinguishing feature of

DYNEV which is worth mentioning is that it is the only model listed in Table 1 where

multimodal evacuation can be simulated, although in a limited form. Car and bus transport

are incorporated, where bus services are modelled explicitly by route, schedule, and stop

locations. Earlier models that have also been applied more recently and on reasonably large

scale are DYNEV (e.g., Goldblatt 2004; Wolshon et al. 2005a) and OREMS (e.g., Han and

Yuan 2005; Li et al. 2006; ORNL 2002).

More recently, a large number of evacuation studies are conducted using well-estab-

lished dynamic traffic simulation models developed for regular day-to-day traffic

Table 1 Early evacuation traffic simulation models and their characteristics and applications

Model Traffic representation Time dimension Application

Micro Macro Static Dynamic Offline Online

NETVAC x x x

DYNEV x x x

MASSVAC x x x

TEDSS x x x

IMDAS x x x

OREMS x x x

CEMPS x x x
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applications, including both microscopic models, such as PARAMICS (Cova and Johnson

2003), CORSIM (Williams et al. 2007), VISSIM (Han and Yuan 2005), and INTEGRA-

TION (Mitchell and Radwan 2006), and mesoscopic or macroscopic models, such as

DYNASMART (Murray-Tuite 2007), DynaMIT (Balakrishna et al. 2008), DynusT (Noh

et al. 2009), TransCAD (Wang et al. 2010), and INDY (Klunder et al. 2009). In a number

of studies using microscopic models, model parameters describing driving behaviour (such

as headway, acceleration, reaction time) have been adjusted for the case of emergency

evacuation (e.g., Tu et al. 2010). Other than that, the model structure and parameter

settings are typically not changed.

In all these models the origin–destination travel demand is either model input or is

computed using a gravity-model based trip distribution model, or a combination of the two.

The departure times are generally determined by applying an exogenous response curve

stating the percentage of departures in each time interval. Such a response curve has been

assumed to follow a number of different distributions (e.g., Uniform distribution, Poisson

distribution, and Weibull distribution). A user-defined dynamic origin–destination matrix

allows evaluating (mandatory) evacuation instructions regarding dedicated departure time

windows and destinations.

These trips are then in most models assigned to the road network according to the

(dynamic or static) user-equilibrium assignment assumption, where one may wonder

whether an equilibrium assumption will hold in an emergency evacuation. Exceptions are

the few models (OREMS, MASSVAC, and VISSIM) where user-defined routes can be

model input, thus allowing evaluating (mandatory) instructions regarding prescribed

evacuation routes. Other exceptions are the route choice models incorporated in INTE-

GRATION and DYNASMART allowing en-route route switching based on prevailing

traffic conditions.

In most models, traffic flow is simulated in which road network characteristics are

mostly static. In some models road network characteristics such as capacity and maximum

speed vary to incorporate the damaging effect of the hazard on the road infrastructure (e.g.,

links becoming less accessible due to flooding) and dynamic traffic management and

control measures (e.g., contraflow operations to increase outbound capacity). For example,

MASSVAC allows modelling several consecutive time intervals (time-sliced static traffic

assignment) in which road network characteristics change, and INDY incorporates so-

called ‘events’ in which network characteristics and model parameters can vary in time.

A final addition to this overview of prior and current evacuation traffic models is the

development of decision support systems and traffic information systems which are inte-

grated with a dynamic traffic simulation model. For instance, the Evacuation Traffic

Information System ETIS (PBS&J 2000a) is set up as a web-based monitoring tool for

collection and distribution of traffic information during the process of evacuation. ETIS

uses real-time information from different sources on, for example, evacuation participation

rates, traffic management and control measures, prevailing traffic conditions, and weather

conditions. The tool then predicts traffic conditions for a short time ahead based on historic

evacuation data, and evaluates the effect of applying traffic control measures such as

contraflow and lane closures. ETIS has been applied in practice in the south eastern states

of the United States, including North Carolina, South Carolina, Georgia, and Florida, and

later also Alabama, Mississippi, Louisiana, and Texas (Wolshon et al. 2005a).

We should remark here that this overview of past and current evacuation traffic sim-

ulation models does not aim to be complete, but to provide a framework of the current

practices in traffic simulation models used in many evacuation studies. Here we only

discussed the more ‘full fledged’ traffic simulation models. A number of interesting
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proposed model formulations in evacuation research will be introduced and discussed in

‘‘Travel demand modelling’’, ‘‘Trip distribution modelling’’ and ‘‘Traffic assignment

modelling’’ sections when we elaborate on the individual model components of a typical

evacuation traffic simulation model.

Traveller behaviour under evacuation conditions

The models introduced in the previous section aim to simulate traffic conditions on a road

network in case of evacuation. They thereby unavoidably make assumptions on how

travellers may behave in these types of conditions. To allow us to investigate the suitability

of these behavioural assumptions in the following sections, we will here discuss the

viewpoint of the behavioural sciences on evacuation travel choice behaviour and show how

empirical studies on evacuation behaviour underline or question this view.

Before discussing the psycho-behavioural research and empirics on evacuation

behaviour, two notes can be made here. First of all, there exists quite an extensive amount

of literature in the field of behavioural sciences relating to humans’ psychological response

to, for example, (imminent) emergency conditions, and decision making under time-

pressure and safety concerns (for an overview see Court et al. 2004; Dombroski et al. 2006;

Mawson 2005). This kind of research has found almost no reference in evacuation traffic

modelling and simulation studies. This might be partly due to its often non-quantitative or

experimental set up. Second of all, remarkably enough, in contrast to network evacuation

modelling, in crowd evacuation modelling, surprisingly many simulation models attempt

to incorporate more realistic human behaviour. This is done by extending these pedestrian

simulation models to more sophisticated agent frameworks. For instance, applying cog-

nitive-behavioural frameworks to model individuals’ behaviour under specific conditions

(e.g., the so-called belief-desire-intension framework is often applied), or different struc-

tures are built-into model leadership and herding behaviour, or travellers’ information

acquisition and exchange is modelled to include possible unfamiliarity and learning

characteristics (see e.g., Murakami et al. 2002; Pelechano et al. 2005; Pelechano and

Badler 2006; Shendarkar et al. 2006).

Psycho-behavioural research and empirics on evacuation behaviour

A large number of real life emergency situations collected and discussed by Quarantelli

(1957) and Leach and Campling (1982) indicate that the behavioural response of people is

remarkably consistent across different types of disastrous conditions. This structural pat-

tern is divided into a number of temporal phases showing how behavioural responses

change over time as the emergency conditions develop, summarized in Fig. 2. These

phases range from pre-impact when an emergency is becoming probable to post-impact

Fig. 2 Phases in emergency conditions and their most prevalent behavioural responses (from Hoogendoorn
et al. 2009, based on Leach and Campling 1982)
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when the emergency has passed. Equivalent models have been proposed by, for example,

Glass (1959) and Tyhurst (1951). The main value of this framework is that each phase is

accompanied by a specific behavioural response which is found to be then predominantly

prevailing.

An equivalent dynamic approach focusing on the individual decision-making task

states, that individuals experience a number of (quasi-)consecutive psycho-behavioural

phases. The decision-making task starts with information acquisition, followed by situation

assessment, and finally action execution (first posed by Woodworth 1958). Since indi-

viduals cannot assess all available information, the first two phases are undertaken

simultaneously (Baddeley 1972; Wickens 1987). Information is filtered based on relevance

and trustworthiness according to how the current situation is perceived. This filtering

process makes the task easier, however may delay accepting and appropriately responding

to changing conditions. This can be explained through the phenomenon of cognitive dis-

sonance. For example, when people perceive themselves as safe yet receive information on

a possible threat, then the logical inconsistency in these beliefs is (initially) resolved by

rejecting or ignoring this warning information. A large number of real life examples are

discussed by Leach and Campling (1982) where people in danger choose to ignore the

possibility of the disaster despite the warnings prior to the disaster. In all cases, the

conflicting information is discarded as being not relevant or untrustworthy.

This pattern of behaviour is resembled by the findings in a number of empirical studies

specific to evacuation. For instance, Mileti et al. (1975) reports that the more information

the initial warning contains, the more likely it is that people respond. And, when warnings

are heard and believed, then evacuation is the end result. This is also underlined by the

findings of Baker (1991). Twenty-six post-hurricane surveys in the period 1961 till 1989 in

the US indicated that next to factors such as risk level, public instructions, housing type,

and storm threat, the personal risk perception was most prominent in the decision whether

to evacuate. Similarly for the case of cyclones in Australia, Raggatt et al. (1993) found that

people with less warning time were more likely to deny their personal risk and reside in a

general feeling of complacency. De Jong and Helsloot (2010) report on the results from

surveys held during a Dutch national exercise on flood evacuation. In this study, a large

share of people (48–66%) remains unaware of the actual risk while warning is given and

voluntary evacuation is advised. At the same time, the credibility of the information that is

given is deemed low by the majority (52–88%). A very informative discussion on this topic

is given by Dash and Gladwin (2007). One of their statements is that it is the perception of

risk that motivates people to evacuate, not the hearing of warnings and evacuation orders.

This is implied by the psycho-behavioural frameworks constructed in the behavioural

sciences, as well as a strikingly common finding in many empirical studies.

Once the danger is recognized and people start responding, their information processing

and decision making capabilities might be limited due to mentally demanding circum-

stances, associated with anxiety and (the perception of) time-pressure. Wills (1998) argues

that in these situations people rely more on instincts and experience, thereby avoiding the

time needed for making rationally thought-over decisions. Leach and Campling (1982) and

Schmidt and Warner (2002) found evidence for this by showing that people typically tend

to remain calm, and only once they perceive inescapability do they express behaviour

which can be seen as irrational and habitual (note that to express habitual behaviour under

disaster conditions, for instance, for the case of exit choice, can be seen as irrational or

illogical). Leach and Campling (1982) further argue that during the impact phase there is

evidence of a clear distinction between the psycho-behavioural responses of three types of

individuals. Once people undertake action in the impact phase, people may remain calm
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and rational, may be stunned by the situation and react in a semi automatic manner, or may

mentally breakdown and react uncontrolled and inappropriately. It is found that in most

cases approximately 75% of the individuals express the second type of behaviour, while

the behaviour of the remaining share corresponds evenly with the first and third type. It

should be noted that although the appearance of egocentric behaviour is widely accepted,

especially panicking behaviour has been shown to be quite an uncommon reaction to an

emergency situation (Aguirre 2005; Blake et al. 2004; Bohannon 2005; Cornwell 2003;

Mawson 2005).

A number of empirical studies on evacuation behaviour show a slightly different pat-

tern. This might have to do with the fact that the circumstances (during the impact phase)

which these psycho-behavioural constructs are based on are more imminent than typically

seen (or perceived) in these empirical evacuation studies. The surveys by De Jong and

Helsloot (2010) in the Dutch flood exercise show that once the actual dike breach and flood

occur, the need for information on aspects as the expected flooding area, water height, and

possible government aid in the evacuation increased. With a number of people, this lack of

information impaired them on making a decision whether to evacuate. Those people that

do decide to evacuate show a similar prominent need for information. This need for traffic

information on appropriate evacuation routes is reported, for example, by Dow and Cutter

(2000) and Lindell et al. (2005) after conducting post-hurricane surveys and by Robinson

and Khattak (2010) based on stated preference surveys. In cases where this traffic infor-

mation is not available, travellers might be impaired in their route decisions. Dow and

Cutter (2002) held a survey among South Carolina residents after hurricane Floyd. One of

their findings was that, despite the congestion on the main egress routes, travellers did not

switch to alternative routes using rural roads. The authors suggest that this might have been

due to travellers’ uncertainty that alternative (rural) routes would not provide breakdown

services and cell phone coverage. Likewise, Lindell and Prater (2006) report that for the

case of hurricane Katrina, travellers relied slightly more on past familiarity with the

evacuation route than on prevailing traffic conditions, likely due to the lack of traffic

information.

The last phase of recoil and rescue (see Fig. 2) will not be discussed here since the

evacuation is most likely to have ended by then.

Discussion

The above perspective on evacuation travel behaviour shows that a number of factors play

an important role in determining the travel decisions of individuals. In sum, individuals

react according to how they perceive the changing situation. They thereby respond to both

the hazard’s evolution in space and time, as well as the dynamic traffic (management)

conditions, possibly with some delay. This explains the evacuees’ need for information.

That people do not automatically follow the advice and orders from public officials, but

tend to seek information, assess their personal risk, and make independent evacuation

decisions, is supported by a substantial number of empirical studies (e.g., Baker 1991,

1995; Dash and Morrow 2001; De Jong and Helsloot 2010; Dow and Cutter 1998, 2000;

Knowles 2003; Rasid et al. 2000). It is therefore essential that dynamic traffic simulation

models that aim to simulate an evacuation include this reactive traveller behaviour,

therewith incorporating the important role of time-varying disaster conditions, (traffic)

information, and warnings, discretionary advice and evacuation orders.

We should remark here that, as in ‘‘Past and current evacuation traffic simulation

models’’ section, this overview of socio-psychological research and empirics on evacuation
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behaviour attempts in no way to give a complete discussion on all (empirical) research on

evacuation behaviour. Instead we wish to provide a background of the current consensus

on evacuation behaviour. This background is needed in the following sections when dis-

cussing the suitability of the (mathematical) model formulations that are proposed and used

to simulate traveller behaviour under evacuation conditions.

Travel demand modelling

Travel demand models predict the number of people who will evacuate and when these

people will depart. In other words, these models describe the decisions of travellers

regarding evacuation participation and departure time. These decisions are generally made

at the household level (Dash and Gladwin 2007; Dow and Cutter 2000; Heath et al. 2001;

Whitehead et al. 2000). We will in the following discussion however not consider at which

level the decision is made, but how the resulting evacuation participation rates and

departure time patterns are simulated.

A commonly used approach to dynamic travel demand modelling is to do so in two or

three consecutive steps. Logically, the first step is to identify the region that needs to be

evacuated. The first step of establishing the region that will evacuate or needs to be

evacuated is often done by expert judgment going by the hazard scenario characteristics.

For hurricane evacuations, this procedure is formalized by Wilmot and Meduri (2005)

using hurricane attributes such as the track, speed, and size to identify evacuation zones.

Easily identifiable zones (by e.g. ZIP code and landmarks) are then assigned a specific risk

and are expected to evacuate in case of specific scenarios. Here, regions above the max-

imum surge flood limit are not considered. However, evidently, also areas which are in fact

not at risk may start evacuating (shadow evacuation). Especially considering the findings in

the previous section that evacuation is primarily motivated by people’s perception of being

at risk. Durham (2007) points out that this may particularly happen during mass evacua-

tions and it would lead to larger travel demand thus hindering those in real need to

evacuate.

After the first step is undertaken and the evacuation region is identified, the share of

people that will participate in the evacuation is predicted, as well as their departure times.

Herein, we distinguish two approaches based on whether the participation and departure

time choices are modelled as sequential decisions (‘‘Sequential travel demand model’’

section) or conducted simultaneously (‘‘Simultaneous travel demand model’’ section).

Sequential travel demand model

In the sequential approach, once the evacuation region is identified, the second step in

predicting travel demand is to predict the share of people who will evacuate. For the case

of hurricanes, Baker (1991) listed five attributes determining the decision to evacuate: the

risk level within the area, actions by public authorities, type of housing, prior perception of

personal risk, and a storm specific threat factor. In the past, these attributes have served for

an empirically based approach to predict evacuation demand by Tweedie et al. (1986).

Later, PBS&J (2000b) developed a cross-classification type of trip generation model based

on survey data collected in the south-eastern states of the US where the evacuation par-

ticipation specified by county depended on the hurricane category and speed, tourist

occupancy, and type of housing in that area. The performance of this behaviour-based

model was tested against a number of data-driven models, namely logistical regression and
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various forms of neural network models, by Wilmot and Mei (2003) on a data set collected

in south-west Louisiana following hurricane Andrew. The findings showed that the data-

driven models (particularly a feedforward neural network structure) were better able to

predict the observed participation rate. The drawbacks of these types of models (especially

neural networks) are, however, that they require specific data for calibration and the results

are typically not transferable to other settings. This while behaviour-based models do not

have these drawbacks and provide more insight into the evacuation participation behaviour

of people.

The third step to predict the dynamic travel demand is to model travellers’ departure

time choice. This is often done by applying an exogenous response curve stating the

percentage of departures in each time interval. Since some origins will be earlier under

threat than others, such a response curve is typically predicted for each origin separately.

The departure response curve has been assumed to follow many different distributions.

Some examples are instantaneous departure (Lewis 2001; Chen and Zhan 2004; Chiu et al.

2006), a Uniform distribution (Liu et al. 2006; Yuan et al. 2006), a Rayleigh distribution

(Tweedie et al. 1986), a Poisson distribution (Cova and Johnson 2002), a Weibull distri-

bution (Jonkman 2007; Lindell 2008) or sigmoid curve (Kalafatas and Peeta 2009;

Xie et al. 2010). The Weibull distribution and sigmoid curve are most often used and

claimed to be most realistic. The Weibull distribution is given by

DðtÞ ¼ 1� exp �btcð Þ ð1Þ

where D(t) is the cumulative percentage of people who have evacuated until time instant t.
The shape of the distribution is determined by two parameters, b and c. The effect of these

parameters is shown in Fig. 3. Higher values for b and c lead to a faster response, while

lower values represent a slower response. The sigmoid curve is given by

DðtÞ ¼ 1þ exp �aðt � hÞ½ �ð Þ�1 ð2Þ
The shape of the curve is determined by two parameters, a and h. The effect hereof is

more distinguishable and allows behavioural interpretation (Fig. 4). The response rate a
sets the slope of the curve, such that low values produce a more uniform departure profile

(slower response). The half loading time h sets the midpoint of the curve, and thus states

the time at which half of the total number of travellers have departed. Sensitivity analyses

on these parameters done by Ozbay and Yazici (2006) and Pel et al. (2010b) conclude that

advancing or postponing the half loading time h clearly has no impact on the evacuation

process since travellers depart at the same rate and thus queue lengths and average travel

times are equal for all cases (unless road network characteristics are stochastic or the road

Fig. 3 Evacuation response
curve following Weibull
distribution for different
parameter settings: dashed graph
b = 0.135, c = 2.55; dash-
dotted graph b = 0.085,
c = 3.05; solid graph b = 0.085,
c = 2.55; long dash-dotted graph
b = 0.085, c = 2.05; long
dashed graph b = 0.035,
c = 2.55
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network is not fully available throughout the duration of the evacuation). On the other

hand, the response rate a has a substantial non-linear impact on the evacuation traffic

conditions and arrival pattern, especially when the network load is relatively high (which

can be expected during evacuation conditions). The reason is that a higher response rate

leads to more traffic on the road network which results in more congested traffic condi-

tions. These worse traffic conditions lead to lower network performance (measured by,

e.g., traffic flow and arrival rates), which in turn further deteriorate network performance.

This positive feedback loop implies that a higher response rate does not guarantee a faster

evacuation; it may even be slower. This underlines the importance of estimating the

appropriate parameters when using these models applying an exogenous response curve.

The sequential approach discussed above is applied most often. Ozbay and Yazici

(2006) reason that this is due to the mathematical simplicity of the approach and the fact

that relatively little situation-specific data is required. Model attributes and parameters are

usually estimated based on expert judgment or past evacuation data. However, the draw-

back of this sequential approach (and particularly the response curves) is that there is no

clear behavioural basis to justify the method on as the response curves are exogenous input

instead of endogenously determined by the threat/hazard within the model. It is difficult, if

not impossible, to incorporate the findings on the important (socio-psychological and

circumstantial) factors determining individuals’ evacuation decision as discussed in

‘‘Traveller behaviour under evacuation conditions’’ section. This is also underlined by Fu

(2004) pointing out that response curves are typically constructed for short-lasting evac-

uations (up till several hours, while many evacuations may last for several days), time-of-

day variations are not included (the sigmoid curve does not allow incorporating the

behavioural effect of day/night time on the departure times which are observed in real-life),

hazard specific dynamics known to influence the travel demand are not included (e.g., the

speed, intensity and track of a hurricane or wildfire inappropriately have no effect on travel

demand), and the effect of an evacuation plan cannot be realistically assessed (since the

impact of the evacuation order is not addressed).

Simultaneous travel demand model

Another approach relaxing many of these limitations is to execute these steps (i.e., pre-

dicting trip generation and departure time) simultaneously as an endogenous process. The

dynamic travel demand is modelled by applying a repeated binary logit model where we

repeatedly in time predict the share of people who decide to evacuate and depart presently,

or postpone the decision to evacuate, see Fig. 5. The decision to evacuate, modelled by this

Fig. 4 Evacuation response
curve following sigmoid curve
for different parameter settings:
long dashed graph a = 2.5,
h = 2.5; long dash-dotted graph
a = 1.5, h = 4; solid graph
a = 2.5, h = 4; dash-dotted
graph a = 3.5, h = 4; dashed
graph a = 2.5, h = 5.5
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binary logit model, is based on the differential utility associated with evacuating (com-

pared to not evacuating) based on the (subjectively perceived) prevailing conditions, such

as the proximity of the hazard. This is given by

DðtÞ ¼ max
t0 � t

1þ exp �lVðt0Þ½ �ð Þ�1 ð3Þ

where D(t) is the cumulative share of all people who have evacuated until time instant

t. This depends on the relative utility to evacuate compared to the alternative of postponing

the decision, denoted by V(t). This relative evacuation utility is typically estimated as a

combination of factors determining the attractiveness of evacuating. Examples of possible

factors which may influence the decision to evacuate (or not) are socio-demographic

characteristics (such as age, gender, household composition), spatio-temporal disaster

characteristics (such as wind speed, intensity, distance to hazard), the opportunity to

undertake property protection, whether neighbours evacuate, the presence of pets, prior

evacuation experiences, and whether an evacuation order is given. For a more complete

overview of the many different factors that have been reported to determine the evacuation

decision we refer to Carnegie and Deka (2010). Different people perceive these factors

differently and assign different importance to these factors. The effect of this variance is

modelled by the scale parameter l in Eq. 3, where a higher value suggests a smaller

variance among people.

Equation 3 maximizes over t0 B t since the cumulative share of evacuees is computed

and it is assumed that people do not return once they have decided to evacuate. Therefore,

the current share of evacuees equals the share of people who would decide on evacuating

given any of the previously prevailing conditions. Or in other words, it equals the maxi-

mum share of people who have decided to evacuate in any of the previous time instants

given the then prevailing utility to evacuate.

The performance of the repeated binary logit model depends evidently on how accu-

rately the relative evacuation utilities V(t) are estimated. Relative utility functions have

been estimated for the case of wildfires (Alsnih et al. 2005) and hurricanes (Fu and Wilmot

2004; Fu et al. 2006) using both stated preference surveys and post-hurricane revealed

preference surveys. For the case of wildfire evacuation, Alsnih et al. (2005) selected a

number of attributes describing weather and wildfire conditions from literature and a

Fig. 5 Conceptual framework
repeated binary logit model
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pre-study focus group. Surveys were carried out with different combinations of attribute

levels. A multinomial logit model and mixed logit model were estimated based on the

collected stated choice experiment data identifying a number of statistically significant

factors: temperature, wind speed, wind direction, fire type, fire distance, and household

specific socio-demographic characteristics. Since the levels of these attributes are time-

dependent, the evacuation participation behaviour can be predicted dynamically as the

wildfire evolves. Remarkably, the parameter for the attribute modelling whether the

evacuation route was under threat of being cut off by the fire (originally included in

the survey) was found to be statistically not significant. This suggests that in this case the

decision to evacuate was made independently from the route choice decision. This would

mean that the travel demand and traffic assignment can be modelled independently

(sequentially). Follow up research is needed to show whether this holds in more cases.

For the case of hurricane evacuation, Fu and Wilmot (2004) estimated a repeated binary

logit model based on evacuation behaviour data for hurricane Andrew. They identified as

being statistically significant: the distance to the storm, the forward speed of the hurricane,

time-of-day (three periods were introduced using dummy variables: morning, afternoon,

and night), the presence of an evacuation order, possibility of flooding, and housing type.

Later, Fu et al. (2006) estimated the same model (now also including hurricane wind speed

and time-to-landfall) for a dataset from hurricane Floyd in South Carolina and tested the

calibrated model on the hurricane Andrew data. The predicted dynamic travel demand

proved to be similar to the observed travel demand suggesting the transferability of weights

to different sites and hurricane scenarios.

In the travel demand models discussed here where a possible evacuation order is

included, the impact of the order is typically modelled by estimating the change in

evacuation behaviour (i.e., the increase in departure rate) directly after the evacuation order

is given. This may be appropriate when the order to evacuate immediately is given sud-

denly. However, more complex departure behaviour is likely to occur in case of a staged

evacuation where (groups of) travellers receive different designated departure time win-

dows in advance, where these instructed departure time windows follow from an evacu-

ation plan set up to moderate evacuation flows and avoid congestion. For instance, people

may consider postponing their preferred departure time in order to comply. In order to

model this type of behaviour, Pel et al. (2008) proposes including a dynamic term in the

evacuation utility function. This factor could be the time difference with the instructed

departure time window, which decreases the relative utility of evacuating early, where

earlier time instants are associated with a larger disutility, while it increases the relative

utility of evacuating late. The latter is justified since the evacuation decision is modelled as

a repeated decision whether to evacuate, thus in order to ‘comply’ once the departure time

window has passed people would have to evacuate belatedly. The compliance to the

designated time window is then determined by the corresponding weight in the utility

function. This weight most likely depends on both the traveller’s willingness to comply as

well as the level of enforcement conveyed by the authority executing the evacuation plan.

For example, instructions distributed through the media may lead to lower compliance than

instructions given directly by the police going door-to-door.

Discussion

The sequential and simultaneous approaches of predicting the evacuation participation rate

and departure time profile are both used. Generally speaking, the simultaneous approach

applying the repeated binary logit model is typically used in evacuation research focusing
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on predicting the dynamic travel demand under various evacuation conditions. As also

mentioned earlier, this might be due to the fact that it provides insight into the actual

decisions of evacuees. The sequential approach with a fixed participation rate and exog-

enous response curve is typically used in practice (including the traffic models used in

evacuation studies discussed in ‘‘Past and current evacuation traffic simulation models’’

section), and evacuation research focusing on other aspects than departure time choice

behaviour (e.g., with a focus on traffic management). As mentioned earlier, this might be

due to its simplicity. The sequential approach using logistical regression or a neural

network to predict travel demand has the drawbacks of both approaches. These methods

are both not simple in the sense that they require elaborate and specific data, as well as do

not provide as much insight into the traveller behaviour as the simultaneous approach.

Using neural networks here in particular seems of little value since these models are not

generalisable.

The sequential approach as modelled by PBS&J (2000a) using a cross-classification

model was compared with the repeated binary logit model by Fu and Wilmot (2007). As

expected, the binary logit model more closely models observed dynamic travel demand

behaviour (based on a data set containing evacuation behaviour in southwest Louisiana for

hurricane Andrew). The reason why this is expected is that the repeated binary logit model

has more flexibility (a higher number of parameters). Hence it is better capable of mod-

elling evacuation behaviour given that elaborate and specific data is available for cali-

bration. In other words, it better allows incorporating all insights on evacuation decision

making from the behavioural sciences and empirical studies discussed in ‘‘Traveller

behaviour under evacuation conditions’’ section. We would like to emphasize a number of

clear behavioural advantages to this approach pointed out by Fu and Wilmot (2007): the

model estimates how people dynamically respond to changing hazard conditions, road

network conditions, and evacuation instructions, the model provides insight into the

observed evacuation behaviour, and the results (weight ratios) appear to be up to a certain

level transferable to other sites and situations. Whether the latter advantage can be

generalized needs to be shown by future research. In sum, the repeated binary logit model

provides insight into trade-offs made in the decision to evacuate, resulting in travel

demands that on an aggregated level are more or less consistent with the observed choices.

Thereby, given that it is well calibrated, it yields exactly the information that we need as

model input for our evacuation traffic simulation models.

A note can be made here on future research on the repeated binary logit model. Current

practice is to use the prevailing conditions to estimate the dynamic differential utility to

evacuate (compared to not evacuating), as discussed earlier. There is good reason to

believe that people not only consider current conditions, but base their decision on the

predicted conditions. That is, they also distinguish patterns in changing hazard conditions,

such as an increase in wind speed, a rising water level, a growing levee breach and

resulting increase in flooding speed, and an increasing wildfire intensity. Similarly, people

may distinguish steady conditions from temporary fluctuations, for instance, a wind con-

tinuously pushing the wildfire towards the individual or household is perceived differently

than a temporary change in wind direction (though having the same instantaneously pre-

vailing conditions). Hence, it might prove worthwhile to estimate these models not on the

dynamic prevailing conditions at the time instant that the decision is made, but on the

dynamic predicted conditions. As a proxy for these predicted conditions, the recently-past

conditions that lead up to the time instant that the decision is made could be used. Clearly,

future research needs to show the possible benefit (regarding enhanced predictive power)

of this approach.
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To conclude, travel demand is typically predicted as the whole of single trips from

origin (often home or work location) to destination (either network exit point or final

refuge location). A number of empirical studies support the view that households evacuate

as a unit (e.g., Heath et al. 2001; Sime 1993; Zelinsky and Kosinski 1991). Hence, it is

implicitly assumed that evacuees belonging to a single household are either already all

together upon evacuation or evacuate independently and meet up after arriving outside the

threatened region. This is relaxed in work by Murray-Tuite and Mahmassani (2003, 2004).

They propose an evacuation model formulation accounting for trip chains due to household

interactions. It is simulated how the carless household members are picked up by the other

household member(s) at their school, work or residential location to then continue their trip

together. Incorporating this household trip chaining principally allows capturing otherwise

unexplained evacuation travel patterns (such as longer trips and initially ‘evacuating’

towards the disaster area) and avoids too optimistic evacuation time predictions. Meeting

locations are currently arranged before evacuation, as well as are the carless household

members assigned to drivers. The authors point out that further research may consider the

impact of communication and traffic information provision on drivers switching pick-ups

and rerouting en-route, thus leading to a more efficient evacuation.

Trip distribution modelling

Trip distribution describes the result of individuals’ destination choice. Much fewer studies

are conducted on this choice behaviour than on the previously discussed participation and

departure time choice behaviour. Also, these studies all share a common approach. Gen-

erally speaking, this approach consists of two steps. The factors determining the type of

location that people evacuate to are identified first. Second, a (often gravity-based) trip

distribution model is used to relate these location type preferences to actual destination

choice. Each of these steps is discussed next.

Factors determining type of evacuation location

A small number of studies identify the factors which determine the type of location people

evacuate to. This is done using both stated preference and revealed preference data. For

instance, Whitehead et al. (2000) and Brodie et al. (2006) report that people with higher

income and education tend to evacuate towards hotels and motels, while people with lower

income and education tend to evacuate to shelters, based on post-hurricane evacuation

data. Deka and Carnegie (2010) build on this by conducting a stated preference survey

relating socio-economic and demographic characteristics to the decision whether to

evacuate to a shelter location or to a non-shelter location, such as friends or relatives and a

hotel or motel. The estimated binary logit model supports similar findings. The probability

that a household evacuates to friends or relatives is modelled by Cuellar et al. (2009) in

their model for the US Golf coast by the likelihood that the household belongs to the

‘‘region’s dominant racial group’’. Whether this can be generalized to other settings can be

questioned.

Destination choice modelling

The US Army Corps of Engineers (1995), in a guideline for hurricane evacuation studies,

suggests that evacuees can be allocated to destinations proportionally to the population in
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this possible destination, weighted by a function of the travel distance. This is essentially

the gravity-based trip distribution model which is applied to predict the origin–destination

matrices used as model input in all the traffic simulation models introduced in ‘‘Past and

current evacuation traffic simulation models’’ section.

In other studies, the different location types and accompanying different determining

factors as identified by Whitehead et al. (2000) and Brodie et al. (2006) are recognized.

For instance, Cuellar et al. (2009) compute attraction potentials per type of location. The

attraction for hotels and motels is estimated based on the accommodation availability and a

presumed average occupancy rate. Whereas the attraction for shelters is estimated based on

the presence of schools with gymnasia where these shelters are often constructed. Location

type specific trip potentials and trip attractions are then computed and used in the location

type specific gravity-based trip distribution models to predict travellers’ destination choice.

Similarly, Cheng (2007) used post-hurricane survey data to estimate a ‘friend/relative

trip distribution model’ and a ‘hotel/motel trip distribution model’. In this case, the

observed origin–destination matrix was reconstructed based on the survey data and the trip

distribution models were estimated to produce the best fitting estimated origin–destination

matrix. The gravity-based trip distribution models were calibrated assuming that trip fre-

quencies are considered inversely proportional to the travel distance once outside the

threatened zone. Testing the trip length distribution as predicted by the calibrated trip

distribution models against observed trip length distributions gave good statistical results.

However, little behavioural inferences can be made from such an approach. Therefore, in a

later study (Cheng et al. 2008) the same data was used to estimate two multinomial logit

models. For the friend/relative model, it was found that, as expected, the parameters for

travel distance and the probability that the destination was at risk by the hurricane were

negative, indicating that a destination at larger distance and higher risk is less likely to be

chosen. Factors having a positive influence on the destination choice of travellers were the

destination population, whether the destination is a metropolitan area, and the ‘‘percentage

of white population’’ at the destination. For the hotel/motel multinomial logit model the

factors travel distance, risk indicator, and white population percentage were also found,

with the same effect. Here, also the number of hotels at the destination and the proximity to

the interstate motorway had a positive effect. The static approach in this study is relaxed in

a subsequent study by Cheng and Wilmot (2009) where time-dependent travel times are

included in a quasi-dynamic destination choice model. However, it should be remarked

that these time-dependent travel times were reconstructed using the TransCAD traffic

simulation model which computes a quasi-dynamic user equilibrium assignment based on

link travel times following the Bureau of Public Roads (BPR) function. The authors

themselves point out that this approach likely leads to wrong estimates on the prevailing

travel times, and suggest improving the destination choice model by applying a different

dynamic traffic assignment model.

Discussion

The available research on evacuation destination choice behaviour shows consistent

findings on distinguishing determining factors for destination choice depending on the type

of location people evacuate to. Also, it suggests that gravity-based trip distribution models

can be used to reconstruct evacuees’ destination decisions. However, given that the number

of studies is limited and a number of these rely on the same data set, it remains unclear

whether these findings can be generalized. More research is needed to show whether this is

the case. Future research on evacuation trip distribution modelling should preferably be
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focused on a dynamic approach as this allows capturing the time-dependent destination

availability, prevailing travel times, and prevailing risk threat to the destinations (Cheng

et al. 2008).

Less focus is laid on travellers’ destination choice by, for example, Pel et al. (2008) and

Peeta and Hsu (2009). In these traffic simulation models particularly used in short or no

notice evacuation it is assumed that travellers do not choose their destination upon

departure, but instead tend to choose the route which leads them out of the threatened

region as soon as possible. Once safe, they continue their trip to their final destination. This

and other route choice models are discussed next.

Traffic assignment modelling

Traffic assignment relates to assigning travellers to routes, thereby modelling travellers’

route choice decisions. A number of studies report on computing evacuation time estimates

without the use of traffic assignment as defined here (e.g., Lindell and Prater 2007; Van

Zuilekom et al. 2005). These methods sidestep route choice behaviour by simply looking at

the total spatially distributed travel demand, the available network exit points, and the

capacity bottlenecks in the road network. The ratio of the travel demand (in number of

travellers) and network supply (in number of travellers that can pass per unit of time),

together with some correction terms, then may give a quick prediction on the minimum
time required for the complete evacuation. However, this approach certainly does not

provide full insight into the actual evacuation times of regions and neighbourhoods, nor the

dynamic evacuation traffic conditions, nor the determining factors underlying the evacu-

ation process. Therefore, we will not discuss this type of models, since this article focuses

on traveller behaviour in evacuation traffic simulation models (and the fact that these

models are usually applied to gain insight into the determinants of the success or failure of

an evacuation and how these can be manipulated).

We structure the following discussion on route choice models by distinguishing models

that assume route decisions to occur pre-trip (‘‘Pre-trip route choice models’’ section), en-

route (‘‘En-route route choice models’’ section), and those combining pre-trip and en-route

route decisions (‘‘Hybrid route choice models’’ section). The user equilibrium assignment

assumption applied in most of the traffic simulation models discussed in ‘‘Past and current

evacuation traffic simulation models’’ section falls under the pre-trip route choice models

discussed next.

Pre-trip route choice models

Within pre-trip route choice models, travellers are assumed to choose their route from

origin to destination upon departure (thus termed pre-trip) and do not switch routes while

travelling. These routes are chosen based on the currently prevailing or expected route

utilities. The chosen routes may prove to be not the most attractive routes when the

resulting traffic conditions (derived after simulation) deviate from the initially predicted

traffic conditions on which the route choices were based. Therefore, typically an iterative

procedure is used that allows travellers to choose a different route in the next iteration,

based on the actually experienced route costs. Repeating this process over a sufficiently

large number of iterations leads to a user equilibrium assignment in which no traveller can

unilaterally switch routes and be better off (Wardrop’s equilibrium law, see Wardrop

1952).
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In simulating pre-trip route choice, route flow fractions are computed at the origins and

travellers are propagated from origins to destinations along these routes. The route flow

fractions are determined by the probabilities that each route has the highest route utility,

where these expected route utilities more closely resemble the actual (observed) route

utilities as the number of iterations increases. These pre-trip route choice models within an

equilibrium framework are generally used for many dynamic traffic assignment applica-

tions, though mainly for long-term planning purposes where it can be assumed that trav-

ellers have past experiences leading to well-informed expectations about the future traffic

conditions that they will encounter during their trip. This assumption on travellers’ learning

and habit formation is most likely not an appropriate assumption for the case of evacuation

route choice behaviour. The reason for this is that evacuation is a low-frequent exceptional

event accompanied by an unusual travel demand pattern and unusual network capacity

(due to the combination of different driving behaviour, dynamic traffic control measures,

and the adverse disaster conditions) resulting in different-from-normal traffic conditions,

which are difficult to anticipate on.

The pre-trip route choice model in an equilibrium framework is applied in most of the

dynamic traffic simulation models discussed in ‘‘Past and current evacuation traffic sim-

ulation models’’ section, as well as in a number of other evacuation studies (e.g., Goemans

and Jansen 2009; Lin et al. 2009; Song et al. 2009).

An approach which is equivalent to an iterative user equilibrium assignment is by

applying an incremental assignment method adopted by, for instance, Brown et al.

(2009) while developing a hurricane evacuation model. Here, (pre-trip) route choices

are modelled sequentially, instead of iteratively. Travellers are assigned to a route in a

step-wise fashion. In one step, the (predicted) route costs are computed and a small

number of travellers are assigned to the then most attractive routes. In the next step,

the route costs are updated based on the new route flows, and again a small number of

travellers are assigned to the most attractive routes. When the increments (i.e., the

number of travellers assigned to a new route in each step) are sufficiently small, then a

user equilibrium assignment is reached once all steps are executed and all travellers

have been assigned to a route. Therefore, the same (likely inappropriate) behavioural

assumption is made as with the iterative procedure computing the user equilibrium

assignment.

In some of the traffic simulation models discussed in ‘‘Past and current evacuation

traffic simulation models’’ section (OREMS, MASSVAC, VISSIM, INDY) user-defined

routes and route flow fractions can be model input. This allows evaluating (mandatory)

instructions regarding prescribed evacuation routes. These prescribed evacuation routes

do not necessarily minimize individual travel costs, thus leading to a user equilibrium,

but may instead aim at minimizing, for instance, the total travel costs, thus leading to a

system optimum (simulated by, e.g., Li et al. 2006; Liu et al. 2007; Kalafatas and Peeta

2009; Zheng et al. 2010). Other optimization objectives than the system optimum have

been used. An overview can be found in Yuan and Han (2009) and Huibregtse et al.

(2010). The important issue here is that testing evacuation route instructions while

simulating pre-trip route choice disables incorporating (partial) traveller compliance

behaviour. It is necessarily assumed that travellers fully comply, since the pre-trip route

choice model does not allow travellers to deviate from their (prescribed) evacuation

route during their trip. The discussion in ‘‘Traveller behaviour under evacuation

conditions’’ section shows that this full compliance assumption is most certainly too

strict.
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En-route route choice models

The assumption that travellers cannot deviate from their (pre-trip) chosen route is relaxed

in case of en-route route choice. Here, travellers observe prevailing traffic conditions as

they travel, and make route choice decisions accordingly. En-route route choice models

thus simulate travellers who travel from one intersection to the next, every time deciding

on the next downstream direction based on route guidance or the available information on

the prevailing (instantaneous or predicted) traffic conditions.

In simulating en-route route choice, link flow fractions (also called split proportions or

turn fractions) are computed at all intersection nodes, and travellers are propagated from

one intersection node to the next along the downstream links. The link flow fraction for a

downstream link is computed by the probability that any route (starting at the intersection

node) in this downstream direction has the lowest route costs. This myopic opportunistic

travel behaviour is described by, for instance, a set of fuzzy rules (Peeta and Yu 2005),

recurrent neural network (Yang et al. 1995), fuzzy network (Hawas 2004), or discrete

probabilistic choice model (Dia et al. 2001; Adler et al. 1993). This approach has been

mainly applied in dynamic traffic assignment applications on the impact of route guidance

or traffic information. Evacuation studies using the en-route route choice model are scarce.

One possible example is the study by Mitchell and Radwan (2006) using INTEGRATION

(Rakha and van Aerde 2004) to study the impact of evacuation staging on network

clearance time. However, it should be mentioned that INTEGRATION provides both pre-

trip and en-route route choice models and it is not fully clear which route choice model

alternative was used in this study.

Hybrid route choice models

The assumption that travellers fully rely on past experiences in their route decisions (as

made in pre-trip route choice models), as well as the assumption that travellers base their

route decisions solely on prevailing traffic conditions (as made in en-route route choice

models), are both relaxed in the hybrid route choice models. The hybrid models incor-

porate the impact of unfamiliarity with traffic conditions and the provision of en-route

traffic information by combining pre-trip route choice with en-route route switching.

Travellers are assumed to choose an initial route upon departure, after which they may

adapt their route during their trip. They might do so when prevailing traffic conditions are

such that travellers are better off (or have the feeling of being better off) by deviating to

another route. A hybrid route choice model is used in DYNASMART (Mahmassani 2001)

and EVAQ (Pel et al. 2009, 2011). The main difference is that in the mesoscopic

DYNASMART model the route switching is checked for each individual traveller, while in

the macroscopic EVAQ model this is checked for each intersection node and each class

of travellers having the same initial route.

In the macroscopic hybrid route choice model used in EVAQ, travellers who initially

follow the same (pre-trip) route are said to belong to the same class. The class-specific

route flow fractions are computed at all intersection nodes, and travellers of all classes are

propagated along these routes until some travellers decide to switch to an alternative route.

The route flow fractions for travellers of a specific class (i.e., initially following the same

route) switching to an alternative route is given by the probability that this alternative route

has the lowest route costs.

Note that the pre-trip route choice model and en-route route choice model are special

cases of the hybrid route choice model. In both of the hybrid route choice models
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mentioned above, travellers only consider switching routes when the alternative route

provides some minimum improvement. In the special case when this minimum improve-

ment is set to infinite, travellers never deviate from their pre-trip chosen route (thus

modelling pre-trip route choice). Whereas in the special case when this minimum

improvement is set to zero, travellers always choose the then most attractive route,

independent of their initial pre-trip chosen route (thus modelling en-route route choice).

Values for the minimum improvement between zero and infinite allow modelling inter-

mediate states where travellers make a trade-off between continuing on the pre-trip chosen

route and diverting to a more attractive route.

Hybrid route choice models allow modelling and evaluating evacuation route instruc-

tions, while accounting for partial traveller compliance. In this case, the initial (pre-trip

chosen) routes can be set as the prescribed evacuation routes. Hence, the minimum

improvement for travellers to deviate from their route represents the level of travellers’

compliance, where a higher minimum improvement leads to a higher compliance level

(since this reduces the probability of a more attractive alternative route), and vice versa.

This way, the hybrid route choice model formulation in EVAQ has been exploited by Pel

et al. (2010a) to evaluate the impact of partial traveller compliance on existing evacuation

traffic plans, and by Pel et al. (2010c) to design new optimal evacuation plans while

anticipating partial traveller compliance behaviour.

Discussion

Pre-trip route choice is implemented in many traffic simulation models including most of

those used in evacuation studies reported in ‘‘Past and current evacuation traffic simulation

models’’ section. That the underlying behavioural assumption that travellers have well-

informed expectations about the future traffic conditions that they will encounter during

their trip (possibly from past experiences) is inappropriate, is supported by the discussion

in ‘‘Traveller behaviour under evacuation conditions’’ section as well as a number of

empirical studies. These empirical studies show the large role of rerouting behaviour, thus

favouring the en-route and hybrid route choice models. For instance, Knoop et al. (2010)

analyse how travellers use the provided traffic information when faced with otherwise

unfamiliar traffic conditions (in this case not evacuation, but the aftermath of large scale

traffic accidents). They found that a large share of travellers (up to 50%) is inclined to

switch routes based on the prevailing traffic information. Also, rerouting is much more

often observed when the origin of the adverse traffic conditions is an uncommon event

(in this case the major traffic accident), as compared to equal adverse traffic conditions due

to a recurring event (e.g., day-to-day fluctuations in travel demand and network capacity).

Similar conclusions were drawn by Robinson and Khattak (2010) using stated choice

preference surveys on route choice under hypothetical evacuation situations. They

observed that a large share of respondents (up to 72%) anticipated rerouting in case of

evacuation, regardless of whether or not they frequently altered routes under non-evacu-

ation conditions to avoid congestion. This rerouting behaviour can only be simulated using

en-route or hybrid route choice models.

En-route and hybrid route choice models have another related advantage over pre-trip

route choice models. Namely, the ability to model real-time traveller responses to changes

in the road network conditions due to the hazard’s evolution in space and time (e.g., road

sections becoming inaccessible due to flooding) and dynamic traffic regulations and control

measures (e.g., contraflow operations to increase outbound capacity). The effect of these

road infrastructure dynamics can only be properly modelled by en-route and hybrid route
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choice models. This is due to the fact that in models with pre-trip route choice there is no

way to avoid travellers from following the chosen route, even if the next link is obviously

inaccessible. Therefore, the possibility of inaccessible road sections due to network fall-out

prohibits pre-trip route choice and requires en-route route decisions once travellers become

aware of the changes in network conditions. Consequently, travellers will take detours

around prevailing inaccessible sections of the road network.

Finally, when testing and evaluating optimal evacuation routes, hybrid route choice

models allow simulating partial traveller compliance behaviour, which is most likely to

occur, as argued in ‘‘Traveller behaviour under evacuation conditions’’ section. By varying

the minimum improvement that travellers require before deviating from their dedicated

evacuation route, insight can be gained into the impact of evacuation instructions under

various traveller compliance levels. This enables both testing the robustness of existing

evacuation plans towards uncertain traveller compliance levels, as well as designing

evacuation plans while anticipating the expected traveller compliance behaviour.

In sum, hybrid route choice models are the most flexible and likely also the most

appropriate approach in modelling travellers’ route choice behaviour during evacuation, as

these allow incorporating the impact of dynamic traffic information, changes in the road

network conditions, and partial traveller compliance behaviour towards evacuation route

instructions. That these factors play an important role in evacuation studies is shown by the

discussion in ‘‘Traveller behaviour under evacuation conditions’’ section.

A final note can be made here on the fact that simulated route choice decisions are often

determined by (expected) (prevailing) route travel times. The generalized route costs can

arguably be appended with other attributes playing a role in travellers’ route decisions. For

instance, Chiu and Mirchandani (2008) argue that there is a bias towards using familiar

routes and motorways, where the latter might be ascribed to the perception of these roads

being more reliable. This is supported by the studies by Dow and Cutter (2002) and Lindell

and Prater (2006) reporting high traffic volumes on the interstate motorways in the

evacuations preceding respectively hurricane Floyd and hurricane Katrina despite the

availability of alternative routes using rural roads. Further research is needed to show

the actual role that these and similar route attributes play in evacuation route decisions.

Concluding comments

The content and contribution of this article is twofold. First of all, it structures the current

state-of-the-practice in evacuation traffic simulation studies. To this end, a perspective is

given on past and present evacuation traffic simulation models, and the current consensus

on evacuation travel behaviour. The latter based on psycho-behavioural constructs from the

social sciences and empirical studies on evacuation behaviour. We argued that people do

not automatically follow the advice and orders from public officials, but tend to seek

information, assess their personal risk, and make independent evacuation decisions. It is

therefore essential that dynamic traffic simulation models that aim to simulate an evacu-

ation simulate this reactive traveller behaviour, therewith incorporating the important role

of time-varying disaster conditions, (traffic) information, and warnings, discretionary

advice and evacuation orders. From this viewpoint, the different model formulations to

simulate travel behaviour were elaborated on, as well as their suitability to the case of

evacuation. For the evacuation participation and departure time choice we argued in favour

of the simultaneous approach to dynamic evacuation demand prediction using the repeated

binary logit model. The repeated binary logit model provides insight into trade-offs made
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in the decision to evacuate, resulting in dynamic travel demands that on an aggregated

level are more or less consistent with the observed choices. For the destination choice we

showed how future research is needed to generalize the current preliminary findings on the

location-specific (gravity-based) destination choice models. For the evacuation route

choice we argued in favour of the use of a hybrid route choice model. This since hybrid

route choice models allow incorporating the impact of dynamic traffic information,

changes in the road network conditions, and partial traveller compliance behaviour towards

evacuation route instructions.

Second of all, this article gives direction to the current state-of-the-art in modelling

evacuation travel behaviour. This is done by reviewing and consolidating the past and

current research efforts on different model formulations describing the evacuation choice,

departure time choice, destination choice, and route choice. Within each of these discus-

sions, we pointed at current limitations and made corresponding suggestions on promising

future research directions.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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