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Abstract We study the equilibrium distribution of relative strategy scores of agents in the
asymmetric phase (α ≡ P/N � 1) of the basic Minority Game using sign-payoff, with N
agents holding two strategies over P histories. We formulate a statistical model that makes
use of the gauge freedom with respect to the ordering of an agent’s strategies to quantify the
correlation between the attendance and the distribution of strategies. The relative score x ∈ Z

of the two strategies of an agent is described in terms of a one dimensional random walk
with asymmetric jump probabilities, leading either to a static and asymmetric exponential
distribution centered at x = 0 for fickle agents or to diffusion with a positive or negative
drift for frozen agents. In terms of scaled coordinates x/

√
N and t/N the distributions are

uniquely given by α and in quantitative agreement with direct simulations of the game. As
the model avoids the reformulation in terms of a constrained minimization problem it can be
used for arbitrary payoff functions with little calculational effort and provides a transparent
and simple formulation of the dynamics of the basicMinority Game in the asymmetric phase.

Keywords Minority game · Market dynamics · Agent based models

1 Introduction

Aminority game can be exemplified by the following simplemarket analogy; An odd number
N of traders (agents) must at each time step choose between two options, buying or selling
a share, with the aim of picking the minority group. If sell is in minority and buy in majority
one may expect the price to go up to satisfy demand and vice versa if buy is in minority, thus
motivating the minority character of the game. Clearly, there is no way to make everyone
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content, at least half of the agents will inevitably end up in the majority group each round. As
the losing agents will try to improve their lot there is no static equilibrium. Instead, agents
might be expected to adapt their buy or sell strategies based on perceived trends in the history
of outcomes [1–12].

The Minority Game proposed by Challet and Zhang [2,3] formalizes this type of market
dynamics where agents of limited intellect compete for a scarce resource by adapting to the
aggregate input of all others [1,12]. Each agent has a set of strategies that, depending on
the recent past history of minority groups going m time steps back, gives a prediction of the
next minority being buy or sell. The agent uses at each time step her highest scoring strategy
which has most accurately predicted correct minority groups historically. The state space of
the game is given by the strategy scores of each agent together with the recent history of
minority groups, and the discrete time evolution in this space represents an intricate dynamical
system.

What makes the game appealing from a physics perspective is that it can be described
using methods for the statistical physics of disordered systems, with the set of randomly
assigned strategies corresponding to quenched disorder [5,8,13–17]. In particular Challet,
Marsili, and co-workers showed that the model can be formulated in terms of the gradient
descent dynamics of an underlying Hamiltonian [13], plus noise. The asymptotic dynamics
corresponds to minimizing the Hamiltonian with respect to the frequency at which agents
use each strategy, a problem which in turn can be solved using the replica method [8,17,18].
In a complementary development Coolen solved the statistical dynamics of the problem in
its full complexity using generating functionals [14–16].

Thegame is controlledby theparameterα = P/N ,where P = 2m is the number of distinct
histories that agents take into account, which tunes the system through a phase transition
(for N → ∞) at a critical value αc = 0.3374 . . .. In the symmetric (or crowded) phase,
α < αc, the game is quasi-periodic with period 2P where a given history gives alternately
one or the other of the outcomes for minority group [4,19]. A somewhat oversimplified
characterization of the dynamics is that the information about the last winning minority
group for a given history gives a crowding effect [20] where many agents want to repeat
the last winning outcome which then counterproductively instead puts them in the majority
group. The crowding also gives large fluctuations of the size of the minority group.

In the asymmetric (or dilute) phase, α > αc, agents are sufficiently uncorrelated that
crowding effects are not important and there is no periodic behavior. Instead, as exemplified
in Fig. 1 the score dynamics is random but with a net correlation between agents that makes
fluctuations in the size of the minority group small. The dilute occupation of the full strategy
space gives rise to a non-uniform frequency distribution of histories which can be beneficial
for agents with strategies that are tuned to this asymmetry.

In this paper we study the dynamics of the Minority Game in the asymmetric phase by
formulating a simplified statistical model, focusing on finding probability distributions for
the relative strategy scores. In particular, we study the original formulation of the game with
sign-payoff for which quantitative results are challenging to derive. By sorting the strategies
based on how strongly they are correlated with the average over all strategies in the game,
we find that sufficient statistical information can be extracted to formulate a quantitatively
accurate model for α � 1.

We discuss how the relative score for each agent can be derived from the master equation
of a random walk on a chain with asymmetric jump probabilities to nearest neighbor sites,
and how these jump probabilities can be calculated from the basic dynamic update equation
of the scores. The corresponding probability distributions of scores are either of the form of
exponential localization or diffusion with a drift. In the appendices we show that the model
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is related to but independent from the Hamiltonian formulation and we show how it can also
be readily applied to the game with linear payoff where the master equation has long-range
hopping.

Although theMG is well understood from the classic works discussed above, it is our hope
that the simplified model of the steady state attendance and score distributions presented in
this paper provides an alternative and readily accessible perspective on this fascinatingmodel.

2 Definition of the Game and Outline

In order to give an overview of our results and for completeness we start by providing the
formal definition of the Minority Game and some basic properties [2,3,10,11].

At each discrete time step every agent gives a binary bid ai (t) = ±1, all of which are
collected into a total attendance

At =
N∑

i=1

ai (t) = −N , . . . , N , (1)

(N odd) and the winningminority group is then identified through−sign(At ). A binary string
of them past winning bids, called a historyμ, is provided as global information to each agent
upon which to base her decision for the following round. There are thus μ = 1, . . . , P with
P = 2m different histories. At her disposal each agent has two randomly assigned strategies
(a.k.a. strategy tables) that provide a unique bid for each history. The bid of strategy j = 1, 2
of agent i = 1, . . . , N in response to history μ is given by aμ

i, j = ±1 and the full strategy is

the P dimensional random binary vector �ai, j . There are thus a total of 2P distinct strategies
available.

The agent uses at each time step the strategy that has made the best predictions for
minority group historically. This is decided by a score Ui, j (t) for each strategy which is
updated according to Ui, j (t + 1) = Ui, j (t) − aμ

i, j sign(A
μ
t ), irrespectively of the strategy

actually being used or not. (Here the superscript μ on At just indicates that the attendance
will depend on the history μ(t) giving the bids at time t .) Ties, i.e. Ui,1 = Ui,2, are decided
by a coin toss.

Since it is only the relative score between an agent’s two strategies that is important in
deciding which strategy to use, one may focus on the relative score

xi (t) = (Ui,1(t) −Ui,2(t))/2 . (2)

This is updated according to

xi (t + 1) = xi (t) + �i (t) , (3)

where
�i (t) = −ξ

μ
i sign(A

μ
t ) . (4)

and where �ξi = (�ai,1 − �ai,2)/2 is an agents “difference vector” that takes values ±1 or 0 for
each history μ.

Tomake the dynamics generated by these equationsmore concrete, Fig. 1 shows the scores
of the strategies of four particular agents Ui,1/2, i = 1, . . . , 4 for one realization of a game
with N = 101, P = 27, together with the corresponding relative scores xi (inset), over a
limited time interval. As exemplified by this figure agents come in two flavors, known as
”frozen” and ”fickle” [5,14]. An agent is frozen if one of her strategies performs consistently
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Fig. 1 Evolution of strategy scores for the two strategies of four (i = 1, . . . 4) representative agents in a game
with N = 101 agents and a memory of length m = 7 (P = 27). At each time step every agent uses the one of
her two strategies which has the highest momentary score, given by how well the strategy has predicted the
past minority groups. The corresponding score difference xi (t) (inset) shows the distinction between frozen
agents that consistently use a single strategy, and fickle agents that switch between strategies

better than the other, such that on average the score difference is diverging, whereas fickle
agents have a relative score that meanders around x = 0 switching their used strategy. The
motion of xi for both fickle and frozen agents is a random walk with a bias towards or away
from x = 0. A basic problem is to characterize and understand this random walk and derive
the corresponding probability distribution Pi (x, t); the probability to find agent i at position
x at time t [10,16].

2.1 Outline and Results

As presented in Sect. 3we can quantify the correlation between an agent’s strategies, specified
by ξ

μ
i , and the total attendance Aμ

t , which in turn allows for characterizing the mean (time
averaged) step size �i = 〈xi (t + 1) − xi (t)〉 in terms of a distribution over agents P(�i ). In
agreementwith earlier workwe find that�i has two contributions; one center (x = 0) seeking
bias term which arises from self interaction (the used strategy contributes to the attendance
and as such ismore likely to be in themajority group [17]) and a fitness termwhich reflects the
relative adaptation of the agent’s two strategies to the time averaged stochastic environment
of the game. The distribution of step sizes over the population of agents are shown in Fig. 3
where frozen agents are simply those where the fitness overcomes the bias, such that �i > 0
for x > 0 or �i < 0 for x < 0, whereas for fickle agents �i < 0 for x > 0 and vice versa.

Knowing the mean step size of an agent allows for a formulation in terms of a one
dimensional random walk (Fig. 4) with corresponding jump probabilities, as presented in
Sect. 4. Depending on whether it is more likely to jump towards the center or not (fickle or
frozen respectively) the master equation on the chain can be solved in terms of a stationary
exponential distribution centered at x = 0 or (in the continuum limit) a normal distribution
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with a variance and mean that grow linearly in time (diffusion with drift). These are the
distributions Pi (x, t) depending on �i .

In simulations over many agents it is natural to consider the full distribution P(x, t) =∑N
i=1 Pi (x, t)/N = ∫

P(�i )Pi (x, t)d�i , with N P(x, t) thus the probability of finding an
agent at time t with relative score x . In terms of scaled coordinates x/

√
N and t/N we find

that the distribution only depends on α. The model distributions show excellent agreement
with direct numerical simulations (Figs. 5 and 6) with no fitting parameters. This result for
the full distribution of relative scores together with its systematic derivation for the original
sign-payoff game represent the main results of this paper.

In Appendix 2 we discuss the relation between the model presented in this work and the
formulation in terms of a minimization problem of a Hamiltonian generator of the asymptotic
dynamics [8,13].We find that one way to view the present model is as a reduced ansatz for the
ground state where the only parameters are the fraction of positively and negatively frozen
agents (solved for self-consistently) instead of the full space of the frequency of use of each
strategy. With this ansatz closed expressions can be derived for the steady state distributions
irrespective of the form of the Hamiltonian.

In Appendix 3 we show how the model applies to the game with linear payoff �i (t) =
−ξ

μ
i Aμ

t .

3 Statistical Model

We will now turn to describing the statistical model in some detail and derive the results
discussed in the previous section.Wedefine for each agent the sumand difference of strategies
for each bid �ωi = (�ai,1 + �ai,2)/2 and (as discussed above) �ξi = (�ai,1 − �ai,2)/2 [5]. Clearly
ω

μ
i , being the sum of two random numbers ±1 is distributed over (−1, 0, 1) with probability

(1/4, 1/2, 1/4). A non-zero value ofωμ
i means that agent i always has the samebid for history

μ independently of which strategy it has in play. The sum over all agents, �� = ∑N
i=1 �ωi ,

thus gives a constant history dependent but time independent background contribution to the
attendance. (In the sense that every time history μ occurs in the time series it gives the same
contribution.) This background �μ is, for large N , normally distributed with mean zero and
variance

σ 2
� = N/2 .

An interesting property of the Minority Game is that there is a “Z2 gauge” freedom with
respect to an arbitrary choice of which is called strategy 1 and which is 2, thus corresponding
to a change of sign of �ξi . Such a sign change will simply result in a change of sign of xi (t)
having no consequence on which strategy is actually in play. (It is the strategy in play which
is an observable, not whether it is labeled by 1 or 2.) Nevertheless, it turns out that making
a consistent definition of the order of strategies is helpful in formulating a simple statistical
model. Explicitly we order the two strategies (“fix the gauge”) of all agents i such that

�ξi · �� ≤ 0 . (5)

Shortly we will describe the distribution over agents of ξ
μ
i , to quantify its anticorrelation

with �
μ
i .

To proceed we write the attendance at a time step t with history μ as

Aμ
t = �μ +

∑

i

ξ
μ
i si (t) , (6)
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where si (t) = ±1 depending on which strategy agent i is playing [5]. Again, the relative
strategy score xi of agent i is updated according to Eq.4. Given the background contribution
to the attendance �� we expect there to be a surplus of si = 1 in the steady state with our
choice of gauge because the strategy 1 is expected to be favored by the score update function.
(In other words, strategy 1 is expected to have a higher fitness.) However, this correlation is
not trivial as the accumulated score also depends on the dynamically generated contribution
the attendance. As discussed previously some fraction φ of the agents are frozen, in the sense
of always using the same strategy, si = constant. We make an additional distinction (made
significant by our choice of gauge) and separate the group of frozen agents into those with
si (t) = 1 (fraction φ1), and those with si (t) = −1 (fraction φ2), such that φ = φ1 + φ2.
Clearly, we expect the former to be more plentiful than the latter.

We will now derive steady state distributions over agents for the mean step size �i . For
this purpose we will write the attendance as

Aμ
t = �μ + Xμ + Yμ + St , (7)

where

Xμ =
∑

i∈φ1

ξ
μ
i (8)

Yμ = −
∑

i∈φ2

ξ
μ
i (9)

St =
∑

i fickle

ξ
μ
i si (t) , (10)

corresponding to the three categories of agents discussed previously. We will make the fol-
lowing simplifying approximations for these three components: the fickle component wewill
model as completely disordered, such that si (t) = ±1 is random, and correspondingly (for
large N) St is normally distributed with mean zero and variance

σ 2
s = ϕN/2,

with ϕ = (1− φ1 − φ2) the fraction of fickle agents. (Thus, neglecting that the fickle agents
would also have a net anticorrelation with the background ��). We will assume the frozen
agents to simply be a sum of independent random variables drawn from the distribution
of �ξ , thus neglecting that the agents that are frozen may come from the extremes of this
distribution.

To proceed, we need to find the distribution of �ξi , i.e. how it varies over the set of agents.
(Henceforth we will usually drop the index i and regard the objects as drawn from a distribu-
tion.) Begin by defining �ψ = Random(±1)�ξ , which is thus disorderedwith respect to the sign
of �� · �ψ1. The objectψμ is independent of�μ (ignoring 1/N corrections due to�μ �= 0 lim-
iting the available bids ±1), taking values (1, 0,−1) with probability (1/4, 1/2, 1/4), which
gives mean zero and variance 1/2. Consider the joint object h = 1

P
�� · �ψ , for large P this

becomes normally distributed with mean zero and variance σ 2
h = 1

P (N/2)(1/2) = 1/(4α)

[5].
Now, to quantify the correlation between �ξ and �� we define the object

h̃ = 1

P
�� · �ξ = −|h|

1 Note that what we here refer to as ψ is what is called ξ in the literature [5]. In this paper we reserve ξ for
the object where strategies are ordered such that �� · �ξi ≤ 0, corresponding to ξ

μ
i = −ψ

μ
i sign( �� · �ψi ).
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which consequently has mean < h̃ >= − ∫
dhP(h)|h| = −1/

√
2πα and < h̃2 >= σ 2

h . We
will represent this distribution by assuming that each component ξμ are independentGaussian
random variables with a mean that is linearly dependent on �μ. With this assumption we
find the conditional distribution

Pξμ|�μ = N ξμ(−c(α)�μ/N , σξ ) , (11)

where c(α) =
√

2
πα

, and σ 2
ξ = 1/2, and where we write the normal distribution over x with

mean μ and variance σ 2 as Nx (μ, σ ) = 1√
2πσ

e−(x−μ)2/2σ 2
. This quantifies that ξμ is on

average anticorrelated with �μ which is expected to place strategy 1 in the minority group
more often than strategy 2.

Using Eq.11 we can also calculate the distributions of Xμ (Yμ) as the sum of φ1N (φ2N )
correlated objects ξ

μ
i , giving

PXμ|�μ = NXμ(−c(α)φ1�
μ, σX |�) (12)

PYμ|�μ = NYμ(c(α)φ2�
μ, σY |�) , (13)

with conditional variances σ 2
X |� = φ1N/2 and σ 2

Y |� = φ2N/2.

3.1 Distribution of Step Sizes

Given the model expressions for the distributions of all the components of the score update
equation (Eq.4) we will find the distribution of mean (time averaged) step sizes. As a first
step we integrate out the fast variable St to get a conditional on μ time averaged step size
�μ = 〈�(t)|μ〉. (Over a long time series of the game every historyμwill occur many times,
we thus average over all those occurrences of a single history.) This corresponds to

�μ = −ξμ

∫
dSP(S)

[
sign(�μ + Xμ + Yμ + S)

+ sign(x)ξμδ
( 1
2 (�

μ + Xμ + Yμ + S)
)]

. (14)

The second term, which is a self-interaction, follows from the discrete nature of the original
problem. It gives a negative bias for the used strategy coming from the fact that if the net
attendance from all other agents is zero, the used strategy puts the agent in themajority group.
(The factor 1

2 in the delta function is to account for the fact that the attendance, as defined
in Eq.1, changes in steps of two and the factor sign(x)ξμ comes from the fact that only the
used strategy enters the attendance.) Integrated this gives

�μ = �
μ
fit + �

μ
bias

= −ξμerf

(
�μ + Xμ + Yμ

√
2σS

)

−sign(x)(ξμ)2

√
2

π

1

σS
e−(�μ+Xμ+Yμ)2/2σ 2

S , (15)

where we have identified the first term as a fitness �fit which quantifies the relative fitness
of the agent’s two strategies and the second as a negative bias �bias for the used strategy as
discussed previously.

To calculate the distribution ofmean step sizes wewill assume that histories occur with the
same frequency such that � = 1

P

∑
μ �μ. This is in fact not the case for a single realization

of the game in the dilute phase, some histories occur more often than others, as one can see
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directly from any simulation in this regime. Nevertheless, for large P we will assume that
this variation of occurrences of μ averages out. As discussed extensively in the literature the
overall behavior of the game is insensitive to whether the actual history is used (endogenous
information) as input to the agents or if a random history is supplied (exogenous information)
[10,11,16,21,22]. This is also confirmed by the present work through the good agreement
between the model using exogenous information and simulations in which we use the actual
history.

Assuming large P and given the assumption of independence of the distributions
�, ξ, X, Y for different μ we expect the distribution P(�) to approach a Gaussian (by
the central limit theorem) with mean

�̄ =
∫

d�dξdXdY P�Pξ |�PX |�PY |��μ , (16)

with �μ as in Eq.15, and with variance σ 2 = 1
P (�2 − �̄2).

The integrals are readily done analytically as described in the Appendix 1, but the expres-
sions are very lengthy. The main features can be expressed in the following form:

�̄bias = −sign(x)
1√
N

�̃bias(α, φ1, φ2)

�̄fit = 1√
αN

�̃fit(α, φ1, φ2) , (17)

where �̃bias/fit > 0 are functions that only depend on N and P through α = P/N , change
slowly as a function of the arguments in the physically relevant regime 0 ≤ φ1+φ2 ≤ 1 (Fig.
7) and which satisfy �̃bias(α, 0, 0) = 1√

2π
and �̃fit(α, 0, 0) = 1

π
. As seen from Eq.17, the

mean bias is towards x = 0, the used strategy is penalized, while the mean fitness is positive
acting to increase the relative score x , consistent with our choice of gauge as discussed earlier.

The only appreciable contribution to the variance comes from the fitness term scaling as
1/P whereas the bias has a variance that scales with 1/(N P) and thus negligible (as is the
cross term). The variance can be written

σ 2
bias = 0 (18)

σ 2
fit = 1

αN
σ̃ 2(α, φ1, φ2) , (19)

where σ̃ > 0 also changes slowly in the relevant regime (Fig. 7) and satisfies σ̃ (α, 0, 0) = 1√
6
.

The width of the fitness distribution explains the fact that even though �̄fit > 0 consistent
with φ1 �= 0, there are also some agents with a large negative fitness which implies φ2 �= 0.
The fact that �ξ · �� < 0 thus does not necessarily imply that strategy 1 is more successful
than strategy 2 as the correlation with the other frozen agents is also an important factor. For
large α, both the mean and variance of the fitness vanish, as can be understood as a result
of there being too few agents compared to the number of possible outcomes to maintain any
appreciable correlation between an agents strategies and the aggregate background, �ξ · �� ≈ 0.
In this limit, since the bias term always penalizes the used strategy there can be no frozen
agents. We also see that both the mean and width of the distribution for given α scales with
1/

√
N , consistent with simulations (Fig. 3).
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3.2 Fraction of Frozen Agents

For each agent the score difference xi moves with a mean step per unit time of

�+ = �fit − |�̄bias| for x > 0

�− = �fit + |�̄bias| for x < 0 , (20)

where�fit is drawn from the distributionN (�̄fit, σfit). If the fitness is high, such that�+ > 0,
the agent will have a net positive movement and the agent is frozen, with xi > 0 and growing
unbounded. The fraction of positive frozen agents is given by

φ1 =
∫ ∞

|�̄bias|
dzNz(�̄fit, σfit)

= 1

2
+ 1

2
erf

[√
α

2

(
�̃fit/

√
α − |�̃bias|
σ̃

)]
. (21)

Similarly, if the fitness is relatively very poor, such that �− < 0 the agent is frozen (with
xi < 0) with magnitude growing unbounded. The fraction of negatively frozen agents is
given by

φ2 =
∫ −|�̄bias|

−∞
dzNz(�̄fit, σfit)

= 1

2
− 1

2
erf

[√
α

2

(
�̃fit/

√
α + |�̃bias|
σ̃

)]
, (22)

and correspondingly the complete fraction of frozen agents φ = φ1 + φ2 and fickle agents
ϕ = 1−φ are found. Since �̃fit, �̃bias, and σ̃ are functions of α, φ1, and φ2, the two equations
allow for solving for φ1(α) and φ2(α) as a function of the only parameter α. We find that the
solutions are readily found by forward iteration, and the results are plotted and compared to
direct simulations of the game in Fig. 22. The fit is good, but there is no indication of a phase
transition for small α in this simplified model.

From simulations we can also measure the distribution of mean step sizes to compare to
themodel, which is shown in Fig. 3. There we show an intermediate value of α, the fit in terms
of mean and width is not as good close to αc and almost perfect for large α, but everywhere
the data seems well represented by a normal distribution. We also use the mean step size
distributions from simulations to calculate the fraction of frozen agents, Fig. 2. (The naive
way to distinguish between frozen and switching agents; to introduce a cut-off xcut at some
time t , with any agents with |xt | > xcut considered frozen, makes it difficult to distinguish
between frozen and switching agents with � near 0.)

4 Distributions Over x

We now use the fact that each agent is characterized by an average step size per unit time,
specified by the fitness �fit, to describe the movement of the relative score x on the set of
integers. Consider that the agent at time step t has score difference x , what is the probability
that at time t + 1 the score difference is x ′? In each time step, x can only change by −1, 0, 1

2 The numerical data for Fig. 2 is found by measuring the mean step size and identifying those that for x > 0
have � > 0 or for x < 0 have � < 0 as shown in Fig. 3.
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Fig. 2 The fraction of frozen agents as a function of α = P/N from the statistical model (Eqs. 21 and 22)
compared to results from direct numerical simulations of the game. The frozen agents are divided into two
groups φ1 and φ2 depending on if they are frozen with relative score x > 0 or x < 0 respectively. The fact
that φ1 > φ2 follows from our convention �ξi · �� ≤ 0 (Eq.5). Also shown is the total fraction of frozen agents
from the replica calculation for linear payoff (Eqs. 3.41–3.44 of [10]). (Each data point is averaged over 20
runs with ∼ 1e6 time steps each (1e5 steps for N = 2001))

as given by the basic score update Eq.4. We specify the respective probabilities p−, p0, p+
with p− + p0 + p+ = 1 for x > 0 and q−, q0, q+ for x < 0. The mean probability that
x remains unchanged is p0 = q0 = 1

2 as this corresponds to ξ
μ
i = 0, meaning that the

agent’s two strategies have the same bid which on average (over μ) will be the case for
half of the histories. It should also be clear that the stepping probabilities cannot depend
on the magnitude of x , only the sign, because the difference in score between strategies
does not enter the game, only which strategy is currently used. The case x = 0 has to be
treated separately; we toss a coin to decide which strategy is used, thus the probability for
a +1 increment is (p+ + q+)/2 and for a −1 increment is (p− + q−)/2. The movement
of x thus corresponds to a one-dimensional random walk on a chain, with asymmetric jump
probabilities, as sketched in Fig. 4.

To relate the probabilities to the mean step size we note that for x > 0, �+ = 1 · p+ + 0 ·
p0 − 1 · p−, which together with the conservation of probability and the fact that p0 = 1/2
gives

p± = 1

4
± �+

2
(23)

q± = 1

4
± �−

2
, (24)

where results for q follow from the same analysis for x < 0. Keeping in mind that for a
fickle agent �+ < 0 and �− > 0 this is of course consistent with p+ < p− and q− < q+.
A frozen agent is instead given by p+ > p− or q− > q+.
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Fig. 3 Distributions for mean step per unit time � = 〈x(t + 1) − x(t)〉 at α ≈ 4 for x > 0 (top) and x < 0
(bottom), comparing direct simulations of the game to the statistical model (Eq. 20). The fraction of frozen
agents with x > 0 (φ1) is indicated by ”fr,+” and similarly for x < 0 (φ2). The distributions of step sizes
are different for x > 0 and x < 0 because of the convention �ξi · �� ≤ 0 as explained in Fig. 2. (Simulations
averaged over 1e6 time steps, excluding a 1e4 equilibration time)

. . . −1 0 1 . . .

q+ q+ (p+ + q+)/2 p+

p−p−(p− + q−)/2q−

q0 (p0 + q0)/2 p0

Fig. 4 The movement of the relative strategy score x of an agent is described by a random walk on a chain
with jump probabilities p+, p−, p0 for x > 1 (i.e. strategy 1 in play) and q+, q−, q0 for x < −1 (i.e. strategy
2 in play). At the boundary x = −1, 0, 1 due to the coin toss choice of strategy the probabilities are altered as
in the figure

With the known probabilities we can write down a master equation on the chain for the
probability distribution Px (t) (implicit �fit dependence)

Px (t + 1) = p0Px (t) + p+Px−1(t) + p−Px+1(t), x > 1

Px (t + 1) = q0Px (t) + q+Px−1(t) + q−Px+1(t), x < 1 ,

(25)
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and at the boundary

P1(t + 1) = p0P1(t) + 1

2
(p+ + q+)P0(t) + p−P2(t),

P0(t + 1) = 1

2
(q0 + p0)P0(t) + q+P−1(t) + p−P1(t),

P−1(t + 1) = q0P−1(t) + q+P−2(t) + 1

2
(p+ + q−)P0(t) .

(26)

Assuming that the distribution is stationary, such that Px (t) = Px , and concentrating on
x > 0, we find after some manipulations the equation

p−
p+

− Px−1

Px
= p−

p+
Px+1

Px
− 1

which has the exponential solution

Px ∼
(
p−
p+

)−x

= e
−x ln p−

p+ ≈ e4x�
+

, x > 1 . (27)

In the last step we used Eq.23 and the fact that from Eq.17 the mean step size is small such
that |�+| ∼ 1/

√
N � 1. From this we can identify a decay length x+ = 1/(4|�+|) ∼ √

N ,
which characterizes the range of positive excursions of the score difference of the fickle
agent. Clearly, this solution requires p− > p+ (�+ < 0) to be bounded, as is the case for
fickle agents. From the same analysis for x < 1 the fickle agents with q− < q+ have the

distribution Px ∼ e
x ln q+

q− ≈ e4x�
−
. What remains is to match up the solutions for positive

and negative x at the interface. This can be solved exactly, but given that the exponential
prefactor is small we settle for the approximate expression

Px ≈ e−4|�+|x P0, x ≥ 0

Px ≈ e4�
−x P0, x ≤ 0

P0 ≈ 4

|�+|−1 + (�−)−1 . (28)

From this expression we see that the distribution is asymmetric, such that given that on
average |�+| < �− agents are more likely to be found with x > 0. This opens up for a more
sophisticated modelling (left for future work) where this aspect is fed back into the initial
statistical description of the sum of fickle agents through the dynamical variable St , the total
attendance of the fickle agents, acquiring a mean depending on μ.

For the frozen agents the master equation is the same, but given p+ > p− (or q− > q+)
we expect a drift of the mean of the distribution. Thus focusing on long times we can consider
one or the other of Eqs. 25 depending on whether the agent is frozen with x > 0 or x < 0.
For x > 0 and assuming that the agent at time t = 0 is at site x = 0 (neglecting the influence
of any excursions to x < 0) we can write down an exact expression for Px (t) in terms
of a multinomial distribution. Alternatively, and simpler, we can take the continuum limit

Px (t + 1) = P(x, t) + dP
dt and Px±1(t) = P(x, t) ± dP

dx + 1
2
d2P
dx2

to find the Fokker-Planck
equation

∂P

∂t
= −(p+ − p−)

∂P

∂x
+ 1

2
(p+ + p−)

∂2P

∂x2
. (29)

Given the initial condition P(x, 0) = δ(x) this has the solution P(x, t) = Nx (x̄, σt ) with
x̄ = (p+ − p−)t = �+t and σ 2

t = (p+ + p−)t = 1
2 t , thus describing diffusion with a drift.
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4.1 Full Score Distributions

Given that we now have a description of the relative score distribution of a single agent
in terms of an asymmetric exponential decay or diffusion, we can also consider the full
distribution of relative scores over all agents, by integrating over the distribution of mean
step sizes. Defining the scaled variables x̃ = x/

√
N and t̃ = t/N we write P(x̃, t̃) =

Pfi(x̃) + Pfr,+(x̃, t̃) + Pfr,−(x̃, t̃), corresponding to the stationary distribution of the fickle
agents and diffusive distributions of the frozen agents with x > 0 and x < 0 respectively.
The first component is

Pfi(x̃) =
∫ bα

−bα

dzNz

(
�̃fit√

α
, σ̃√

α

)
4e4(z±bα)x̃

(bα − z)−1 + (bα + z)−1 , (30)

where ± corresponds to x < 0 and x > 0 respectively, and where bα = |�̃bias|. For the
frozen agents we have

Pfr,+(x̃, t̃) =
∫ ∞

bα

dzNz

(
�̃fit√

α
,

σ̃√
α

)
Nx̃ (t̃(z − bα), σt̃ )

Pfr,−(x̃, t̃) =
∫ −bα

−∞
dzNz

(
�̃fit√

α
,

σ̃√
α

)
Nx̃ (t̃(z + bα), σt̃ ) ,

(31)

where σ 2
t̃

= t̃/2. These expressions are compared to direct simulations of the game for
intermediate α ≈ 4 in Fig. 5. The simulations are averaged over a specific time window
and the diffusive component Eq.31 is integrated over the corresponding scaled time window.
The agreement is excellent over the complete stationary and diffusive components of the
distribution and shows the data collapse in terms of scaled coordinates. In Fig. 6 we also
show a comparison for large α ≈ 80 where the simulations have no frozen agents and all
fickle agents are localized by a length close to the α → ∞ value x0 = √

πN/8.
The asymmetry of these plots is an artefact of our gauge choice �ξi · �� ≤ 0 which implies

that on average agents will use strategy 1 (x > 0) more frequently than strategy 2 (x < 0). To
restore the full symmetry is simply a matter of symmetrizing the distributions around x = 0.

Finally, we remark that the formal solution in terms of an exponential distribution of
strategy scores for frozen agents was derived in [13] from a Fokker-Planck equation for the
linear payoff game. See Appendix 2 and 3 for a further discussion of the comparison between
the present model and the Hamiltonian formulation.

5 Summary

We have studied the asymmetric phase of the basicMinority Game, focusing on the statistical
distribution of relative strategy scores and the original sign-payoff formulation of the game.
We formulate a statistical model for the attendance that relies on a specific gauge choice in
which the two strategies of each agent are ordered with respect to the background (�ξi · �� ≤ 0
for all agents i). Using this model we can derive a distribution of the mean step per time
increment for the relative scores, specified in terms of a bias for the used strategy and the
relative fitness of the two strategies. The relative strategy score for each agent is conveniently
described as a random walk on an integer chain, where the jump probabilities are calculated
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Fig. 5 Full scaled distribution Px̃ with x̃ = x/
√
N over all agents for α ≈ 4 compiled by averaging

simulations over scaled time window t̃0 = t0/
√
N to t̃1 = t1/

√
N . The model results (”fickle+frozen”) are

Px̃ = 1
t̃1−t̃0

∫ t̃1
t̃0

dt̃ P(x̃, t̃), using Equations 30 and 31. Also shown are model results using only fickle agents.

The following time windows are used: for N = 501, t0 = 5e5 to t1 = 5e6; for N = 1001, t = 2t0 to 2t1; for
N = 2001, t = 4t0 to 4t1, which correspond to the same t̃0 and t̃1. (Simulations are averaged over 80 runs
for N = 501 and 15 runs for N = 1001 and 2001)
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Fig. 6 Distribution Px̃ at large α ≈ 80. There are no frozen agents, and the simulated and model (“fickle”)
distributions are stationary. Also shown is the asymptotic α → ∞ behavior where all agents are symmetrically
localizedwith localization length x0 = √

πN/8, and a simulation atα ≈ 650which approaches this asymptotic
behavior. (Simulations averaged over ∼ 4e8 time steps)
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from the mean step. The probability distribution of observing the agent at some position on
the chain at a given time is either given by a static asymmetric exponential localized around
x = 0 for fickle agents or to diffusion with a drift for frozen agents. Excellent agreement with
direct simulations of the game for the score distribution confirms the basic validity of the
modelling. At the same time, as discussed in the appendix, the fluctuations of the attendance
are overestimated by the model. By contrasting with the Hamiltonian formulation of the
dynamics the reason for this discrepancy is readily understood from viewing the model as a
crude ansatz for full minimization problem. This also opens up for improving the model by
introducing some variational parameters without having to confront the full complexity of
the minimization of a non-quadratic Hamiltonian for general payoff functions.

We thank ErikWerner for valuable discussions. Simulations were performed on resources
at Chalmers Centre for Computational Science and Engineering (C3SE) provided by the
Swedish National Infrastructure for Computing (SNIC).
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Appendix 1: Solving for Mean and Variance of Step Size

The integrals to calculate the mean and variance for the distribution of average step sizes,
Eq.16, are Gaussian integrals including the error function. To solve these we first rescale the
variables in terms of the variance �/σ� → �, X/σX |� → X etc. and perform the integral

over the distribution of agents ξ which evaluates to 〈ξ |�〉 = −c(α)�/
√
2N (c(α) =

√
2

πα
)

and 〈ξ2|�〉 = 1
2 . We are left with integrals

�̄bias = −sign(x)
1√

πNϕ

∫
d�dXdY

(2π)3/2

e− 1
2 [�2+(X+√

φ1c(α)�)2+(Y−√
φ2c(α)�)2]

e
− 1

2

(
�+√

φ1X+√
φ2Y√

ϕ

)2

, (32)

�̄fit = c(α)√
2N

∫
d�dXdY

(2π)3/2

e− 1
2 [�2+(X+√

φ1c(α)�)2+(Y−√
φ2c(α)�)2]

� erf

(
� + √

φ1X + √
φ2Y√

2ϕ

)
, (33)

and

σ 2
fit = 1

2P

∫
d�dXdY

(2π)3/2

e− 1
2 [�2+(X+√

φ1c(α)�)2+(Y−√
φ2c(α)�)2]

erf2
(

� + √
φ1X + √

φ2Y√
2ϕ

)
, (34)

123

http://creativecommons.org/licenses/by/4.0/


Diffusion and Localization of Relative Strategy Scores… 109

0 2 4 6 8 10 12 14 16 18 20
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 7 Theα parameter dependence of the three quantities specifying themean and variance of the distribution
of mean step sizes according to Eqs. 17 and 18

To evaluate these we use the following integral formulas

∫ (
∏

i

dxi√
2π

)
e− 1

2 x
T Ax = 1/

√
det (A) , (35)

∫
dx√
2π

e− x2
2 x erf

(
bx√
2

+ c

)
=

√
2

π

b√
1 + b2

e−c2/(1+b2) , (36)

and ∫
dx√
2π

e− x2
2 erf2

(
bx√
2

)
= 4

π
arctan

√
1 + 2b2 − 1 , (37)

where A is a symmetric (positive definite) matrix, and b and c are real constants. The bias
term thus follows from a direct application of the first integral formula to a 3×3 matrix. The
fitness term follows from a substitution X ′ = X + √

φ1c(α)� and Y ′ = Y − √
φ2c(α)� to

apply the second integral formula over� and subsequently the first integral formula on a 2×2
matrix. The variance can be calculated by the substitution for �, z = � + √

φ1X + √
φ2Y ,

followed by integrating out X and Y to finally apply the third integral formula over z. The
actual expressions are quite lengthy3, but the important features can be represented according
to Eqs. 17 and 19 in terms of functions �̃bias(α, φ1, φ2), �̃fit(α, φ1, φ2), and σ̃ (α, φ1, φ2).
After solving for for the fractions of frozen agents φ1(α) and φ2(α) using Eqs. 21 and 22, we
can consider these functions as dependent only on the control parameter α. The dependence
on α is plotted in Fig. 7, to point out that these functions change little over the whole relevant
range α > αc ≈ 0.3.

3 The exact expressions for these quantities are derived from the integral formulas as explained, but we are
also happy to share them directly. Contact the first author.

123



110 M. Granath, A. Perez-Diaz

Appendix 2: Hamiltonian Formulation

Here we connect the formalism in the present work to the solution using the replica method,
following closely the presentation in [13] and [8]. Expressing the attendance for given history
in terms of fluctuations around a mean as

Aμ
t = 〈A|μ〉 + St , (38)

where St is a Gaussian random variable with mean zero and variance σ 2
S (to be determined

self-consistently). This is related to expression (7), where we take an explicit statistical form
〈A|μ〉 = �μ + Xμ +Yμ, assumed to correspond to background plus frozen agents. Also, in
the model in this paper we have the magnitude of σ 2

S as ϕN/2, with ϕ the fraction of fickle
agents. This is not assumed in the present treatise, but as we will see the outcome is related.

There is also the explicit expression, Eq.6, for the attendance Aμ
t = �μ + ∑

i ξ
μ
i si (t),

where si (t) = ±1 depending on which strategy is momentarily used by the agent. Taking
the time average of this and assuming that the frequency of use is not influenced by the rapid
switches of history we write 〈si (t)〉 = mi , where for frozen agents mi = ±1 and for fickle
|mi | < 1. As discussed in [13] the fluctuations of si (t) are statistically independent such that
〈si (t)s j (t)〉 = mim j for i �= j , whereas (si (t))2 = 1 by definition. With this we can write
〈A|μ〉 = �μ + ∑

i ξ
μ
i mi , noting that ∂〈A|μ〉

∂mi
= ξ

μ
i .

Now, evaluating the variance of the attendance using Eq.6 and σ 2
� = N/2, we find

σ 2 = 〈A2〉 = N

2
+ 1

P
(2 �� · �ξimi +

∑

i �= j

�ξi · �ξ jmim j +
∑

i

(�ξi )2) .

This we can alternatively write (using Eq.38) as σ 2 = 1
P

∑
μ〈A|μ〉2 + σ 2

S = H + σ 2
S . Here

H , the predictability, also has the alternative form (using Eq.6)

H = N

2
+ 1

P
(2 �� · �ξimi +

∑

i j

�ξi · �ξ jmim j ) .

Correspondingly we find for the rapidly fluctuating field St the variance

σ 2
S = σ 2 − H =

∑

i

1

2
(1 − m2

i )

(using σ 2
ξ = 1/2). The latter expression has no contribution from frozen agents (as expected),

and assuming that the distribution of mi is quite strongly centred at 0 it will be close to, but
always lower than, our assumed value of ϕN/2.

Consider now thefixedhistory timeaveraged step size for agent i ,�μ
i = −ξ

μ
i 〈sign(At )|μ〉,

with

〈sign(At )|μ〉 =
∫

dSP(S)sign(〈A|μ〉 + S).

The aim is to find a Hamiltonian generator H of the long time dynamics such that the time
and history averaged update is given by

�̄i = 1

P

∑

μ

ξ
μ
i 〈sign(A)|μ〉 = − ∂H

∂mi
.

(Note that this expression is not equivalent to Eq.16. The latter is the mean of a distribution,
whereas the present object represents the full distribution of average step sizes over agents
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corresponding to different i .) A function that does this is H = ∫
dSP(S)G(〈A|μ〉 + S)

where G(x) = x sign(x) such that dG
dx = sign(x), which evaluates to

H = 1

P

∑

μ

(
〈A|μ〉erf( 〈A|μ〉√

2σS
) +

√
2

π
σSe

−(〈A|μ〉)2/2σ 2
s

)
. (39)

Thinking of the long-time evolution of the score difference for agent xi which has an average
step size �̄i , we find that if �̄i > 0 the agent will be frozen positive, with mi = 1 and
similarly if �̄i < 0 it will be frozen negative, with mi = −1. Only if �̄i = 0 the agent will
be fickle, with −1 < mi < 1. Considering that �̄i = − ∂H

∂mi
we find the three cases: m1 = 1

corresponds to ∂H
∂mi

< 0, m1 = −1 corresponds to ∂H
∂mi

> 0, and −1 < mi < 1 corresponds

to ∂H
∂mi

= 0. The solution to this thus corresponds to finding the minimum ofH with respect
to {mi }.

The minimization of Eq.39 however, looks like a formidable problem in the thermo-
dynamic limit, and we are not aware that it has been pursued in the literature. (Note that
〈A|μ〉 ∼ √

N ∼ σS such that an expansion in 〈A|μ〉 is not appropriate.) This is in contrast
to the case of linear payoff (see Appendix 3) where Hlinear = H = 1

P

∑
μ〈A|μ〉2 which is

a quadratic form in the variables mi . For the latter case the minimization problem has been
solved using the replica method [8,17,18]. The equilibrium score distributions that we focus
on in the present work have been solved for in [13] but to the best of our knowledge not
for the sign-payoff game. Also, it appears that these distributions have not been discussed or
studied in any detail, or compared to simulations, in earlier work.

Appendix 3: Distributions with Linear Payoff

Here we repeat the analysis of the main paper for the case of linear payoff where Eq.4 is
replaced by

�i (t) = −ξ
μ
i Aμ

t . (40)

We apply the same distributions, Eqs. 11–13, for the relative bid ξμ, the contribution to the
attendance of the positively (x > 0) frozen agents Xμ, and the negatively (x < 0) frozen
agents Yμ and write Aμ

t = �μ + Xμ + Yμ + St (Eq.7). Here �μ is the background (mean
zero, variance N/2) and St is the contribution from the fickle agents (with assumed mean
zero). Integrating over time at fixed history μ, St integrates to zero because of linearity,
giving

�μ = �
μ
fit + �

μ
bias

= −ξμ(�μ + Xμ + Yμ) − sign(x)(ξμ)2 , (41)

where we have explicitly inserted the negative bias term for the used strategy. Averaging over
histories in the large P limit we find that the bias is just a constant

�bias = −sign(x)
1

2
, (42)

and the fitness is normal with mean and variance given by

�̄fit = c

2
(1 − cφ1 + cφ2) (43)

σ 2
fit = 1

4α
[(1 − cφ1 + cφ2)

2 + φ1 + φ2] , (44)
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Fig. 8 The fraction of frozen agents as a function of α for linear payoff. Also shown is the total fraction of
frozen agents from the replica calculation (Eqs. 3.41–3.44 of [10]) (Each data point is averaged over 20 runs
with ∼ 1e6 time steps each (1e5 steps for N = 2001))

where as before c = c(α) = √
2/πα and φ1 and φ2 are the respective fractions of frozen

agents. We note that the step size is of order 1 for the linear payoff, compared to order 1/
√
N

for the sign payoff game. Similarly in both cases, for large α the fitness drops out, ensuring
that there are no frozen agents. For moderate α the fraction of frozen agents need to be solved
for self-consistently through the equations

φ1 =
∫ ∞

1/2
dzNz(�̄fit, σfit) = 1

2
erfc

(
1
2 − �̄fit√

2σfit

)

φ2 =
∫ −1/2

−∞
dzNz(�̄fit, σfit) = 1

2
erfc

(
1
2 + �̄fit√

2σfit

)
.

As for the sign-payoff game the results from solving these equations numerically are in good
agreement with simulation data in the dilute phase as shown in Fig. 8. (Note, compared to
Fig. 2, that both the data and model results for the fraction of frozen agents are very similar
and quite insensitive to whether sign-payoff or linear payoff is used.)

The fluctuations of attendance σ 2 = 〈A2〉 = H + ϕN/2 with H = 1
P

∑
μ〈A|μ〉2 =

N
2 (1 − c(φ1 − φ2)))

2 are compared to simulations in Fig. 9. These are clearly significantly
overestimated by the model. (Similar results are found for the sign-payoff game and model.)
Following the exposition in Appendix2, the reasons for this discrepancy is quite clear. The
model always overestimates the fluctuations St , and since we are assuming that only the
frozen agents contribute to 〈A|μ〉 we also miss the contribution of the fickle agents to reduce
H . There seems to be a quite clear path to improve the model along these lines, which is left
for future work. Here we opt for the simplicity of solving the present model and the fact that
it does give quantitative agreement with distribution of relative strategy scores.

As a next step we can find the score distributions by solving the master equation on an
integer chain. In contrast to the t game where scores are only updated by 0 or ±1, we now
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Fig. 9 Model and simulation results for σ 2 and H for the linear payoff game. (Each point is averaged over
10 runs with 107 time steps each)

have to consider longer range hopping where scores are updated by integer steps in the range
−N to N . Taking into account the individual time averaged step size �± = �fit ∓ 1

2 (for
x > 0 and x < 0 respectively) and the fact that ξμ(t)At has variance N/2, we expect that the
jump propabilities are well represented by a normal distribution (for a jump from x to x ′)

px→x ′ = N(x ′−x)

(
�±,

√
N

2

)
. (45)

The master equation takes the form

Px (t + 1) =
∑

x ′
px ′→x Px ′(t) . (46)

Taking the continuum limit over space and ignoring complications due to the boundary x = 0,
this can be solved in terms of exponential localization for fickle agents (�+ < 0 and�− > 0)
and diffusion with a drift for frozen agents (�+ > 0 or �− < 0). For fickle agents the score
distributions are given by

P(x) ∼ e∓4|�±|x/N (47)

for x > 0 and x < 0 respectively, which in the large α limit reduces to P(x) ∼ e∓2x/N . For
frozen agents the distributions are given by

P(x, t) = Nx

(
�±t,

√
Nt

2

)
, (48)

for positively and negatively frozen agents respectively.
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