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Abstract

The statistical resolution limit (SRL), which is defined as the minimal separation between parameters to allow a
correct resolvability, is an important statistical tool to quantify the ultimate performance for parametric estimation
problems. In this article, we generalize the concept of the SRL to the multidimensional SRL (MSRL) applied to the
multidimensional harmonic retrieval model. In this article, we derive the SRL for the so-called multidimensional
harmonic retrieval model using a generalization of the previously introduced SRL concepts that we call
multidimensional SRL (MSRL). We first derive the MSRL using an hypothesis test approach. This statistical test is
shown to be asymptotically an uniformly most powerful test which is the strongest optimality statement that one
could expect to obtain. Second, we link the proposed asymptotic MSRL based on the hypothesis test approach to
a new extension of the SRL based on the Cramér-Rao Bound approach. Thus, a closed-form expression of the
asymptotic MSRL is given and analyzed in the framework of the multidimensional harmonic retrieval model.
Particularly, it is proved that the optimal MSRL is obtained for equi-powered sources and/or an equi-distributed
number of sensors on each multi-way array.

Keywords: Statistical resolution limit, Multidimensional harmonic retrieval, Performance analysis, Hypothesis test,
Cramér-Rao bound, Parameter estimation, Multidimensional signal processing

Introduction
The multidimensional harmonic retrieval problem is an
important topic which arises in several applications [1].
The main reason is that the multidimensional harmonic
retrieval model is able to handle a large class of applica-
tions. For instance, the joint angle and carrier estimation
in surveillance radar system [2,3], the underwater acous-
tic multisource azimuth and elevation direction finding
[4], the 3-D harmonic retrieval problem for wireless
channel sounding [5,6] or the detection and localization
of multiple targets in a MIMO radar system [7,8].
One can find many estimation schemes adapted to the

multidimensional harmonic retrieval estimation pro-
blem, see, e.g., [1,2,4-7,9,10]. However, to the best of

our knowledge, no work has been done on the resolva-
bility of such a multidimensional model.
The resolvability of closely spaced signals, in terms of

parameter of interest, for a given scenario (e.g., for a
given signal-to-noise ratio (SNR), for a given number of
snapshots and/or for a given number of sensors) is a
former and challenging problem which was recently
updated by Smith [11], Shahram and Milanfar [12], Liu
and Nehorai [13], and Amar and Weiss [14]. More pre-
cisely, the concept of statistical resolution limit (SRL), i.
e., the minimum distance between two closely spaced
signalsa embedded in an additive noise that allows a cor-
rect resolvability/parameter estimation, is rising in sev-
eral applications (especially in problems such as radar,
sonar, and spectral analysis [15].)
The concept of the SRL was defined/used in several

manners [11-14,16-24], which could turn in it to a con-
fusing concept. There exist essentially three approaches
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to define/obtain the SRL. (i) The first is based on the
concept of mean null spectrum: assuming, e.g., that two
signals are parameterized by the frequencies f1 and f2,
the Cox criterion [16] states that these sources are
resolved, w.r.t. a given high-resolution estimation algo-
rithm, if the mean null spectrum at each frequency f1
and f2 is lower than the mean of the null spectrum at

the midpoint
f1 + f2
2

. Another commonly used criterion,

also based on the concept of the mean null spectrum, is
the Sharman and Durrani criterion [17], which states
that two sources are resolved if the second derivative of

the mean of the null spectrum at the midpoint
f1 + f2
2

is

negative. It is clear that the SRL based on the mean null
spectrum is relevant to a specific high-resolution algo-
rithm (for some applications of these criteria one can
see [16-19] and references therein.) (ii) The second
approach is based on detection theory: the main idea is
to use a hypothesis test to decide if one or two closely
spaced signals are present in the set of the observations.
Then, the challenge herein is to link the minimum
separation, between two sources (e.g., in terms of fre-
quencies) that is detectable at a given SNR, to the prob-
ability of false alarm, Pfa and/or to the probability of
detection Pd. In this spirit, Sharman and Milanfar [12]
have considered the problem of distinguishing whether
the observed signal contains one or two frequencies at a
given SNR using the generalized likelihood ratio test
(GLRT). The authors have derived the SRL expressions
w.r.t. Pfa and Pd in the case of real received signals, and
unequal and unknown amplitudes and phases. In [13],
Liu and Nehorai have defined a statistical angular reso-
lution limit using the asymptotic equivalence (in terms
of number of observations) of the GLRT. The challenge
was to determine the minimum angular separation, in
the case of complex received signals, which allows to
resolve two sources knowing the direction of arrivals
(DOAs) of one of them for a given Pfa and a given Pd.
Recently, Amar and Weiss [14] have proposed to deter-
mine the SRL of complex sinusoids with nearby fre-
quencies using the Bayesian approach for a given
correct decision probability. (iii) The third approach is
based on a estimation accuracy criteria independent of
the estimation algorithm. Since the Cramér-Rao Bound
(CRB) expresses a lower bound on the covariance matrix
of any unbiased estimator, then it expresses also the
ultimate estimation accuracy [25,26]. Consequently, it
could be used to describe/obtain the SRL. In this con-
text, one distinguishes two main criteria for the SRL
based on the CRB: (1) the first one was introduced by
Lee [20] and states that: two signals are said to be resol-
vable w.r.t. the frequencies if the maximum standard
deviation is less than twice the difference between f1 and

f2. Assuming that the CRB is a tight bound (under mild/
weak conditions), the standard deviation, σf̂1 and σf̂2, of
an unbiased estimator f̂ = [f̂1 f̂2]T is given by

√
CRB(f1)

and
√
CRB(f2), respectively. Consequently, the SRL is

defined, in the Lee criterion sense, as 2max{√
CRB(f1),

√
CRB(f2)

}
. One can find some results and

applications in [20,21] where this criterion is used to
derive a matrix-based expression (i.e., without analytic
inversion of the Fisher information matrix) of the SRL
for the frequency estimates in the case of the condi-
tional and unconditional signal source models. On the
other hand, Dilaveroglu [22] has derived a closed-form
expression of the frequency resolution for the real and
complex conditional signal source models. However,
one can note that the coupling between the parameters,
CRB(f1, f2) (i.e., the CRB for the cross parameters f1 and
f2), is ignored by this latter criterion. (2) To extend this,
Smith [11] has proposed the following criterion: two sig-
nals are resolvable w.r.t. the frequencies if the difference
between the frequencies, δf, is greater than the standard
deviation of the DOA difference estimation. Since, the
standard deviation can be approximated by the CRB,
then, the SRL, in the Smith criterion sense, is defined as
the limit of δf for which δf <

√
CRB(δf ) is achieved.

This means that, the SRL is obtained by solving the fol-
lowing implicit equation

δ2f = CRB(δf ) = CRB(f1) + CRB(f2) − 2CRB(f1, f2).

In [11,23], Smith has derived the SRL for two closely
spaced sources in terms of DOA, each one modeled by
one complex pole. In [24], Delmas and Abeida have
derived the SRL based on the Smith criterion for DOA
of discrete sources under QPSK, BPSK, and MSK model
assumptions. More recently, Kusuma and Goyal [27]
have derived the SRL based on the Smith criterion in
sampling estimation problems involving a powersum
series.
It is important to note that all the criteria listed before

take into account only one parameter of interest per sig-
nal. Consequently, all the criteria listed before cannot be
applied to the aforementioned the multidimensional
harmonic model. To the best of our knowledge, no
results are available on the SRL for multiple parameters
of interest per signal. The goal of this article is to fill
this lack by proposing and deriving the so-called MSRL
for the multidimensional harmonic retrieval model.
More precisely, in this article, the MSRL for multiple

parameters of interest per signal using a hypothesis test
is derived. This choice is motivated by the following
arguments: (i) the hypothesis test approach is not speci-
fic to a certain high-resolution algorithm (unlike the
mean null spectrum approach), (ii) in this article, we
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link the asymptotic MSRL based on the hypothesis test
approach to a new extension of the MSRL based on the
CRB approach. Furthermore, we show that the MSRL
based on the CRB approach is equivalent to the MSRL
based on the hypothesis test approach for a fixed couple
(Pfa, Pd), and (iii) the hypothesis test is shown to be
asymptotically an uniformly most powerful test which is
the strongest statement of optimality that one could
expect to obtain [28].
The article is organized as follows. We first begin by

introducing the multidimensional harmonic model, in
section “Model setup”. Then, based on this model, we
obtain the MSRL based on the hypothesis test and on
the CRB approach. The link between theses two MSRLs
is also described in section “Determination of the MSRL
for two sources” followed by the derivation of the MSRL
closed-form expression, where, as a by product the
exact closed-form expressions of the CRB for the multi-
dimensional retrieval model is derived (note that to the
best of our knowledge, no exact closed-form expressions
of the CRB for such model is available in the literature).
Furthermore, theoretical and numerical analyses are
given in the same section. Finally, conclusions are given.

Glossary of notation
The following notations are used through the article.
Column vectors, matrices, and multi-way arrays are
represented by lower-case bold letters (a, ...), upper-case
bold letters (A, ...) and bold calligraphic letters (A, ...),
whereas

• ℝ and ℂ denote the body of real and complex
values, respectively,
• RD1×D2×···×DI and CD1×D2×···×DI denote the real and
complex multi-way arrays (also called tensors) body
of dimension D1 × D2 × ... ×DI, respectively,
• j = the complex number

√−1.
• IQ = the identity matrix of dimension Q,
• 0Q1×Q2 = the Q1 × Q2 matrix filled by zeros,
• [a]i = the ith element of the vector a,
• [A]i1,i2 = the i1th row and the i2th column element
of the matrix A,
• [A]i1,i2,...,iN = the (i1, i2, ..., iN)th entry of the multi-
way array A,
• [A]i,p:q = the row vector containing the (q - p + 1)
elements [A]i,k, where k = p, ..., q,
• [A]p:q,k = the column vector containing the (q - p +
1) elements [A]i,k, where i = p, ..., q,
• the derivative of vector a w.r.t. to vector b is

defined as follows:

[
∂a
∂b

]
i,j
=

∂[a]i
∂[b]j

,

• AT = the transpose of the matrix A,
• A* = the complex conjugate of the matrix A,

• AH = (A*)T,
• tr {A} = the trace of the matrix A,
• det {A} = the determinant of the matrix A,
• ℜ{a} = the real part of the complex number a,
• E{a} = the expectation of the random variable a,

• ||a||2 =
1
L

∑L
t=1 [a]

2
t denotes the normalized norm

of the vector a (in which L is the size of a),
• sgn (a) = 1 if a ≥ 0 and -1 otherwise.
• diag(a) is the diagonal operator which forms a
diagonal matrix containing the vector a on its
diagonal,
• vec(.) is the vec-operator stacking the columns of a
matrix on top of each other,
• ⊙ stands for the Hadamard product,
• ⊗ stands for the Kronecker product,
• ○ denotes the multi-way array outer-product
(recall that for a given multi-way arrays
A ∈ CA1×A2×···×AI and B ∈ CB1×B2×···×BJ, the result of
the outer-product of A and B denoted by

CA1×···×AI×B1×···×BJ is given by
[C]a1,...,aI,b1,...,bJ = [A ◦ B]a1,...,aI,b1,...,bJ = [A]a1,...,aI [B]b1,...,bJ).

Model setup
In this section, we introduce the multidimensional har-
monic retrieval model in the multi-way array form (also
known as tensor form [29]). Then, we use the PARAFAC
(PARallel FACtor) decomposition to obtain a vector
form of the observation model. This vector form will be
used to derive the closed-form expression of the MSRL.
Let us consider a multidimensional harmonic model

consisting of the superposition of two harmonics each
one of dimension P contaminated by an additive noise.
Thus, the observation model is given as follows
[8,9,26,30-32]:

[Y(t)]n1,...,nP = [X (t)]n1,...,nP+[N (t)]n1,...,nP , t = 1, . . . , L, and np = 0, . . . ,Np−1,ð1Þ
where Y(t), X (t), and N (t) denote the noisy observa-

tion, the noiseless observation, and the noise multi-way
array at the tth snapshot, respectively. The number of
snapshots and the number of sensors on each array are
denoted by L and (N1, ...,NP), respectively. The noiseless
observation multi-way array can be written as followsb

[26,30-32]:

[X (t)]n1 ,...,nP =
2∑

m=1

sm(t)
P∏
p=1

ejω
(p)
m np , (2)

where ω
(p)
m and sm(t) denote the mth frequency viewed

along the pth dimension or array and the mth complex
signal source, respectively. Furthermore, the signal
source is given by sm(t) = αm(t)ejφm(t) where am(t) and
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jm(t) denote the real positive amplitude and the phase
for the mth signal source at the tth snapshot,
respectively.
Since,

P∏
p=1

ejω
(p)
m np =

[
a(ω(1)

m ) ◦ a(ω(2)
m ) ◦ · · · ◦ a(ω(P)

m )
]
n1,n2,...,nP

,

where a(.) is a Vandermonde vector defined as

a(ω(p)
m ) =

[
1 ejω

(p)
m · · · ej(Np − 1)ω(p)

m

]T
,

then, the multi-way array X (t) follows a PARAFAC
decomposition [7,33]. Consequently, the noiseless obser-
vation multi-way array can be rewritten as follows:

X (t) =
2∑

m=1

sm(t)
(
a(ω(1)

m ) ◦ a(ω(2)
m ) ◦ · · · ◦ a(ω(P)

m )
)
. (3)

First, let us vectorize the noiseless observation as
follows:

vec(X (t)) =
[
[X (t)]0,0,...,0 · · · [X (t)]N1−1,0,··· ,0[X (t)]0,1,...,0 · · · [X (t)]N1−1,N2−1,...,NP−1

]T.ð4Þ

Thus, the full noise-free observation vector is given by

x =
[
vecT(X (1)) vecT(X (2)) · · · vecT(X (L))

]T
.

Second, and in the same way, we define y, the noisy
observation vector, and n, the noise vector, by the con-
catenation of the proper multi-way array’s entries, i.e.,

y =
[
vecT(Y(1)) vecT(Y(2)) · · · vecT(Y(L))

]T
= x + n. (5)

Consequently, in the following, we will consider the
observation model in (5). Furthermore, the unknown
parameter vector is given by

ξ =
[
ωTρT]T, (6)

where ω denotes the unknown parameter vector of
interest, i.e., containing all the unknown frequencies

ω =
[
(ω(1))

T · · · (ω(P))
T
]T
,

in which

ω(p) =
[
ω
(p)
1 ω

(p)
2

]T
. (7)

whereas r contains the unknown nuisance/unwanted
parameters vector, i.e., characterizing the noise covar-
iance matrix and/or amplitude and phase of each source
(e.g., in the case of a covariance noise matrix equal to
σ 2ILN1...NP

and unknown deterministic amplitudes and
phases, the unknown nuisance/unwanted parameters
vector r is given by r = [a1(1) ... a2(L)j1(1) ... j2(L)s2]T.

In the following, we conduct a hypothesis test formu-
lation on the observation model (5) to derive our MSRL
expression in the case of two sources.

Determination of the MSRL for two sources
Hypothesis test formulation
Resolving two closely spaced sources, with respect to
their parameters of interest, can be formulated as a bin-
ary hypothesis test [12-14] (for the special case of P =
1). To determine the MSRL (i.e., P ≥ 1), let us consider
the hypothesis H0 which represents the case where the
two emitted signal sources are combined into one signal,
i.e., the two sources have the same parameters (this
hypothesis is described by ∀p ∈ [1 . . . P],ω(p)

1 = ω
(p)
2 ),

whereas the hypothesis H1 embodies the situation where
the two signals are resolvable (the latter hypothesis is
described by ∃p Î [1 ... P], such that ω

(p)
1 �= ω

(p)
2
). Conse-

quently, one can formulate the hypothesis test, as a sim-
ple one-sided binary hypothesis test as follows:{H0 : δ = 0,

H1 : δ > 0,
(8)

where the parameter δ is the so-called MSRL which
indicates us in which hypothesis our observation model
belongs. Thus, the question addressed below is how can
we define the MSRL δ such that all the P parameters of
interest are taken into account? A natural idea is that δ
reflects a distance between the P parameters of interest.
Let the MSRL denotes the l1 normc between two sets
containing the parameters of interest of each source
(which is the naturally used norm, since in the mono-
parameter frequency case that we extend here, the SRL
is defined as δ = f1 - f2 [13,14,34]). Meaning that, if we
denote these sets as C1 and C2 where

Cm =
{
ω
(1)
m ,ω(2)

m , . . . ,ω(P)
m

}
, m = 1,2, thus, δ can be

defined as

δ �
P∑
p=1

∣∣∣ω(p)
2 − ω

(p)
1

∣∣∣ . (9)

First, note that the proposed MSRL describes well the
hypothesis test (8) (i.e., δ = 0 means that the two
emitted signal sources are combined into one signal and
δ ≠ 0 the two signals are resolvable). Second, since the
MSRL δ is unknown, it is impossible to design an opti-
mal detector in the Neyman-Pearson sense. Alterna-
tively, the GLRT [28,35] is a well-known approach
appropriate to solve such a problem. To conduct the
GLRT on (8), one has to express the probability density
function (pdf) of (5) w.r.t. δ. Assuming (without loss of
generality) that ω

(1)
1 > ω

(1)
2
, one can notice that ξ is

known if and only if δ and ϑ �
[
ω
(1)
2 (ω(2))

T
. . . (ω(P))

T
]T
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are fixed (i.e., there is a one to one mapping between δ,
ϑ, and ξ). Consequently, the pdf of (5) can be described
as p(y|δ,ϑ). Now, we are ready to conduct the GLRT for
this problem:

LG(y) =
maxδ,ϑ1p(y|δ,ϑ1,H1)
maxϑ0p(y|ϑ0,H0)

=
p(y|δ̂, ϑ̂1,H1)

p(y|ϑ̂0,H0)

H1

≷
H0

ς ′,
(10)

where δ̂, ϑ̂1, and ϑ̂0 denote the maximum likelihood
estimates (MLE) of δ under H1, the MLE of ϑ under H1

and the MLE of ϑ under H0, respectively, and where ς’
denotes the test threshold. From (10), one obtains

TG(y) = Ln LG(y)
H1

≶
H0

ς = Lnς ′, (11)

in which Ln denotes the natural logarithm.

Asymptotic equivalence of the MSRL
Finding the analytical expression of TG(y) in (11) is not
tractable. This is mainly due to the fact that the deriva-
tion of δ̂ is impossible since from (2) one obtains a mul-
timodal likelihood function [36]. Consequently, in the
following, and as ind [13], we consider the asymptotic
case (in terms of the number of snapshots). In [35, eq
(6C.1)], it has been proven that, for a large number of
snapshots, the statistic TG(y) follows a chi-square pdf
under H0 and H1 given by

TG(y) ∼
{

χ2
1 under H0,

χ ′2
1(κ

′(Pfa,Pd)) under H1,
(12)

where χ2
1 and χ ′2

1(κ
′(Pfa,Pd)) denote the central chi-

square and the noncentral chi-square pdf with one
degree of freedom, respectively. Pfa and Pd are, respec-
tively, the probability of false alarm and the probability
of detection of the test (8). In the following, CRB(δ)
denotes the CRB for the parameter δ where the
unknown vector parameter is given by [δ ϑT]T. Conse-
quently, assuming that CRB(δ) exists (under H0 and
H1), is well defined (see section “MSRL closed-form
expression” for the necessarye and sufficient conditions)
and is a tight bound (i.e., achievable under quite gen-
eral/weak conditions [36,37]), thus the noncentral para-
meter �’(Pfa, Pd) is given by [[35], p. 239]

κ ′(Pfa,Pd) = δ2(CRB(δ))−1. (13)

On the other hand, one can notice that the noncentral
parameter �’(Pfa, Pd) can be determined numerically by
the choice of Pfa and Pd [13,28] as the solution of

Q−1
χ2
1
(Pfa) = Q−1

χ2
1 (κ ′(Pfa,Pd))

(Pd), (14)

in whichQ−1
χ2
1
(� ) andQ−1

χ ′2
1(κ ′(Pfa,Pd))

(� ) are the inverse

of the right tail of the χ2
1 and χ ′2

1(κ
′(Pfa,Pd)) pdf start-

ing at the value ϖ. Finally, from (13) and (14) one
obtainsf

δ = κ(Pfa, Pd)
√
CRB(δ), (15)

where
√

κ(Pfa,Pd) = κ ′(Pfa,Pd) is the so-called transla-
tion factor [13] which is determined for a given prob-
ability of false alarm and probability of detection (see
Figure 1 for the behavior of the translation factor versus
Pfa and Pd).
Result 1: The asymptotic MSRL for model (5) in the

case of P parameters of interest per signal (P ≥ 1) is
given by δ which is the solution of the following equa-
tion:

δ2 − κ2(Pfa,Pd)(Adirect + Across) = 0, (16)

where Adirect denotes the contribution of the para-
meters of interest belonging to the same dimension as
follows

Adirect =
P∑
p=1

CRB(ω(p)
1 ) + CRB(ω(p)

2 ) − 2CRB(ω(p)
1 ,ω(p)

2 ),

and where Across is the contribution of the cross terms
between distinct dimension given by

Across =
P∑
p=1

P∑
p′=1
p′ �=p

gpgp′(CRB(ω(p)
1 ,ω(p′)

1 ) + CRB(ω(p)
2 ,ω(p′)

2 ) − 2CRB(ω(p)
1 ,ω(p′)

2 )),

in which gp = sgn
(
ω
(p)
1 − ω

(p)
2

)
.

Proof see Appendix 1.
Remark 1: It is worth noting that the hypothesis test

(8) is a binary one-sided test and that the MLE used is

Figure 1 The translation factor � versus the probability of
detection Pd and Pfa. One can notice that increasing Pd or
decreasing Pfa has the effect to increase the value of the translation
factor �. This is expected since increasing Pd or decreasing Pfa leads
to a more selective decision [28,35].
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an unconstrained estimator. Thus, one can deduce that
the GLRT, used to derive the asymptotic MSRL [13,35]:
(i) is the asymptotically uniformly most powerful test
among all invariant statistical tests, and (ii) has an
asymptotic constant false-alarm rate (CFAR). Which is,
in the asymptotic case, considered as the strongest state-
ment of optimality that one could expect to obtain [28].

• Existence of the MSRL: It is natural to assume that
the CRB is a non-increasing (i.e., decreasing or con-
stant) function on ℝ+ w.r.t. δ since it is more diffi-
cult to estimate two closely spaced signals than two
largely-spaced ones. In the same time the left hand
side of (15) is a monotonically increasing function w.
r.t. δ on ℝ+. Thus for a fixed couple (Pfa, Pd), the
solution of the implicit equation given by (15) always
exists. However, theoretically, there is no assurance
that the solution of equation (15) is unique.
• Note that, in practical situation, the case where
CRB(δ) is not a function of δ is important since in
this case, CRB(δ) is constant w.r.t. δ and thus the
solution of (15) exists and is unique (see section
“MSRL closed-form expression”).

In the following section, we study the explicit effect of
this so-called translation factor.

The relationship between the MSRL based on the CRB
and the hypothesis test approaches
In this section, we link the asymptotic MSRL (derived
using the hypothesis test approach, see Result 1) to a
new proposed extension of the SRL based on the Smith
criterion [11]. First, we recall that the Smith criterion
defines the SRL in the case of P = 1 only. Then, we
extend this criterion to P ≥ 1 (i.e., the case of the multi-
dimensional harmonic model). Finally, we link the
MSRL based on the hypothesis test approach (see Result
1) to the MSRL based on the CRB approach (i.e., the
extended SRL based on the Smith criterion).
The Smith criterion: Since the CRB expresses a lower

bound on the covariance matrix of any unbiased estima-
tor, then it expresses also the ultimate estimation accu-
racy. In this context, Smith proposed the following
criterion for the case of two source signals parameter-
ized each one by only one frequency [11]: two signals
are resolvable if the difference between their frequency,

δω(1) = ω
(1)
2 − ω

(1)
1
, is greater than the standard deviation

of the frequency difference estimation. Since, the stan-
dard deviation can be approximated by the CRB, then,
the SRL, in the Smith criterion sense, is defined as the
limit of δω(1) for which δω(1) <

√
CRB(δω(1) ) is achieved.

This means that, the SRL is the solution of the following
implicit equation

δ2
ω(1) = CRB(δω(1) ).

The extension of the Smith criterion to the case of P ≥
1: Based on the above framework, a straightforward
extension of the Smith criterion to the case of P ≥ 1 for
the multidimensional harmonic model is as follows: two
multidimensional harmonic retrieval signals are resolva-
ble if the distance between C1 and C2, is greater than
the standard deviation of the δCRB estimation. Conse-
quently, assuming that the CRB exists and is well
defined, the MSRL δCRB is given as the solution of the
following implicit equation{

δ2CRB = CRB(δCRB)
s.t. δCRB =

∑P
p=1 |ω(p)

2 − ω
(P)
1 |. (17)

Comparison and link between the MSRL based on the
CRB approach and the MSRL based on the hypothesis
test approach: The MSRL based on the hypothesis test
approach is given as the solution of{

δ = κ(Pfa,Pd)
√
CRB(δ),

s.t. δ =
∑P

p=1

∣∣∣ω(p)
2 − ω

(p)
1

∣∣∣ ,
whereas the MSRL based on the CRB approach is

given as the solution of (17). Consequently, one has the
following result:
Result 2: Upon to a translation factor, the asymptotic

MSRL based on the hypothesis test approach (i.e., using
the binary one-sided hypothesis test given in (8)) is equiva-
lent to the proposed MSRL based on the CRB approach (i.
e., using the extension of the Smith criterion). Conse-
quently, the criterion given in (17) is equivalent to an
asymptotically uniformly most powerful test among all
invariant statistical tests for �(Pfa, Pd) = 1 (see Figure 2 for
the values of (Pfa, Pd) such that � (Pfa, Pd) = 1).

Figure 2 All values of (Pfa, Pd) such that �(Pfa, Pd) = 1.
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The following section is dedicated to the analytical
computation of closed-form expression of the MSRL. In
section “Assumptions,” we introduce the assumptions
used to compute the MSRL in the case of a Gaussian
random noise and orthogonal waveforms. Then, we
derive non matrix closed-form expressions of the CRB
(note that to the best of our knowledge, no closed-form
expressions of the CRB for such model is available in
the literature). In “MSRL derivation” and thanks to
these expressions, the MSRL wil be deduced using (16).
Finally, the MSRL analysis is given.

MSRL closed-form expression
in section “Determination of the MSRL for two sources”
we have defined the general model of the multidimen-
sional harmonic model. To derive a closed-form expres-
sion of the MSRL, we need more assumptions on the
covariance noise matrix and/or on the signal sources.

Assumptions
• The noise is assumed to be a complex circular
white Gaussian random process i.i.d. with zero-mean
and unknown variance σ 2ILN1...NP.
• We consider a multidimensional harmonic model
due to the superposition of two harmonics each of
them of dimension P ≥ 1. Furthermore, for sake of
simplicity and clarity, the sources have been
assumed known and orthogonal (e.g., [7,38]). In
this case, the unknown parameter vector is fixed
and does not grow with the number of snapshots.
Consequently, the CRB is an achievable bound
[36].
• Each parameter of interest w.r.t. to the first signal,

ω
(p)
1 p = 1 . . . P, can be as close as possible to the

parameter of interest w.r.t. to the second signal

ω
(p)
2 p = 1 . . . P, but not equal. This is not really a

restrictive assumption, since in most applications,
having two or more identical parameters of interest
is a zero probability event [[9], p. 53].

Under these assumptions, the joint probability density
function of the noisy observations y for a given
unknown deterministic parameter vector ξ is as follows:

p(y|ξ) =
L∏
t=1

p(vec(Y(t))|ξ) = 1

(πσ 2)LN
e

−1
σ 2 (y−x)

H
(y−x)

,

where N =
∏P

p=1 Np. The multidimensional harmonic

retrieval model with known sources is considered
herein, and thus, the parameter vector is given by

ξ =
[
ωTσ 2]T, (18)

where

ω =
[
(ω(1))

T · · · (ω(P))
T
]T
,

in which

ω(p) =
[
ω
(p)
1 ω

(p)
2

]T
. (19)

CRB for the multidimensional harmonic model with
orthogonal known signal sources
The Fisher information matrix (FIM) of the noisy obser-
vations y w.r.t. a parameter vector ξ is given by [39]

FIM(ξ) = E

{
∂ ln p(y|ξ)

∂ξ

(
∂ ln p(y|ξ)

∂ξ

)H
}
.

For a complex circular Gaussian observation model,
the (ith, kth) element of the FIM for the parameter vec-
tor ξ is given by [34]

[FIM(ξ)]i,k =
LN
σ 4

∂σ 2

∂[ξ ]i

∂σ 2

∂[ξ ]k
+

2
σ 2

	
{

∂xH

∂[ξ ]i

∂x
∂[ξ ]k

}
(i, k) = {1, . . . , 2P + 1}2.ð20Þ

Consequently, one can state the following lemma.
Lemma 1: The FIM for the sum of two P-order har-

monic models with orthogonal known sources, has a
block diagonal structure and is given by

FIM(ξ) =
2
σ 2

[
Fω 02P×1

01×2P ×
]
, (21)

where, the (2P) × (2P) matrix Fω is also a block diago-
nal matrix given by

Fω = LN(� ⊗ G), (22)

in which Δ = diag {||a1||
2 ,||a2||

2} where

αm =
[
αm(1) ... αm(L)

]T for m ∈ {1, 2}, (23)

and

[G]k,l =

⎧⎪⎨
⎪⎩

(2Nk − 1)(Nk − 1)
6

for k = l,

(Nk − 1)(Nl − 1)
2

for k �= l.

Proof see Appendix 2.
After some calculation and using Lemma 1, one can

state the following result.
Result 3: The closed-form expressions of the CRB for

the sum of two P-order harmonic models with orthogo-
nal known signal sources are given by

CRB(ω(p)
m ) =

6
LNSNRm

Cp, m ∈ {1, 2}, (24)
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where SNRm =
||αm||2

σ 2
denotes the SNR of the mth

source and where

Cp =
Np(1 − 3VP) + 3VP + 1

(Np + 1)(N2
p − 1)

in which VP =
1

1 + 3
∑P

p=1
Np−1
Np+1

.

Furthermore, the cross-terms are given by

CRB(ω(p)
m ,ω(p′)

m′ ) =

⎧⎨
⎩
0 for m �= m′,

−6
LNSNRm

C̃p,p′ for m = m′ and p �= p′, (25)

where

C̃p,p′ =
3VP

(Np + 1)(Np′ + 1)
.

Proof see Appendix 3.

MSRL derivation
Using the previous result, one obtains the unique solu-
tion of (16), thus, the MSRL for model (1) is given by
the following result:
Result 4: The MSRL for the sum of P-order harmonic

models with orthogonal known signal sources, is given
by

δ =

√√√√√√√ 6
LNESNR

⎛
⎜⎜⎝

P∑
p=1

Cp −
P∑

p,p′=1
p �=p′

gpgp′ C̃p,p′

⎞
⎟⎟⎠ , (26)

where the so-called extended SNR is given by

ESNR =
SNR1SNR2

SNR1 + SNR2
.

Proof see Appendix 4.

Numerical analysis
Taking advantage of the latter result, one can analyze
the MSRL given by (26):

• First, from Figure 3 note that the numerical solu-
tion of the MSRL based on (12) is in good agree-
ment with the analytical expression of the MSRL
(23), which validate the closed-form expression given
in (23). On the other hand, one can notice that, for
Pd = 0.37 and Pfa = 0.1 the MSRL based on the CRB
is exactly equal to the MSRL based on hypothesis
test approach derived in the asymptotic case. From
the case Pd = 0.49 and Pfa = 0.3 or/and Pd = 0.32
and Pfa = 0.1, one can notice the influence of the
translation factor �(Pfa, Pd) on the MSRL.

• The MSRLg is O(

√
1

ESNR
) which is consistent with

some previous results for the case P = 1 (e.g.,
[12,14,24]).
• From (26) and for a large number of sensors N1 =
N2 = ... = NP = N ≫ 1, one obtains a simple expres-
sion

δ =

√
12

LNP+1ESNR
P

1 + 3P
,

meaning that, the SRL is O(

√
1

NP+1
).

• Furthermore, since P ≥ 1, one has

(P + 1) (3P + 1)
P(3P + 4)

< 1,

and consequently, the ratio between the MSRL of a
multidimensional harmonic retrieval with P parameters
of interest, denoted by δP and the MSRL of a multidi-
mensional harmonic retrieval with P + 1 parameters of
interest, denoted by δP+1, is given by

δP+1

δP
=

√
(P + 1)(3P + 1)
NP(3P + 4)

, (27)

meaning that the MSRL for P + 1 parameters of inter-
est is less than the one for P parameters of interest (see
Figure 4). This, can be explained by the estimation addi-
tional parameter and also by an increase of the received
noisy data thanks to the additional dimension. One
should note that this property is proved theoretically
thanks to (27) using the assumption of an equal and
large number of sensors. However, from Figure 4 we
notice that, in practice, this can be verified even for a

Figure 3 MSRL versus s2 for L = 100.

El Korso et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:12
http://asp.eurasipjournals.com/content/2011/1/12

Page 8 of 14



small number of sensors (e.g., in Figure 4 one has 3 ≤
Np ≤ 5 for p = 3, ..., 6).

• Furthermore, since√
4

LNP+1ESNR
≤ δP < δP−1 < · · · < δ1

one can note that, the SRL is lower bounded by√
4

LNP+1ESNR
.

• One can address the problem of finding the opti-
mal distribution of power sources making the SRL
the smallest as possible (s.t. the constraint of con-
stant total source power). In this issue, one can state
the following corollary: Corollary 1: The optimal
power’s source distribution that ensures the smallest
MSRL is obtained only for the equi-powered sources
case.

Proof see Appendix 5.
This result was observed numerically for P = 1 in [12]

(see Figure 5 for the multidimensional harmonic model).
Moreover, it has been shown also by simulation for the
case P = 1 that the so-called maximum likelihood break-
down (i.e., when the mean square error of the MLE
increases rapidly) occurs at higher SNR in the case of
different power signal sources than in the case of equi-
powered signal sources [40]. The authors explained it by
the fact that one source grabs most of the total power,
then, this latter will be estimated more accurately,
whereas the second one, will take an arbitrary parameter

estimation which represents an outlier.

• In the same way, let us consider the problem of
the optimal placement of the sensorsh N1, ...,NP ,
making the minimum MSRL s.t. the constraint that
the total number of sensors is constant (i.e.,

Ntotal =
∑P

p=1 Np in which we suppose that Ntotal is a

multiple of P).

Corollary 2: If the total number of sensors Ntotal, is a
multiple of P, then an optimal placement of the sensors
that ensure the lowest MSRL is (see Figure 6 and 7)

N1 = · · · = NP =
Ntotal

P
. (28)

Proof see Appendix 6.
Remark 3: Note that, in the case where Ntotal is not a

multiple of P, one expects that the optimal MSRL is
given in the case where the sensors distribution
approaches the equi-sensors distribution situation given
in corollary 3. Figure 7 confirms that (in the case of P =
3, N1 = 8 and a total number of sensors N = 22). From
Figure 7, one can notice that the optimal distribution of
the number of sensors corresponds to N2 = N3 = 7 and
N1 = 8 which is the nearest situation to the equi-sensors
distribution.

Figure 5 MSRL versus SNR1, the SNR of the first source, and
SNR2, the SNR of the second source. One can notice that the
optimal distribution of the SNR (which corresponds to the lowest

MSLR) corresponds to SNR1 = SNR2 =
SNRtotal

2
as predicted

by Corollary 1.

Figure 4 The SRL for multidimensional harmonic retrieval with
orthogonal known sources for M equally powered sources,
where P = 3, 4, 5, 6, L = 100, and the numbers of sensors are
given by N1 = 3, N2 = 5, N3 = 4, N4 = 4, N5 = 4, and N6 = 3.
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Conclusion
In this article, we have derived the MSRL for the multi-
dimensional harmonic retrieval model. Toward this end,
we have extended the concept of SRL to multiple para-
meters of interest per signal. First, we have used a
hypothesis test approach. The applied test is shown to
be asymptotically an uniformly most powerful test
which is the strongest statement of optimality that one
could hope to obtain. Second, we have linked the
asymptotic MSRL based on the hypothesis test approach
to a new extension of the SRL based on the Cramér-Rao
bound approach. Using the Cramér-Rao bound and a

proper change of variable formula, closed-form expres-
sion of the MSRL are given.
Finally, note that the concept of the MSRL can be

used to optimize, for example, the waveform and/or the
array geometry for a specific problem.

Appendix 1
The proof of Result 1
Appendix 1.1: In this appendix, we derive the MSRL
using the l1 norm.
From CRB(ξ) where ξ = [ωT rT]T in which

ω = [ω(1)
1 ω

(1)
2 ω

(2)
1 ω

(2)
2 · · · ω(P)

1 ω
(P)
2 ]T, one can deduce

CRB(


ξ) where


ξ = g(ξ) = [δ ϑT]T in which

ϑ � [ω(1)
2 (ω(2))T · · · (ω(P))T]T. Thanks to the Jacobian

matrix given by

∂g(ξ)
∂ξ

=

⎡
⎣hT 0

A 0
0 I

⎤
⎦ ,

where h = [g1g2 ... gP ]T ⊗ [1 - 1]T, in which

gp =
∂δ

∂ω
(p)
1

= − ∂δ

∂ω
(p)
2

= sgn (ω(p)
1 − ω

(p)
2 ) and A = [0 I].

Using the change of variable formula

CRB(


ξ) =
∂g(



ξ)

∂


ξ

CRB(ξ)

⎛
⎝∂g(



ξ)

∂


ξ

⎞
⎠

T

, (29)

one has

CRB(


ξ) =
[
hTCRB(ω)h ×

× I

]
.

Consequently, after some calculus, one obtains

CRB(δ) � [CRB(


ξ)]1,1 = hTCRB(ω)h

=
2P∑
p=1

2P∑
p′=1

[h]p[h]p′ [CRB(ω)]p,p′

=
P∑
p=1

P∑
p′=1

gpgp′
(
[CRB(ξ)]2p,2p′ + [CRB(ξ)]2p−1,2p′−1 − [CRB(ξ)]2p,2p′−1 − [CRB(ξ)]2p−1,2p′

)

� Adirect + Across,

ð30Þ

where

Adirect =
∑P

p=1 CRB(ω
(p)
1 ) + CRB(ω(p)

2 ) − 2CRB(ω(p)
1 ,ω(p)

2 )

and where Across(k) =
∑P

p=1

∑P
p′=1
p′ �=p

gpgp′
(
CRB(ω(p)

1 ,ω(p′)
1 ) + CRB(ω(p)

2 ,ω(p′)
2 ) − 2CRB(ω(p)

1 ,ω(p′)
2 )
)

Finally using (30) one obtains (16)
Appendix 1.2: In this part, we derive the MSRL using

the lk norm for a given integer k ≥ 1. The aim of this
part is to support the endnote a, which stays that using
the l1 norm computing the MSRL using the l1 norm is
for the calculation convenience.
Once again, from CRB(ξ), one can deduce CRB(



ξ k)
where



ξ k = gk(ξ) = [δ(k) ϑT]T in which the distance
between C1 and C2 using the lk norm is given by δ(k) ≜

Figure 7 The plot of the MSRL versus N2 in the case of P = 3,
N1 = 8 and a total number of sensors N = 22.

Figure 6 The MSRL versus N1 and N2 in the case of P = 3 and a
total number of sensors Ntotal = 21. One can notice that the
optimal distribution of the number of sensors (which corresponds

to the lowest SLR) corresponds to N1 = N2 = N3 =
Ntotal

3
as

predicted by (28).
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k-norm distance(C1,C2) =
(∑P

p=1 δkp

)1/k
and where

ϑ � [ω(1)
2 (ω(2))T . . . (ω(P))T]T. The Jacobian matrix is

given by

∂g(ξ)
∂ξ

=

⎡
⎣hT

k 0
A 0
0 I

⎤
⎦ ,

where hk = [1 - 1]T ⊗ [g1(k)g2(k) ... gP(k)]
T, in which

gp(k) =
∂δ(k)

∂ω
(p)
1

= −∂δ(k)

∂ω
(p)
2

and A = [0I]. Since |x|k can be

written as
√
x2k. Thus, for × ≠ 0, one has

gp(k) =

∂

(∑P
p′=1

√(
ω
(p′)
1 − ω

(p′)
2

)2k)1/k

∂ω
(p)
1

=
1
k

( p∑
i=1

√(
ω
(i)
1 − ω

(i)
2

)2k)1
k

−1 ∂

√(
ω
(i)
1 − ω

(i)
2

)2k
∂ω

(i)
1

= sgn(ω(p)
1 − ω

(p)
2 )

⎛
⎝ P∑

p=1

√(
ω
(p′)
1 − ω

(p′)
2

)2k⎞⎠
1
k

−1√(
ω
(p)
1 − ω

(p)
2

)2(k−1)
= sgn(ω(p)

1 − ω
(p)
2 )δ1−kδk−1

p .

ð31Þ

Again, using the change of variable formula (29), one
has

CRB(


ξ k) =
[
hT
kCRB(ω)hk ×

× I

]
.

Consequently, after some calculus, one obtains

CRB(δ(k)) � [CRB(


ξ k)]1,1

=
P∑
p=1

P∑
p′=1

gp(k)gp′(k)([CRB(ξ)]2p,2p′ + [CRB(ξ)]2p−1,2p′−1 − [CRB(ξ)]2p,2p′−1 − [CRB(ξ)]2p−1,2p′)

= (δ(k))2(1−k)(Adirect(k) + Across(k)),

ð32Þ

where
Adirect(k) =

∑P
p=1 δ

2(k−1)
p

(
CRB(ω(p)

1 ) + CRB(ω(p)
2 ) − 2CRB(ω(p)

1 ,ω(p)
2 )
)

and where
Across(k) =

∑P

p=1

∑P
p′=1
p′ �=p

δk−1
p δk−1

p′ sgn(ω(p)
1 −ω

(p)
2 )sgn(ω(p′)

1 −ω
(p′)
2 )

(
CRB(ω(p)

1 ,ω(p′)
1 ) + CRB(ω(p)

2 ,ω(p′)
2 ) − 2CRB(ω(p)

1 ,ω(p′)
2 )
)
.

Consequently, note that resolving analytically the
implicit equation (32) w.r.t. δ(k) is intractable (aside
from some special cases). Whereas, resolving analytically
the implicit equation (30) can be tedious but feasible
(see section “MSRL closed form expression”).
Furthermore, denoting gp(1) = gp, Across(1) ≜ Across and

Adirect(1) ≜ Adirect and using (32) one obtains (16).

Appendix 2
Proof of Lemma 1
From (20) one can note the well-known property that
the model signal parameters are decoupled from the
noise variance [42]. Consequently, the block-diagonal
structure in (21) is self-evident.
Now, let us prove (22). From (4), one obtains

∂vec(X (t))

∂ω
(p)
m

= jsm(t)
(
a(ω(1)

m ) ⊗ a(ω(2)
m ) ⊗ · · · ⊗ a’(ω(p)

m ) ⊗ · · · ⊗ a(ω(P)
m )
)
,

where

a’(ω(p)
m ) =

[
0 ejω

(p)
m . . . (Np − 1)ej(Np−1)ω(p)

m

]T
.

Thus,

∂x

∂ω
(p)
m

= jsm ⊗
(
a(ω(1)

m ) ⊗ a(ω(2)
m ) ⊗ · · · ⊗ a’(ω(p)

m ) ⊗ · · · ⊗ a(ω(P)
m )
)
,

where sm = [sm(1) ... sm(L)]
T. Using the distributivity of

the Hermitian operator over the Kronecker product and
the mixed-product property of the Kronecker product
[43] and assuming, without loss of generality that p’ <p,
one obtains

(
∂x

∂ω
(p)
m

)H
∂x

∂ω
(p′)
m

=
(
sHm,⊗

[
aH(ω(1)

m′ ) ⊗ aH(ω(2)
m ) ⊗ · · · ⊗ a’H(ω(p′)

m ) ⊗ · · · ⊗ aH(ω(P)
m′ )
])

×
(
sm ⊗

[
a(ω(1)

m ) ⊗ a(ω(2)
m ) ⊗ · · · ⊗ a’(ω(p)

m ) ⊗ · · · ⊗ a(ω(P)
m )
])

= (sHm, sm) ⊗
(
aH(ω(1)

m′ )a(ω
(1)
m )
)

⊗ · · · ⊗
(
a’H(ω(p)

m′ )a(ω
(p)
m )
)

⊗ . . .

. . . ⊗
(
aH(ω(p′)

m )a’(ω(p′)
m′ )
)

⊗ · · · ⊗
(
aH(ω(P)

m′ )a(ω
(P)
m )
)
.

ð33Þ

On the other hand, one has

aH(ω(p)
m )a(ω(p)

m ) = Np, (34)

whereas

aH(ω(p)
m )a’(ω(p)

m ) =
Np(Np − 1)

2
and a’H(ω(p)

m )a’(ω(p)
m ) =

Np(2Np − 1)(Np − 1)

6
ð35Þ

Finally, assuming known orthogonal wavefronts [38] (i.
e., sHm, sm = 0) and replacing (35) and (34) into (33), one
obtains

(
∂x

∂ω
(p)
m

)H
∂x

∂ω
(p′)
m′

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 for m �= m′,

L||αm||2N (Np − 1)(Np′ − 1)

4
for m = m′ and p �= p′,

L||αm||2N (2Np − 1)(Np − 1)

6
for m = m′ and p = p′,

(36)

where am = [am (1) ... am (L)] for m Î {1, 2}: Conse-
quently, using (36), Fω can be expressed as a block diag-
onal matrix

Fω =
[
J1 0
0 J2

]
, (37)

where each P × P block Jm is defined by

Jm = L||αm||2NG, (38)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(N1 − 1)(2N1 − 1)
6

(N1 − 1)(N2 − 1)
4

. . .
(N1 − 1)(NP − 1)

4
(N2 − 1)(N1 − 1)

4
(N2 − 1)(2N2 − 1)

6
. . .

(N2 − 1)(NP − 1)
4

...
...

. . .
...

(NP − 1)(N1 − 1)
4

(N2P − 1)(N2 − 1)
4

· · · (NP − 1)(2NP − 1)
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Consequently, from (37) and (38) one obtains (22).
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Appendix 3
Proof of Result 3
Using (22) one obtains

CRB(ω) =
σ 2

2
F−1

ω =
σ 2

2LN
(�−1 ⊗ G−1) (39)

where �−1 = diag
{

1
||α1||2 ,

1
||α2||2

}
. In the following,

we give a closed-form expression of G-1. One can notice
that the matrix G has a particular structure such that it
can be rewritten as the sum of a diagonal matrix and of
a rank-one matrix: G = Q + ggT where

Q =
1
12

diag{ N2
1 − 1, . . . ,N2

P − 1} and γ =
1
2
[N1 − 1, . . . ,NP − 1]T

Thanks to this particular structure, an analytical inverse
of G can easily be obtained. Indeed, using the matrix
inversion lemma

G−1 = (Q + γ γ T)−1

= Q−1 − Q−1γ γ TQ−1

1 + γ TQ−1γ
.

(40)

A straightforward calculus leads to the following
results,

Q−1γ γ TQ−1 = 36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(N1 + 1)2
1

(N1 + 1)(N2 + 1)
· · · 1

(N1 + 1)(NP + 1)
1

(N2 + 1)(N1 + 1)
1

(N2 + 1)2
· · · 1

(N2 + 1)(NP + 1)
...

...
. . .

...
1

(NP + 1)(N1 + 1)
1

(NP + 1)(N2 + 1)
· · · 1

(NP + 1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (41)

and

γ TQ−1γ = 3
P∑
p=1

Np − 1

Np + 1
. (42)

Consequently, replacing (41) and (42) into (40), one
obtains

[G−1]k,l =

⎧⎪⎪⎨
⎪⎪⎩
12

Np(1 − 3VP) + 3VP + 1

(Np + 1)(N2
p − 1)

for k = l,

− 36VP

(Np + 1)(Np′ + 1)
for k �= l,

(43)

where VP =
(
1 + 3

∑P
p=1

Np − 1

Np + 1

)−1

. Finally, replacing

(43) into (39) one finishes the proof.

Appendix 4
Proof of Result 4
Using Results 1 and 3, one has

Adirect =
P∑
p=1

(
CRB(ω(p)

1 ) + CRB (ω(p)
2 )
)

=
6σ 2

LN

(
1

||α1||2 +
1

||α2||2
) P∑

p=1

Np(1 − 3VP) + 3VP + 1

(Np + 1)(N2
p − 1)

,

(44)

and

Across =
P∑
p=1

P∑
p′=1
p′ �=p

gpgp′
(
CRB(ω(p)

1 ,ω(p′)
1 ) + CRB(ω(p)

2 ,ω(p′)
2 )
)

= −6σ 2

LN

(
1

||α1||2 +
1

||α2||2
) P∑

p,p′=1
p �= p′

3gpgp′VP

(Np + 1)(Np′ + 1)
.

(45)

Consequently, replacing (44) and (45) into (16), one
finishes the proof.

Appendix 5
Proof of Corollary 1
In this appendix, we minimize the MSRL under the con-
straint SNR1 + SNR2 = SNRtotal (where SNRtotal is a real
fixed value). Since, the term

(
∑P

p=1 Cp −∑P
p,p′=1
p �=p′

gpgp′C̃p,p′) is independent from SNR1

and SNR2, minimizing δ is equivalent to minimize
G(SNR1, SNR2) where

G(SNR1, SNR2) = δ2
LN
6

⎛
⎜⎜⎝

P∑
p=1

Cp −
P∑

p,p′=1
p �=p′

gpgp′ C̃p,p′

⎞
⎟⎟⎠

−1

=
SNR1 + SNR2

SNR1SNR2
.

Using the method of Lagrange multipliers, the pro-
blem is as follows:⎧⎨
⎩
minSNR1,SNR2G(SNR1, SNR2)
s.t.
SNR1 + SNR2 = SNRtotal

Thus, the Lagrange function is given by
F(SNR1, SNR2,λ) = G(SNR1, SNR2) + λ(SNR1 + SNR2 − SNRtotal)

where l denotes the so-called Lagrange multiplier. A
simple derivation leads to,

∂F(SNR1, SNR2)
∂ SNR1

=
−1

SNR2
1

+ λ = 0 (46)

∂F(SNR1, SNR2)
∂ SNR2

=
−1

SNR2
2

+ λ = 0 (47)

∂F(SNR1, SNR2)
∂λ

= SNR1 + SNR2 − SNRtotal = 0. (48)

Consequently, from (46) and (47), one obtains SNR1 =

SNR1. Using (48), one obtains SNR1 = SNR2 =
SNRtotal

2
.

Using the constraint SNR1 + SNR2 = SNRtotal one
deduces corollary 1.

Appendix 6
Minimizing δ w.r.t. N1, ..., NP is equivalent to minimiz-

ing the function f (N) =
∑P

p=1 Cp −∑P
p,p′=1
p,�=p′

gpgp′ C̃p,p′,
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where N = [N1 ... NP]
T. However, since the numbers of

sensors on each array, N1, ..., NP, are integers, the deri-
vation of f(N) w.r.t. N is meaningless. Consequently, let
us define the function �f (.) exactly as f (.) where the set
of definition is ℝP instead of NP. Consequently,

f̄ (N̄)|N̄=N = f (N), where N̄ = [N̄1 . . . N̄P]T,

in which N̄1, ..., N̄P are real (continuous) variables.
Using the method of Lagrange multipliers, the pro-

blem is as follows:{
minN̄ f̄ (N̄)∑P

p=1 N̄p = N̄total

where N̄total is a real positive constant value. Thus, the
Lagrange function is given by

�(N̄,λ) = f̄ (N̄) + λ
(∑P

p=1 N̄p − N̄total

)
where l denotes

the Lagrange multiplier. For a sufficient number of sen-
sors, the Lagrange function can be approximated by

�(N̄,λ) ≈
P∑
p=1

N̄p(1 − 3V) + 3V + 1

N̄3
p

−
P∑

p,p′=1
p �=p′

3gpgp′V

N̄p N̄p′
+ λ

⎛
⎝ P∑

p=1

N̄p − N̄total

⎞
⎠

where V =
1

1 + 3P
. A simple derivation leads to,

∂�(N̄,λ)

∂N̄1
=
3(V − 1)

N̄3
1

− 3V + 1

N̄4
1

+
3V

N̄2
1

P∑
p,p′=1
p �=p′

gpgp′

N̄p′
+ λ = 0

...

∂�(N̄,λ)

∂N̄P
=
3(V − 1)

N̄3
P

− 3V + 1

N̄4
P

+
3V

N̄2
P

P∑
p,p′=1
p �=p′

gpgp′

N̄p′
+ λ = 0

∂�(N̄,λ)
∂λ

=
P∑
p=1

N̄p − N̄total = 0.

This system of equations seems hard to solve. How-
ever, an obvious solution is given by N̄1 = · · · = N̄P = N̄

and λ =
3V + 1

N̄4
− 3

V(Pν − 1) + V − 1

N̄3
in which ν =

∑P
p,p′=1
p �=p′

gpgp′.

Since,
∑P

p=1 Np = N̄total, thus the trivial solution is given

by N̄1 = · · · = N̄P =
N̄total

P
. Consequently, if N̄total is a

multiple of P then, the solution of minimizing the func-
tion f̄ (N̄) in ℝP coincides the solution of minimizing the
function f(N) in NP. Thus, the optimal placement mini-

mizing the MSRL is N1 = · · · = NP =
N̄total

P
. This con-

clude the proof.

Endnotes
aThe notion of distance and closely spaced signals used in
the following, is w.r.t. to the metric space (d, C), where d :

C × C ® ℝ in which d and C denote a metric and the set
of the parameters of interest, respectively. bSee [2-9] for
some practical examples for the multidimensional harmo-
nic retrieval model. cThis study can be straightforwardly
extended to other norms. The choice of the l1 is motivated
by its calculation convenience (see the derivation of Result
1 and Appendix 1). Furthermore, since the MSRL is con-
sidered to be small (this assumption can be argued by the
fact that the high-resolution algorithms have asymptoti-
cally an infinite resolving power [44]), thus all continuous
p-norms are similar to (i.e., looks like) the l1 norm. More
importantly, in a finite dimensional vector space, all con-
tinuous p-norms are equivalent [[45], p. 53], thus the
choice of a specific norm is free. dNote that, due to the
specific definition of the SRL in [13] (i.e., using the same
notation as in [13], δ = cos(uT1u2))and the restrictive
assumption in [13] (u1 and u2 belong to the same plan),
the SRL as defined in [13] cannot be used in the multidi-
mensional harmonic context. eOne of the necessary condi-
tions regardless the noise pdf is that ω

(p)
1 �= ω

(p)
2
. Meaning

that each parameter of interest w.r.t. to the first signal ω(p)
1

can be as close as possible to the parameter of interest w.r.
t. to the second signal ω(p)

2
, but not equal. This is not really

a restrictive assumptions, since in most applications, hav-
ing two or more identical parameters of interest is a zero
probability event [[9], p. 53]. fNote that applying (15) for P
= 1 and for �(Pfa, Pd) = 1, one obtains the Smith criterion
[11]. gWhere O(.) denotes the Landau notation [46]. hOne
should note, that we assumed a uniform linear multi-
array, and the problem is to find the optimal distribution
of the number of sensors on each array. The more general
case, i.e., where the optimization problem considers the
non linearity of the multi-way array, is beyond the scope
of the problem addressed herein.
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