
Jia and Wang EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:16
http://bsb.eurasipjournals.com/content/2013/1/16

RESEARCH Open Access

Gene regulatory network inference by
point-based Gaussian approximation filters
incorporating the prior information
Bin Jia1 and Xiaodong Wang2*

Abstract

The extended Kalman filter (EKF) has been applied to inferring gene regulatory networks. However, it is well known
that the EKF becomes less accurate when the system exhibits high nonlinearity. In addition, certain prior information
about the gene regulatory network exists in practice, and no systematic approach has been developed to incorporate
such prior information into the Kalman-type filter for inferring the structure of the gene regulatory network. In this
paper, an inference framework based on point-based Gaussian approximation filters that can exploit the prior
information is developed to solve the gene regulatory network inference problem. Different point-based Gaussian
approximation filters, including the unscented Kalman filter (UKF), the third-degree cubature Kalman filter (CKF3), and
the fifth-degree cubature Kalman filter (CKF5) are employed. Several types of network prior information, including the
existing network structure information, sparsity assumption, and the range constraint of parameters, are considered,
and the corresponding filters incorporating the prior information are developed. Experiments on a synthetic network
of eight genes and the yeast protein synthesis network of five genes are carried out to demonstrate the performance
of the proposed framework. The results show that the proposed methods provide more accurate inference results
than existing methods, such as the EKF and the traditional UKF.

Keywords: Gene regulatory network; Point-based Gaussian approximation filters; Network prior information; Sparsity;
Iterative thresholding

1 Introduction
Inferring gene regulatory network (GRN) has become
one of the most important missions in system biol-
ogy. Genome-wide expression data is widely used due
to the development of several high-throughput experi-
mental technologies. The gene regulatory network can
be inferred from a number of gene expression samples
taken over a period of time. Modeling of GRN is required
before its structure can be inferred. Common dynamical
modeling methods of GRN include Bayesian networks [1],
Boolean networks [2], ordinary differential equations [3],
state-space models [4,5], and so on. Various approaches
based on different models have been used to infer the
network from observed gene expression data, such as the
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Markov Chain Monte Carlo (MCMC) methods for the
dynamic Bayesian network model [6] and the ordinary
differential equation model [7], as well as the Kalman fil-
tering methods for the state-space model [4,8] and the
ordinary differential equation model [3]. Some survey
papers can be found in [9-12].
Due to the ‘stochastic’ nature of the gene expression,

the Kalman filtering approach based on the state-space
model is one of the most competitive methods for infer-
ring the GRN. The Kalman filter is optimal for linear
Gaussian systems. However, the GRN is generally highly
nonlinear. Hence, advanced filtering methods for nonlin-
ear dynamic systems should be considered. The extended
Kalman filter (EKF) is probably the most widely used
nonlinear filter which uses the first-order Taylor series
expansion to linearize the nonlinear model. However, the
accuracy of the EKF is low when the system is highly
nonlinear or contains large uncertainty. The point-based
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Gaussian approximation filters have been recently pro-
posed to improve the performance of the EKF, which
employ various quadrature rules to compute the integrals
involved in the exact Bayesian estimation. Many filters
fall into this category, such as the unscented Kalman fil-
ter (UKF) [13], the Gauss-Hermite quadrature filter [14],
the cubature Kalman filter (CKF) [15], and the sparse-grid
quadrature filter [16]. Besides the point-based Gaussian
approximation filters, the particle filter has drawn much
attention recently [17]. The particle filter uses random
particles with weights to represent the probability den-
sity function (pdf) in the Bayesian estimation and provides
better estimation result than the EKF. The main problem
of the particle filter is that the computational complexity is
high, and therefore, it is hard to use for high-dimensional
problems, such as the problem considered in this paper.
The EKF and the particle filter have been used for

the inference of GRN [4,8,18]. In this paper, we con-
sider the point-based Gaussian approximation filters. Our
main objective is to provide a framework of incorporating
network prior information into the filters. For example,
some gene regulations may be known [19] from litera-
ture and the inference accuracy of GRN can be improved
by incorporating the known regulations of the GRN [20].
Integration of the prior knowledge or constraints with the
GRN inference algorithm has been introduced to improve
the inference result. The DNA motif sequence in gene
promoter regions is incorporated in [21] while modeling
of transcription factor interactions is incorporated in [22].
As mentioned in [20], experimentally determined physi-
cal interactions can be obtained. In addition, the sparsity
constraint is frequently used in the inference of the GRN.
To the best of the authors’ knowledge, the most related
work in incorporating the prior information in Bayesian
filters is [8]. In that work, rather than directly getting the
inference results from the filter, an optimization method
is used. In particular, a cost function is used in which the
sparsity constraint is enforced. However, the cost func-
tion in [8] does not consider the uncertainty of the state
in the filtering. That cost function in fact is not cou-
pled well with the filtering algorithm. In addition, it did
not consider other kinds of prior information. In this
paper, we propose a new framework that incorporates
the prior information effectively in the filtering algorithm
by solving a constrained optimization problem. Efficient
recursive algorithms are provided to solve the associated
optimization problem.
The remainder of this paper is organized as follows.

In Section 2, the modeling of gene regulatory network
is introduced. The point-based Gaussian approximation
filters are briefly introduced in Section 3. The proposed
new filtering framework is described in Section 4. In
Section 5, experimental results are provided. Finally, con-
cluding remarks are given in Section 6.

2 State-spacemodeling of gene regulatory
network

The GRN can be described by a graph in which genes are
viewed as nodes and edges depict causal relations between
genes. The structure of GRN reveals the mechanisms of
biological cells. Analyzing the structure of GRN will pave
the way for curing various diseases [23]. The learning of
GRN has drawn much attention recently due to the avail-
ability the microarray data. By analyzing collected gene
expression levels over a period of time, one can identify
various regulatory relations between different genes. To
facilitate the analysis of the GRN, modeling of GRN is
required. Different models can be used, such as Bayesian
networks [1], Boolean networks [2], ordinary differential
equation [3], and state-space model [4,5]. The state-space
model has been widely used because it incorporates noise
and can make use of computationally efficient filtering
algorithms [5]. Thus, we also use the state-space modeling
of GRN in this paper.
Under the discrete-time state-space modeling of the

gene regulatory networks, the network evolution from
time k to time k − 1 can be described by

xk = f (xk−1) + vk , (1)

where xk =[x1,k , . . . , xn,k]T is the state vector and xi,k
denotes the gene expression level of the i-th gene at time k.
f is a nonlinear function that characterizes the regulatory
relationship among the genes. vk is the state noise and it
is assumed to follow a Gaussian distribution with mean 0
and covariance matrix Qk , i.e., vk ∼ N (0,Qk).
Following [8], we use the following nonlinear function

in the state Equation (1):

f (x) = Ag(x), (2)

with

g(x) =
⎡
⎢⎣
g1(x1)

...
gn(xn)

⎤
⎥⎦ (3)

and

gi(x) = 1
1 + e−μix

. (4)

In (2), A is the regulatory coefficient matrix with aij
denoting the regulation coefficient from gene j to gene
i. Note that a positive coefficient aij indicates that gene
j activates gene i and a negative aij indicates that gene j
represses gene i. In (4), μi is a parameter. Note that A and
μi are unknown parameters. The discrete-time nonlin-
ear stochastic dynamic system [24] shown in Eqs. (1)-(3)
have been successfully used to describe the GRN [4,8].
Equation (4) is also called Sigmoid function which is fre-
quently used since it is consistent with the fact that all
concentrations get saturated at some point in time [25].
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The Sigmoid function has been used in modeling GRN to
verify various methods, such as artificial neural network
[26], simulated annealing and clustering algorithm [27],
extended Kalman filter [4], particle filter [8], and Genetic
programming and Kalman filtering [25].
For the measurement model, we consider the following

general nonlinear observation equation

yk = h(xk) + nk , (5)

where h(·) is some nonlinear function, nk is the mea-
surement noise, which is assumed to follow the Gaussian
distribution with mean 0 and covariance matrix Rk ,
i.e., nk ∼ N (0,Rk). For example, if the noise corrupted
expression levels are observed, then h(x) = x.

3 Network inference using point-based Gaussian
approximation filters

3.1 Gaussian approximation filters
In this section, the framework of point-based Gaussian
approximation filters for the state-space dynamic model
is briefly reviewed. We consider the state-space model
consisting of the state Equation (1) and the measurement
Equation (5). We denote yk � [y1, . . . , yk].
The optimal Bayesian filter is composed of two steps:

prediction and filtering. Specifically, given the prior pdf
p(xk−1|yk−1) at time k − 1, the predicted conditional pdf
p(xk|yk−1) is given by

p(xk|yk−1) =
∫
p(xk|xk−1)p(xk−1|yk−1)dxk−1. (6)

After the measurement at time k becomes available, the
filtered pdf is given by

p(xk|yk) = p(yk|xk)p(xk|yk−1)∫
p(yk|xk)p(xk|yk−1)dxk

. (7)

The pdf recursions in (6) and (7) are in general com-
putationally intractable unless the system is linear and
Gaussian. The Gaussian approximation filters approx-
imate (6) and (7) by invoking Gaussian assumptions.
Specifically, the first assumption is that given yk−1,
xk−1 has a Gaussian distribution, i.e., xk−1|yk−1 ∼
N (x̂k−1|k−1,Pk−1|k−1). The second assumption is that
(xk , yk) are jointly Gaussian given yk−1.
It then follows from the second assumption that given

yk−1, xk has a Gaussian distribution, i.e., xk|yk−1 ∼
N (x̂k|k−1,Pk|k−1). Using (1) and the first assumption, we
have the predicted mean x̂k|k−1 and covariance Pk|k−1
given respectively by

x̂k|k−1 � E{xk|yk−1} = Exk−1|yk−1
{
f (xk−1)

}
=

∫
f (x)φ(x; x̂k−1|k−1,Pk−1|k−1)dx, (8)

and

Pk|k−1 � Cov{xk|yk−1}
= Exk−1|yk−1

{
( f (xk−1) − x̂k|k−1)

× ( f (xk−1) − x̂k|k−1)
T
}

+ Qk−1

=
∫

( f (x) − x̂k|k−1)

× ( f (x) − x̂k|k−1)
Tφ

(
x; x̂k−1|k−1,

Pk−1|k−1
)
dx + Qk−1, (9)

where φ
(
x; x̂,P

)
denotes the multivariate Gaussian pdf

with mean x̂ and covariance P.
Then, following the second assumption, given yk =

[ y k−1, yk], xk is Gaussian distributed, i.e., xk|yk ∼
N (x̂k|k ,Pk|k). Using the conditional property of the mul-
tivariate Gaussian distribution, the filtered mean x̂k|k and
covariance Pk|k are given respectively by

x̂k|k � E{xk|yk , yk−1}
= x̂k|k−1 + Lk(yk − ŷk|k−1) (10)

and Pk|k � Cov{xk|yk , yk−1}
= Pk|k−1 − LkP

xy
k , (11)

with

ŷk|k−1 = Exk |yk−1 {h(xk)}
=
∫

h(x)φ
(
x; x̂k|k−1,Pk|k−1

)
dx, (12)

Lk = Pxy
k (Rk + Pyy

k )−1, (13)

Pxy
k = Exk |yk−1

{
(x − x̂k|k−1)(h(x) − ŷk|k−1)

T
}

=
∫

(x − x̂k|k−1)(h(x) − ŷk|k−1)
T

φ
(
x; x̂k|k−1,Pk|k−1

)
dx, (14)

Pyy
k = Exk |yk−1

{
(h(x) − ŷk|k−1)(h(x) − ŷk|k−1)

T
}

=
∫ (

h(x) − ŷk|k−1
) (
h(x) − ŷk|k−1

)T
φ
(
x; x̂k|k−1,Pk|k−1

)
dx. (15)

3.2 Point-based Gaussian approximation filters
The integrals in (8), (9), (12), (14) and (15) are Gaussian
type that can be efficiently approximated by various
quadrature methods. Specifically, if a set of weighted
points

{
(γ i,wi), i = 1, . . . ,N

}
can be used to approximate

the integral

∫
h(x) φ (x; 0, I) dx ≈

N∑
i=1

wih(γ i), (16)
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then the general Gaussian-type integral can be approxi-
mated by∫

h(x)φ
(
x; x̂,P

)
dx ≈

N∑
i=1

wih(Sγ i + x̂), (17)

where P = SST and S can be obtained by Cholesky
decomposition or singular value decomposition (SVD).
Using (17), we can then approximate (8) and (9) as

follows:

x̂k|k−1 ≈
N∑
i=1

wi f
(
ξ k−1,i

)
(18)

and

Pk|k−1 ≈
N∑
i=1

wi f
(
ξ k−1, i − x̂k|k−1

)
× (

ξ k−1, i − x̂k|k−1
)T + Qk−1, (19)

where ξ k−1,i is the transformed quadrature point obtained
from the covariance decomposition, i.e.,

Pk−1|k−1 = Sk−1STk−1, (20)
ξ k−1,i = Sk−1γ i + x̂k−1|k−1. (21)

Similarly, we can approximate (12), (14) and (15) as
follows:

ŷk|k−1 =
N∑
i=1

wih
(
ξ̃ k,i

)
, (22)

Pxy
k =

N∑
i=1

wi
(
ξ̃ k,i − x̂k|k−1

) (
h(ξ̃ k,i) − ŷk|k−1

)T
, (23)

Pyy
k =

N∑
i=1

wi
(
h(ξ̃ k,i) − ŷk|k−1

) (
h(ξ̃ k,i) − ŷk|k−1

)T
, (24)

where ξ̃ k,i is the transformed point obtained from the
decomposition of the predicted covariance, i.e.,

Pk|k−1 = S̃k S̃
T
k , (25)

ξ̃ k,i = S̃kγ i + x̂k|k−1. (26)

Various numerical rules can be used to form the
approximation in (16), which lead to different Gaussian
approximation filters. In particular, the unscented
transformation, the Gauss-Hermite quadrature rule, and
the sparse-grid quadrature rules are used in the unscented
Kalman filter (UKF), the Gauss-Hermite quadrature
Kalman filter (GHQF), and the sparse-grid quadrature
filter (SGQF), respectively.
Recently, the fifth-degree quadrature filter has been

proposed and shown to be more accurate than the third-
degree quadrature filters, such as the UKF and the third-
degree cubature Kalman filter (CKF3), when the system is
highly nonlinear or contains large uncertainty [16]. In this
paper, we consider the UKF, CKF3, and the fifth-degree

cubature Kalman filter (CKF5). Other filters such as the
central difference filter [14] and divided difference filter
[28] can also be used. The CKF5 is based on Mysovskikh’s
method which uses fewer point than the fifth-degree
quadrature filter in [16]. In the following, different numer-
ical rules used in (16) are briefly summarized.

3.2.1 Unscented transform
In the unscented Kalman filter (UKF), we haveN = 2n+1
where n is the dimension of x. The quadrature points and
the corresponding weights are given respectively by

γ i =

⎧⎪⎪⎨
⎪⎪⎩
0, i = 1,√

(n + κ)ei−1, i = 2, · · · , n + 1,

− √
(n + κ)ei−n−1, i = n + 2, · · · , 2n + 1,

(27)

and

wi =

⎧⎪⎨
⎪⎩

κ

n + κ
, i = 1,

1
2(n + κ)

, i = 2, · · · , 2n + 1,
(28)

where κ is a tunable parameter, and ei is the i-th n-
dimensional unit vector in which the i-th element is 1 and
other elements are 0.

3.2.2 Cubature rules
The left-hand side of (16) can be rewritten as∫

h(x) φ (x; 0, I) dx = 1
πn/2

∫
h
(√

2x
)
exp

(
−xTx

)
dx.

(29)

Consider the integral

I (h) =
∫

h(x)exp
(
−xTx

)
dx. (30)

By letting x = rs with sT s = 1 and r = √
xTx, I(h) can

be rewritten in the spherical-radial coordinate system as

I (h) =
∫ ∞

0

∫
Un

h(rs)rn−1exp
(−r2

)
dσ (s) dr, (31)

where Un = {s ∈ Rn : ‖s‖ = 1}, and σ (·) is the spherical
surface measure or the area element on Un.
Note that (31) contains two types of integrals: the radial

integral
∫∞
0 hr (r) rn−1exp

(−r2
)
dr and the spherical inte-

gral
∫
Un

hs(s)dσ(s).
If the radial rule can be approximated by∫ ∞

0
hr(r)rn−1exp

(−r2
)
dr ≈

Nr∑
i=1

wr,ihr(ri), (32)

and the spherical integral can be approximated by∫
Un

hs(s)dσ(s) ≈
Ns∑
j=1

ws,jhs(sj), (33)
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then (31) can be approximated by

I(h) ≈
Nr∑
i=1

Ns∑
j=1

wr,iws,jh(risj). (34)

A third-degree cubature rule to approximate (29) is
obtained by using the third-degree spherical rule and
radial rule [15]:
∫

h(x)φ (x; 0, I) dx ≈ 1
2n

n∑
i=1

[
h
(√

nei
) + h

(−√
nei

)]
.

(35)

Remark: The third-degree cubature rule is identical to
the unscented transformation with κ = 0.

To construct the fifth-degree cubature rule, the
Mysovskikh’s method [29] and the moment matching
method [16] are used to provide the fifth-degree spheri-
cal rule and radial rule, respectively. The final fifth-degree
cubature rule is given by∫
h(x)φ (x; 0, I) dx ≈ 2

n + 2
h(0)+

+ n2(7 − n)

2(n + 1)2(n + 2)2
n+1∑
i=1

[
h
(√

n + 2s(i)1
)

+ h
(
−√

n + 2s(i)1
)]

+ 2(n − 1)2

(n + 1)2(n + 2)2

n(n+1)/2∑
i=1

[
h
(√

n+2s(i)2
)

+ h
(
−√

n + 2s(i)2
)]

,

(36)

where the point s(i)1 is given by

s(i)1 =
[
p(i)
1 , p(i)

2 , · · · , p(i)
n

]
, i = 1, 2, · · · , n+1, (37)

with

p(i)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
√

n + 1
n(n − j + 2)(n − j + 1)

, j < i,
√

(n + 1)(n − i + 1)
n(n − i + 2)

, j = i,

0, j > i.
(38)

Moreover, the set of points {s(i)2 } is given by{
s(i)2

}
=
{√

n
2(n − 1)

(
s(k)1 + s(l)1

)
: k < l, k, l = 1,

2, · · · , n + 1
}
. (39)

3.3 Augmented state-space model for network inference
In the state-space model for gene regulatory networks
described in Section 3.2, the underlying network structure
is characterized by the n× n regulatory coefficient matrix
A in (2) and the parameters μ = [μ1, . . . ,μn] in (4). The
problem of network inference then becomes to estimate A
and μ. To do that, we incorporate the unknown parame-
ters A and μ into the state vector to obtain an augmented
state-space model, and then apply the point-based Gaus-
sian approximation filters to estimate the space vector and
thereby obtaining the estimates of A and μ.
Specifically, we denote θ = [a11, a12, · · · , a1n, · · · ,

ann,μ1, · · · ,μn]T and the augmented state vector x̄k =[
xTk , θ

T
]T

. Then, the augmented state equation can be
written as

x̄k = f̄ (x̄k−1) + v̄k =
[
Ak−1 gk−1(xk−1)

θk−1

]
+
[
vk−1
0

]
.

(40)

Note thatAk−1 and gk−1 can be obtained from θk−1, and
v̄k ∼ N (0, Q̄k) with Q̄k = diag

([
Qk On2+n

])
, where Om

denotes anm × m all-zero matrix.
In the remainder of this paper, we assume that the

noisy gene expression levels are observed. Therefore, the
augmented measurement equation becomes

yk = h(x̄k) + nk = Bx̄k + nk , (41)

where B = [In,On×(n2+n)], On×(n2+n) denotes an n×
(n2 + n) all zeros matrix.
The point-based Gaussian approximation filters can

then be used to obtain the estimate of the augmented
state, ˆ̄xk , from which the estimates of the unknown net-
work parameters, i.e., Â and μ̂ can then be obtained.
Note that since the measurement Equation (41) is linear,

the filtering Equations (10, 11) become

ˆ̄xk|k = ˆ̄xk|k−1 + Lk(yk − B ˆ̄xk|k−1), (42)
and Pk|k = Pk|k−1 − LkBPk|k−1, (43)
with Lk = Pk|k−1BT (Rk + BPk|k−1BT )−1, (44)

which are the same as the filtering updates for Kalman
filters.

4 Incorporating prior information
In practice, some prior knowledge on the underlying
GRN is typically available. In this section, we outline
approaches to incorporating such prior knowledge into
the point-based Gaussian approximation filters for net-
work inference. In particular, we consider two types of
prior information, namely, sparsity constraints and range
constraints on the network. For networks with spar-
sity constraints, we incorporate an iterative threshold-
ing procedure into the Gaussian approximation filters.
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And to accommodate range constraints, we employ PDF-
truncated Gaussian approximation filters.

4.1 Optimization-based approach for sparsity constraints
4.1.1 The optimization formulations
Note that under the Gaussian assumption, the state esti-
mation ˆ̄xk|k of the Kalman filter is equivalently given by
the solution to the following optimization problem [30,31]

ˆ̄xk|k = argmin
x̄

J(x̄), (45)

with J(x̄) �
(
yk − h(x̄)

)T R−1
k

(
yk − h(x̄)

)
+
(
x̄ − ˆ̄xk|k−1

)T
P−1
k|k−1

(
x̄ − ˆ̄xk|k−1

)
.
(46)

To incorporate the prior information of the GRN, (46) is
modified as

J̃(x̄) = J(x̄) + λ Jp(x̄), (47)

where Jp(x̄) is a penalty function associated with the prior
information and λ is a tunable parameter that regulates
the tightness of the penalty.
For example, in gene regulatory networks, each gene

only interacts with a few genes [20]. To capture such a
sparsity constraint, a Laplace prior distribution can be
used for the connection coefficient matrix A, i.e.,

p(A) = (λ/2)n
2
exp

⎛
⎝−λ

n∑
i=1

n∑
j=1

|aij|
⎞
⎠ . (48)

Therefore, in this case, Jp(x̄)=− log p(A)=c1‖A‖1 + c2
where c1 and c2 are constants. And, (47) can be rewritten
as

J̃(x̄) = J(x̄) + λ‖A‖1. (49)

Note that (49) can also be interpreted as the result of
applying the least squares shrinkage selection operator
(LASSO) to (47). The LASSO adds an L1-norm constraint
to the GRN so that the regulatory coefficient matrix A
tends to be sparse with many zero elements.
As another example, if some known regulatory rela-

tionship exists, then it should be taken into account to
improve the estimation accuracy. Specifically, define an
n×n indicator matrix E =[ei,j] where eij = 1 indicates that
there is a lack of regulation from gene j to gene i. Then,
similar to the use of LASSO, a penalty on aij should incur
if eij = 1. Thus, (47) can be rewritten as

J̃(x̄) = J(x̄) + λ‖E ◦ A‖1. (50)

Note that as in [20], here we do not force aij = 0 cor-
responding to eij = 1 but rather use an L1-norm penalty.
The advantage of such an approach is that it allows the
algorithm to pick different structures but more likely to

pick the edges without penalties. ‘o’ denotes the entry-
wise product operation of two matrices.

4.1.2 Iterative thresholding algorithm
Solving the optimization problems in (49) and (50) is not
straightforward since |a| is non-differentiable at a = 0.
In the following, an efficient solver called the iterative
thresholding algorithm is introduced.
For convenience, we consider a general optimization

problem of the form

arg min
x̄

J(x̄) = L(x̄) + ‖λ ◦ x̄‖1, (51)

where λ =[λ1, λ2, · · · , λn2+2n]T and L(x̄) is a smooth func-
tion. Note that if λ = [01×n, λ × 11×n2 , 01×n]T , then (51)
becomes (49); and if λ = [01×n, λ × θ̂ , 01×n]T , then (51)
becomes (50). Note that θ̂ = [e11, e12, · · · , e1n, · · · , enn]T .
The solution to (51) can be iteratively obtained by solv-

ing a sequence of optimization problems. As in Newton’s
method, the Taylor series expansion of L(x̄) around the
solution x̄t at the t-th iteration is given by

L(x̄t + �x̄) ∼= L(x̄t) + �x̄T∇L(x̄t) + αt
2

‖�x̄‖22, (52)

where ∇L is the gradient of L and αt is such that αtI
mimics the Hessian ∇2L. Then, x̄t+1 is given by [32]

x̄t+1 = argmin
z

(z−x̄t)T∇L(x̄t)+αt
2

‖z−x̄t‖22+‖λ◦z‖1.
(53)

The equivalent form of (53) is given by [32]

x̄t+1 = argmin
z

1
2
‖z − ut‖22 + 1

αt
‖λ ◦ z‖1, (54)

with ut = x̄t − 1
αt

∇L(x̄t), (55)

αt ≈ (st)Trt

‖st‖2 , (56)

st = x̄t − x̄t−1, (57)
rt = ∇L(x̄t) − ∇L(x̄t−1). (58)

The solution to (54) is given by [32] x̄t+1 = ηS(ut , λ
αt

),
where

ηS(u,a) = sign(u)max {|u| − a, 0} (59)

is the soft thresholding function with sign(u) and
max {|u| − a, 0} being component-wise operators.
Finally, the iterative procedure for solving (51) is given

by

x̄t+1 = sign
(
x̄t − 1

αt
∇L(x̄t)

)
max

{∣∣∣∣x̄t − 1
αt

∇L(x̄t)
∣∣∣∣ − λ

αt
, 0
}
.

(60)
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And the iteration stops when the following condition is
met

|J(x̄t) − J(x̄t−1)|
|J(x̄t−1)| ≤ ε, (61)

where ε is a given small number.

4.2 PDF truncation method for range constraints
If the range constraints on the regulatory coefficients
are available, the inference accuracy can be improved by
enforcing the constraints in the Gaussian approximation
filters.
In particular, assume that we impose the following range

constraints on the state vector x̄

c ≤ x̄ ≤ d. (62)

The PDF truncation method [31] can be employed to
incorporate the above range constraint into the Gaussian
approximation filters, by converting the updated mean
ˆ̄xk|k and covariance Pk|k to the pseudo mean ˆ̄xtk|k and
covariance Pt

k|k which are then used in the next prediction
and filtering steps.
We next briefly outline the PDF truncation procedure.

We use ˆ̄xtk|k,i and Pt
k|k,i to denote the mean and covariance

after the first i constraints have been enforced. Initially, we
set ˆ̄xtk|k,0 = ˆ̄xk|k and Pt

k|k,0 = Pk|k . Consider the following
transformation

zk,i = GiD−1/2
i ST

i (x̄k − ˆ̄xtk|k,i) (63)

where Si and Di are obtained from the Jordan canoni-
cal decomposition SiDiST

i = Pt
k|k,i and Gi is obtained by

using the Gram-Schmidt orthogonalization and it satisfies
[33]

GiD1/2
i ST

i ei =
[(

eTi P
t
k|k,iei

)1/2
, 0, · · · , 0

]
. (64)

Then, the upper bound eTi x̄ ≤ di is transformed to [33]

[1, 0, · · · , 0] zk,i ≤ di − eTi ˆ̄xtk|k,i
(eTi P

t
k|k,iei)1/2

� d̃i. (65)

Similarly, the lower bound eTi x̄ ≥ ci is transformed to

[1, 0, · · · , 0] zk,i ≥ ci − eTi ˆ̄xtk|k,i
(eTi P

t
k|k,iei)1/2

� c̃i. (66)

The constraint requires that the first element of zk,i lies
between c̃i and d̃i. Hence, only the truncated PDF of the
first element of zk,i is considered and it is given by [33]

f (z) = αiexp(−z2/2), (67)

with αi =
√
2√

π [erf(d̃i/
√
2) − erf(c̃i/

√
2)]

. (68)

Then, the mean and variance of the first element of zk,i
after imposing the i-th constraint are given respectively by

μi =
∫ d̃i

c̃i
zf (z)dz = αi

[
exp(−c̃2i /2) − exp(−d̃2i /2)

]
,

(69)

σ 2
i =

∫ d̃i

c̃i
(z − μi)

2f (z)dz

= αi
[
exp(−c̃2i /2)(c̃i − 2μi)

− exp(−d̃2i /2)(d̃i − 2μi)
]

+ μ2
i + 1. (70)

Thus, the mean and covariance of the transformed state
vector after imposing the i-th constraint are given respec-
tively by

z̄k,i = [μi, 0, · · · , 0]T , (71)
Qk,i = diag([ σ 2

i , 1, · · · , 1] ). (72)

By taking the inverse transform of (63), we then get
ˆ̄xtk|k,i+1 = SiD1/2

i GT
i z̄k,i + ˆ̄xtk|k,i, (73)

Pt
k|k,i+1 = SiD1/2

i GT
i Qk,iGiD1/2

i ST
i . (74)

After imposing all n constraints, the final constrained
state estimate and covariance at time k are given respec-
tively by ˆ̄xtk|k � ˆ̄xtk|k,n and Pt

k|k � Pt
k|k,n.

5 Numerical results
5.1 Synthetic network
In this section, a synthetic network that contains eight
genes is used to test the performance of the EKF, the

Table 1 Comparison of UKF with different κ

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKF(κ = −5) 0.7576 0.9355 0.8472 0.5000 0.7647 0.5955 0.5094 0.6279 0.5824

UKF(κ = −2) 0.7576 0.9355 0.8406 0.5161 0.7647 0.5933 0.5094 0.6279 0.5825

UKF(κ = 0) 0.7576 0.9375 0.8426 0.5161 0.7647 0.5918 0.5094 0.6364 0.5840

UKF(κ = 2) 0.7576 0.9375 0.8407 0.5152 0.7353 0.5895 0.5098 0.6279 0.5841

UKF(κ = 5) 0.7576 0.9063 0.8394 0.5161 0.7353 0.5933 0.5192 0.6279 0.5821
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Table 2 Comparison of different filters

True positives # False positives # True negatives # False negatives #

Filters Min Max Avg Min Max Avg Min Max Avg Min Max Avg

EKF 2 17 10.60 23 44 36.4 2 15 7.08 2 24 9.92

UKF 25 29 26.80 16 26 19.28 8 16 13.06 2 8 4.86

CKF3 25 30 26.74 16 26 19.10 8 15 13.14 2 8 5.02

CKF5 25 29 26.64 16 26 19.24 8 16 13.08 1 8 5.04

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

EKF 0.0769 0.8667 0.5224 0.6053 0.9545 0.8358 0.0800 0.3208 0.2231

UKF 0.7576 0.9355 0.8472 0.5 0.7576 0.5955 0.5094 0.6279 0.5824

CKF3 0.7576 0.9375 0.8426 0.5161 0.7647 0.5918 0.5094 0.6364 0.5840

CKF5 0.7576 0.9667 0.8417 0.5000 0.7647 0.5946 0.5094 0.6279 0.5814
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Table 3 Inferred results of the conventional filter and filters incorporating the prior information

True positives # False positives # True negatives # False negatives #

Filters Min Max Avg Min Max Avg Min Max Avg Min Max Avg

UKF 25 29 26.80 16 26 19.28 8 16 13.06 2 8 4.86

UKFp1 25 29 27.34 14 19 16.52 13 18 15.72 2 8 4.42

UKFp2 23 26 24.16 13 16 13.86 16 18 17.20 7 10 8.78

UKFp3 25 29 26.70 12 24 17.50 9 19 14.50 3 8 5.30

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKF 0.7576 0.9355 0.8472 0.5 0.7647 0.5955 0.5094 0.6279 0.5824

UKFp1 0.7576 0.9355 0.8614 0.4375 0.5935 0.5121 0.5778 0.6744 0.6239

UKFp2 0.6970 0.7879 0.7335 0.4194 0.5000 0.4462 0.5897 0.6667 0.6355

UKFp3 0.7576 0.9063 0.8348 0.3871 0.7273 0.5463 0.5294 0.6923 0.6049
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Table 4 Comparison of UKFp1 using different λ

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKFp1 (λ = 0.1) 0.7576 0.9355 0.8484 0.5000 0.7647 0.5900 0.5094 0.6279 0.5850

UKFp1 (λ = 0.5) 0.7576 0.9677 0.8535 0.4688 0.7647 0.5696 0.5094 0.6512 0.5948

UKFp1 (λ = 1) 0.7576 0.9355 0.8614 0.4375 0.5935 0.5121 0.5778 0.6744 0.6239

UKFp1 (λ = 5) 0.7500 0.9355 0.8439 0.3548 0.5455 0.4672 0.5814 0.7105 0.6456

UKFp1 (λ = 10) 0.7273 0.9063 0.8217 0.3226 0.4848 0.4156 0.6190 0.7368 0.6695

UKF, the CKF3, the CKF5, and their corresponding fil-
ters incorporating the prior information. Forty data points
are collected to infer the structure of the network. The
system noise and measurement noise are assumed to be
Gaussian distributed with means 0 and covariances Q̄k =
diag

(
[ 0.01I8 O72]

)
and Rk = 0.01I8, respectively. The

connection coefficient matrix is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2.4 3.2
0 0 0 4.1 0 −2.4 0 4.1

−5.0 2.1 −1.5 0 4.5 0 2.1 0
0 1.3 2.5 −3.7 1.8 0 0 −3.1
0 0 0 −2.6 −3.2 0 −1 4

−1.5 −1.8 0 3.4 1.4 1.1 0 1.7
−1.8 0 0 −3 1.1 2.4 0 0
−1.3 0 −1 0 2.1 0 0 2.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(75)

and μi = 2, i = 1, · · · , 8. For the filter, each coefficient
in Â is initialized from a Gaussian distribution with mean
0 and variance 0.2. Moreover, the coefficient μi is ini-
tialized from a Gaussian distribution with mean 1.5 and
variance 0.2. The system state is initialized using the first
measurement.
Themetric used to evaluate the inferred GRN is the true

positive rate (TPR), the false positive rate (FPR), and the
positive predictive value (PPV). They are given by [34]

TPR = TP#
TP# + FN#

, (76)

FPR = FP#
FP# + TN#

, (77)

PPV = TP#
TP# + FP#

, (78)

where the number of true positives (TP#) denotes the
number of links correctly predicted by the inference algo-
rithm; the number of false positives (FP#) denotes the
number of incorrectly predicted links; the number of true
negatives (TN#) denotes the number of correctly pre-
dicted nonlinks; and the number of false negatives (FN#)
denotes the number of missed links by the inference
algorithm [8].

5.1.1 Comparison of the EKF with point-based Gaussian
approximation filters

The UKF with different parameter κ is tested. The sim-
ulation results based on 50 Monte Carlo runs are shown
in Table 1. It can be seen that UKFs with κ = 0, 2, 5 have
slight better performance than UKFs with κ = −5,−2.
One possible reason is that the weights of all sigma points
used in the UKF are all positive when κ ≥ 0. In gen-
eral, all positive weights will guarantee better stability of
the filtering algorithm. However, it should be emphasized
that, in this specific example, there is no big difference
between UKFs with different κ . In addition, the objective
of this paper was to investigate the proposed filter incor-
porating the prior information. Hence, the UKF is used to
denote UKF with κ = 3 − n and compare with the filters
incorporating the prior information.
The inference results of the EKF, the UKF, the CKF3,

and the CKF5 are summarized in Table 2, all results are
based on 50 Monte Carlo runs. It can be seen that all
point-based Gaussian approximation filters have better
performance than the EKF since the average(avg) FPR is
lower and the average TPR and precision are higher than
that of the EKF. Although the CKFs exhibit slightly better

Table 5 Effect of strength of the links using different λ

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKFp̃1(λ = 0.1) 0.7576 0.9677 0.8484 0.4688 0.7647 0.5713 0.5094 0.6512 0.5929

UKFp̃1(λ = 0.5) 0.7576 0.9333 0.8468 0.4516 0.7059 0.5422 0.5385 0.6512 0.6057

UKFp̃1(λ = 1) 0.7500 0.9032 0.8221 0.3750 0.5758 0.4953 0.5814 0.6842 0.6257

UKFp̃1(λ = 5) 0.7273 0.8750 0.8220 0.3548 0.5000 0.4169 0.6098 0.7179 0.6684

UKFp̃1(λ = 10) 0.7500 0.8750 0.8214 0.3226 0.5000 0.4143 0.6098 0.7368 0.6696
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Table 6 Effect of false prior information using different λ

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKFp̄1(λ = 0.1) 0.7576 0.9667 0.8491 0.5000 0.7647 0.5933 0.5094 0.6279 0.5835

UKFp̄1(λ = 0.5) 0.7576 0.9355 0.8535 0.4839 0.7647 0.5962 0.5094 0.6279 0.5836

UKFp̄1(λ = 1) 0.7576 0.9333 0.8572 0.4839 0.7059 0.6001 0.5200 0.6279 0.5830

UKFp̄1(λ = 5) 0.6970 0.8125 0.7546 0.4194 0.5938 0.5000 0.5682 0.6486 0.6062

UKFp̄1(λ = 10) 0.5758 0.7576 0.6810 0.3226 0.5000 0.4066 0.5676 0.7059 0.6369

filtering performance than the UKF in some runs, they are
comparable in terms of TPR, FPR, and PPV.
Based on the above tests, in the rest of the paper, only

the UKF is used.

5.1.2 Comparison of the UKF and the UKF incorporating the
prior information

As mentioned above, the UKF is used as a typical filter
to compare the performance with and without the prior
information.
Incorporating existing network information The fol-
lowing prior existing network information is assumed to
be known: 1) gene1, gene5, and gene7 have little possi-
bility to regulate gene2; 2) gene2, gene3, gene8 have little

possibility to regulate gene7. Hence, the indicator matrix
in (50) is given by

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (79)

The comparison of the UKF and the UKF incorporat-
ing the existing network information (denoted by UKFp1)
with λ = 2 is shown in Table 3. It can be seen that the

Gene7

Gene1

Gene8

Gene4

Gene2

Gene6

Gene3

Gene5

Figure 1 Inferred regulations of UKFp2 and true regulations.
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Figure 2 Inferred regulations of UKF and true regulations.

average TP# and TN# of the UKFp1 are both higher than
those of the UKF. In addition, the average FP# and FN#
of the UKFp1 are lower than those of the UKF. Hence, the
UKFp1 predicts more correct links and nonlinks than the
UKF. Moreover, the UKFp1 produces less incorrect links
and missed links than the UKF. The average TPR and the
precision of the UKFp1 are higher than those of the UKF.
In addition, the average FPR of the UKFp1 is lower than
that of the UKF. Hence, by using the existing network
information, the inference accuracy can be improved.
The performance of UKFp1 with different λ is shown

in Table 4. It is seen that the performance of UKFp1 and
UKF is close when λ is small since only small regulation
is imposed on the solution. When λ is large, the differ-
ence between the UKFp1 and UKF is large. In particular,
the UKFp1 provides sparser solution than the UKF when
λ is large. It can be seen from Table 4, the average FPR

of UKFp1 decreases with the increasing of λ. The average
TPR of UKFp1, however, does not increase monotoni-
cally with the increasing of λ. The average PPR of UKFp1
increases with the increasing of λ. Hence, roughly speak-
ing, the UKFp1 is better than the UKF when large λ is
used.
To consider the strength of the links, rather than setting

it to 1, eij (in the indicator matrix E) is set to different val-
ues. Large eij is used if the strength of the link from gene j
to gene i is strong. For convenience, the UKF considering
the strength of links is denoted as UKFp̂1. To compare the
performance of UKFp̂1 with UKFp1, for UKFp̂1, the values
of the second row in Equation (79) is multiplied by 5. The
performance of UKFp̂1 using different λ is given in Table 5.
It can be seen from Tables 4 and 5 that the performance of
UKFp̂1 and UKFp1 is close when λ is small, e.g., λ = 0.1.
In addition, the average TPR and FPR of UKFp̂1 is smaller

Table 7 Comparison of UKFp2 using different λ

True positive rate False positive rate Positive predictive rate

Filters Min Max Avg Min Max Avg Min Max Avg

UKFp2 (λ = 0.1) 0.7576 0.9355 0.8304 0.4839 0.6970 0.5699 0.5306 0.6512 0.5914

UKFp2 (λ = 0.5) 0.6970 0.8710 0.7750 0.4194 0.5758 0.4902 0.5682 0.6585 0.6198

UKFp2 (λ = 1) 0.6970 0.7879 0.7335 0.4194 0.5000 0.4462 0.5897 0.6667 0.6355

UKFp2 (λ = 5) 0.4545 0.6667 0.5501 0.3226 0.4516 0.3791 0.5714 0.6471 0.6064

UKFp2 (λ = 10) 0.4545 0.5455 0.4800 0.2903 0.3871 0.3523 0.5556 0.6538 0.5920
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CYB2

Figure 3 Pathwaymodel of the five genes in yeast protein
synthesis network.

than that of UKFp1 for all tested λ except for λ = 0.1.
Hence, PPR is used to evaluate the performance of UKFp̂1
and UKFp1. Although the average PPR of UKFp̂1 and
UKFp1 is close when the λ is large, e.g., λ = 10, the average
PPR of UKFp̂1 is consistently higher than that of UKFp1.
The results indicate that the inference accuracy of UKFp̂1
and UKFp1 are close when λ is very small or very large.
The inference accuracy of UKFp̂1 outperforms UKFp1
when the appropriate strength of the link and parameter λ

are used.

To consider the effect of false prior knowledge, the
second row of the indicator matrix in Equation (79) is
changed to [0, 1, 1, 1, 0, 1, 0, 1], which conflicts with the
truth. For convenience, we use UKFp̄1 to denote the UKF
incorporating this false prior knowledge. In Table 6, the
performance of UKFp̄1 with different λ is shown. It can be
seen from Tables 4 and 6 that the average TPR of UKFp̄1
is smaller than that of UKFp1 when λ is small, e.g., λ =
0.1, 0.5. In addition, the average FPR of UKFp̄1 is larger
than that of UKFp1 when λ is large, e.g., λ = 5, 10. More-
over, although the average PPR of UKFp̄1 is close to that of
UKFp1 when λ is small, the average PPR of UKFp̄1 is con-
sistently lower than that of UKFp1. Hence, as expected, the
results indicate that the false prior knowledge will lead to
worse inference result.

Incorporating LASSO The problem setup is the same as
before except that the LASSO rather than the existing net-
work information is used. The UKF incorporating LASSO
is denoted as UKFp2.
As shown in Table 3, the average TP# and FP# of UKFp2

are lower than those of UKF and the average TN# and FN#
of UKFp2 are higher than those of UKF. Hence, UKFp2
produces less links, including correct and incorrect ones.
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Figure 5 Variance of regulatory coefficients.

In addition, UKFp2 produces more nonlinks and missed
links. It is consistent with the fact that the LASSO tends to
provide a sparse solution. It can be seen from Table 3 that
the average FPR of UKFp2 is lower than that of UKF and
the average precision of UKFp2 is higher than that of UKF.
Hence, by incorporating LASSO, the inference accuracy is
improved.
A representative inference result of UKFp2 and the true

regulations are shown in Figure 1. For comparison, the
inference result of UKF and the true regulations are shown
in Figure 2. By comparing Figure 2 and Figure 1, it can be
seen that UKF falsely predicts the nonlinks from gene1 to
gene2, from gene3 to gene6, from gene4 to gene8, from
gene5 to gene2, and from gene6 to gene4 while UKFp2
does not.
The performance UKFp2 with different λ is shown in

Table 7. It is seen that the performance of UKFp2 and

UKF is close when λ is small since only small regulation is
imposed on the solution. When λ is large, the difference
between UKFp2 and UKF is large. The average TPR and
FPR of UKFp2 decrease with the increasing of the λ. The
average PPR does not increase monotonicallly with the
increasing of λ. Generally speaking, for different λ, UKFp2
is more sensitive than that of UKFp1. Although the perfor-
mance of UKFp2 depends on λ, the average PPR of UKFp2
is consistently higher than that of UKF. Hence, roughly
speaking, UKFp2 has better performance than UKF.

Incorporating the range constraint The existing net-
work information can be used to provide the rough range
constraint of x̄. A tight constraint is forced on the regula-
tion coefficient aij when there is a small regulation possi-
bility from genej to genei and a loose constraint is forced
on the regulation coefficient with no prior information.

Table 8 Inferred results of the UKF and UKFp2

Filters True positives # False positives # True negatives # False negatives #

UKF 1 7 14 3

UKFp2 2 3 18 2

Filters TPR FPR Precision

UKF 0.25 0.3333 0.1250

UKFp2 0.5000 0.1429 0.4000
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In the simulation, for the coefficients corresponding to
the zero elements in (79), the lower bound and the upper
bound are set as −10 and 10, respectively. For the coef-
ficients corresponding to the nonzero elements in (79),
the lower bound and the upper bound are set as −0.1
and 0.1, respectively. The UKF incorporating the range
constraint is denoted as UKFp3. As shown in Table 3,
the average FPR of UKFp3 is lower than that of UKF
and the average precision of UKFp3 is higher than that
of UKF.

5.2 Yeast protein synthesis network
In this section, time-series gene expression data of the
yeast protein synthesis network is used. Five genes (HAP1,
CYB2, CYC7,CYT1, andCOX5A) of the yeast protein syn-
thesis network are considered and 17 data points which
can be found in [35] are collected. The regulation rela-
tionship between them has been revealed by the biological
experiment and shown in Figure 3. The dashed arrow in
Figure 3 denotes ‘repression’ and the solid arrow denotes
‘activation.’
The GRN is inferred by the UKF and UKFp2. The pre-

dicted gene expressions using parameters estimated by
UKFp2 and the true measured gene expressions are shown
in Figure 4. It can be seen that the model output fits the
measured data well. The variances of the regulatory coef-
ficients of HAP1 (P1i(1 ≤ i ≤ 5)) are shown in Figure 5.
It can be seen that the filter converges since the vari-
ance P1i approaches zero. The results for other regulatory
coefficients are similar and not shown here. The evalua-
tion of the inferred GRN by UKF and UKFp2 is shown in
Table 8.
By incorporating the sparsity constraint, UKFp2 pro-

videsmuch better inference results than UKF. As shown in
Table 8, the TP# and TN# of UKFp2 are higher than those
of UKF and the FP# and FN# are lower than those of UKF.
In addition, it can be seen from Table 8, the FPR of UKFp2
is lower than that of UKF and the TPR and the precision
of UKFp2 is higher than that of UKF.

6 Conclusions
In this paper, we have proposed a framework of employ-
ing the point-based Gaussian approximation filters which
incorporates the prior knowledge to infer the gene regu-
latory network (GRN) based on the gene expression data.
The performance of the proposed framework is tested
by a synthetic network and the yeast protein synthesis
network. Numerical results show that the inference accu-
racy of the GRN by the proposed point-based Gaussian
approximation filter incorporating the prior information
is higher than using the traditional filters without incor-
porating prior knowledge. The proposed method works
for small- and medium-size GRNs due to the compu-
tational complexity considerations. It remains a future

research topic how to adapt the proposed inference frame-
work to handle large GRNs at reasonable computational
complexity.
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