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Abstract Sleep and circadian rhythm disruption (SCRD)

and schizophrenia are often co-morbid. Here, we propose

that the co-morbidity of these disorders stems from the

involvement of common brain mechanisms. We summarise

recent clinical evidence that supports this hypothesis,

including the observation that the treatment of SCRD leads

to improvements in both the sleep quality and psychiatric

symptoms of schizophrenia patients. Moreover, many

SCRD-associated pathologies, such as impaired cognitive

performance, are routinely observed in schizophrenia. We

suggest that these associations can be explored at a

mechanistic level by using animal models. Specifically, we

predict that SCRD should be observed in schizophrenia-

relevant mouse models. There is a rapidly accumulating

body of evidence which supports this prediction, as sum-

marised in this review. In light of these emerging data, we

highlight other models which warrant investigation, and

address the potential challenges associated with modelling

schizophrenia and SCRD in rodents. Our view is that an

understanding of the mechanistic overlap between SCRD

and schizophrenia will ultimately lead to novel treatment

approaches, which will not only ameliorate SCRD in

schizophrenia patients, but also will improve their broader

health problems and overall quality of life.
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Generation of circadian rhythms and sleep

Sleep and circadian rhythms are not synonymous. Circa-

dian rhythms are endogenous 24-h oscillations in physiol-

ogy and behaviour that enable an organism to anticipate

and adapt to the changing temporal demands of the envi-

ronment. An internal clock acts to coordinate the 24-h

rhythms of multiple cellular and organ systems within an

individual so that different aspects of physiology and

behaviour are appropriately synchronised to each other.

These rhythms arise from a sub-cellular transcriptional–

translational feedback loop (Fig. 1a), involving a number

of core clock genes (Lowrey and Takahashi 2011; Reppert

and Weaver 2002). In mammals, light is the primary time

cue (zeitgeber), which entrains the internal clock to the

external light environment. Light information is relayed

from the eyes to the primary circadian pacemaker located

in the suprachiasmatic nuclei (SCN) of the hypothalamus

(Moore 1973; Moore and Klein 1974), which in turn reg-

ulates physiology and behaviour. Additional oscillators are

found in tissues throughout the body, regulating local

physiology (Dibner et al. 2010).
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Whilst sleep/wake behaviour is perhaps the most obvi-

ous output of the circadian system, sleep biology involves

much more than the circadian system. In addition to a

circadian drive for wakefulness, sleep is under homeostatic

regulation, whereby an increased duration of wakefulness

leads to an increased need for sleep. The homeostatic drive

for sleep is the product of a complex network of brain

regions and neurotransmitter pathways (Fig. 1b), none of

which are exclusive to the generation of sleep (Tobler

1995). This complexity makes sleep very vulnerable to

disruption. Small changes in brain function can have a big

impact on sleep, and disrupted sleep leads to multiple

health problems (Table 1).

Sleep and circadian rhythm disruption (SCRD)

in schizophrenia

The relationship between schizophrenia and abnormal

sleep was first described in the late nineteenth century by

the German psychiatrist Emil Kraepelin (Manoach and

Stickgold 2009). Today, sleep and circadian rhythm dis-

ruption (SCRD) is reported in 30–80 % of patients with

schizophrenia, and is increasingly recognised as one of the

most common features of the disorder (Cohrs 2008). Sleep

disturbances in schizophrenia include increases in sleep

latency, and reductions in total sleep time, sleep efficiency,

REM sleep latency, REM sleep density and slow-wave

sleep duration (Cohrs 2008; Manoach and Stickgold 2009).

Schizophrenia is also associated with significant circadian

disruption, including the abnormal phasing, instability and

fragmentation of rest-activity rhythms (Martin et al. 2001,

2005; Wulff et al. 2006, 2009). Crucially, patients with

SCRD score badly on many quality-of-life clinical sub-

scales, highlighting the human cost of SCRD in schizo-

phrenia (Cohrs 2008; Goldman et al. 1996; Hofstetter et al.

2005). To reinforce this, schizophrenia patients often com-

ment that an improvement in sleep is one of their highest

priorities during treatment (Auslander and Jeste 2002).

Common brain mechanisms: an explanation

for the co-morbidity of SCRD and schizophrenia

Sleep and circadian rhythm disruption in schizophrenia

could be viewed as a side effect of antipsychotic medica-

tion, given that antipsychotic drugs, particularly typical

antipsychotics, have a severe sedative effect when taken at

high doses (Miller 2004). This seems unlikely, however, as

SCRD affects both medication-naı̈ve (Wulff et al. 2010)

and medicated patients (Krystal et al. 2008). Indeed, the

emergence of sleep disruption often precedes the diagnosis

of schizophrenia, occurring before any drugs have been

prescribed (Wulff et al. 2010). Recent data would suggest

that, if anything, antipsychotic drug treatment can actually

improve sleep quality in schizophrenia (Cohrs 2008; Kry-

stal et al. 2008). More specifically, schizophrenia patients

treated with typical antipsychotics show an increase in their

sleep efficiency and total sleep time (Cohrs 2008).
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Fig. 1 Schematic illustration of the mechanisms underlying circadian

rhythm generation and sleep regulation. a Light detected by the eye is

relayed to the suprachiasmatic nuclei (SCN) in the hypothalamus via

the retinohypothalamic tract (RHT), which uses the neurotransmitters

glutamate and PACAP. Circadian rhythms are generated by a cell

autonomous transcriptional–translational feedback loop (TTFL)

involving a set of core clock genes. The molecular clock in the

SCN synchronises circadian clocks found in tissues throughout the

body, which regulate local physiology. b Sleep is the product of

multiple brain regions and neurotransmitters. Abbreviations for brain

regions: BF basal forebrain, DR/MR dorsal/medial raphe nucleus, LC
locus coeruleus, LDT laterodorsal tegmental nuclei, LH lateral

hypothalamus, LPT lateral pontine tegmentum, PPT pedunculopon-

tine tegmental nuclei, SCN suprachiasmatic nuclei, SLD sublatero-

dorsal nucleus, TMN tuberomammilary nucleus, VLPO ventrolateral

preoptic nuclei, vPAG ventral periaqueductal grey, vlPAG ventrolat-

eral periaqueductal grey. Abbreviations for neurotransmitters: 5-HT
serotonin, ACh acetylcholine, DA dopamine, GABA c-aminobutyric

acid, Gal galanin, Glut glutamate, His histamine, NA noradrenaline,

ORX orexin
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Social isolation, and the resulting absence of social

constraints, is also routinely suggested as a cause of SCRD

in schizophrenia. This hypothesis was recently addressed

by comparing the sleep patterns of schizophrenia patients

with those of unemployed healthy volunteers (Wulff et al.

2011). Severe SCRD was observed in schizophrenia, but

could not be attributed to an absence of routine, as major

sleep disruption was observed in schizophrenia patients

that followed a fixed routine. Conversely, undisturbed sleep

was seen in a number of control participants that did not

follow a fixed routine.

A more likely explanation for the co-morbidity of SCRD

and schizophrenia is the involvement of common brain

mechanisms. As described above, sleep is the product of a

complex interaction between multiple brain regions and

neurotransmitters. As a consequence, abnormalities in any

key neurotransmitter system will impinge upon sleep at

multiple levels. Similarly, schizophrenia is a disorder of

distributed brain circuits, affecting a range of neurotrans-

mitter systems (Weinberger and Harrison 2011), many of

which overlap with those involved in sleep regulation

(Wulff et al. 2010). Viewed in this context, it is no surprise

that SCRD is common in schizophrenia, or that SCRD will

in turn have widespread effects, ranging across many

aspects of neural, neuroendocrine and cognitive function

(Fig. 2).

Sleep and circadian rhythm disruption in schizophrenia

could also arise from dysfunction at any point in the cir-

cadian axis (i.e. input, oscillator or output). Such defects

would impact upon sleep via the circadian drive for

wakefulness, as appears to be the case in familial advanced

sleep phase syndrome (FASPS), which has previously been

linked to mutations in the clock gene Per2 (Toh et al.

2001).

Clinical evidence for common brain mechanisms

in SCRD and schizophrenia

Sleep and circadian rhythm disruption is rarely targeted for

treatment in schizophrenia, but when it is, patients report

improvements in both their sleep quality and psychiatric

symptoms (Kantrowitz et al. 2010). In a recent study,

insomnia was treated in 15 patients with persistent perse-

cutory delusions and schizophrenia (Myers et al. 2011).

Following a cognitive behavioural therapy (CBT) inter-

vention, there were significant reductions in both insomnia

and persecutory delusions. At least two-thirds of partici-

pants showed a substantial ([25 %) improvement in

insomnia, whilst approximately half showed a substantial

([25 %) reduction in persecutory delusions. There were

also reductions in levels of hallucinations, anxiety and

depression. Although consistent with the existence of

common mechanisms in SCRD and schizophrenia, the

results of this study should be interpreted with caution, due

to a number of methodological limitations; the sample size

was small, there was no control group, and 14 of the 15

patients received antipsychotic medication during the CBT

intervention.

Significantly, many of the pathologies caused by SCRD

are routinely reported as co-morbid with schizophrenia, but

are rarely linked to the disruption of sleep. For example,

sleep deprivation (Alhola and Polo-Kantola 2007; Chee

and Chuah 2008; Horne 1993; Van Dongen et al. 2003) and

Table 1 Impact of sleep and circadian rhythm disruption on emotional, cognitive and somatic responses

Emotional responses Cognitive responses Somatic responses

Fluctuations in mood (Banks and Dinges

2007; Oginska and Pokorski 2006; Scott

et al. 2006; Selvi et al. 2007)

Depression and psychosis (Johnson et al.

2006; Kahn-Greene et al. 2007; Riemann

and Voderholzer 2003; Sharma and

Mazmanian 2003)

Increased irritability, impulsivity and

frustration (Dahl and Lewin 2002; Kelman

1999; Muecke 2005)

Increased risk-taking (Acheson et al. 2007;

McKenna et al. 2007; O’Brien and Mindell

2005; Venkatraman et al. 2007)

Increased stimulant, sedative and alcohol

abuse (Baranski and Pigeau 1997; Boivin

et al. 2007; Killgore et al. 2006b; Roehrs and

Roth 2001a, b)

Impaired cognitive performance and ability to

multi-task (Dinges et al. 1997; Lamond et al.

2007; Pilcher and Huffcutt 1996)

Impaired memory, attention and concentration

(Chee and Chuah 2008; Dworak et al. 2007;

Goder et al. 2007; Oken et al. 2006)

Impaired communication and decision-making

skills (Baranski et al. 2007; Harrison and

Horne 2000; Killgore et al. 2006a; Killgore

et al. 2007; Lucidi et al. 2006)

Reduced creativity and productivity (Horne

1988; Jones and Harrison 2001; Killgore

et al. 2008; Randazzo et al. 1998)

Impaired motor performance (Kahol et al.

2008; Pilcher and Huffcutt 1996)

Dissociation (Lynn et al. 2012)

Drowsiness, micro-sleeps and unintended

sleep (Basner et al. 2008a, b; Philip and

Akerstedt 2006; Pilcher et al. 2000; Scott

et al. 2007).

Bodily sensations of pain and cold

(Kundermann et al. 2004; Landis et al. 1998;

Roehrs et al. 2006)

Increased risk of cancer (Davis and Mirick

2006; Hansen 2006)

Metabolic abnormalities, cardiovascular

disease and diabetes (Gangwisch et al. 2005;

Knutson et al. 2007; Laposky et al. 2008;

Maemura et al. 2007; Yang and Winkelman

2006; Young and Bray 2007)

Reduced immunity to disease and viral

infection (Irwin 2002; Lorton et al. 2006)

Altered regulation of the HPA axis (Meerlo

et al. 2008)
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circadian de-synchronisation (Kyriacou and Hastings 2010)

are known to impair cognition in healthy individuals, and

cognitive impairment is a core symptom of schizophrenia.

Thus, cognitive impairments in schizophrenia could be

exacerbated by circadian de-synchronisation and/or dis-

turbed sleep. Consistent with this, associations between

sleep and cognitive performance have been reported in

medication-naı̈ve (Forest et al. 2007), medicated (Bro-

mundt et al. 2011; Goder et al. 2004, 2008; Wulff and

Joyce 2011), and unmedicated schizophrenia patients

(Yang and Winkelman 2006). In the latter study, the

severity of patients’ cognitive symptoms was inversely

related with slow-wave sleep duration and REM sleep

density (Yang and Winkelman 2006).

Memory consolidation is just one cognitive function that

warrants further investigation. Memory impairment is

prevalent in schizophrenia (Aleman et al. 1999), and it has

been suggested that sleep makes a crucial contribution to

memory consolidation (Stickgold 2005). Reduced over-

night consolidation of procedural learning has been dem-

onstrated in schizophrenia patients (Manoach et al. 2004),

and more recently, this effect was linked to a reduction in

slow-wave sleep duration (Manoach et al. 2010). The

negative symptoms of schizophrenia might also be sensi-

tive to SCRD, since circadian de-synchronisation increases

negative mood, irritability and affective volatility in heal-

thy volunteers (Kyriacou and Hastings 2010; Murray and

Harvey 2010). Consistent with this, improvements in sleep

quality are frequently correlated with the amelioration of

negative symptoms in schizophrenia patients (Hofstetter

et al. 2005; Yamashita et al. 2004).

Using animal models to establish mechanistic links

between SCRD and schizophrenia

Animal models provide essential tools to understand the

mechanisms underlying neuropathological processes,

enabling highly controlled genetic, anatomical, physio-

logical and behavioural studies that are not possible in

humans. If, as our central hypothesis proposes, common

mechanisms are involved in the pathogenesis of SCRD and

schizophrenia, then SCRD should be observed in schizo-

phrenia-relevant animal models. Conversely, animal models

of SCRD may display schizophrenia-relevant behavioural

and neurobiological abnormalities. There is a rapidly

accumulating body of evidence which supports the first of

these predictions, while the second prediction has yet to be

tested.

SCRD in schizophrenia-relevant mouse models:

existing evidence

The hypotheses outlined above apply to genetic, pharma-

cological and environmental models, and are not species-

specific. For the sake of brevity, this paper focuses on

schizophrenia-relevant transgenic mouse models. Sleep

and circadian function has yet to be investigated in any

pharmacological or environmental mouse models, but this

represents a promising avenue for future research; it would

be particularly interesting to see whether sleep is affected

in the PCP, MK-801 and ketamine models of schizophre-

nia. It should also be noted that SCRD has already been

demonstrated in two schizophrenia-relevant transgenic

Drosophila models (Sawamura et al. 2008; Zheng and

Sehgal 2010).

Fig. 2 The key components in the regulation and maintenance of the

sleep/wake cycle and its relationship to mood/cognition and mental

health. The sleep/wake cycle is regulated directly by (i) The 24-h

body clock/circadian clock located within the suprachiasmatic nuclei

(SCN), (ii) wake-dependent homeostatic drivers (e.g. adenosine) that

build-up and generate ‘‘sleep pressure’’, (iii) social behaviours that

force a sleep/wake pattern on the individual. The SCN drives

wakefulness throughout the day and sleep during the night. This 24-h

rhythm interacts with the homeostatic ‘‘hourglass oscillator’’ produc-

ing increased sleep pressure during wake and its dissipation during

sleep. The circadian system directly regulates multiple neurotrans-

mitter and brain systems that either drive or modulate sleep, including

the hypothalamo–pituitary–adrenal axis (HPA) and melatonin from

the pineal gland. The SCN also coordinates the 24-h biology of

peripheral oscillators, maintaining internal synchrony of 24-h biolog-

ical timing processes. A mismatch between central and peripheral

oscillators (internal desynchrony), as occurs in shift work or jet-lag, is

associated with mood imbalance and depression. All of the compo-

nents within the triangle are modulated by light, which acts to: entrain

the circadian pacemaker to the light/dark cycle; alter melatonin

production from the pineal gland; modulate the HPA axis; and elevate

or suppress levels of mood and cognition. Social behaviours will also

change an individual’s exposure to the light/dark cycle (Mistlberger

and Skene 2004), and have a major effect on mood/cognition and

mental health. The quality of sleep and the stability of the sleep/wake

cycle have a direct effect upon mood, cognitive processing and

mental health (Table 1)
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A number of genes have been linked with schizophrenia,

and endophenotypes thereof, through a combination of

genetic linkage studies, genome-wide association studies

and appraisals of biological plausibility. Those most

established in the ‘candidate gene’ literature are Nrg1

(Harrison and Law 2006; Mei and Xiong 2008; Stefansson

et al. 2002), Akt1 (Arguello and Gogos 2008), Disc1

(Brandon and Sawa 2011; Johnstone et al. 2011), Grm3

(Harrison et al. 2008), Dao (Chumakov et al. 2002; Verrall

et al. 2010), Comt (Tunbridge et al. 2006), Dtnbp1 (Wil-

liams et al. 2005) and ErbB4 (Mei and Xiong 2008). More

recent additions to the literature include Snap-25 (Corra-

dini et al. 2009), Vipr2 (Vacic et al. 2011), Cckar (Koefoed

et al. 2009), Gsk3b (Lipina et al. 2012), Pde4d (Fatemi

et al. 2008; Numata et al. 2008; Tomppo et al. 2009), Tcf4

(Brzozka et al. 2010), MIR137 (Ripke et al. 2011) and

ZNF804A (O’Donovan et al. 2008). To the best of our

knowledge, sleep and circadian function has only been

evaluated in knockout or mutant models of four of these

genes, namely Snap-25 (Oliver et al. 2012), Vipr2 (Hughes

and Piggins 2008), Nrg1 (Johnson et al. 2002) and Cckar

(Shimazoe et al. 2008). In all four cases, significant SCRD

was observed, as outlined below.

When circadian disruption is observed in a mouse

model, it is important to identify the level of the circadian

system at which this disturbance arises (Fig. 3). Does the

deficit affect inputs to the SCN, the function of the SCN

itself, or the physiological outputs of the SCN? Such

knowledge is vital, as it will inform the selection and/or

development of the most appropriate therapeutic inter-

vention. To date, this approach has only been implemented

in the Snap-25 (Oliver et al. 2012) and Vipr2 models

(Hughes and Piggins 2008).

How can one determine the level at which circadian

disturbances arise? Light input to the SCN can be evaluated

by measuring circadian and molecular responses to light

(e.g. phase shifting, entrainment, negative masking and

clock gene induction) (Albrecht and Foster 2002; Jud et al.

2005), whilst core oscillator function can be assessed at a

behavioural level via activity rhythms under constant

conditions, and at a cellular level using clock-gene reporter

assays (e.g. Per2::Luc) (Savelyev et al. 2011). Clock out-

puts can be determined from hormonal rhythms, and from

gene expression and reporter assays in peripheral tissues.

For example, hormones such as corticosterone can be

monitored with real-time measurements from faeces

(Abraham et al. 2006). Finally, sleep/wake behaviour can

be assessed using non-invasive methods such as video

tracking (Fisher et al. 2012).

Snap-25 (blind-drunk mutant)

Previous work has shown that the blind-drunk (Bdr) mouse,

a model of Snap-25 exocytotic disruption, displays

schizophrenia-related endophenotypes that are modulated

by environmental stress (Jeans et al. 2007; Oliver and

Davies 2009). Bdr mutants also show disturbances in cir-

cadian organisation that appear to specifically affect out-

puts of the SCN (Fig. 4). The rest/activity rhythms of Bdr

mice are phase advanced and fragmented under a light/dark

cycle. Retinal inputs appear normal in Bdr mice, as light-

induced phase shifts, masking, pupil constriction and reti-

nal histology are all unaffected. Similarly, clock gene

rhythms within the SCN are normally phased both in vitro

and in vivo. However, the 24-h rhythms of arginine vaso-

pressin (Avp) within the SCN and plasma corticosterone

Fig. 3 Suggested model of the

mechanistic links between

cognitive and circadian

disturbances. We propose the

evaluation of both

schizophrenia-relevant models

and models of circadian

disruption, to confirm whether

defects at one level are

associated with defects at the

other. Similarly, therapeutic

interventions that correct

defects at one level should

produce concomitant

improvements at the other
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are both markedly phase-advanced in Bdr mice. These data

suggest that the circadian phenotype of the Bdr mouse

arises from a disruption of synaptic connectivity within the

SCN that alters critical output signals (Oliver et al. 2012).

Vipr2

Recent studies have shown that Vipr2 duplications confer a

significant risk for schizophrenia (Vacic et al. 2011).

Vasoactive intestinal polypeptide (Vip) and its receptor,

Vipr2 (VPAC2), play a critical role within the SCN. Real-

time imaging of circadian gene expression in SCN slices

has shown that the VPAC2 receptor is required for the

maintenance of circadian oscillations within SCN neurons,

and for the synchronisation of oscillations between these

neurons (Maywood et al. 2006). Vipr2 knockout mice

demonstrate circadian abnormalities, including a shortened

circadian period of approximately 22 h (Hughes and Pig-

gins 2008). The deficit in these mice must reside in the

SCN itself or in its outputs, as light input to the SCN

appears relatively normal; exposure to light increases

phosphoprotein and immediate early gene expression in the

Vipr2-/- SCN, whilst a subset of Vipr2-/- mice respond

appropriately to nocturnal light pulses, displaying robust

phase-shift responses.

Nrg1

Neuregulin 1 (NRG1) is a growth factor involved in neu-

rodevelopment and plasticity, which has been associated

with both schizophrenia (Harrison and Law 2006; Mei and

Xiong 2008; Stefansson et al. 2002) and schizotypal per-

sonality disorder (Lin et al. 2005). There is some evidence

that its expression is increased in the brains of

schizophrenia patients (Harrison and Law 2006; Hashimoto

et al. 2004). Mice heterozygous for a disruption in the Nrg1

gene show disrupted rest/activity rhythms (Johnson et al.

2002), whilst wheel-running activity is inhibited by the

long-term infusion of NRG1 into the third ventricle of the

hamster brain (Snodgrass-Belt et al. 2005). NRG1 is

expressed in the SCN and retinal ganglion cells (Bernstein

et al. 2006; Sharif et al. 2009), consistent with its proposed

involvement in circadian function.

Cckar

The Cholecystokinin A receptor (CCK-AR) is a G-protein

coupled receptor that binds the neuropeptide cholecysto-

kinin (CCK) (Noble et al. 1999). Abnormal levels of CCK

mRNA have been observed in the brains of schizophrenia

patients (Bachus et al. 1997; Zachrisson et al. 1999), while

several studies have reported an association between the

Cckar gene and schizophrenia (Koefoed et al. 2009; Tac-

hikawa et al. 2000, 2001; Toirac et al. 2007; Wei and

Hemmings 1999). Dopamine may mediate the relationship

between CCK and schizophrenia, as CCK-ARs modulate

CCK-stimulated dopamine release in the mesolimbic sys-

tem (Marshall et al. 1991). There is also evidence that CCK

plays a role in sleep regulation. The intraperitoneal

administration of CCK promotes slow-wave sleep and

inhibits locomotor activity in rats (Kapas et al. 1988). CCK

may exert its effects through orexin, a neurotransmitter

known to influence wakefulness, as CCK activates orexin

neurons by binding to CCK-ARs (Tsujino et al. 2005).

CCK-ARs are also involved in photoentrainment; light-

induced phase shifts are significantly attenuated in Cckar

knockout mice, as is light-induced clock gene expression in

the SCN (Shimazoe et al. 2008).

Fig. 4 Summary of findings in the blind-drunk (Bdr) mouse model of

Snap-25 exocytotic disruption. The rest/activity rhythms of Bdr mice

are phase advanced and fragmented under a light/dark cycle,

reminiscent of the disturbed sleep/wake patterns observed in schizo-

phrenia. Retinal inputs appear normal in mutants, and clock gene

rhythms within the suprachiasmatic nuclei (SCN) [e.g. Per2 and

vasoactive intestinal peptide (Vip)] are normally phased both in vitro

and in vivo. However, the 24-h rhythms of arginine vasopressin (Avp)

within the SCN and plasma corticosterone are both markedly phase

advanced in Bdr mice. We suggest that the Bdr sleep/wake phenotype

arises from a disruption of synaptic connectivity within the SCN that

alters critical output signals (Oliver et al. 2012). Abbreviations for

brain regions: DMH dorsomedial hypothalamus, sPVZ subparaven-

tricular zone
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SCRD in schizophrenia-relevant mouse models:

future studies

The preceding section describes four schizophrenia-relevant

mouse models with significant sleep and circadian deficits.

The challenge for the future is to identify more of these

models and to characterise them fully. Characterisation

entails screening for both SCRD and schizophrenia-relevant

behaviours; the models mentioned above are only described

as ‘schizophrenia-relevant’ by virtue of the fact that the genes

in question share a significant association with schizophrenia

(or in the case of Snap-25, a plausible biological connection).

Which of these mice provides the best model of schizophrenia

remains to be seen. The Bdr mutant (Jeans et al. 2007; Oliver

and Davies 2009) and NRG1type 1-tg mouse (Deakin et al.

2009) share some features in common with the disorder,

while the Vipr2 and Cckar knockout models have not been

extensively tested from a behavioural perspective. To redress

this balance, a variety of tests could be employed across a

range of behavioural domains (Chadman et al. 2009), as

described in ‘‘Challenges associated with modelling schizo-

phrenia in rodents’’. In the paragraphs that follow, we con-

sider four more genes with the potential to link schizophrenia

with sleep and circadian function.

ErbB4

NRG1 (see ‘‘SCRD in schizophrenia-relevant mouse

models: existing evidence’’) acts through the same family

of tyrosine kinase receptors as TGF-a, a putative inhibitory

output signal of the SCN (Kramer et al. 2001). TGF-a acts

on ERBB1 receptors, whilst NRG1 acts on ERBB4

receptors. ERBB1 receptors have a known role in loco-

motor activity and sleep; mice with reduced ERBB1

receptor activity show reduced negative masking by light

(Kramer et al. 2001). Future studies should address whether

ERBB4 receptors play a similar role. Polymorphisms in

ErbB4 have previously been associated with schizophrenia

(Mei and Xiong 2008).

Gsk3b

GSK3 is a serine/threonine protein kinase, whose deregu-

lation has been implicated in schizophrenia and bipolar

disorder (Lipina et al. 2012). GSK3 activity is inhibited by

the putative schizophrenia risk genes Disc1 and Akt1

(Bradshaw and Porteous 2012; Lipina et al. 2012). Sig-

nificantly, the GSK3 inhibitor TDZD-8 ameliorates

hyperactivity and prepulse inhibition (PPI) deficits in the

Disc1-L100P mutant, a mouse model of schizophrenia

(Lipina et al. 2012). In the Disc1-Q31L mutant mouse, a

model of depression, TDZD-8 corrects a PPI deficit,

reduces immobility in the forced swim test, and increases

social interaction (Lipina et al. 2012). Interestingly, clini-

cians often prescribe the mood stabiliser lithium (a GSK3

inhibitor) to schizophrenia patients to augment their anti-

psychotic medication, although the efficacy of this strategy

is unclear (Leucht et al. 2004). GSK3b has a known role in

circadian function; it phosphorylates clock proteins and

regulates several components of the transcriptional–trans-

lational feedback loop that generates circadian rhythms

(Cross et al. 1995; Iitaka et al. 2005; Martinek et al. 2001;

Yin et al. 2006). GSK3b also inhibits CREB DNA-binding

activity (Grimes and Jope 2001), which is involved in

circadian signal transduction (Lee et al. 2010).

Pde4d

PDE4 is a phosphodiesterase that been associated with

schizophrenia in a number of studies (Fatemi et al. 2008;

Numata et al. 2008; Tomppo et al. 2009). Like GSK3,

PDE4 activity is inhibited by the putative schizophrenia

risk gene Disc1 (Bradshaw and Porteous 2012; Lipina et al.

2012). Crucially, the PDE4 inhibitor Rolipram acts as a

cognitive enhancer, facilitating long-term potentiation,

memory performance and latent inhibition in wildtype

rodents (Barad et al. 1998; Davis and Gould 2005; Zhang

et al. 2004), and attenuating PPI deficits in the Disc1-L100P

mutant model of schizophrenia (Lipina et al. 2012). In

addition, Rolipram has antidepressant-like properties,

reducing immobility in the forced swim test in wildtype rats

(Zhang et al. 2006). From a circadian perspective, PDE4

regulates cAMP signalling, which is involved in circadian

signal transduction (O’Neill and Reddy 2012). Intriguingly,

a polymorphism in Pde4d has been associated with sleepi-

ness in healthy individuals (Gottlieb et al. 2007).

Tcf4

Several large genome-wide association studies have iden-

tified the basic helix-loop-helix (bHLH) transcription fac-

tor TCF4 as one of the most significant schizophrenia

susceptibility genes (Brzozka et al. 2010). The protein

encoded by this gene resembles ID (inhibitor of DNA-

binding) proteins, which act as negative regulators of the

transcriptional–translational feedback loop that generates

intracellular circadian rhythms (Duffield et al. 2009). To

date, at least eight different Tcf4 mutants have been pro-

duced by ENU mutagenesis, but their circadian profiles

have yet to be characterised.

Schizophrenia-relevant abnormalities in mouse models

of SCRD

To establish mechanistic links between SCRD and

schizophrenia, a parallel approach is to screen mouse
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models of circadian disruption for schizophrenia-relevant

behaviours, such as impaired cognitive function. To our

knowledge, the Clock mutant, described below, is the only

mouse model of SCRD which has been studied in this way

(Roybal et al. 2007). The Clock mutant does not show any

schizophrenia-relevant behaviours, but has a striking

mania-like phenotype, which can be reversed with the

mood stabiliser lithium (Roybal et al. 2007). Future

research will reveal whether other mouse models of SCRD

have a schizophrenia-relevant phenotype.

Clock (Clock mutant)

The Clock mutant was first identified in 1994 from a cir-

cadian screen of ENU mutants (Vitaterna et al. 1994).

These animals have an extended circadian period (Vita-

terna et al. 1994), and sleep significantly less than wild-

types (Naylor et al. 2000), consistent with the decreased

need for sleep observed in patients with mania (Plante and

Winkelman 2008). Their behavioural profile is also remi-

niscent of bipolar patients in the manic state; they show

hyperactivity, excessive-reward seeking behaviour [as

measured by intracranial self-stimulation (ICSS), cocaine

preference and sucrose preference], reduced depression

like-behaviour (as measured with the Porsolt forced swim

test and learned helplessness test), reduced anxiety-like

behaviour (as measured with the open field test and ele-

vated plus maze) (Roybal et al. 2007) and increased

exploratory behaviour (Easton et al. 2003).

Therapeutic interventions in mouse models

with simultaneous deficits

Once models that display simultaneous circadian and

schizophrenia-relevant abnormalities have been identified,

therapeutic interventions can be introduced. If schizo-

phrenia and SCRD share a common mechanistic origin,

then two further predictions logically follow. The

administration of drugs used to treat schizophrenia (e.g.

antipsychotics and mood-stabilisers) should produce a

concurrent improvement in the animals’ SCRD and

schizophrenia-relevant deficits, while therapies that target

SCRD should do likewise (Fig. 3). The latter approach

could involve either pharmacological (e.g. melatonin

administration) or environmental interventions (e.g.

modification of the light/dark cycle or scheduled volun-

tary exercise) (Power et al. 2010). This type of experi-

ment has never been performed in a schizophrenia-

relevant animal model, although the pharmacological

imposition of sleep has been shown to slow cognitive

decline in a transgenic mouse model of Huntington’s

disease (Pallier et al. 2007).

Challenges associated with modelling schizophrenia

in rodents

Animal studies afford a level of control that is simply not

possible in human studies. Human participants differ from

each other in all manner of dimensions, including their age,

education, medication history, genetic makeup and life

experiences. In this context, it is difficult to attribute a

specific behavioural observation (e.g. disturbed sleep) to a

specific underlying trait (e.g. the possession of a particular

risk-conferring gene). In animal studies, there are relatively

fewer confounds, so making such attributions is more

straightforward. Genetic manipulation is also possible in

rodents, enabling the investigator to move beyond corre-

lation and infer causality.

Modelling schizophrenia in animals raises a number of

complex theoretical and experimental design issues for the

investigator (for reviews, see Arguello and Gogos 2010;

Harrison et al. 2012; Nestler and Hyman 2010; Papaleo

et al. 2012). The first and perhaps biggest challenge is the

process of selecting which gene to manipulate. Despite

years of research, no gene has been unequivocally estab-

lished as conferring increased susceptibility to schizo-

phrenia (Crow 2008). The literature is littered with genes

that have yielded positive results in one or two genetic

association studies, only for several follow-up studies to

draw a blank (Crow 2008). A ‘schizophrenia model’ is only

as good as the evidence linking the gene in question with

the disorder itself, and from this perspective, the validity of

almost any model can be questioned. The likely explana-

tion for these results is that schizophrenia is caused by a

large number of genes, each one having a very small effect

(Chakravarti 1999). Put simply, no single gene is either

necessary or sufficient to cause the disorder. In light of this,

the value of single gene models is debatable. Double- or

triple-gene models may be more realistic, but these are

more complex and costly to produce. A further limitation is

that some schizophrenia risk genes (e.g. G72/DAOA) have

no known ortholog in rodents (Chumakov et al. 2002).

Besides choosing which gene to manipulate, the inves-

tigator must decide how to manipulate it. Knockout models

are the simplest and therefore the most common, but again,

are unlikely to represent schizophrenia that faithfully.

There is no evidence for null mutations in schizophrenia,

but there is evidence for the up- or down-regulation of

specific genes (Harrison and Weinberger 2005). In this

context, transgenic over-expression or heterozygous

knockout may prove more suitable tools for modelling

schizophrenia. The investigator must also decide whether

the genetic manipulation is constitutive or conditional.

Most models are constitutive; that is, the manipulation is

present throughout the brain and throughout the animal’s

lifetime. Given evidence that brain abnormalities in
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schizophrenia are more pronounced in some brain areas

than others, and that they can develop over time (Ellison-

Wright et al. 2008), the constitutive approach may not be

the most appropriate. Conditional models, in which the

timing and location of the manipulation are more tightly

regulated, provide a more flexible alternative.

Another complication is the not inconsiderable variation

amongst patients labelled with schizophrenia. The disorder

is associated with a wide range of symptoms, and two

patients with the same diagnosis may present a very dif-

ferent subset of these symptoms (Andreasen 1999). Thus,

treating a condition as complex as schizophrenia as a

unitary disorder could be a mistake. Perhaps a more

appropriate approach would be to model specific symptoms

(or endophenotypes) in isolation (Kaffman and Krystal

2012).

In rodents, some schizophrenia-relevant behaviours are

easier to model than others. Schizophrenia is characterised

by positive symptoms (e.g. hallucinations and delusions),

negative symptoms (e.g. avolition and anhedonia) and

cognitive symptoms (e.g. impaired working memory, sen-

sorimotor gating and attentional set-shifting) (Andreasen

1995; Elvevag and Goldberg 2000). In humans, halluci-

nations and delusions are only revealed through patients’

verbal reports, so these symptoms are difficult to investi-

gate in rodents. Nonetheless, hyperlocomotion and stereo-

typic behaviours are considered by many to reflect the

positive symptoms of schizophrenia (Nilsson et al. 1997;

Sams-Dodd 1996). Similarly, reduced social interaction in

rodents is often presented as a direct analogue of the

negative symptoms witnessed in schizophrenia (Lee et al.

2005; Sams-Dodd 1996). Whether these behaviours are

conceptually and neurally equivalent seems highly unli-

kely, however (Bussey et al. 2012; Garner et al. 2006). In

contrast, the human and rodent versions of most cognitive

tasks are at least superficially similar. PPI, for example, is a

measure of sensorimotor gating which can be tested almost

identically in humans and rodents (Swerdlow et al. 2008),

while the attentional set-shifting task, which measures

cognitive flexibility, is modelled directly on its human

counterpart, the Wisconsin Card Sorting Test (Bissonette

and Powell 2012; Garner et al. 2006). Questions remain as

to the suitability of set-shifting tasks for mice, however

(Garner et al. 2006). Working memory is also routinely

tested in rodents, although again, it is unclear whether the

human and rodent versions of these tasks tap the same

neural substrates (Sanderson and Bannerman 2010).

Of course, behavioural assessment is not the only way to

assess the validity of schizophrenia-relevant models.

Investigators can also look for neurophysiological changes

reminiscent of those observed in schizophrenia. These

include structural changes, such as reduction of cortical

thickness and enlargement of the lateral ventricles

(Weinberger et al. 1982), and characteristic changes in

neurotransmitter systems, such as glutamatergic hypo-

function (Konradi and Heckers 2003).

To summarise, it would be a significant overstatement to

suggest that schizophrenia can be faithfully modelled in

rodents. First, some of the core symptoms of schizophrenia

simply cannot be measured in rats or mice, as explained

above. Secondly, schizophrenia is a multi-gene disorder, so

it seems improbable that a single-gene model could ever

demonstrate the full range of symptoms observed in a

patient. Finally, there are notable neuroanatomical differ-

ences between humans and rodents; the prefrontal cortex,

for example, is far more developed in humans than it is in

rodents. Despite these limitations, murine models may still

yield valuable insights into the roles of schizophrenia risk

genes in brain function, such as whether they contribute to

sleep and circadian function.

Challenges associated with sleep and circadian

phenotyping in rodents

Sleep and circadian rhythms in humans and rodents are not

identical, not least as rodents are nocturnal and humans

diurnal. In addition, humans typically sleep once every

24 h, whereas rodents tend to alternate between several

bouts of sleep and wakefulness (Fisher et al. 2012). As a

result, the sleep and circadian phenotype of a rodent model

may not translate directly to humans. In addition, envi-

ronmental light intensity varies continuously in the natural

world, whereas most experimental paradigms employ a

discrete transition from light to dark and vice versa.

The way we assess the circadian/sleep phenotype of

rodents might also cause problems. Crucially, locomotor

activity is the dependent variable in most circadian

screening paradigms, and locomotor activity is subject to

all manner of influences besides circadian function,

including basic motor function, anxiety and arousal levels.

Therefore, this approach might not be the most appropriate

for assessing mouse models with locomotor deficits, such

as the schizophrenia-relevant NRG1type 1-tg mouse (Deakin

et al. 2009). An obesity phenotype, as seen in Clock mutant

mice, could also complicate behavioural phenotyping

(Turek et al. 2005). Invasive measures of circadian func-

tion (e.g. clock gene rhythms within the SCN) provide a

useful alternative, as they are not subject to the same

confounds.

Differences in mouse strain must also be taken into

consideration. For example, the circadian system of the

C57/BL6 mouse is more sensitive to light than that of the

C3H mouse. Hence, C57/BL6 mice are able to entrain their

circadian behaviour at much lower irradiances (Foster and

Helfrich-Forster 2001). There is also evidence that pineal
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melatonin content varies between mouse strains (Ebihara

et al. 1986; Goto et al. 1989). In contrast to wild mice,

several inbred strains, including the C57/BL6 mouse, do

not have detectable melatonin levels in their pineal glands.

Conclusion and future directions

Sleep and circadian rhythm disruption and schizophrenia are

often co-morbid, and this co-morbidity may arise from the

involvement of common brain mechanisms. SCRD in

schizophrenia is not merely a side effect of antipsychotic

medication, nor is it a by-product of an absence of social

routine. The treatment of insomnia in schizophrenia patients

produces a concomitant improvement in psychiatric symp-

toms, which provides further support for the hypothesis that

common mechanisms are involved. Moreover, many

symptoms associated with SCRD, such as impaired cogni-

tive performance, are frequently observed in schizophrenia

patients. Animal models provide a means to test our

hypothesis of mechanistic overlap. Implicit in our theory are

four key predictions that can be tested in rodents:

1. Sleep and circadian rhythm disruption should be

observed in schizophrenia-relevant models.

2. Schizophrenia-relevant behavioural abnormalities (e.g.

cognitive impairments) may be observed in models of

SCRD.

3. Therapies that target SCRD (e.g. melatonin or sched-

uled voluntary exercise) should ameliorate both SCRD

and schizophrenia-relevant behavioural abnormalities

in models which display simultaneous deficits.

4. Therapies that target schizophrenia-relevant behav-

ioural abnormalities (e.g. antipsychotic or mood-

stabilising drugs) should do likewise.

In this review, we have drawn attention to several

schizophrenia-relevant mouse models which show signifi-

cant sleep and circadian deficits. The challenge for the

future is to identify more of these models, characterise

them fully, and investigate their responses to therapeutic

interventions. Given the continued interest in, and avail-

ability of, schizophrenia-relevant mouse models, the eval-

uation of circadian and sleep physiology and behaviour in

these models represents an excellent opportunity to better

understand the shared mechanistic basis of SCRD and

schizophrenia.
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