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Abstract We study the Casimir interaction energy due
to the vacuum fluctuations of the electromagnetic (EM)
field in the presence of two mirrors, described by 2 + 1-
dimensional, generally nonlocal actions, which may con-
tain both parity-conserving and parity-breaking terms. We
compare the results with the ones corresponding to Chern–
Simons boundary conditions and evaluate the interaction
energy for several particular situations.

1 Introduction

The Casimir effect [1–3] is usually regarded as one of the
most remarkable macroscopic manifestations of the fluctu-
ations (be they quantum or thermal) of a field when it is
subjected to the non-trivial influence of external agents. The
latter usually manifest themselves as boundary conditions, or
as ‘boundary terms’ in the action for the field. These terms
are, by definition, contributions depending only on the field
and its derivatives on the boundary; therefore, they can be
interpreted as due to singular terms (involving generalized
functions) in the Lagrangian. The effect results from the inter-
play between those external agents (‘mirrors’) and the field
fluctuations. In the static version of the effect, the one we are
concerned with here, one considers time-independent bound-
ary conditions or, equivalently, boundary terms which do not
depend explicitly on time.

A variety of situations can be explored where this effect
becomes relevant; a natural way to exhaust them all, is by
either considering fluctuating fields of different nature for
each boundary condition, or by studying the consequences of
imposing different boundary conditions on each given field.
In principle, both the mirrors’ geometry and their intrinsic
properties are relevant to the effect. Having in mind the lat-
ter, our aim here is to consider boundary actions contain-
ing both parity-conserving and parity-breaking terms, for an
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Abelian gauge field in 3 + 1 dimensions,1 in the presence of
two zero-width mirrors. A concrete realization of that kind
of boundary term are the effective actions in 2 + 1 dimen-
sions which represent the quantum effects due to a Dirac field
confined to the mirrors’ world-volumes, and minimally cou-
pled to the projection of the gauge field to the world-volume
swept by the boundary. This kind of field theory, in particu-
lar its parity-breaking effects, arises naturally in the context
of the quantum Hall effect [4]. As far as we know, experi-
ments allowing for the realization of that effect in two parallel
plates, and the simultaneous detection of the Casimir force
between them, have not been yet implemented. The most dif-
ficult obstacle to do this is perhaps the need to have strong
magnetic fields (from the quantum Hall effect side), without
perturbing the delicate detection of the Casimir force.

Note that the Casimir effect due to Chern–Simons (C–
S) boundary conditions has been studied since the pioneer-
ing work of reference [5], where it has been shown that
the Casimir force may, for some choices of the parameters,
become repulsive. It is our aim here to study the problem
of including parity-breaking terms in the boundary action,
as opposed to boundary conditions. The two approaches,
although related, are essentially different, a fact that has been
highlighted already in [5].

There have been several interesting developments related
to this kind of system: the Casimir effect for a spherical
region, with C–S like boundary conditions due to the pres-
ence of a θ term, has been considered in [6]. A related trend
of research dealt with the Casimir force for two Chern insula-
tors, including the full frequency dependence of the conduc-
tivity tensor [7]. Interesting results have been obtained also
in the context of lattice field theory [8–10], using numerical
approaches which are naturally formulated within that con-
text. A noteworthy consequence of having a parity-breaking
term manifests itself even for a single mirror. Indeed, this

1 ‘Parity’ is understood here in the 2 + 1 dimensional sense, namely,
the reflection along an odd number of spacetime coordinates.
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is the case of the interesting ‘quantum Faraday effect’ dis-
cussed in [11] for the boundary term due to a massive Dirac
fermion in 2 + 1 dimensions.

In spite of the fact, mentioned in [5], that there is no exact
equivalence between boundary conditions and a boundary
action, here we show how the results presented in [5] can be
obtained by using a judiciously chosen boundary action. As
we shall see, it must contain both parity-breaking and parity-
conserving terms. Interestingly, that is exactly the structure of
the leading terms in a small-mass expansion for the effective
action due to a massive Dirac field in 2 + 1 dimensions [12].

This paper is organized as follows: in Sect. 2 we define
the system and present the conventions we have adopted to
describe it. Its corresponding Casimir interaction energy is
introduced in Sect. 3. In Sect. 4 we consider different partic-
ular cases. The reflection coefficients for either one or two
mirrors in the basis of right and left circularly polarized states
is presented in an appendix. In Sect. 5 we present our con-
clusions.

2 The system

Within the functional integral formalism, which we shall
adopt here, it is convenient to define the system in terms
of its Euclidean action S(A), for the Abelian gauge field Aμ.
We assume S(A) to have the following structure:

S(A) = S0(A) + SI (A), (1)

where S0(A) denotes the free EM action:

S0(A) = 1

4
FμνFμν, Fμν = ∂μAν−∂ν Aμ, μ = 0, 1, 2, 3,

(2)

and SI represents the coupling between the field and the
mirrors.

We assume, for the time being, that there are just two flat
infinite mirrors, located at x3 = 0 and x3 = a, and denoted
by L and R, respectively. Since the spatial region occupied by
each mirror is a plane, one may interpret SI as defining two
2 + 1-dimensional field theories, involving the components
of the gauge field projected to the corresponding reduced
spacetime. We recall that, in the case of perfectly conducting
mirrors, the role of those 2 + 1 dimensional theories is tan-
tamount to imposing the vanishing of the components of the
electric field which are parallel to the mirrors, as well as the
component of the magnetic field which is normal to them.
This can be achieved, for example, by introducing appropri-
ate auxiliary fields which implement those conditions, or by
taking the proper limit from certain actions corresponding to
imperfect mirrors [13].

In this article, we shall consider a rather general case,
obtained by assuming that the corresponding localized
actions are quadratic and gauge invariant, but we allow for
the existence of both parity-conserving and parity-breaking
terms. More explicitly, the form of SI is

SI = S(L) + S(R), (3)

whereS(L ,R) denotes the action concentrated on the mirror at
x3 = 0, a, respectively. Each one of these terms may contain
both parity-even (e) and parity-odd (o) terms. It is convenient
to introduce a special notation for the parallel coordinates
(including the time x0): x‖ = (xα), where indices from the
beginning of the Greek alphabet will be assumed to run over
the values 0, 1, 2. Then we may write formally S(L), say, as
follows:

S(L) = S(L)
e + S(L)

o ,

S(L)
e =

∫
d4x δ(x3)

1

4
Fαβ f (L)

e (−∂2‖ ) Fαβ

S(L)
o =

∫
d4x δ(x3)

i

2
εαβγ Aα f (L)

o (−∂2‖ ) ∂β Aγ , (4)

where εαβγ denotes the Levi-Civita symbol in 2 + 1 dimen-

sions, and f (L)
e,o have been written as functions of −∂2‖ in

order to indicate that they will be, in general, nonlocal ker-
nels in coordinate space. For the R mirror, the structure is
quite similar; the relevant changes are that the δ-function
must by shifted: δ(x3) → δ(x3 − a) and, since the mirrors
will not be regarded as necessarily identical in their prop-
erties, the kernels may be different. Thus, in S(R) one also
has to make the replacement: f (L)

e,o → f (R)
e,o . Note that the

kernels will have the mass dimensions: [ f (L ,R)
e ] = −1 and

[ f (L ,R)
o ] = 0.
Assuming, however, that the mirrors’ properties are trans-

lation invariant and time independent (i.e., invariant under
translations in the x‖ coordinates), they will be local in
momentum space. Note that the cases of perfect mirrors, or
mirrors described purely by a C–S term, may be obtained by
taking particular limits for the kernels.

We see that, introducing Fourier transformations with
respect to the parallel coordinates,

Ãα(k‖, x3) =
∫

d3x‖ e−ik‖·x‖ Aα(x‖, x3). (5)

We may write

S(L)
e = 1

2

∫
d3k‖
(2π)3 Ã∗

α(k‖, 0) α
(L)
P (k‖) Pαβ(k‖) Ãβ(k‖, 0)

S(L)
o = 1

2

∫
d3k‖
(2π)3 Ã∗

α(k‖, 0) α
(L)
Q (k‖) Qαβ(k‖) Ãβ(k‖, 0)

(6)
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where

α
(L)
P (k‖) ≡ k2‖ f (L)

e (k2‖), α
(L)
Q (k‖) ≡ −|k‖| f (L)

o (k2‖), (7)

and we have introduced

Pαβ(k‖) = δαβ − kαkβ

k2‖
, Qαβ(k‖) = εαγβ

kγ

|k‖| . (8)

These tensors satisfy algebraic relations which, using a
matrix notation, adopt the form

P2 = P, Q2 = −P, PQ = QP = Q. (9)

To simplify our next developments, it is convenient to have a
complete set of orthogonal projectors for the space of 3 × 3
Hermitian matrices, which naturally arise in the Fourier rep-
resentation. The orthogonality property allows one to deal
with each invariant subspace separately, naturally decompos-
ing the original problem a set of one-dimensional decoupled
problems.

Those projectors can be built by inspection, taking into
account the relations above. Indeed, defining P± ≡ P±i Q

2
and P ′ ≡ I − P (I denotes the identity matrix), we see that

P+ + P− + P ′ = I, (P±)2 = P±, P ′2 = P ′,
P+P− = P−P+ = P±P ′ = P ′P± = 0. (10)

Then, using the Fourier representation above, we have
for the full action S (in the Feynman gauge) the following
expression:

S(A) = 1

2

∫
d3k‖
(2π)3

∫
dx3

{
Ã∗

3(k‖, x3)

× (−∂2
3 + k2‖) Ã3(k‖, x3)

+ Ã∗
α(k‖, x3) (−∂2

3 + k2‖) Ãα(k‖, x3)

+ Ã∗
α(k‖, x3) δ(x3)

[
α

(L)
− (k‖)P+

αβ(k‖)

+ α
(L)
+ (k‖)P−

αβ(k‖)
]
Ãβ(k‖, x3)

+ Ã∗
α(k‖, x3) δ(x3 − a)

[
α

(R)
− (k‖)P+

αβ(k‖)

+ α
(R)
+ (k‖)P−

αβ(k‖)
]
Ãβ(k‖, x3)

}
, (11)

with

α
(L ,R)
± = α

(L ,R)
P ± iα(L ,R)

Q . (12)

3 The interaction energy

The vacuum energy E of the EM field, in the presence of the
mirrors, may be written in terms of the Euclidean vacuum
transition amplitude Z for a time evolution of length T :

E = − lim
T→∞

( 1

T
logZ

)
, (13)

where Z can be represented as the functional integral:

Z =
∫

DA e−S(A). (14)

Translation invariance along the parallel coordinates sug-
gests to use the Fourier transformation implemented in (11) in
order to evaluate the functional integral. Besides, the Fourier
transformed gauge field may be decomposed, for each set of
values of x3 and k‖ in terms of four orthonormal unit vec-
tors, which we will denote by ê(+), ê(−), ê(k), and ê(3). The
ê(3) vector is parallel to the x3 axis, i.e., its μ component is
ê(3)
μ = δ3

μ. The other three vectors are in the orthogonal sub-

space to the one generated by ê(3); one of them, ê(k), points

along k‖, while ê(±) ≡ ê(1)±i ê(2)√
2

, with ê(1) and ê(2), orthogo-

nal to k‖, are such that ê(1), ê(2) and ê(k) form a right-handed
orthogonal triplet.

Thus, we may decompose Ãμ(k‖, x3) as follows:

Ãμ(k‖, x3) = C+(k‖, x3)ê
(+)
μ + C−(k‖, x3)ê

(−)
μ

+ Ck(k‖, x3)ê
(k)
μ + C3(x‖, x3)ê

(3)
μ . (15)

The Fourier transformed action then becomes (we omit the
arguments in the coefficients C , for the sake of clarity)

S(A) = 1

2

∫
d3k‖
(2π)3

∫
dx3

{
C∗+

[ − ∂2
3 + k2‖

+ δ(x3) α
(L)
− (k‖) + δ(x3 − a)α

(R)
− (k‖)

]
C+

+ C∗−
[ − ∂2

3 + k2‖ + δ(x3) α
(L)
+ (k‖)

+ δ(x3 − a) α
(R)
+ (k‖)

]
C−

+ C∗
k (−∂2

3 + k2‖)Ck + C∗
3 (−∂2

3 + k2‖) C3

}
. (16)

The action thus becomes the sum for each k‖, of four inde-
pendent actions, each one corresponding to a single degree
of freedom, represented by the corresponding coefficient C .
The functional integration measure factorizes with respect to
k‖ (each value can be treated separately) and also, for each
k‖, into the product of the measures for each coefficient.

Since Ck and C3 do not see the mirrors, they can be dis-
carded when evaluating the effect of the mirrors on the vac-
uum energy. Taking also into account that log of Z becomes
extensive in T and in the area L2 of the mirrors, the energy
per unit area, E , becomes

E = −
∫

d3k‖
(2π)3 log[Zk‖ ], (17)
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where

Zk‖ = Z(+)
k‖ Z(−)

k‖ , (18)

where each factor above corresponds to the functional inte-
gral over the respective coefficient, and may therefore be
expressed formally as a functional determinant:

Z(±)
k‖ =

(
det

[ − ∂2
3 + k2‖ + δ(x3) α

(L)
∓ (k‖)

+ δ(x3 − a)α
(R)
∓ (k‖)

])− 1
2
. (19)

Finally, taking into account the known results about the
functional determinants of the kind arising in the equation
above [14], we see that the energy per unit area may be written
as follows:

E = 1

2

∫
d3k‖
(2π)3 log

[(
1 − r (L)

− r (R)
− e−2|k‖|a)

× (
1 − r (L)

+ r (R)
+ e−2|k‖|a)]. (20)

We have introduced

r (L ,R)
± = α

(L ,R)
±

α
(L ,R)
± + 2|k‖|

, (21)

which play the role of Euclidean reflection coefficients.
It is interesting to note that the energy of the system may

be thought of as decoupled between two contributions, each
one corresponding to either left or right circular polarization
modes. Based on these modes, a useful parametrization of
the reflection coefficients (inspired by [5]) is the following:

r (L)
+ = −|r (L)|e2iδL , r (R)

+ = −|r (R)|e−2iδR (22)

(the minus signs amount to a phase convention for δL ,R).
This allows us to write for the energy

E = 1

2

∫
d3k‖
(2π)3 log

(
1 − 2 |r (L)||r (R)|cos(2δ) e−2|k‖|a

+ |r (L)|2|r (R)|2e−4|k‖|a
)
, (23)

where δ = δL − δR .

4 Results and discussion

Let us first show how one can recover the result of imposing
C–S boundary conditions, considered in [5]. That situation
involves both parity-breaking and parity-conserving bound-
ary terms, since the boundary conditions mix the parallel
components of the electric field with the parallel components
of the magnetic field, and the normal component of the mag-
netic field with the normal component of the electric field.

By inspection of the boundary conditions due to the bound-
ary action we consider in this article, recalling (7), (12), we
choose

f (L)
e = f (R)

e = − 1

|k‖| ,

f (L)
o = θ(0), f (R)

o = −θ(a), (24)

where the minus sign in the last equation is just to be consis-
tent with the choice made in [5] to introduce the boundary
conditions (namely, the normals corresponding to the two
surfaces are opposite). Thus,

rL = −1 + iθ(0)

1 − iθ(0)
, rR = −1 − iθ(a)

1 + iθ(a)
. (25)

Both have modulus equal to 1 and are therefore pure phases.
Defining

rL = −e2iδ0 , rR = −e−2iδa (26)

with δ0,a ≡ arctan θ(0, a), we see that Eq. (20) becomes

E = ϕb(δ)

a3

ϕb(δ) = 1

32π2

∫ ∞

0
dk k2 log

(
1 − 2 cos(2δ) e−k + e−2k

)
,

(27)

with δ = δ0 − δa = arctan
(

θ(0)−θ(a)
1+θ(0)θ(a)

)
, which agrees with

the result in [5].
It is worth noting that this choice of boundary term can

also be understood as the most general one such that there
are no dimensionful constants in its kernels. Indeed, coming
back to the form of the boundary action, we see that it can
be written (for the L mirror, say) as follows:

S(L) =
∫

d4xδ(x3)

(
1

4
Fαβ(−∂2‖ )−1/2Fαβ

+ iθL
2

εαβγ Aα∂β Aγ

)
. (28)

It is worth noting that essentially the same structure arises as
the one-loop effective action for a massless Dirac fermion,
with the parity-odd term reflecting the existence of the parity
anomaly.

We can also consider boundary terms which only con-
tain parity-breaking terms such that the violation of parity
is maximal. This case amounts to taking f (L ,R)

e = 0, and
f (L ,R)
o = θL ,R where each θL ,R is a dimensionless constant.

The result for E in this case may be put as follows:

E = ϕ(θL , θR)

a3 (29)
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with the dimensionless function ϕ:

ϕ(θL , θR) = 1

32π2

∫ ∞

0
dkk2

× log
[
1 + θ2

Lθ2
R

(4 + θ2
L)(4 + θ2

R)
e−2k

+ 8θLθR − 2θ2
Lθ2

R

(4 + θ2
L)(4 + θ2

R)
e−k

]
. (30)

In particular, for identical mirrors θL = θR ≡ θ ,

ϕ(θ, θ) ≡ ϕg(θ) = 1

32π2

∫ ∞

0
dkk2

× log
[
1 − θ2

(4 + θ2)2 e
−k[θ2(2 − e−k) − 8]

]
. (31)

On the other hand, if the C–S coefficients have equal modulus
and opposite signs, θL = −θR ≡ θ ,

ϕ(θ,−θ) ≡ ϕu(θ) = 1

32π2

∫ ∞

0
dkk2

× log
[
1 − θ2

(4 + θ2)2 e
−k[θ2(2 − e−k) + 8]

]
. (32)

Finally, the result corresponding to a perfect mirror (L)
facing a C–S mirror (R) with constant θ may be obtained by
evaluating the general expression for the interaction energy
for the case f (L)

o ≡ 0, f (L)
e → ∞, and f (R)

e ≡ 0, f (L)
o ≡ θ .

The resulting expression may be put in the form E =
1
a3 ϕc(θ), with

ϕc(θ) = 1

32π2

∫ ∞

0
dkk2 log

[
1 − θ2

4 + θ2 e
−k(2 − e−k)

]
.

(33)

In order to have a qualitative idea of the behavior of the
energy for the different cases we have considered before, we
first note that all of them have the same dependence with
the distance (since there is no dimensional constant in the
problem). They have therefore the structure E = ϕ(θ)

a2 , with
a ϕ which may be ϕg , ϕu or ϕc, depending on the case con-
sidered. The same happens for two perfect conductors, for
which we recover the well-known result, given by E = ϕp

a3 ,

with ϕp = − π2

720 . Using this constant as a reference, in Fig. 1
we plot a normalized version of ϕ for each case, namely,
ϕn ≡ ϕ

π2
720

, as a function of the C–S coefficient θ for the par-

ticular cases considered before. The dotted horizontal line
represents the case of two perfect conductors as a reference,
the dashed line corresponds to two identical C–S mirrors, the
solid thin line corresponds to two C–S mirrors with opposite
sign and equal modulus coefficients, and the solid thick line
represents a perfect conductor facing a C–S mirror.

Note that, in all C–S cases, the energy tends to the one of
two perfect conductors as θ tends to infinity, and their values
have no significant difference already after θ = 50.

Most notably, for the case of two purely C–S mirrors with
equal coefficients, we see that the constant becomes negative

2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.2
n

θ

Fig. 1 ϕn vs. θ for: a two identical C–S mirrors (dashed line), b two C–S mirrors with opposite coefficients (thin line), and c a perfect conductor
facing a C–S mirror (thick line). ϕn for two perfect conductors equals −1. This is plotted here (as a reference), as the horizontal dotted line at the
bottom
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when θ is lower than ∼ 2.07, which corresponds to a repul-
sive force between the mirrors. It exhibits a non-monotonous
behavior as a function of θ , which may be understood as a
consequence of the fact that, for θ tending to zero, one should
expect the energy to vanish. The existence of another zero at
approximately θ = 2.07 implies the non-monotonous char-
acter of the coefficient.

5 Conclusions

We have obtained a general expression for the Casimir energy
corresponding to two mirrors, describing matter which may
contain both parity-conserving and parity-breaking terms.
Based on the general result, we have shown that the results
obtained by introducing a boundary condition (rather than
boundary action) may be recovered as a result of using a
special class of boundary terms. These should involve no
dimensionful constant in their definition. As such, they have
a very similar structure to the one that one would obtain as
the effective action due to a massless Dirac field in 2 + 1
dimensions [15].

The general expression that one has for the energy per unit
area in the general case, where there may exist both parity-
conserving and parity-breaking terms (23), shows that only
in the case δ = 0 the energy becomes the sum of two equal
contributions. In other words, the contribution to the vacuum
energy of each (left-handed and right-hand) circular polariza-
tion mode is the same only when the phases of the reflection
coefficients are equal. We have also checked, at the level of
the reflection coefficients, that when the relative phase δ van-
ishes, the reflection coefficients (see the appendix) become
equal for both handednesses, both for one or two mirrors.

In the particular examples we have considered, we have
found and interpreted an interesting phenomenon when par-
ity violation is maximal (i.e., no parity-conserving term),
namely, the existence of a non-monotonous behavior of the
energy as a function of the strength of the C–S terms, when
assumed to be equal.
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Appendix: Reflection coefficients

In order to relate the functions and parameters used in the
class of models considered to more directly observable mag-

nitudes, we calculate here the reflection coefficients for either
one or two mirrors.

Reflection coefficients are relevant to a scattering situa-
tion, therefore it is rather natural to use here the real-time
formalism. Thus we assume in the following the continua-
tion back to real time of the corresponding Euclidean objects
has been implemented.

5.1 One mirror

Let us first consider the case of only one mirror, located
at x3 = 0. The classical equation of motion in this case,
assuming the Feynman gauge is used, is given by

�Aμ(x) + δ(x3) gμα �
(L)
αβ gβμ Aν(x) = 0, (34)

with

�
(L)
αβ ≡ f (L)

e (∂2‖ ) (∂2‖ gαβ−∂α∂β) + f (L)
o (∂2‖ ) εαγβ∂γ (35)

(where gμν = gμν = diag(1,−1,−1,−1) and ∂2‖ ≡ ∂α∂α).
One can solve the equation above with scattering boundary

conditions. We propose a normally incident wave with wave

vector k3 = +
√
k2‖ ≡ k, and we still have the freedom of

fixing its polarization (two independent components). It may
be seen that the left and right circular polarization vectors
diagonalizes the problem in the sense that the corresponding
scattering matrices do not mix. Thus, we consider incident
waves Ãμ

I (x3) such that Ã3
I = 0, and

Ãα
I (x

3) = εα± eikx
3
. (36)

We see that, for x3 < 0, the full solution becomes

Ãα(x3) = εα± eikx
3 + r± εα± e−ikx3

(37)

where the reflection coefficient r±, which determines the
reflected wave for each polarization, is given by [11]

r± = −iα∓

2k + iα∓ , (38)

where α∓ are the real-time counterparts of the homonymous
objects introduced in the Euclidean formalism; namely

α± = −k2 fe ± fo. (39)

5.2 Two mirrors

The system consists now of the two mirrors. We see that the
reflection coefficients for this case are also diagonal in the
circular polarization basis. They may be written as follows:
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r± = 1

2ik

α∓
(L) + α∓

(R)e
2ika + i

2kα
∓
(L)α

∓
(R)(1 − e2ika)

1 + i
2k (α

∓
(L) + α∓

(R)) − 1
(2k)2 α∓

(L)α
∓
(R)(1 − e2ika)

.

(40)
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