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In multiway loudspeaker systems, digital signal processing techniques have been used to correct the frequency response, the
propagation time, and the lobbing errors. These solutions are mainly based on correcting the delays between the signals coming
from loudspeaker system transducers, and they still show limited performances over the overlap frequency bands. In this paper, we
propose an enhanced optimization of relevant directivity characteristics of a multiway loudspeaker system such as the frequency
response, the radiation pattern, and the directivity index over an extended transducers’ frequency overlap bands. The optimization
process is based on applying complex weights to the crossover filter transfer functions by using an iterative approach.

1. Introduction

As full-range transducer designed to have the widest fre-
quency band with a good overall performance is hard to
achieve, most high-quality loudspeaker systems are of the
multiway type. Therefore, two or more drive units must
be used, each one of them being designed for a limited
frequency range. In such acoustic source, wemust avoid band
aliasing and prevent each transducer from being fed with
signals outside its frequency band. Thus, a suitable filter bank
must be employed to split the input signal into different
bands. This network is known as loudspeaker crossover
[1–3].

When transducers have a separate geometrical distri-
bution, the crossover design is generally done for a par-
ticular on-axis listening point, by including extra delays
to correct the differences between the propagation time of
the sound waves coming from all the transducers [1, 4].
Alternatively, the D’Appolito geometrical distribution [5]
or the psychoacoustic error cancelation [6] could be used
to reach this target over a wider listening area. With such
solution, some amplitude, phase and directivity deviations
still remain around the crossover frequencies when the

listener moves away from the central listening point. In [7],
it was shown that the best solution to control the directivite
behavior of a multiway loudspeaker system is to mount
its transducers around the same axis and use a coaxial
configuration.

For a high-end loudspeaker system, the fluctuation of the
directivity characteristics are sometimes unacceptable [8, 9].
These parameters are function of the crossover filter transfer
functions especially over the transducers’ overlap bands. In
this paper, we will introduce a dedicated signal processing
technique based on a complex weighting of the crossover
filter responses in order to optimize relevant directivity
parameters.

This paper is organized in two main sections. The first
one introduces the technique that we propose to enhance
the control of relevant directivity parameters for a multi-
way loudspeaker system. This control is achieved through
a complex weighting of the crossover filter frequency
responses over the transducers’ overlap bands. In the second
section of this paper, we will discuss the results of an applica-
tion example, based on measurements done with a Cabas-
se (http://www.cabasse.com/) two-way coaxial loudspeaker
system.



2 EURASIP Journal on Audio, Speech, and Music Processing

Loudspeaker systemAmplifiersCrossover filters

Input

z
θ

x

y

M(θ,φ)φ

Figure 1: Multiway active loudspeaker system.

2. Proposed Algorithm

2.1. Notations. For a multiway loudspeaker system, such as
that one shown in Figure 1, we introduce the following
notations:

(i) hk(θ,φ, f ): transfer function of the kth transducer
measured at a listening point M(θ,φ), one meter
away from the top transducer (generally reproducing
the high frequencies: tweeter);

(ii) bk( f ): transfer function of the crossover filter applied
to the kth transducer.

Let A(θ,φ, f ) andW( f ) be the K × 1 vectors given by
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where A(θ,φ, f ) is the vector containing the filtered trans-
ducers’ transfer functions. For (θ,φ) = (0, 0), the vector A
contains the axially filtered transducer responses and will be
noted Aaxis( f ). W( f ) is the vector containing the complex
frequency weights to be applied to transducer 1, . . . ,K . In (1),
(·)T denotes the transpose operator.

The aim of our method is to find the optimal weights
wk( f ), k = 1, . . . ,K that optimize suited directivity charac-
teristics of a given multiway loudspeaker system.

2.2. Loudspeaker Directivity Characteristics. Assuming a
spherical wave radiation, the directional factor of the mul-
tiway loudspeaker system is given by
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where | · | is the modulus operator and (·)H denotes the
complex conjugate transpose operator.

The directivity of the loudspeaker system can then be
approached by [10]
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where E( f ) and L( f ) are K × K matrices given by
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The directivity index of the filtered loudspeaker system is
then given by

DI
(
f
) = 10 log10

(
D
(
f
))
, (5)

where log10(·) is the decimal logarithm function.

2.3. Cost Function. The proposed algorithm for optimizing
the crossover filter bank of a multiway loudspeaker system
is based on antenna array filtering techniques [11]. For this
system, the synthesis of the radiation pattern is generally
based on finding the weights that produce a predefined polar
response. The principle of this synthesis is equivalent to
minimizing a Hermitian criterion on the differences between
the radiation pattern of the weighted system and a given
target.

For our context, we seek to control the radiation of a
multiway loudspeaker system over the transducers’ overlap
frequency bands. Our goal is to ensure a progressive directiv-
ity, in the vertical plane (φ = 0) orthogonal to transducers’
membranes, by forcingN directions (θn,φ = 0), n = 1, . . . ,N
of the radiation pattern (2) to positive gains gn( f ). This
criterion can be achieved by minimizing the following cost
function:
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The control of the radiation pattern in various directions
requires the choice of fixed gains gn( f ) for the corresponding
angles. This gain can be the same for all the frequencies of the
overlap band. Otherwise it can be a decreasing function with
frequency according to loudspeaker system directivity.

In the case of a multiway loudspeaker system the control
of the radiation pattern is done for few directions. As a
first constraint, the cost function must take into account
the fluctuations of the radiated acoustic power over overlap
frequency bands. This can be reached by minimizing the
fluctuations of the directivity index of the multiway loud-
speaker system around an average target response DIav( f ).
As a second constraint the optimization process should
not induce important amplitude fluctuations over the axial
response of the multiway loudspeaker system. Taking into
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account these constraints, the cost function to be minimized
can be rewritten as follows:
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where P( f ) = E( f ) − σ( f )L( f ), σ( f ) = e0.23DIav( f ) and e(·)
is the exponential function. In (7) α and β are two Lagrange
multipliers.

The cost function to beminimized is thus a weighted sum
of the following components:

(1)
∑N

n=1 (|AH(θn, 0, f )W( f )| − gn( f )|AH
axis( f )W( f )|)2:

to control the radiation pattern of the loudspeaker
system in N directions,

(2) (|AH
axisW( f )| − 1)

2
: to control the axial response of the

loudspeaker system and avoid excessive amplitude
weights,

(3) |WH( f )P( f )W( f )|2: to control the directivity index
of the loudspeaker system in order to avoid unaccept-
able fluctuations of the radiated acoustic power over
transducers overlap bands.

2.4. Determination of the Optimal Weights. The cost of (7)
is more complicated than a cost on the complex terms:
∑

n (AH(θn, 0, f )W( f )− gn( f ))
2
where the optimal solu-

tions on |AH(θn, 0, f )W( f )| = gn( f ) (2N for n = 1, . . . ,N)
are symmetrical compared to the the origin. However,
J(W ,α,β) is differentiable according to w1( f ), . . . ,wK ( f ):
components of the vectorW( f ). We can so calculate the gra-
dient and use an iterative optimization method which gives
approximated numerical solutions of the optimal weights to
be applied to the crossover filter transfer functions.

Let R( f ) and Q( f ) be the N × 1 vectors given by
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By using the previous notations we can rewrite (7) as
follows:

J
(
W ,α,β

)

= (R( f )−Q
(
f
))2 + α

(∣∣
∣AH

axis

(
f
)
W
(
f
)∣∣
∣− 1

)2

+ β
∣
∣∣WH

(
f
)
P
(
f
)
W
(
f
)∣∣∣

2

= ∣∣R( f )∣∣2 + ∣∣Q( f )∣∣2 − 2Q
(
f
)T
R
(
f
)

+ α
(∣∣∣AH

axis

(
f
)
W
(
f
)∣∣∣− 1

)2
+ β
∣
∣∣WH

(
f
)
P
(
f
)
W
(
f
)∣∣∣

2
.

(9)

The gradient
−→∇WJ(W ,α,β) of the cost function J(W ,

α,β) (developed in the appendix) is given by
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where ∂J(W ,α,β)/∂W∗ denotes the vector of the partial
derivative of J(W ,α,β) with respect to the components of the
vectorW∗, (·)∗ denotes the complex conjugate operator and
� denotes the term-by-term Hadamard product. Matrices
X( f ) and Y( f ) are of dimension K × N and they are given
by
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In (10), U( f ) and V( f ) are the N × K matrices given by
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where ./ denotes the term by term division.

For a given value of W( f ), the gradient
−→∇WJ(W ,α,β)

have a component which is opposite to the direction of the
minimum. The algorithm of gradient descent [12] advances
W( f ) in the opposite direction of the gradient and narrows
it to the minimum. This algorithm is given by the following
formula:
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where m is the number of iteration and μ is a step-size
parameter introduced to control how far we can move along
the error function surface at each iteration. If μ is large
we can quickly reach the minimum but with bad precision.
Conversely, if μ is small, the minimum is reached with better
precision, but more slowly. Since no real-time constraint is
imposed to the optimization process, we can use a small
value for the step-size parameter μ and allow a large number
of iteration to the gradient algorithm. This guarantees a
better precision for the optimal weighting vector Wopt( f ).
The complexity of this algorithm after M iteration amounts
toM(14K2 + 11K + 8KN +N + 6) single instruction.

3. Application Example

3.1. Loudspeaker Systems with Separately Distributed Trans-
ducers. From (3), it can be seen that the determination of
the directivity index for a multiway loudspeaker exhibits the
knowledge of the system responses in all directions (θ,φ)
over the 4π steradian. However, this becomes more com-
plicated when using traditional loudspeakers with separately
distributed transducers. Meyer [13] and Kenneth and Birkle
[14] proposed the use of some interpolation techniques
for the estimation of loudspeaker system response at any
given direction. However these methods still show limited
performances, for real applications because they are based
on using simplified model radiators such as monopole or flat
piston mounted in an infinite baffle.

3.2. Loudspeakers with Coaxially Mounted Transducers. In
the case of coaxial loudspeaker systems [7] and based on axial
symmetries (around the [Oz) axis for the system of Figure 1),
the expression of the matrix L( f ) in (3) used to characterize
the directivity index of the system can be simplified to the
following formula:

L
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) = 1

2

∫ π

θ=0
A
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θ, f

)
AH
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θ, f

)
sin(θ)dθ. (14)

Thus, for calculating the directivity index of a coaxial
loudspeaker system we just need few measurements over 2π
steradian.

3.3. Experimental Results. The algorithm described in the
previous section will then be applied to enhance the control
of the directivity characteristics of a Cabasse, two-way coaxial
loudspeaker system shown in Figure 2.

This loudspeaker system consists of two transducers
coaxially mounted in a closed box enclosure. The central
dome with a convex shape is the tweeter of diameter 0.028m
surrounded by the medium concentric radiating ring with an
outside diameter of 0.106m and inside diameter of 0.043m.
The tweeter dome is loaded by a small waveguide which helps
in assuring the continuity of shape with the medium drive
unit and optimizes the polar pattern of the tweeter on its
low-frequency range, especially on the overlap region with
the medium [7]. This transducer has a conical shape on its
center. As far as the periphery part is concerned, it turns to a
convex shape in order to prevent diffraction effects.

Medium

Tweeter

Waveguide

Closed box enclosure

Figure 2: The Cabasse two-way coaxial loudspeaker system.

The measurements of the frequency responses neces-
sary for determining the directivity characteristics of the
loudspeaker system were made in an anechoic room of
size 6 × 7 × 8m3. The block diagram of the measur-
ing chain is given by Figure 3. In this diagram, a per-
sonal computer allows the generation and acquisition of
the input and output signals needed to characterize the
acoustic drivers. The determination of transducers’ impulse
responses is based on the Maximum Length Sequences
(MLS) technique [15]. Another function of the personal
computer is the control of the turntable on which lies
the loudspeaker system. These functions are managed
by the CLIOwin (http://www.audiomatica.com/home.htm)
software. The input channel of a dedicated sound card
is connected to a calibrated microphone (CLIO MIC-03,
condenser electret, microphone) positioned at 1m in front
of the tweeter dome. The amplified signal of the sound
card output channel is connected to the loudspeaker system
input. Once a measurement is done, the turntable is shifted
with 5◦. Considering the loudspeaker system symmetry, only
measurements between 0◦ and 180◦ are needed (14). All
the measurement data are then exported in a usable format
by the MATLAB (http://www.mathworks.com/) software.
The experimental protocol described previously is applied
separately to each transducer of the loudspeaker system.

The on-axis amplitude responses of the medium
(|h1(0, 0, f )|) and the tweeter (|h2(0, 0, f )|) are depicted in
Figure 4. We can identify the band-pass behavior of these
transducers with a frequency band of [500Hz, 4000Hz]
for the first drive unit and [4000Hz, 20000Hz] for the
second one. The fluctuations in these amplitude responses
are mainly due to diffraction effects and can be corrected by
an adapted equalizer.

In practice, the width of the frequency overlap band
do not exceed 2 octaves. This width takes into account
the nonlinear behavior of the transducers. From the axial
amplitude responses of the two transducers given in Figure 4,
we can see an extended overlap frequency band ranging from
2000Hz to 6000Hz.

In this section we will also compare the performances
of our method to a conventional one, such as, that one
proposed by Vanderkooy and Lipshitz [4]. In this paper,
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Figure 3: Experimental measurement protocol.
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Figure 4: On-axis amplitude responses of the transducers.

the authors proposed the use of a pair of an in-phase
squared Butterworth crossover filters. The amplitude and
phase responses of these filters are shown in Figure 5.

The Butterworth filters have been designed to have a
cutoff of 4000Hz and moderate slopes of 24 dB/octave. With

this crossover and since we are using a coaxial configuration
for the multiway loudspeaker system, no extra processing is
needed to correct the delays between the signals coming from
the several transducers.

The crossover that we propose for the optimization
process is a pair of low-pass (of order 14)/high-pass (of
order 26), linear phase, finite impulse response filters. The
amplitude and phase responses of these filters are shown in
Figure 6. This filter bank have been designed to have the same
cutoff frequency and slopes as the squared Butterworth filters
shown in Figure 5.

For the optimization, we targeted the control of the
radiation pattern at four directions (θ1 = 15◦,φ = 0),
(θ2 = 30◦,φ = 0), (θ3 = 45◦,φ = 0) and (θ4 = 60◦,φ = 0).
For a given angle θi (n = 1, . . . ,N = 4), the gain gn( f ), in
(7), decreases linearly with frequency in order to achieve a
radiation pattern that narrows when the frequency increases.
The algorithm is stopped after M = 2000 iteration which
leads to 296000 instruction. In order to achieve a good
precision for the optimal weighting vector Wopt( f ), the step
size μ can be chosen in the interval [0.008, 0.01].

We considered the case where we give much more
importance to the control of the directivity index than
that of the radiation pattern and the axial response of the
loudspeaker system. This choice means a uniformly radiated
sound power over a wider listening area. In this case, we
adjust the Lagrange multipliers to α = 1 and β = 100. In this
paper we have not developed a study on an optimal choice
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Figure 5: Frequency responses of the squared Butterworth crosso-
ver filters.

of parameters α and β. Indeed, the choice has been done
systematically according to the importance we want to give
to each directivity criterion.

The amplitude responses of the original and weighted
linear-phase crossover filters are shown in Figure 7(a). The
optimization process modifies the amplitude of the original
filters over the frequency band of interest without adding
high level gains. Figure 7(b), depicts the group delay τg1 ( f )
and τg2 ( f ) of the weighting filters w1( f ) and w2( f ). These
delays are analytically given by

τgk
(
f
) = − 1

2π

∂Φwk( f )

∂ f
, (15)

where Φwk( f ) is the phase of the weighting filter wn( f ) with
k = 1 or k = 2.
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Figure 6: Frequency responses of the linear-phase crossover filters.

As shown in Figure 7(b), the fluctuation of the group
delay for the weighting filters, w1( f ) and w2( f ), do not
exceed 1ms which, according to Blauert and Laws [16],
should not induce audible effects.

The directivity characteristics of the multiway loud-
speaker system are given in Figures 8, 9, and 10. The
radiation patterns of the loudspeaker system at 3 frequencies
( f = 3000Hz, f = 4000Hz, and f = 5500Hz) of the
overlap region are given in Figure 8. As a first conclusion we
remark a well controlled directivity compared to the case of
the nonoptimized crossover filters or the case of using the
conventional squared-Butterworth crossover filters. Indeed,
with the optimization process, the main lobe of the multiway
loudspeaker system narrows as the frequency increases.
The second conclusion that we can notice is that the
conventional method do not modify the radiation pattern of
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Figure 7: Frequency responses of the optimized crossover filters.

the loudspeaker system because, for each crossover network
(the linear-phase, finite impulse response crossover and the
squared Butterworth one), the filters used are in phase.

In Figure 9, we show the amplitude responses of the two-
way coaxial loudspeaker system at 0◦, 30◦, and 60◦. From
Figures 9(a), 9(b), and 9(c), we observe that the optimization
of crossover filters provides a steady decrease over the ampli-
tude response of the loudspeaker system as we move away
from its central axis. At this step, we can also underline the
advantages of using a linear-phase, finite impulse responses
filter bank over a squared Butterworth one. In fact, with a
conventional filtering using a squared Butterworth crossover,
an undesirable boost over the amplitude response of the
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Figure 8: Radiation pattern of the multiway loudspeaker system.
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Figure 9: Amplitude responses of themultiway loudspeaker system.
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Figure 10: Directivity index of the multiway loudspeaker system.

loudspeaker system still remain over [3000Hz, 5000Hz]
frequency band and even 60◦ away from the central axis of
the loudspeaker system.

Regarding the directivity index, given in Figure 10, we
see an improvement in the behavior of the radiated sound
power after the weighting of the linear-phase, finite impulse
response crossover filters. Indeed, with the optimization
process, we have less fluctuations over the directivity index
of the loudspeaker system as we move from the medium
to the tweeter. We also remind that the in-phase behavior
of the two filter banks used justifies the similarity between
the directivity index of the loudspeaker system before the
optimization of the linear-phase, finite impulse response
crossover filters and when using a squared Butterworth
crossover network.

4. Conclusion

In order to correct the frequency response or the lobbing
errors of a multiway loudspeaker system, most solutions [1,
4] are based on delaying the signals sent to the loudspeaker
system transducers. These solutions failed in achieving a uni-
formly radiated sound field especially when the transducers
of the loudspeaker system are separately distributed.

In this paper, we have shown that, a dedicated complex
weighting of the crossover filter responses, jointly optimizes
the frequency response, the radiation pattern and the direc-
tivity index of the loudspeaker system over a wide frequency
overlap band. Additionally, the performances obtained, are
function of the degree of importance given to each radiation
criterion through a judicious adjustment of Lagrange mul-
tipliers. The proposed method was then applied to enhance
the control of the directivity behavior of a two-way coaxial
loudspeaker system from the Cabasse company. In order to
confirm its advantages, the performances of the proposed
method were compared to a conventional crossover network
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bank design [4] using a pair of in-phase squared Butterworth
filters. Once the complex weights are obtained, the impulse
responses of the optimized crossover filters can be obtained
by using the generalized least squares method [17].

The method proposed in this paper can easily be applied
to any frequency band. The interested reader can refer to
[7] to get more information about the application of this
technique to a three-way or a four-way loudspeaker system.

Appendix

Our aim is to calculate the gradient of the cost function
J(W ,α,β) given by(9)
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Let’s calculate the gradient of each term in the previous
equation:

(i) ∂|R( f )|2/∂W∗( f ) =? and ∂|Q( f )|2/∂W∗( f ) =?
∣
∣R
(
f
)∣∣2 =

N∑

n=1

∣
∣
∣AH

(
θn, 0, f

)
W
(
f
)∣∣
∣
2

= WH
(
f
)
X
(
f
)
XH
(
f
)
W
(
f
)
,

(A.2)

where X( f ) is the K ×N matrix given by (11).
By the mean of complex matrices derivation formulas

[11], we can write
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The same methodology applied to |Q( f )|2 gives

∂
∣
∣Q
(
f
)∣∣2

∂W∗( f
) = Y

(
f
)
YH
(
f
)
W
(
f
)
, (A.4)

where Y( f ) is the K ×N matrix given by (11).

(ii) ∂QT( f )R( f )/∂W∗( f ) =?
The scalar QT( f )R( f ) is the sum of N components.
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where qn( f ) =
√
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The derivative of QT( f )R( f ) is then given by
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Putting the last equation in a matrix form by using the
notations of (10) leads to
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For the first term of (A.9) we can write
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The derivative of |AH
axis( f )W( f )| with respect to the

components ofW∗( f ) is given by
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We obtain finally
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The derivative of this composite function is relatively easy
and is equal to
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Finally the gradient of the cost function J(W ,α,β) is
given by
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