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1 Introduction

Brane physics are an important and powerful ingredient in many models of string and

M-theory, as they introduce field theory sectors into a UV-complete theory. In many

of these setups supersymmetry ensures control over the theory and enables to compute

physical couplings. Naturally these branes live on curved space(-time)s and generically

their worldvolume theories are coupled to the ambient geometry and fluxes. However,

in the limit where the directions transverse to the brane become infinitely large one can

decouple the worldvolume theory from the bulk dynamics, effectively sending the Planck

scale on the worldvolume to infinity. In this limit the background fields are degraded to non-

dynamical background fields that effectively induce certain couplings on the worldvolume

of the brane. A natural question to ask is which supersymmetric field theories can be

reproduced from a system of (intersecting) branes.

The most classic example of a coupling induced by the bulk theory is the curvature

of the worldvolume that is induced by the bulk metric. It has for instance been shown a

long time ago [1] that D-branes wrapping a calibrated cycle within a Calabi-Yau manifold

are described by a topologically twisted gauge theory [2–4]. This fits with the observation

that in four dimensions an N = 1 topologically twisted field theory can be constructed

on any Kähler manifold [5], as calibrated four-cycles inside a Calabi-Yau threefold are

indeed Kähler manifolds. N = 2 topologically twisted theories in contrast can be con-

structed on any four-dimensional manifold [6], which suggests that calibrated four-cycles
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inside a higher-dimensional supersymmetric gravitational string background might not have

to be Kähler.

In the last years a lot of work has gone into constructing supersymmetric field theories

on more general curved backgrounds [7]–[23]. This is usually done by coupling the field

theory to an off-shell supergravity formulation and treating the supergravity fields as back-

ground fields that do not satisfy any equations of motion. In four dimensions usually there

are two off-shell formulations used: the old minimal [24, 25] and the new minimal [26, 27]

formulation. Both are special cases of the 16/16 supergravity [28]–[30]. On a given curved

manifold with a specific metric a field theory can be made supersymmetric by tuning the

other, auxiliary fields in the supergravity multiplet. It has, in the Euclidean case for in-

stance, been shown in [12] that by coupling the N = 1 supersymmetric field theory to new

minimal supergravity it can be made supersymmetric on any complex manifold. Coupling

to old minimal supergravity also enables for instance the four-sphere, which does not even

allow for an almost complex structure, to admit supersymmetric field theories [8].

Off-shell supergravity has unfortunately various limitations. While there are multiple

formalisms for off-shell supergravity with four supercharges, in the case with eight super-

charges the coupling to arbitrary multiplets has not been worked out and in the case with

sixteen supercharges the action is altogether unknown. This raises the question whether

there is a another framework to discuss supersymmetric field theories on curved back-

grounds. Also, so far it has not been generally discussed which of the supersymmetric field

theories that arise in the constructions mentioned above are realized in terms of dynamical

branes in string theory. One goal of this paper is to close this gap.

In the presence of fluxes, generically the bulk geometry is not Calabi-Yau any more

(see [31] for a review) and in turn also brane calibration conditions and thereby the geom-

etry of calibrated cycles are altered by the presence of fluxes [32–34]. In this work we will

link these observations to the above discussion of supersymmetric field theories on curved

manifolds. For this, we will derive the differential conditions that govern the possibility of

supersymmetry on the worldvolume of the brane. For a brane to be calibrated, the bulk

background must firstly be supersymmetric. This is determined by the supersymmetry

variations of the fermions in the ten- or eleven-dimensional supergravity. The brane cali-

bration condition can then conveniently be expressed in terms of kappa symmetry on the

brane world volume [35, 36]. Combining these two conditions gives a number of conditions

on the embedding of the brane and a differential equation for spinors on the worldvolume.

While the former is model-dependent and governs the embedding of the brane into the am-

bient geometry, the latter gives a supersymmetry condition for the curved space itself that

resembles the condition found in off-shell supergravity. We will show how to derive this

supersymmetry condition for various brane configurations. Our most prominent example

will be a stack of D3-branes. Its supersymmetry condition is derived in (3.6). Similarly,

the supersymmetry condition for a stack of M2- and for a stack of M5-branes is derived

in (4.4) and (4.12), respectively.

The supersymmetry condition only depends on the geometry close to and the form

field strengths of the backgrounds at the location of the brane. The geometry close to the

brane determines the worldvolume geometry and the R-symmetry twist. The form field
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strengths give rise to additional terms in the supersymmetry condition and resemble the

auxiliary fields of off-shell supergravity. The identification of the various couplings can be

found for instance in (3.7) for D3-branes. In all cases, the worldvolume couplings for the

field theory are completely determined by the fluxes in the ambient background.

The condition for a the field theory on a stack of branes to be supersymmetric naturally

appears in an N = 4 version, i.e. the spinor appearing in this equation has sixteen compo-

nents. The topological twist is embedded into the respective R-symmetry group and also

the other couplings appear in representations of that group. By considering the stack of

branes to lie inside or intersect with other brane stacks additional kappa-symmetry projec-

tions are applied in order to reduce the number of spinor components and the R-symmetry

of the theory. In this way it is also possible to make contact with the supersymmetry

conditions coming from the various off-shell supergravity formulations. We consider for

instance a stack of D3-branes lying inside the intersection of D7-branes and derive the

condition for the theory to be supersymmetric in (3.18). In this case, four supercharges

appear in the supersymmetry condition, and therefore it can be compared to the condition

appearing in [8, 12]. Indeed we will show that the possible couplings on the brane induced

by fluxes (3.19) encompass the couplings from both old and new minimal supergravity. In

particular, old minimal supergravity is the special case of (3.18) for A = 0, while new min-

imal supergravity is represented by the case M = M̄ = 0. The generic case is described by

coupling the field theory to off-shell 16/16 supergravity, via the S-multiplet of [37], which is

the most general way of doing so [38].1 Unfortunately an classification of supersymmetric

field theories on curved backgrounds using this formalism has not been attempted yet.

In this work we will mostly focus on D3-, M2- or M5-branes in curved backgrounds, as

they play a prominent role in the construction of holographic AdS/CFT pairs. We hope that

the presented results will also be useful to understand the holographic dual gravitational

background. We suspect that in the t’Hooft limit any system of supersymmetric D3-,

M2- or M5-branes give rises to a supersymmetric field theory with a holographic dual.

Translating the bulk fields into worldvolume couplings therefore automatically leads to a

dictionary between the couplings of field theory and the corresponding field configurations

in ten- or eleven-dimensional supergravity and thus in AdS spacetime, enabling a more

systematic study of these field theories holographically.

Also note that under dimensional reduction from M-theory to type IIA, the supersym-

metry conditions do not change. Therefore our results automatically carry over to the case

of field theories on D2- and D4-branes (as well as NS5-branes and F-strings of type IIA).

The paper is structured as follows. In section 2 we discuss how the supersymmetry

condition in the bulk and kappa symmetry for the brane together give a differential con-

dition on the brane worldvolume. In section 3 we then study field theory on D3-branes in

more detail and make contact with the formulations of old and new minimal supergravity.

In section 4 we discuss supersymmetric theories on M2- and M5-branes, and in section 5

we present some simple examples. A discussion of our findings can be found in section 6.

1We would like to thank C. Closset very much for pointing out this connection.
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2 Supersymmetric string backgrounds and branes

2.1 Supersymmetry and calibration conditions

We will assume a general supersymmetric background of type II or M-theory. In type II

the supersymmetry transformation of the spinor doublet ΨM in the democratic formula-

tion reads

δεΨM = ∇Mε+
1

8
HMNPΓNPPε+

1

16
eφ
∑
n

1

(2n)!
FM1...M2nΓM1...M2nΓMP2nε , (2.1)

and the dilatino variation is

δελ =

(
(∂Mφ)ΓM +

1

6
HMNPΓMNPP

)
ε+

1

8
eφ
∑
n

(−1)2n
5− 2n

(2n)!
FM1...M2nΓM1...M2nP2nε ,

(2.2)

where

P =

(
1 0

0 −1

)
, Pn =

(
0 1

(−1)[(n+1)/2] 0

)
, (2.3)

the number n runs over integers (integers plus 1/2) in type IIA (IIB) and [·] denotes the

floor function, i.e. [(n + 1)/2] is n/2 in type IIA and (n + 1)/2 in type IIB. Note that P,

Pn and Pn+2 anticommute with each other and obey the commutation relations

[Pn,P] = 2Pn+1 , [Pn,Pm] = ((−1)[n+1/2] − (−1)[m+1/2])P . (2.4)

Furthermore, in type IIB the two spinors in the doublet ε = (ε1, ε2) are of the same

chirality, which means that the Pn and P commute with the spacetime gamma matrices and

generate Sl(2,R) of type IIB. In type IIA the two spinors in the doublet ε = (ε1, ε2) have

opposite chirality, indicating that Pn anti-commutes with the chirality operator Γ(10) =
1
10!ε

M0...M9ΓM0...M9 . Indeed Γ(10)P is the identity, and the matrices Γ̃M̃ , M̃ = 0, . . . , 10,

defined by

Γ̃M = ΓMP0 , Γ̃10 = P , (2.5)

form the eleven-dimensional Clifford algebra.2 This is of course natural as type IIA can be

lifted to M-theory.

In the following we will discuss branes in supersymmetric backgrounds. These back-

grounds are distinguished by the fact that all fermion supersymmetry variations vanish,

which means that

δεΨM = 0 , (2.6)

and

δελ = 0 . (2.7)

Note that while (2.7) determines the dilaton profile, (2.8) is a condition on the ten-

dimensional background. In the following we will write (2.6) as

DMε = 0 , (2.8)

2Note that in the entire paper we will use flat indices to keep the formulas as simple as possible.
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where we defined the differential operator DM acting on the spinor bundle as

DM = ∇M +
1

8
HMNPΓNPP +

1

16
eφ
∑
n

1

(2n)!
FM1...M2nΓM1...M2nΓMP2n . (2.9)

A supersymmetric brane on a (p + 1)-dimensional cycle Sp+1 inside the string back-

ground can be described by the kappa symmetry condition

Γ̂ε̂ = ε̂ . (2.10)

where we defined ε̂ as the restriction of ε to S, i.e.

ε̂ = ε
∣∣∣
S
. (2.11)

For a Dp-brane in type II string theory Γ̂ is given by

Γ̂Dp = (−det(g + F))−1/2
∑

2l+s=p+1

1

l!s!2l
εn1...n2lm1...msFn1n2 . . .Fn2l−1n2l

γm1...msPs+1 ,

(2.12)

where γ are the anti-symmetric products of gamma matrices on the worldvolume, which

are related to the anti-symmetric product of Γ matrices by the push-forward i∗ of the

embedding function i of S into M . Here we assumed that the Dp-brane fills out the time

direction, which means that γ0 is one of the gamma matrices in the anti-symmetric product.

If the Dp-brane does not fill out time, Γ̂Dp has an additional factor of i, and there is no

minus sign in front of the determinant. In the following we will use (2.12) in flat coordinates

so that g is just the flat metric.

We can perform a similar analysis in M-theory. In M-theory there is only one eleven-

dimensional gravitino ΨM and one eleven-dimensional supersymmetry parameter ε. The

supersymmetry variation of the gravitino here reads

δεΨM = ∇Mε−
1

12

(
1

4!
GNPQRΓNPQRM −

2

3!
GMNPQΓNPQ

)
ε . (2.13)

In terms of (2.8) we can define the differential operator

DM = ∇M −
1

12

(
1

4!
GNPQRΓNPQRM −

2

3!
GMNPQΓNPQ

)
, (2.14)

analogous to (2.9). The kappa symmetry projector for an M5-brane with worldvolume flux

H reads in flat coordinates

Γ̂M5 = c(H)−1/2εm1...m6

(
1

6!
γm1...m6 +

1

36
Hm1m2m3γm4m5m6 +

1

8
Hm1m2

mHm3m4mγm5m6

)
,

(2.15)

where

c(H) = 1− 1

6
HmnpHmnp −

1

4!
H[mn

rHpq]rHmnsHpqs . (2.16)

Similarly, we have for an M2-brane

Γ̂M2 = γ(3) =
1

3!
εm1...m3γm1...m3 . (2.17)
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There are also less-discussed 9- and 6-branes in M-theory [39]. The former has been dubbed

M9-brane in [40]. We will later use them to reduce supersymmetry for the theory on the

worldvolume of M5- and M2-branes. For this we use the projectors

Γ̂M9 =
1

10!
εm1...m10γm1...m10 , Γ̂M6 =

1

7!
εm1...m7γm1...m7 . (2.18)

Also the M-theory kappa symmetry projectors have an additional factor of ± i in case they

do not fill out the time direction. By dimensional reduction the M-theory analysis gives

also the correct type IIA result, as the identification (2.5) suggests.

2.2 Supersymmetry on the curved worldvolume

For a supersymmetric brane in a supersymmetric background we have two supersymmetry

conditions on the brane worldvolume S: the kappa symmetry condition (2.10) and the

restriction of (2.8) to S. The latter splits on S into two components, one along the brane

worldvolume and one normal to it. The component normal to the brane describes how

ε̂ is continued into the bulk using parallel transport and only gives a condition on the

embedding of the brane into the supersymmetric background. The component tangential

to the worldvolume gives a differential equation for ε̂ itself, given by3

D̂mε̂ = 0 , (2.19)

where the operator D̂m is given by D̂m = Dm

∣∣
S . This means that both (2.10) and (2.19)

are conditions on ε̂ itself. Under assuming the kappa symmetry projection (2.10), we will

study in the following the equation (2.19) in the equivalent form

[D̂m, Γ̂]ε̂ = 0 , (2.20)

and

{D̂m, Γ̂}ε̂ = 0 . (2.21)

Since the ten-dimensional tangent space splits on the worldvolume according to

TM
∣∣
S = TS ⊕NS . (2.22)

the Lorentz group also breaks into two subgroups, acting on the tangent and normal bundle

of S, respectively. The Lorentz group is broken to O(1, p) × GR, where GR is O(9 − p)
in type II and O(10 − p) in M-theory.4 While the former is the Lorentz group on S, the

latter also transforms spinors on the world-volume and can therefore be understood as the

R-symmetry on S. In this language ε̂ is a spinor on S valued in a non-trivial representation

of the R-symmetry group Spin(9 − p) or Spin(10 − p) , and both (2.20) and (2.21) give

conditions on the supersymmetry generators on the worldvolume and therefore for S to

accommodate for a supersymmetric field theory.

3We will use in the following flat coordinates, with the index m (a) describing directions along (perpen-

dicular to) the brane.
4For an Euclidean brane the Lorentz group is broken to O(p + 1) ×GR instead and GR is O(1, 8 − p) in

type II and O(1, 9 − p) in M-theory.
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Equation (2.20) is an algebraic equation, since Γ̂ commutes with the connection ∇̃ on

S. Another algebraic equation comes from considering

[D̂a, Γ̂]ε̂ = 0 , (2.23)

where D̂a = Da

∣∣
S . The simplest way to solve this equation is by setting the matrices

[D̂m, Γ̂] and [D̂a, Γ̂] to zero, which constraints the bulk fields at the position of the brane.

Otherwise these matrices work as projectors on the possible supersymmetry generators ε̂.

We are in this work mainly interested in what are the constrains for a manifold S to admit

supersymmetric theories, and thus we will ignore (2.20) and (2.23) and just study (2.21)

to understand the restrictions on S.

In contrast (2.21) is a differential equation for ε̂ on the worldvolume. We can decompose

the operator {∇̂m, Γ̂} where ∇̂ = ∇
∣∣∣
S

into the induced connection ∇̃ = i∗(∇) on the

worldvolume plus the spin connection part (Ωm)ab acting on the normal bundle, as the

off-diagonal components of the connection do not appear in the anti-commutator. Thus

for each m the matrix (Ωm)ab generates rotations on the normal bundle, i.e. a subgroup

HR inside GR. Moreover, ε̂ will be in a certain representations χi of HR, and we can

decompose ε̂ as

ε̂ =
∑
i,α

χiα ⊗ ηiα , (2.24)

where α runs over certain representations of HR, and we can define a connection A so that

(Am)β
αχβ =

1

2
(Ωm)abγ̂

abχα , (2.25)

where we denote by γ̂a the gamma matrices of the Clifford algebra on NS. Thus A is the

connection for a gauged subgroup HR of the R-symmetry group GR. In total we find

{∇̂m, Γ̂}ε̂ =
∑
α

χiα ⊗ (∇̃m +Am)ηiα . (2.26)

The gauging of the group HR inside the R-symmetry group GR is called a topological

twist [5, 6]. Note that depending on the dimension of S the Majorana (and for type II

the Weyl) condition for ε and kappa symmetry (2.10) both can imply non-trivial relations

between the different components χiα ⊗ ηiα.

For branes in purely gravitational backgrounds, i.e. where the form field strengths are

set to zero, the vanishing of the gravitino variation (2.1) simplifies to

∇Mε = 0 , (2.27)

and the ten-dimensional background admits at least one covariantly constant spinor. We

can use (2.26) to rewrite (2.27) on the worldvolume as

∇̃η +A · η = 0 . (2.28)

Hence the field theory on the brane world volume is a supersymmetric theory with a

topological twist given by HR. This reproduces the result of [1].
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Note that the dilatino variation (2.7) leads to a differential equation for the dilaton

in the background. If we combine (2.7) with (2.10), we get from the (anti-)commutator of

the operator acting on ε a differential equation for the dilaton profile along (perpendicular

to) the brane. The profile of the dilaton perpendicular to the brane only determines

the embedding of the brane, and so only the commutator equation is relevant for the

worldvolume theory. We will not further discuss it since it only determines the dilaton

profile on S. Note however that allowing a solution for the dilaton might restrict the

geometry of S.

The equations governing the embedding of the brane into the ambient geometry are

the before-mentioned equation for the dilaton profile transverse to the brane and

{Da, Γ̂}ε = 0 , (2.29)

which should be understood as an equation valid in the proximity of the brane. This

equation gives a differential equation to continue ε̂ into the bulk. It can be used to embed

a supersymmetric field theory on a brane into a full string background, for instance by

using a 1/R expansion. We will not study this equation further but notice that (2.29) can

be used to construct a (holographic) string background for a given worldvolume theory.

3 Curved D3-branes in flux backgrounds

Let us now be more specific and discuss four-dimensional field theories on D3-branes. We

will in the following ignore worldvolume fluxes on the brane and set them therefore to zero.

It would be very interesting to generalize the following discussion to the case of non-zero

worldvolume flux.

3.1 A stack of D3-branes

The preserved supersymmetry of a D3-brane without worlvolume fluxes is described by the

kappa symmetry

γ(4)P1ε̂ = γ̂(6)P1ε̂ = ε̂ , (3.1)

where we used that ε̂ is chiral in ten dimensions. The chirality operators in four and six

dimensions are defined by γ(4) = 1
4!ε

mnpqγmnpq and γ̂(6) = 1
6!ε

abcdef γ̂abcdef . The supersym-

metry condition (2.21) then can be computed to be(
∇̃m +

1

2
(Ωm)abγ̂

ab − 1

8
eφ
(
Fnγ

nγ(4) +
1

48
εabcdefFcdefnγ

nγ̂ab

)
γm

)
ε̂

+

(
1

4

(
Hmna −

1

2
eφFmnaγ(4) +

1

4
eφεmn

pqFpqa

)
γnγ̂a +

1

48
eφFabcγ̂

abcγ(4)γm

)
P ε̂ = 0 ,

(3.2)

where we used (2.4), (3.1) and the self-duality of F5 in ten dimensions.

Let us now decompose the spinor ε̂ into an SO(1, 3) spinor on TS and an SO(6) spinor

on the NS. From the Majorana-Weyl condition and (2.10) we find

ε̂ =
∑
α

(
χ+
α ⊗ η+α + χ−α ⊗ η−α

− iχ+
α ⊗ η+α + iχ−α ⊗ η−α

)
, (3.3)
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where the upper index indicates the chirality of the spinors, defined by

γ(6)χ
± = ∓ iχ± , γ̂(4)η

± = ± i η± . (3.4)

Note that in four-dimensional spacetime and in six-dimensional Euclidean space the spinors

of opposite chirality are related by charge conjugation, in other words there are charge

conjugation operators C(4) and C(6) such that

χ− = C(6)χ
+ , η− = C(4)η

+ . (3.5)

Now we can rewrite (3.2) in a four-dimensional form

(∇̃m +Am + i snγ
nγm + Unγ

nγm)η+ + (Vmnγ
n + iWγm + i tγm)η− = 0 ,

(∇̃m +Acm − snγnγm + U cnγ
nγm)η− + (V c

mnγ
n − iW cγm + i tγm)η+ = 0 ,

(3.6)

where the connection A of the topological SU(4) twist is defined by (2.25) and the other

couplings are the su(4) matrices Um, V
±
mn and W as well as the SU(4) singlets sm and t.

They are defined by

(Um)β
αχ+

β =− 1

384
eφεabcdefFcdefmγ̂abχ

+
α ,

(Vmn)β
αχ+

β =
1

4

(
Hmna +

1

2
i eφFmna +

1

4
eφεmn

pqFpqa

)
γ̂aχ−α ,

Wβ
αχ+

β + tχ+
α =− 1

48
eφFabcγ̂

abcχ−α ,

sm =− 1

8
eφFm .

(3.7)

3.2 N = 2 and N = 1 cases

So far we discussed the supersymmetry on the worldvolume in a N = 4 way. In particular,

there is no matter on a single smooth stack of D3-branes. Matter is generated if we have

for instance flavor D7-branes so that the D3-branes lie inside the D7-branes. Let us first

consider just one stack of D7-branes of that type. From the D3-brane worldvolume point

of view, this corresponds to an additional projection for ε̂ imposed by kappa symmetry of

the D7-branes

Γ̂D7ε̂ = ε̂ , (3.8)

where

Γ̂D7 = γ(4)γ̂4567P1 . (3.9)

In practical terms, this is the projection

γ̂4567χ
±
α = χ±α . (3.10)

This breaks the symmetries of the normal bundle to SO(2)× SO(4). Moreover, it restricts

the SO(4) representation of the χ±α to the chiral representation, which only transforms

under SU(2) ⊂ SO(4). Thus, the R-symmetry is U(1) × SU(2) and the connection (Ωm)ab
can only gauge a subgroup of it.
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Following up on this discussion we can define the U(1)×SU(2) action via the generators

σı̂ = (1, σi) such that

γ̂89η
+ =− i η+ ,

1

2
(γ̂47 + γ̂56)χ

+ = iσ1χ
+ ,

1

2
(γ̂46 − γ̂57)χ+ = iσ2χ

+ ,

1

2
(γ̂45 + γ̂67)χ

+ = iσ3χ
+ .

(3.11)

Here the σi are the Pauli matrices. For convenience we will split in the following the index

a into a = â, 8, 9. By considering the anti-commutator of (3.2) with the projection (3.10)

we can simplify (3.2) to

(∇̃m + iAı̂mσı̂ +
1

8
eφ(Fn + iFnı̂σı̂)γnγm)η+

+(Gmnγ
n + F iσiγm +

1

2
G̃npγ

np
m)C · η− = 0 ,

(3.12)

where we defined

iAimχ
+ · σi =

1

2
(Ωm)âb̂γ̂

âb̂χ+ ,

iFmiχ+ · σi =
1

6
εmnpqFâb̂npqγ̂

âb̂χ+ ,

F iχ− · σi =− i
1

48
eφ(Fâb̂8 + iFâb̂9)γ̂

âb̂χ− ,

A0
m =− (Ωm)89 ,

Fm0 =− 1

6
εmnpqF89npq ,

Gmn =
1

8
(Hmn8 + eφFmn9 + iHmn9 − i eφFmn8) ,

G̃mn =
1

8
i eφ(Fnp8 + iFnp9) ,

(3.13)

and we choose the charge conjugation matrix C(6) such that C(6) = Cγ̂8 with C ∈ su(2) is

the charge conjugation matrix.

In order to reduce the supersymmetry condition (3.12) to an N = 1 form we have to

introduce another projector. The simplest ways to do so is by adding another stack of

D7-branes. In the case of D3-branes, there are two compatible D7-brane projections that

do not introduce any new defects into the four-dimensional worldvolume theory. We choose

the flat indices such that these additional kappa symmetry projectors read

Γ̂D7 = γ(4)γ̂4567P1 , Γ̂D7′ = γ(4)γ̂4589P1 . (3.14)

Acting with these projections on ε̂ implies that η± obey

γ̂4567χ
± = χ± , γ̂4589χ± = χ± , γ̂6789χ

± = −χ± , (3.15)
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or, taking into account the chirality of χ+ and χ−, this means

γ̂45χ
± = ∓ iχ± , γ̂67χ

± = ± iχ± , γ̂89χ
± = ± iχ± . (3.16)

Moreover, we can choose charge conjugation such that

Γ468χ− = χ+ . (3.17)

Then we find from commutating (3.2) with γ̂45, γ̂67 and γ̂89 that

(∇̃m + iAm + iVnγ
nγm)η+ +Mγmη

− = 0 ,

(∇̃m − iAm − iVnγ
nγm)η− + M̄γmη

+ = 0 ,
(3.18)

where

Am = (Ωm)67 + (Ωm)89− (Ωm)45 , Vm =
1

8
eφ(Fm +Fm4567 +Fm4589−Fm6789) , (3.19)

and

M =
1

8
eφ(F468 + F578 + F569 − F479 + i(F478 + F469 + F579 − F568)) . (3.20)

If we want to derive the Euclidean versions of the supersymmetry condi-

tions (3.6), (3.12) and (3.18), we have to consider an E3-instanton in ten-dimensional

spacetime. This changes the kappa symmetry projectors slightly, in that we find the chi-

rality projectors

γ(4)η
± = ±η± , γ̂(6)χ

± = ±χ± . (3.21)

Thus we get the Euclidean equations by replacing

F• → − iF• , γ(4) → − i γ(4) . (3.22)

so that (3.2) becomes(
∇̃m +

1

2
(Ωm)abγ̂

ab +
1

16
eφ
(

2 iFnγ
nγmγ(4) +

1

6
iFabnpqγ̂

abεnpqrγrγm

))
χ+
α ⊗ η+α

+

(
1

8
Hmnaγ̂

aγn+
1

16
eφ
(
− 1

3
Fabcγ̂

abcγm+2Famnγ̂
aγn+i εm

npqFanpγ̂
aγq

))
χ−α ⊗ η−α = 0 .

(3.23)

In the N = 1 projection let us assume that both stacks of D7 branes fill out the time

direction. Then we find

γ̂0567η
± = − i η± , γ̂0589η

± = − i η± , γ̂6789η
± = −η± , (3.24)

or

γ̂05η
± = ∓η± , γ̂67η

± = ± i η± , γ̂89η
± = ± i η± . (3.25)
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Under these projections, (3.23) simplifies to

(∇̃m + iAm + iVnγ
nγm)χ+ ⊗ η+

− 1

48
eφFabcγ̂

abcγmχ
− ⊗ η− = 0 ,

(∇̃m − iAm − iVnγ
nγm)χ− ⊗ η−

− 1

48
eφFabcγ̂

abcγmχ
+ ⊗ η+ = 0 ,

(3.26)

where

Am = (Ωm)67+(Ωm)89+i(Ωm)05 , Vm =
1

8
eφ(Fm−iFm0567−iFm0589−Fm6789) , (3.27)

are now complex quantities.

Note that χ+ and χ− are not related by charge conjugation in six-dimensional space-

time. However, (3.23) can only be solved if

− 1

48
eφFabcγ̂

abcχ− = Mχ+ , (3.28)

for some complex M . Similarly, we find for

− 1

48
eφFabcγ̂

abcχ+ = M̄χ− , (3.29)

where (abusing notation) M̄ is not necessarily the complex conjugate of M . In total we

find again (3.18), but now the parameters of this equation are determined by (3.27)–(3.29).

The condition (3.18) implies the charged twistor spinor equation that has been studied

in [11] and references therein. The couplings appearing in (3.18) combine the auxiliary fields

of old and new minimal off-shell supergravity: if we set M to zero, we end up in new minimal

supergravity [26, 27]. If we set A to zero, we end up in old minimal supergravity [24, 25].

As we know, both formalisms allow for different manifolds to be supersymmetric [8, 12, 15].

Thus (3.18) must allow for more general solutions than the conditions coming from minimal

N = 1 off-shell supergravity formalism that has been used so far. Indeed, Equation (3.18)

naturally appears as gravitino variation in 16/16 supergravity [28–30], which has exactly

the right auxiliary fields5 to fit (3.18) and corresponds to coupling the field theory to the S-

multiplet [37]. It would be very interesting to find a classification for the solutions to (3.18).

Since the S-multiplet is the most general coupling of field theory to supergravity [38],

this should give a full classification of N = 1 supersymmetric field theories on curved

backgrounds.

4 Supersymmetric curved membranes

Supersymmetric membrane theories are, apart from the classic D3-brane case, particularly

interesting as they feature in a prominent role in the construction of many holographic

5Note that there is additionally the dilaton as an auxiliary field, which only appears in the equation

coming from the dilatino.
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AdS/CFT pairs. In general the worldvolume theory is much less understood and in many

cases no perturbative description is even available. However, one can nevertheless study the

supersymmetry condition and use methods that do not require a perturbative description.

Note that we will perform the analysis only for the Lorentzian case, but the Euclidean

case can of course be easily obtained by Wick rotation.

4.1 M2-branes

The kappa symmetry for an M2-brane is (2.17) so that

γ(3)ε̂ = ε̂ . (4.1)

In eleven dimensions there is

Γ(11) =
1

11!
εM1...M11ΓM1...M11 = 1 , (4.2)

so that this translates into the condition

γ̂(8)ε̂ =
1

8!
εa1...a8 γ̂a1...a8 ε̂ = ε̂ . (4.3)

which means that the GR = SO(8) representation of ε̂ will be the chiral representation.

We can compute (2.21) for this projection to be(
∇̃m +

1

2
(Ωm)abγ̂

ab − 1

12

(
1

4!
Gabcdγ̂

abcdγm +
1

4
εm

npGnpabγ̂
ab −Gmnabγ̂abγn

)
ε̂ = 0 . (4.4)

The chiral GR = SO(8) spinor representation of ε̂, confer (4.3), is by triality isomorphic

to the fundamental representation of SO(8). Thus the decomposition (2.24) actually reads

ε̂ =

8∑
α=1

χαηα . (4.5)

If we apply this decomposition to (4.4), we find

(∇̃m + Ãm + Sγm + εmnpT
pγn)η = 0 , (4.6)

where we defined the SO(8) connection Ãm by

(Ãm)αβχ
β = −1

2
((Ωm)cd −

1

24
εm

npGnpab)γ̂
abχα . (4.7)

The other couplings are a traceless symmetric matrix S given by

Sαβχ
β = − 1

288
Gabcdγ̂

abcdχα , (4.8)

and three anti-symmetric tensors Tm given by

(Tm)αβχ
β = − 1

24
εmnpGnpabγ̂

abχα . (4.9)
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On any manifold there is a simple solution to (4.6), as the maximal holonomy on S
is SU(2), which can be easily compensated for by a topological twist, and this twist can

preserve up to eight supercharges. However, it is not clear which other supersymmetric

theories can be defined on a certain manifold S.

So far the formalism is N = 8. We can project the theory to less supercharges by using

6-branes of M-theory [39]. The projector in (2.18) reduces with (4.1) to

γ̂(4)χ = χ . (4.10)

This projection breaks the Lorentz group of the normal bundle to SO(4) × SO(4).

Since (4.10) projects to chiral four-dimensional spinors, we find that the R-Symmetry is

broken from SO(8) to SU(2)× SU(2), which is the R-symmetry for an N = 4 theory. The

couplings S and T are accordingly projected to traceless symmetric and anti-symmetric

(4×4)-matrices, respectively. By intersecting two stacks of 6-branes in the M2-brane times

two more dimensions, we can further break the R-symmetry to U(1), which gives us the

N = 2 formalism in three dimensions.

4.2 M5-branes

We will study now a calibrated M5 brane inside a supersymmetric M-theory background.

This should determine on which manifolds we can put a (2, 0) theory in a supersymmetric

fashion. Subsequently we will discuss the projection to (1, 0) theory. Note that by dimen-

sional reduction to five dimensions, the derived supersymmetry conditions also describe

five-dimensional field theories.

In the following we will ignore worldvolume fluxes for the M5-brane, i.e. H = 0. Then

the kappa symmetry projection (2.10) with the kappa symmetry projector (2.15) means

that the spinor is chiral in six dimensions

γ(6)ε̂ = ε̂ , (4.11)

where we defined γ(6) = εm1...m6 1
6!γm1...m6 . Then from (2.21) we find(

∇̃m +
1

2
(Ωm)abγ̂

ab − 1

12

(
1

3!
Ganpqγ̂

aγnpqm +
1

3!
Gabcnγ̂

abcγnm

−Gmnpaγ̂aγnp −
1

3
Gmabcγ̂

abc

))
ε̂ = 0 , (4.12)

where ∇̃ is the induced connection on the worldvolume.

We can decompose the ε̂ into

ε̂ =
2∑
i=1

χi ⊗ ηi + χc i ⊗ ηc i , (4.13)

where the (χα) = (χi, χc i) together transform in the fundamental of USp(4). Then the

(ηα) = (ηi, ηc i) are of positive chirality, due to (4.11). We can rewrite (4.12) as(
∇̃m + Ã+

1

2
Tmnpγ

np + Snγ
nγm

)
η = 0 , (4.14)
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where the USp(4) connection Ã for the topological twist is defined by

Ãβαχ
β = −1

2

(
(Ωm)ab +

1

36
εab

cdeGmcde

)
γ̂abχα . (4.15)

The matrices Tmnp are Hermitian and defined by the action

(Tmnp)
β
αχ

β = − 1

12
(

1

3!
εmnp

qrsGaqrs + 2Gamnp)γ̂
aχα . (4.16)

The matrices Sn are anti-Hermitian and are elements of usp(4), defined by

(Sm)βαχ
β =

1

144
εabcdeGmcdeγ̂abχ

α . (4.17)

This gives the conditions to preserve some supersymmetry within the framework of

(2, 0) theory.

Also for M5-branes there should be a projection to the (1, 0) theory. For that we

will consider a stack of M9-branes [39, 40] that fills out the M5-brane plus four other

directions. Using (2.18) we therefore find an additional projector γ̃(10) = γ(6)γ̂(4) and,

since (4.11) holds, the condition reduces to

γ̂(4)χ = χ . (4.18)

This means that the spinors χα are projected to the four-dimensional spinors of positive

chirality (χ, χc) and thus the R-Symmetry group USp(4) is broken to USp(2) = SU(2).

This projections affects all couplings in the same way and simply projects Ã and Sm onto

su(2) representations, while Tmnp is projected to a scalar

T̃mnp = − 1

12

(
1

3!
εmnp

qrsG10qrs + 2G10mnp

)
. (4.19)

Equation (4.14) does not change otherwise.

5 Examples

We want to give here some non-trivial examples of calibrated branes in flux backgrounds.

The simplest known flux backgrounds are compactifications to anti-de Sitter (AdS) space-

times, for which supersymmetric branes have been discussed in [41]. If we consider

AdS5×S5, the supersymmetry of the ten-dimensional background is supported by five-form

flux on S5. We see from (3.7) and (3.19) that the (self-dual) F5 flux enters the D3-brane

worldvolume supersymmetry condition if it fills out an odd number of directions. Indeed,

this additional term in (3.6) and (3.18) can cancel the covariant derivative of a spinor on

a sphere or on AdS spacetime [42]. Thus a stack of D3-branes wrapping an S3 ⊂ S5 (and

being a point particle at the center of AdS3) or wrapping an S1 ⊂ S5 (and filling out

AdS3) can be made supersymmetric. The corresponding four-dimensional field theory has

a non-trivial Um (or Vm in the N = 1 case) and therefore can live on S3 and AdS3, respec-

tively. These examples also exist if we replace S5 by some five-dimenional Sasaki-Einstein

manifold. It might be that in that case the theory is in addition topologically twisted.
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Similarly, we can place M2- and M5-branes in the holographic backgrounds AdS7×S4

and AdS4 × S7 and find similar three- and six-dimensional supersymmetric field theories.

When the M2-brane completely fills out AdS3 ⊂ AdS7 or S3 ⊂ S7, it automatically gives

a supersymmetric field theory. Similarly, if an M5-brane fills out AdS5 × S1 or sits at the

center of AdS4 and wraps an S5 ⊂ S7, we find supersymmetric theories. Also here we

could discuss the general Sasaki-Einstein case.

Also in type IIB compactifications on conformal Calabi-Yau spaces in the spirit of [43]

we have calibrated four-cycles in the internal Calabi-Yau, and these four-cycles are usually

conformally Kähler. In the same spirit as in the discussion of AdS backgrounds, here

the five-form flux leads to additional couplings on the world volume theory that cancel the

warp factor in (3.18). An additional topological twist with U(1) makes the four-dimensional

field theory is supersymmetric on any conformally Kähler manifold. A related discussion

of E3-instantons in F-theory setups has been studied in [44–46]. The discussion gets even

more interesting in the case where supersymmetry is broken by fluxes on the classical level

and only restored by non-perturbative effects, suggesting similar non-perturbative effects

to take place on the brane world-volume, cf. [45].

6 Discussion

In this work we showed how calibrated branes in a supersymmetric flux background give

rise to supersymmetric field theories on curved manifolds. In particular we derived a

necessary condition that determines whether a certain curved manifold can even admit

supersymmetric branes, and therefore supersymmetric field theories. We did not only

recover the well-known topological twist, but also linked the various other terms to fluxes

in the ambient geometry. The supersymmetry condition of a single stack of branes naturally

has an N = 4 form, and imposing suitable projections we could also derive the N = 2 and

N = 1 conditions.

It has been known for a long time that N = 2 and N = 4 theories can be defined

on any manifold, by using the topological twist [6]. However, depending on the manifold

there seem to be various other ways to define supersymmetric theories, without the need

for the theory to be topological. It would be very interesting to study the structure of

supersymmetric field theories that can live on a given manifold.

In the N = 1 case we made contact with the similar supersymmetry conditions com-

ing from coupling the theory to off-shell supergravity and showed that both old and new

minimal supergravity can only describe subcases, while the most general case should be

described by coupling to off-shell 16/16 supergravity. More precisely, the N = 1 supersym-

metry condition in four dimensions derived in this work allows for all the couplings coming

from auxiliary fields of the S-multiplet discussed in [37]. Since this is the most general way

to couple a field theory to supergravity [38], we suspect that studying the solutions to this

supersymmetry condition might lead to a classification of supersymmetric field theories on

curved backgrounds. This condition still fulfills the charged conformal spinor equation as

observed in [11]. It would be very interesting to find the general solution to this equa-

tion, as it might lead to a classification for manifolds that support N = 1 supersymmetric

field theories.
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We performed a similar analysis for membranes in M-theory and derived the condi-

tions to make three-dimensional field theories and six-dimensional (2, 0) and (1, 0) theories

supersymmetric on a curved background. Dimensional reductions of the six-dimensional

theories should also lead to the condition for five-dimensional field theories on a curved

background to be supersymmetric.

Many holographic pairs originate from a stack of D3-branes or M-theory membranes.

The results presented here indicate that many supersymmetric field theories on curved

manifolds can originate from such stacks of branes, and therefore should have a holo-

graphic dual. The identification of couplings in the worldvolume supersymmetry condition

with bulk form field strengths also indicates the flux configurations that a gravitational

background dual to a given supersymmetric field theory on a curved manifold should have.

By studying (2.29) in the neighborhood of the brane one can then construct a ten- or

eleven-dimensional supersymmetric background that the brane embeds into, and thereby

also a holographic dual to the field theory on the brane.

As pointed out in this work the analysis can be performed for calibrated cycles of

arbitrary dimension. It would actually be interesting to understand the geometry of cali-

brated cycles in arbitrary flux backgrounds. The tools developed in this work might help

in initiating such an analysis.

We did not study punctures of any kind in this paper. They can easily be included

in the setup by non-trivially intersecting the brane worldvolume with other brane stacks.

These punctures usually further break supersymmetry at their position, and also manifestly

break Lorentz invariance of the worldvolume. We also did not discuss worldvolume fluxes,

as they considerably complicate the analysis by modifying the kappa symmetry condition.

Moreover they break worldvolume Lorentz-invariance. It would be very interesting to study

supersymmetry conditions in the presence of worldvolume fluxes and punctures.
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