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Abstract

Clustering is a very important tool in data mining and is widely used in on-line services for medical, financial and social
environments. The main goal in clustering is to create sets of similar objects in a data set. The data set to be used for
clustering can be owned by a single entity, or in some cases, information from different databases is pooled to enrich
the data so that the merged database can improve the clustering effort. However, in either case, the content of the
database may be privacy sensitive and/or commercially valuable such that the owners may not want to share their
data with any other entity, including the service provider. Such privacy concerns lead to trust issues between entities,
which clearly damages the functioning of the service and even blocks cooperation between entities with similar data
sets. To enable joint efforts with private data, we propose a protocol for distributed clustering that limits information
leakage to the untrusted service provider that performs the clustering. To achieve this goal, we rely on cryptographic
techniques, in particular homomorphic encryption, and further improve the state of the art of processing encrypted
data in terms of efficiency by taking the distributed structure of the system into account and improving the efficiency
in terms of computation and communication by data packing. While our construction can be easily adjusted to a
centralized or a distributed computing model, we rely on a set of particular users that help the service provider with
computations. Experimental results clearly indicate that the work we present is an efficient way of deploying a
privacy-preserving clustering algorithm in a distributed manner.

1 Introduction
As a powerful tool in data mining, clustering is widely
used in several domains, including finance, medicine
and social networks, to group similar objects based on
a similarity metric. In many cases, the entity that per-
forms the clustering operation has access to the whole
database, while in some other cases, databases from dif-
ferent resources are merged to improve the performance
of the clustering algorithms. A number of examples can be
given as follows:

• Social networks. Users are clustered by the service
provider based on their profile data. The clustering
result can be used for creating self-help groups or
generating recommendations. Obviously, in many
cases, users would not like to share their profile data
with anyone else but with the people that are in the
same group.

• Banking. Several banks might want to merge their
customer databases for credit card fraud detection or
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to classify their users based on past transactions to
identify profitable customers.

• Medical domain. Different holders of medical
databases might be willing to pool their data for
medical research, either for scientific, economic or
marketing reasons [1]. Another case can be the
Centre for Disease Control that would like to identify
trends based on data from different insurance
companies [2].

However, regardless of the application setting with one
or more data resources, in many cases, data are pri-
vacy sensitive or commercially valuable: the data owners
might not want to reveal their sensitive data to the ser-
vice provider, for instance in social networks, as the data
can be processed for other purposes, transferred to other
third parties without user consent or stolen by outsiders.
In the case of multiple data resources from different enti-
ties as in banking, the data owners might not want to take
risks in sharing their customer data with other competi-
tors. Clearly, such privacy-related concerns might result
in several drawbacks: people not joining social networks
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or database owners preferring to process data on their
own.
In this paper, we focus on a setting with a central entity

that provides services based on clustering of multiple
users, each one having a private preference vector. Our
goal is to prevent the service provider from learning the
privacy-sensitive data of the users, without substantially
degrading the performance of the clustering algorithm.
Thus, we focus on the following:

• Privacy. To protect the privacy of users, we encrypt
the preference vectors and provide only these
encrypted vectors to the service provider, who
does not have the decryption key. However, it is
still possible for the service provider to cluster
people using our cryptographic protocol.
Throughout the protocol, the preferences,
intermediate cluster assignments and the final
results of the clustering algorithm are all encrypted
and thus unknown to the service provider or any
other person in the network. This approach, which
has proved itself useful in the field of
privacy-enhanced technologies [3], guarantees
privacy protection to the users of the social network
without disrupting the service.

• Performance. While processing encrypted data as
explained above provides privacy protection, it also
comes with a price: expensive operations on the
encrypted data, in terms of computational and
communication costs. To improve the efficiency, we
approach this challenge in two directions:
(1) custom-tailored cryptographic protocols that use
data packing and (2) a setting in which the service
provider creates user sets and assigns additional
responsibilities to one of the users in each set to be
able to use less expensive cryptographic
sub-protocols for the computations, avoiding
expensive computations such as the ones in [4].
Moreover, having such a construction, centralized or
distributed clustering scenarios can be realized, as
discussed further below.

The service provider is defined as the entity that wants
to cluster users based on their private preference vectors.
Each user also participates in the clustering computations,
and a set of users, named helper users, are chosen ran-
domly to perform additional tasks. As the number of user
sets increases, it becomes easier to parallelize operations
and thus achieve better performance. However, this set-
ting with one set of users and a single helper user can
also be considered to realize clustering algorithms for
the scenarios with multiple entities, each having a pri-
vate database: users belong to different entities, and the
helper user becomes a privacy service provider [4]. Thus,

our construction can easily be reshaped according to the
application.
In this paper, we choose the K-means clustering

algorithm for finding the group of similar people based
on their similarities. We choose the K-means algorithm
since it is known to be a very efficient data mining tool
that is widely used in practice as its implementation is
simple and the algorithm converges quickly [5]. Our goal
is to provide an efficient, privacy-preserving version of the
clustering algorithm. Even though the idea of processing
encrypted data for clustering has been addressed before in
the literature, its realization in an efficient way has been a
challenge. To improve the state of the art, we contribute in
the following aspects:

• We propose a flexible setting, which can be
interpreted as a centralized or a distributed
environment with several servers. This enables a wide
variety of business models.

• We build our system based on the semi-honest
security model, in which we assume that involved
parties are following the protocol steps. For the
application settings, where the central entity is
expected to go beyond the bounds of the protocol,
our protocol can be tweaked to work in the malicious
model with a cost of increased computation and
communication [6]. However, we provide an
alternative that is in between: we distribute trust
among a number of helper users instead of relying on
a single party. Especially in a setting with distributed
databases, this substantially limits the power of a
malicious central party.

• We exploit the construction with helper users to
avoid more expensive cryptographic protocols such
as secure comparisons [4], achieving significant
performance gain compared to related work in the
field.

• We employ custom-tailored cryptographic protocols
with data packing [4,7,8] to reduce the
communication and computation costs of using
homomorphic encryption.

We emphasize that our proposal is an improvement
of the ideas from [9] and [10] in terms of efficiency
and requires reasonable security and business assump-
tions. Our main contribution is to show that realiz-
ing privacy-preserving K-means clustering with existing
tools is feasible to deploy. To prove our claim of
achieving high efficiency, we also give the test results
of our proposal on a synthetic data set of 100,000
users.
The rest of the paper is organized as follows: Section 2

gives an overview on the state of the art. Section 3 intro-
duces K-means clustering algorithm and homomorphic
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encryption briefly and presents our security assumptions
and the notation used throughout the paper. Section 4
describes the privacy-preserving version of the K-means
clustering algorithm in detail. Section 5 discusses the
security aspects of our proposal, and Section 6 presents
the complexity analysis and the numerical test results.
Section 7 gives a discussion on the practicality of deploy-
ing our protocol in real life. Finally, Section 8 concludes
this paper.

2 Related work
The idea of privacy-preserving data mining was intro-
duced by Agarwal and Srikant [11] and Lindell and Pinkas
[1]. In their work, the aim is to extract information from
users’ private data without having to reveal individual
data items. Since then, a number of privacy protection
mechanisms for finding similar items or people have been
proposed in [2,12-16], which address the widely applied
K-means clustering algorithm. The proposed methods
apply either cryptographic tools [2,12-14] or randomiza-
tion techniques from signal processing [15,16] to protect
the private data, which are either horizontally or vertically
partitioned.
In general, the cryptographic proposals are based on

secure multiparty computation techniques [6], which
make any two-party privacy-preserving data mining prob-
lem solvable, for instance by using Yao’s secure circuit
evaluation method [17]. Even though Yao’s method can be
used to implement any function in a privacy-preserving
manner, heavy computation or communication costs in
such circuits make the solutions feasible only for small
circuit sizes. However, algorithms like clustering require
large circuit sizes for realization. In [2,12,14], the authors
attempt to solve the clustering problem in a two-party
setting which is suitable for deploying techniques based
on secret sharing. Apart from the difference in set-
tings, [2] suffers from a problem during the centroid
update procedure where an integer division is misin-
terpreted as multiplication by the inverse, which is not
correct, as explained with an example in [12]. On the
other hand, [13] has a multiuser setting but requires
three non-colluding entities for the clustering algorithm,
and the authors overcome the problem of updating cen-
troids by allowing users to perform the division algorithm
locally. In order to do that, the users learn the inter-
mediate cluster assignments, meaning more information
leakage.
As a different approach from using secure multiparty

computation techniques, Oliviera and Zaiane [15,16] sug-
gested using techniques from signal processing based on
randomization and geometric transformation of data to
hide private data of individuals. In these works, the pri-
vacy of the users is achieved by perturbing their data
in a predefined way. Then, the data is made publicly

available for processing. This approach is fast since the
operations can be handled by each user simultaneously.
However, data perturbation leads to unavoidable data
leakage [18,19].
In [9], Erkin et al. proposed a method based on encryp-

tion and secure multiparty computation techniques for
clustering users in a centralized system. In that work,
Erkin et al. kept the preference vector of each user in
the system hidden from all other users and the ser-
vice provider and reveal the centroid locations to the
service provider for achieving better performance in
terms of run-time and bandwidth. The proposed method
requires the participation of all users, and the aver-
age communication and computation cost is high due
to homomorphic encryption. In [10], Beye et al. pro-
posed an improved version of K-means clustering by
proposing a three-party setting. In that work, users’ pri-
vate data are stored by one party and the decryption
key by the other. A third party helps with the com-
putations. Due to this three-party setting, Beye et al.
proposed a highly efficient algorithm based on garbled
circuits [20] that does not require oblivious transfer pro-
tocols [6]. While the overall system is highly efficient, the
authors rely on trusting three separate parties that may
not collude.

3 Preliminaries
In this section, we briefly introduce the K-means cluster-
ing algorithm, present our security assumptions, describe
homomorphic encryption and introduce the notation
used throughout the paper.

3.1 K -means clustering
Data clustering is a common technique for statistical
data analysis where data is partitioned into smaller sub-
groups with their members sharing a common property
[5]. As a widely used technique, K-means clusters data
into K groups using an iterative algorithm. Particularly,
each user i is represented as a point in an R-dimensional
space, denoted with Pi = (p(i,1), . . . , p(i,R)), and assigned
to the closest cluster among K clusters, {C1, . . . ,CK }.
The algorithm starts with choosing the constant value
K, which is the number of clusters in the data set. Each
cluster k is represented by its centre (also named cen-
troid), Ck = (c(k,1), . . . , c(k,R)), which is initially a random
point. In every iteration, the distances D(i,k) between the
ith user Pi and cluster centre Ck for k ∈ {1, . . . ,K}
are calculated and each user is assigned to the clos-
est cluster. Once every user is associated with a cluster,
centroid locations are recalculated by taking the arith-
metic mean of the users’ locations within that cluster.
For the next iteration, the distances are recalculated and
users are assigned to the closest cluster. This procedure,
given in Algorithm 1, is repeated until either a certain



Erkin et al. EURASIP Journal on Information Security 2013, 2013:4 Page 4 of 15
http://jis.eurasipjournals.com/content/2013/1/4

number of iterations is reached or centroid locations
converge.

Algorithm 1 The K-means clustering algorithm.
Input: K (randomly) chosen locations as cluster centroid.
Output: Cluster indices for each user.

1: For each user Pi, compute the distances to each cluster
centroid Ck for k ∈ {1, . . . ,K}.

2: Assign each user to the closest cluster.
3: Recalculate the centroid locations by taking the arith-

metic mean of the users’ locations within that cluster.
4: Repeat steps 1, 2 and 3 until one of the termina-

tion conditions is reached: (a) a certain number of
iterations or (b) centroid locations converge.

5: Output the cluster indices for each user.

3.2 Security assumptions
We consider the semi-honest security model, which
assumes that the involved parties are honest and fol-
low the defined protocol steps but are also curious
to obtain more information. Therefore, the parties can
store previously exchanged messages to deduce more
information than they are entitled to. This model does
not consider any malicious activity by the parties such as
manipulating the original data.
We assume that the service provider creates groups of

people randomly to help in computations, in which a
number of people takes more responsibility in compu-
tations. Our assumption is that these randomly chosen
users do not collude with the service provider in reveal-
ing other users’ personal data. The risk of information
leakage by such parties is reduced, as explained later, by
randomly choosing such helper users in each iteration of
the algorithm. Note that as the number of helper users
increases, the security of the system improves since the
trust is divided among multiple entities, rather than one
single entity.
Note that even though we assume that the service

provider acts according to the protocol description, it is
possible that the service provider can create dummy users
and assign them as helper users. There are two approaches
to cope with this problem. Firstly, each user participat-
ing in the computations can be asked to use certifications
to prove their identity. Secondly, the helper users can be
chosen truly random by deploying another sub-protocol.
For this, the ideas from [21] can be used. Furthermore, in
the case of malicious acts requiring input verification by
the users, the techniques known from cryptography like
commitment schemes and zero-knowledge proofs can be
deployed at the cost of increased complexity.
Finally, we also assume that all underlying communica-

tion channels are secure: both integrity and authentication

of all messages are obtained via standardmeans, e.g. IPSec
or SSL/TLS [22].

3.3 Homomorphic encryption
The public-key cryptosystem Paillier [23] is additively
homomorphic, meaning that multiplication of two cipher
texts results in a new cipher text whose decryption equals
the sum of the two plain texts. Given the plain texts m1
and m2, the additively homomorphic Paillier works as
follows:

Dsk
(
Epk(m1) · Epk(m2)

) = m1 + m2,

where pk and sk are the public and secret keys, respec-
tively. As a consequence of the additive homomorphism,
any cipher text Epk(m) raised to the power c results in a
new encryption ofm · c as

Dpk
(
Epk(m)c

) = m · c .
The encryption of a message, m ∈ Zn, by using the

Paillier scheme is defined as

Epk(m) = gm · rnmod n2,

where n is a product of two large prime numbers, g gener-
ates a sub-group of order n and r is a random number in
Z

∗
n. Note that the message space is Zn and the cipher text

space is Z∗
n2 . For decryption and further details, we refer

readers to [23].
In addition to the homomorphic property, Paillier is

semantically secure. Informally, this means that one can-
not distinguish between encryptions of known messages
and random messages. This is achieved by having multi-
ple possible cipher texts for each plain text and choosing
randomly between these. This property is required as
the messages to be encrypted in this paper are from a
very small range compared to the message space of the
cryptosystem. Throughout this paper, we denote a Pail-
lier encryption of a message m by �m�pk for the sake of
simplicity.

3.4 Notation
We use uppercase and lowercase letters to repre-
sent a vector and its elements, respectively: Ai =
(a(i,1), a(i,2), . . . , a(i,R)). We represent the packed version of
a vector as Ãi = a(i,1)||a(i,2)|| . . . ||a(i,R). We present the
variables used throughout the paper in Table 1.

4 Privacy-preserving user clustering
In this section, we present a cryptographic protocol that
clusters users in a social network setting using the K-
means algorithm. Our aim is to hide the private data of
the users from the service provider. We define the private
data as the preference vectors Pi, distances between the Pi
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Table 1 List of symbols

Symbol Description

M Number of groups created by the service provider

Nu Total number of users in the social network

K Number of clusters

Pi Preference set of user i

P̃�(m,r) Packed sum of preferences of users in Gm

p(i,r) rth coordinate of Pi

c(k,r) rth coordinate of cluster k

P̃i Packed preference of user i

C̃r Packed centroid for dimension r

γ(i,k) Binary value for the kth cluster: 1 for the closest cluster,
0 otherwise

�̃�m Packed total number of users in each cluster for Gm

w Bit length of p(i,r) and c(j,r)

α,β ,φ,ψ , ρ Random values

�·�H Encryption of a plain text using the public key of Hm

S̃(i,r) Packed partial input of user i for dimension r

Ng Number of users in each group

R Dimension of preferences

Gm Groupm

P̃i Packed preferences of user i

P̃�r Packed sum of preferences of all users for dimension r

Ck Cluster centroid k

D(i,k) Euclidean distance between Pi and Ck

D̃(i,k) Packed Euclidean distance between Pi and Cj


 Compartment size of �̃i in bits

�̃i Packed vector of γ ’s for user i

�̃� Packed total number of users in each cluster

σ Statistical security parameter

Hm Helper user of groupm

n Paillier modulus

� Compartment size of C̃ in bits

and the centroid Ck , and the result of the clustering algo-
rithm, which is the final cluster assignment of each user.
We define the following roles for our construction:

1. The service provider has a business interest in
providing services to users in a social network.

2. A user participates in a social network and would like
to find similar other users based on his/her
preferences.

3. A helper is a user who helps the service provider
with the computations.

We assume that each user has a public key pair with
valid certificates. We anticipate that the service provider

determines K points to be the initial cluster centroids. To
cluster all users, the following steps are performed:

1. The service provider creates M groups of users and,
for each group, Gm form ∈ {1, . . . ,M}, selects a
random user Hm for each iteration as illustrated in
Figure 1. We assume that there are Ng users in each
group and the total number of users is Nu = Ng · M.

2. The service provider informs every user in Gm about
the public key to be used for encryption in that
iteration, which is the public key of Hm.

3. The service provider sends the encrypted cluster
centroids to the users. Each user computes K
encrypted Euclidean distances, one for every cluster
centroid, and sends them to the service provider.

4. The service provider interacts with Hm to obtain an
encrypted vector for each user, whose elements
indicate the closest cluster to that user. Then, the
service provider sends this vector to the user.

5. Each user computes his/her partial input for
updating the centroid locations using the encrypted
vector and sends it to the service provider.

6. The service provider aggregates the partial inputs
from all users in Gm and interacts with Hm to obtain
the clustering result of Gm in plain text.

7. Finally, the service provider combines the clustering
results from all groups and obtains the new centroids
for that iteration.

Steps 1 to 7 are repeated either for a certain number
of iterations or up to a point where the cluster cen-
troids do not change significantly. After the final iteration,
the service provider runs a protocol with Hm to send
the index of the closest cluster to each user. Hereafter,
we describe the above procedure in detail for a single
group.

4.1 Steps 1 and 2: grouping and key distribution
The first step of the K-means clustering algorithm is
for the service provider to choose K points in an R-
dimensional space as the initial cluster centroids. Next,
the service provider creates M groups consisting of Ng
users each and picks a random user from every group who
will help the service provider with the computations for
the current iteration. Note that in order for the helper
users to be clustered, the service provider treats them as
an ordinary user in a different group. Later, the service
provider disseminates the public key of the helper user to
the other users.

4.2 Step 3: computing the encrypted distances
In principle, the service provider and the users inGm com-
pute the Euclidean distances from each user’s preference
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Figure 1 The user groups of the secureK -means clustering.

vector Pi to every cluster centroid Ck as given in
Equation 1:

D2
(i,k) = ||Pi − Ck ||2 =

R∑
r=1

p2(i,r)

+
R∑

r=1
(−2p(i,r)c(k,r)) +

R∑
r=1

c2(k,r) ,

(1)

where user i possesses Pi and the service provider holds
cluster locationsCk , which are privacy sensitive and hence
should be kept secret from the other party. To compute
the Euclidean distance without revealing private data, the
service provider and user i use the homomorphic prop-
erty: given that encryption of Ck and sums

∑R
r=1 c2(k,r) are

provided by the service provider, the encrypted distance
could be computed as follows [9]:

�
D2

(i,k)

�
H

=
� R∑

r=1
p2(i,r)

�
H

·
R∏

r=1
�c(k,r)�−2p(i,r)

H ·
� R∑

r=1
c2(k,r)

�
H

.

(2)

The above approach to compute the encrypted dis-
tances in [9] uses the homomorphic property of the
cryptosystem without any optimization and therefore
introduces a considerable computational overhead for
user i. More precisely, that computation requires K(R+1)
encryption by the service provider and one encryp-
tion, KR exponentiation and K(R + 1) multiplications
by each user over mod n2. Repeating these expen-
sive operations for Nu users, the clustering algorithm
becomes considerably expensive and thus impractical in
real life.
To improve the efficiency in terms of communication

and computation, we use data packing by following a sim-
ilar approach as in [4,7,8]. Instead of computing separate
Euclidean distances in the encrypted domain, users can
compute a single packed value, which involves K dis-
tances, with the help of the service provider. For this

purpose, the service provider creates the following packed
values:

C̃1 = c(1,1)||c(2,1)|| . . . ||c(K ,1)

C̃2 = c(1,2)||c(2,2)|| . . . ||c(K ,2)

...
C̃R = c(1,R)||c(2,R)|| . . . ||c(K ,R), (3)

where || denotes concatenation. Formally, the above val-
ues are calculated as follows:

C̃r =
K∑

k=1
c(k,r) · (2�)k−1, for r ∈ {1, . . . ,R} . (4)

The bit length of each C̃r is now K × � bits. We set the
size of each compartment to � = 2w+�logR� bits, with w
being the bit length of c(k,r), to accommodate the distances
computed in the consequent steps, which are the sum of
R positive numbers of size 2w bits.
In addition to the packed values above, the service

provider prepares the following value:

C̃2 =
R∑

r=1
c2(1,r)||

R∑
r=1

c2(2,r)|| . . . ||
R∑

r=1
c2(K ,r) , (5)

where the sums of squares are also packed in compart-
ments of size �-bits. Then, the service provider encrypts
C̃2 and C̃r for r ∈ {1 . . .R} with the public key of Hm and
sends the encrypted values to the users. Next, each user i
of Gm computes the packed distances as follows:

�
D̃2
i
	
H =

�
D2

(i,1)||D2
(i,2)|| . . . ||D2

(i,K)

�
H

= �
C̃2	

H ·
R∏

r=1

�
C̃r

	−2p(i,r)
H · �P̃2	H ,

(6)
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where

P̃2 =
R∑

r=1
p2(i,r)|| . . . ||

R∑
r=1

p2(i,r)||
R∑

r=1
p2(i,r)

︸ ︷︷ ︸
K times

. (7)

User i then sends �D̃2
i �H to the service provider.

Remark 1. Each squared distance D2
(i,k) consists of at

most �-bits. We assume that K · � � n, where n is the
message space of the Paillier encryption scheme, meaning
all of the K distances can be packed in one encryption.
Note that |p(i,r) − c(k,r)| ≤ max(p(i,r), c(k,r)), and thus,
D2

(i,k) ≤ R · 22w.

Notice that due to the way we compute distances using
data packing, there is a gain by a factor of K in the num-
ber of operations on the encrypted data compared to [9].
The computation of the packed encrypted distances only
requires R+ 1 encryption by the service provider and one
encryption, R exponentiation and R+1 multiplications by
each user.

4.3 Step 4: finding the closest cluster
After having obtained �D̃2

i �H , the service provider inter-
acts with Hm to find out the minimum distance, hence
the closest cluster. To achieve this, the service provider
sends the packed distances to Hm, who has the decryp-
tion key. Hm decrypts the cipher text and obtains the
packed distances in clear. Note that Hm does not know
the identity of the owner of the computed distances. After
decryption,Hm unpacks the distances and creates a vector
(γ(i,1), γ(i,2), . . . , γ(i,K)), where γ(i,k) is 1 if and only if D2

(i,k)
is the minimum distance (so user i is in cluster number k),
and 0 otherwise. Before sending these binary values to the
service provider, Hm encrypts them using his/her public
key.
Upon receiving the values �γ(i,k)�H ’s from Hm, the ser-

vice provider packs them to reduce the bandwidth usage
and to simplify the computations in the subsequent steps:

��̃i�H = �γ(i,1)||γ(i,2)|| . . . ||γ(i,K)�H =
K∏

k=1
�γ(i,k)�2
(k−1)

H

=
� K∑
k=1

γ(i,k) · 2
(k−1)

�
H

,

(8)

where 
 = w + �logNu�, Nu being the number of total
users in the system. This gives one packed �̃i with a com-
partment size of w + �logNu� bits. The service provider,
then, sends �̃i to the users.

Remark 2. Notice that in the above procedure, Hm will
learn how many users in his/her group belong to each
cluster. To hide this information from Hm, the service
provider uses a different permutation, πi, independently
chosen for each user to shuffle the order of clusters during
the creation of the C̃r values. The order is corrected when
the service provider applies the inverse permutation, π−1

i ,
on the received �γ(i,k)�’s. As this permutation is necessary
and can only be done by the service provider, Hm can-
not apply data packing himself, which would simplify the
computations otherwise.

Remark 3. We assumed in Equation 8 that packing K
γ(i,k)’s, each within a compartment size of w + �logNu�
bits, is possible. This is a valid assumption in practical
cases since the Paillier modulus, even for a weak security,
is 1,024 bits. Given that K = 10 and w = 3, Nu can be as
large as 299.

4.4 Step 5: computing partial inputs
To update K cluster centroids, the service provider needs
to take the average of user preferences in each cluster
under encryption. To achieve this, upon receiving ��̃i�,
user i computes

�̃S(i,r)�H = ��̃i�p(i,r)
H = �γ(i,1) · p(i,r)|| . . . ||γ(i,K) · p(i,r)�H ,

(9)

for r ∈ {1, . . . ,R}. The result of this operation is R encryp-
tions, each of which contains K packed values. Each com-
partment of the encryptions contains the multiplication
of γ(i,k) and p(i,r) for k ∈ {1, . . . ,K}. It is clear that K − 1
compartments consist of zeros and only one compartment
that has the index of the closest cluster is exactly p(i,r).
User i, finally, sends �̃S(i,r)� for r ∈ {1, . . . ,R} to the service
provider.
To update the cluster centroids, the service provider

needs the number of users and the sum of preferences
in each cluster. Since ��̃i�’s are available to the service
provider, it easily computes the number of users in each
cluster for Gm under encryption:

��̃�m�H =
∏
i∈Gm

��̃i�H =

� ∑

i∈Gm

�̃i

�

H

=

� ∑

i∈Gm

γ(i,1)||
∑
i∈Gm

γ(i,2)|| . . . ||
∑
i∈Gm

γ(i,K)

�

H

.

(10)



Erkin et al. EURASIP Journal on Information Security 2013, 2013:4 Page 8 of 15
http://jis.eurasipjournals.com/content/2013/1/4

Similarly, the service provider computes P�(m,r), the sum
of user preferences of Gm, for each cluster as follows:

�̃P�(m,r)�H =
∏
i∈Gm

�̃S(i,r)�H =

� ∑

i∈Gm

S̃(i,r)

�

H

, (11)

for r ∈ {1, . . . ,R}. This results in R encryption, one for
each dimension, and each of which has K packed sums of
preferences of users in Gm.

4.5 Step 6: aggregating partial inputs
The next step for the service provider is to obtain the
decryptions of ��̃�m�H and �̃P�(m,r)�H . For this reason, the
service provider interacts with Hm. As these values are
also privacy sensitive, the service provider prevents Hm
from accessing the content of the cipher text by applying
masking: it generates two sets of random numbers αm and
β(m,r) that are K · 
 + σ bits long, where σ is a statisti-
cal security parameter in the range of 40 to 100 bits. After
that, the server blinds �̃�m and P̃�(m,r) by performing the
following multiplications:

��̃�m + αm�H = ��̃�m�H · �αm�H ,�̃P�(m,r) + β(m,r)�H = �̃P�(m,r)�H · �β(m,r)�H , (12)

for r ∈ {1, . . . ,R}. Then, the service provider sends ��̃�m+
αm�H and �̃P�(m,r)+β(m,r)�H toHm. After decrypting them,
Hm could send �̃�m +αm and P̃�(m,r) +β(m,r) to the service
provider, who could remove the masking by subtracting
the random values, but this would reveal sensitive infor-
mation to the service provider about the distribution of
users in each group. To avoid this information leakage,Hm
also applies masking by adding random values, φm and
ψ(m,r), which are computed as described below, and sends
the resulting masked values to the service provider.
The random values φm and ψ(m,r) of size K · 
 + σ bits

are generated by a single helper user prior to the start of
the iteration such that

∑M
m=1 φm = 0 and

∑M
m=1 ψ(m,r) =

0 for r ∈ {1, . . . ,R}. Each of these random values are then
encrypted with the public key of the corresponding helper
user and sent to the service provider, who passes them
to the corresponding Hm. Finally, each helper user sends
�̃�m + αm + φm and P̃�(m,r) + β(m,r) + ψ(m,r) to the service
provider.

4.6 Step 7: obtaining the new cluster centroids
After receiving masked values from all of the M groups,
the service provider obtains the masked packed sums of
preferences and the number of users in each cluster, sepa-
rately for each group. The service provider adds the plain
texts from all Hm’s and obtains

M∑
m=1

(�̃�m + αm + φm) ,
M∑

m=1
(̃P�(m,r) + β(m,r) + ψ(m,r)) .

(13)

Recall that
∑M

m=1 φm = 0 and
∑M

m=1 ψ(m,r) = 0. Since
the service provider knows

∑M
m=1 αm and

∑M
m=1 β(m,r),

he subtracts them from the total and obtains �̃� =∑M
m=1 �̃�m and P̃�r = ∑M

m=1 P̃�(m,r) for r ∈ {1, . . . ,R}.
Notice that P̃�r = ∑

i∈C1 p(i,r)|| . . . || ∑i∈CK
p(i,r) and

�̃� = ∑
i∈C1 γ(i,r)|| . . . || ∑i∈CK

γ(i,r).
Finally, the service provider unpacks �̃� and P̃�r and

computes the new cluster centroids as follows:

c(k,r) = � P̃�r (k)
��(k)

� , (14)

for k ∈ {1, . . . ,K} and r ∈ {1, . . . ,R}, where ��(k) is
the total number of users in cluster k and P�r (k) is the
rth coordinate of the sum of preferences in cluster k,
obtained after unpacking. The result of this operation is
then rounded to the nearest integer. The complete steps of
the protocol for one iteration is given in Figure 2.

4.7 Termination control and obtaining the cluster index
The service provider checks whether the predetermined
termination condition is reached at the end of each itera-
tion. Since centroid locations and the number of iterations
are known to the service provider in plain text, termi-
nation control is considered to be costless. Once the
termination condition is reached, i.e. when a certain num-
ber of iterations is reached or when centroids do not move
significantly, the cluster index of the user, which is the
non-zero element in the encrypted vector ��̃i�H , should
be delivered to the user in plain text. For this purpose,
after the last iteration, the service provider sends ��̃i�H
to user i, who masks it with a random number ρi of size
log(KR) + σ bits to get ��̃i + ρi�H , and sends it back to
the service provider. The service provider sends the cipher
text to Hm to be decrypted. After receiving the plain text,
the service provider sends �̃i + ρi to user i, who can eas-
ily obtain the cluster index by subtracting ρi from the
decrypted value and checking the non-zero value in the
compartments. Notice that all messages pass through
the service provider instead of sending them directly
to the helper user. This is unavoidable in our design as the
users do not know the identity of the helper user. As an
alternative approach, the encrypted random value ρi can
also be sent directly to the service provider at the start
of the protocol. Having this random number, the service
provider can mask �̃i and send it to the helper user to be
decrypted. By this way, transmission of �̃i to user i can be
avoided.
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Figure 2 One iteration of the protocol.

5 Security discussion
In this section, we present arguments to show that our
protocol is secure under the semi-honest security model.
Recall that this model expects involved parties, namely the
service provider, the helper users and all other users, to
be honest in following the protocol steps. These parties
are also assumed to be curious so they can keep previ-
ous messages to deduce more information than they are
entitled to. This model does not consider corrupted par-
ties. In this paper, we consider only one flavour of security
threat: information leakage. In the following, we present
an informal discussion on this issue.
Before discussing what information each party can

derive from the received messages, we need to point out
what information is allowed to be accessed. Remember
that the number of clusters is public information. While
the users to be clustered receive only the index of the
cluster they are assigned to, the service provider does not
obtain any information on the preferences of the users nor
the final clustering results. However, a helper user obtains
the distances between a user and the cluster centres. Even
though the distances are permuted and the identity of the

user is unknown to the helper user, the helper user can still
acquire information about the distances between clusters
and the number of assignments for each cluster. Note that
enabling helper users to access permuted distances seems
to be a reasonable compromise to achieve better perfor-
mance in computation. Although not formally proved, we
believe that the privacy risks created here will be rather
harmless to the users, particularly when the number of
clusters grows. Considering that in each iteration a differ-
ent user will be assigned as a helper user, the amount of
information on the distances between centres diminishes.
Recall that every user, including the helper users, only

interacts with the service provider using a secured chan-
nel. The public key of the helper user is also delivered to
the users in that group by the service provider. On the
basis of this information, we analyze what information can
be inferred from exchanged messages.

5.1 Service provider
The service provider receives from the helper users
encrypted packed distances of the users �D̃2

(i,k)�H and the
encrypted binary values �γ(i,k)�H that show the closest
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cluster for each user. As the Paillier cryptosystem is
semantically secure, meaning that it is infeasible for a
computationally bounded adversary to derive significant
information about the plain text when its cipher text
and the public key used are known, it is not feasible for
the service provider from obtaining meaningful informa-
tion from the cipher texts without the decryption key.
However, the service provider also receives the sum of
preferences and the number of users in each cluster
within the group from the helper users in plain text. To
prevent the service provider from accessing this infor-
mation, the helper users mask their messages using ran-
dom numbers, φm and ψ(m,r), in such a way that when
these masked values are all added up, random values
cancel each other out and the service provider gets the
final result of the clustering for that iteration. The values
received are statistically indistinguishable from random
values with the same sum, but completely independent
of the group sums. Therefore, the service provider does
not have access to any information that might harm the
users.
Notice that the way helper users perturb data prevents

the service provider to obtain meaning information about
each user group. This data perturbation technique will
serve its purpose as long as the random numbers are
generated accordingly, and helper users do not cooperate
with the service provider. Within the semi-honest model,
we assume that random number generation is performed
properly. Selecting a number of helper users randomly for
each iteration also reduces the risk of possible coopera-
tion.

5.2 Helper user
In each group, all computations on the encrypted data
are performed by using the public key of the helper
user. As pointed out before, the helper user receives and
sends data from and to the service provider only. To pre-
vent the helper user from knowing the number of users
in each cluster, the service provider applies a different
permutation for each user during packing of the cen-
troids. As a result of different permutations, the helper
cannot observe the actual cluster with the minimum dis-
tance. Note that while the helper user learns the distances
between users and K centroids, it is not possible to know
the distance between a specific user and a certain cluster
since both is kept hidden from the helper user. Further-
more, since in each iteration helper user changes, deduc-
ing meaningful information from computed distances
becomes infeasible.
Hiding the sum of preferences in each group by applying

permutation, on the other hand, is not possible. To hide
this information, the service provider masks the values by
adding random values, which guarantees that the helper
user cannot infer meaningful information.

5.3 Users
Users receive encrypted messages from the service pro-
vider and without the decryption key, they cannot access
the content. As a result, users cannot obtain information
on the intermediate values of the clustering algorithm.
Although out of the scope of our semi-honest model,

users are able to manipulate the clustering output by
providing fake input data. As long as the size of the input is
correct, such an attack would also not be prevented. How-
ever, since a user only obtains the index of his cluster, such
an attack is not likely to lead to information leakage.

6 Performance
In this section, we present the complexity analysis of
the privacy-preserving K-means clustering algorithm and
experimental results on its performance.

6.1 Complexity analysis
The privacy-preserving version of the clustering algo-
rithm presented in this paper has a number of disad-
vantages compared to the version in plain text. User
preferences, which are usually small non-negative inte-
gers, grow to large numbers, e.g. 2,048 bits, after encryp-
tion. On top of that, addition and multiplication on the
plain text become multiplication and exponentiation over
mod n2, which are computationally time-consuming.
Moreover, transmission of the data from users to the ser-
vice provider and vice versa requires more bandwidth
than the plain version. Finally, realization of the algo-
rithm involves interactive steps, requiring data exchange
between the users and the service provider, which do not
exist in the clustering algorithm with plain text data.
In Table 2, we present the complexity of our proto-

col in terms of expensive operations, namely encryption,
decryption, multiplication and exponentiation, and com-
munication cost for a single iteration and compare them
with only [9]. Note that we assume the cost of operations
on the plain text data is negligible compared to the ones
on the encrypted data, and thus, we omit these operations.
As seen in Table 2, the privacy-preserving K-means

clustering algorithm has linear complexity in the num-
ber of users similar to the original version on plain text.
However, the cost of working in the encrypted domain
has been significantly reduced compared to [9], which
has a comparable complexity to [10]. The computational
and communication gain come from the effective use of
data packing, eliminating the need for an expensive secure
comparison protocol in [9] and involving helper users in
the computations.
The complexity analysis also shows that our proposal

has lower complexity compared to the previous works
in [2,12] and [14]. The communication complexity in
[2] is O(NunKR) bits, and the computational complex-
ity for the two-party setting is O(NuKR) encryptions
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Table 2 Communication and computational complexity for SP,Hm and user i for one iteration of the algorithm

Our proposal Algorithm in [9]

SP Hm User SP User

Encryption O(NuR) O(NgK) O(1) O(NuK(R + �)) O(K(R + �))

Decryption - O(NgR) - O(NuK(R + �)) -

Multiplication O(NuR) - O(R) O(NuKR) O(K(R + �2))

Exponentiation O(NuK) - O(R) - O(K(R + �2))

Communication O(Nu(R + K)) O(Ng(R + K)) O(R) O(NuK(R + �)) O(K(R + �))

In terms of Paillier encryptions. SP, service provider, Hm , helper user.

and multiplications for one party and O(NuKR) expo-
nentiations and multiplications for the other. [12] claims
to have the same level of communication complexity
with [2] but does not provide the computational com-
plexity. [14], on the other hand, has a communication
complexity of O(K3nR). The computational complex-
ity is O(K3R) encryption and O(NuK3R) multiplica-
tions for one party and O(K3R) exponentiation, O(K2)
encryption and O(NuK3R) multiplications for the other
party.

6.2 Performance analysis
To test its performance, we implemented the crypto-
graphic algorithm in C++ using GMP Library version
4.2.1 and tested our implementation on a single com-
puter with 8 cores and 16 GB of RAM. Table 3 gives the
list of parameters used in the tests. The values for K, n
and k were taken from [9] for a fair comparison of the
two protocols. In our test, we only assume that random
numbers that are required for encryption and blinding
are generated in advance as they are not dependent on
the user data. This off-line computation consists of gen-
erating random numbers and raising them to the power
of n for the fast encryption afterwords. For the values in
Table 3, the total time for these computations was 97 min.

Table 3 Parameters

Symbol Value

Nu 100,000

Ng 1,562

M 64

R 12

K 10

n 1,024 bits

� 10

w 3 bits

σ 40 bits

However, note that these values for better on-line perfor-
mance can be generated in the idle time of the service
provider.
Figure 3 shows the run-times of our proposal and the

protocol from [9], for ten iterations. To compare both pro-
tocols fairly, we took M = 1, meaning that there is only
one helper user in the system. The run-time of the proto-
col in [9] forNu > 973 users has been estimated. It is clear
that the performance difference between the two proto-
cols is drastic: the protocol in [9] takes approximately
110 h, while our proposal takes only 2.3 h for 100,000
users. This significant difference in performance is a result
of employing data packing, which reduces the number of
operations on the encrypted data, and avoiding the use of
an expensive secure comparison protocol, thanks to using
a helper user.
While our protocol outperforms the protocol from [9]

even in the case of only two helper users, a drastic
performance boost is achieved when there are multiple
helper users in the system. Figure 4 shows the run-time of
our protocol for different numbers of helper users and a
varying number of users in each group. For every choice
of M, the total number of users in the system is set to
100,000. While with two helpers, it takes approximately
80 min, with 64 helper users, it takes 26 min to clus-
ter 100,000 users. Figure 4 shows that as the number of
helper users increases, the total run-time decreases first
sharply and later gradually. This means that for a fixed
number of users in the system, increasing the number
of helper users introduces a significant gain in perfor-
mance. However, after a certain number of helper users,
each having a negligible amount of work to accomplish,
the performance of the overall system is determined by
the tasks of the service provider. This fact is clearly
seen in Figure 5, where for different numbers of helper
users in the system, the work share between the helper
users and the service provider is given by a percentage,
omitting the users’ participation, which is negligible com-
pared to the helper users and the service provider. It is
clear from the figure that the number of helper users
should be chosen accordingly since the computational and
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Figure 3 Performance comparison of our proposal (M=1) with [9].

communication loads become heavy with fewer helper
users.
As for the bandwidth, we only consider the transmitted

encrypted messages. For the parameters given in Table 3,
the service provider sends and receives 1.215 GB of data,
while the amount of data transmitted for a helper user is
9.4 kB. An ordinary user sends and receives only 6.8 kB
of data. For the same set of parameters, the work in [9]
requires the service provider and each user to transmit 7.8
GB and 82 kB of data, respectively. The significant differ-
ence in the amount of transmitted data is a result of data
packing, as shown in the complexity analysis.

7 Discussion
Our proposal in this paper outperforms the most related
protocol given in [9], which is also based on crypto-
graphic tools within the semi-honest security model. Note
that the privacy-preserving protocol in [10] that hides the
cluster centroids from the service provider has a com-
plexity comparable to [9]. Even though the numerical
results on a data set of 100,000 show that our protocol is
promising to be deployed in real life, we believe the per-
formance of our proposal in a real implementation can
be improved further for the following reasons. Firstly, an
appropriate number of helper users can be determined
by assessing the number of users in the system and the
users’ resources in terms of bandwidth and computation.

This leads to a number of groups, in which the helper user
can process encrypted data without disrupting the user’s
other activities. Secondly, after choosing the optimum
number of helper users based on the aforementioned
criteria, the overall performance of the privacy-preserving
clustering algorithm will be determined by the per-
formance of the service provider. Note that all oper-
ations by the service provider can completely be
performed in parallel. Since a multiple server model,
or a cloud, is widely used in business, the overall run-
time of the privacy-preserving clustering algorithm is
expected to be within reasonable boundaries in real
life.
With respect to bandwidth usage, our protocol employs

data packing to the fullest extent. Note that using the
Paillier cryptosystem, we face data expansion by a fac-
tor of 64, assuming that 32-bit numbers become 2,048-bit
cipher text after encryption. We reduce this expansion
considerably by deploying data packing.
A major aspect to be considered in deploying the

privacy-preserving K-means clustering algorithm in real
life is the security assumptions. Our model assumes the
honest participation of all parties. While the semi-honest
security model can be considered too simplistic, it is still
good enough for real-world applications where the service
provider and the users have incentives to act according
to the protocol as seen in the sugar beet auction system
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[24]. Note that a protocol with ‘proper measures against
malicious parties’ will be much more expensive computa-
tionally and hence impractical for large-scale deployment.
A protocol with less strict but still realistic security guar-
antees is therefore preferred. To that end, we distribute

the trust of the system between multiple parties, prevent-
ing a single malicious party to learn sensitive data. In
a distributed model consisting of independent database
owners, security risks are smaller because a collusion
between the service provider and one of the helper users
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will be less likely. A second aspect to consider is the
active participation of all users in the system. It is our
conclusion that without introducing (semi) trusted third
parties, users’ data cannot be processed without their par-
ticipation. Fortunately, due to our construction, only the
helper user needs to be on-line during the clustering pro-
cedure. Once the encrypted data are sent to the service
provider, users can go off-line for the rest of the com-
putation. If the same helper users are to be used, other
users can stay off-line not only during that iteration but
during the whole clustering; however, this would lead to
minor changes in the protocol such as the encrypted dis-
tances should be computed by the service provider. Note
that using the same helper users will lead to a similar
setting to [10] with dedicated key holders. However, it is
our motivation to distribute trust among multiple ran-
dom helper users in each iteration for privacy protection,
which requires helper users to be on-line during each
iteration.

8 Conclusion
In this paper, we present an efficient, privacy-preserving
K-means clustering algorithm in a social network set-
ting. We present a mechanism where the private data
of the users, sensitive intermediate values and the
final clustering assignments are protected by means of
encryption. The service provider, who does not have the
decryption key, can still perform clustering without being
able to access the content of private data. While the
approach of processing encrypted data presents a con-
crete privacy protection for the users, it also introduces
performance drawbacks compared to the version with
plain text due to data expansion after encryption and
expensive operations on the encrypted data. Previous
work has shown different approaches to reduce the com-
plexity of privacy-preserving K-means clustering such as
using semi-trusted third parties. In this work, we build
a mechanism on the common server-client model and
reduce the costs by employing data packing. By this way,
we reduce the number of encryption by a factor of K, thus
introducing a considerable gain in terms of communica-
tion and computation. We also avoid interactive protocols
such as secure comparison by exploiting the distributive
setting. We also distribute trust among multiple random
users for each iteration of the protocol, which introduces
a computational gain proportional to the number of such
users. The resulting cryptographic protocol is significantly
more efficient compared to previous work in the semi-
honest security model. We also analyze the effects of
different choices of parameters on the performance of the
cryptographic protocol. Experimental results support our
claim on the feasibility of privacy-preserving K-means
clustering such that it takes 26 min to cluster 100,000
users. This result, which can be improved further on a real

system, encourages the deployment of privacy-preserving
K-means clustering algorithms based on homomorphic
encryption.
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