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Abstract

Background: Skeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both
glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic
molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to
regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions. The
purpose of this study was to identify metabolic genes that are expressed in a circadian manner and determine if
these genes are regulated downstream of the intrinsic molecular clock by assaying gene expression in an inducible
skeletal muscle-specific Bmal1 knockout mouse model (iMS-Bmal1−/−).

Methods: We used circadian statistics to analyze a publicly available, high-resolution time-course skeletal muscle
expression dataset. Gene ontology analysis was utilized to identify enriched biological processes in the skeletal
muscle circadian transcriptome. We generated a tamoxifen-inducible skeletal muscle-specific Bmal1 knockout mouse
model and performed a time-course microarray experiment to identify gene expression changes downstream of
the molecular clock. Wheel activity monitoring was used to assess circadian behavioral rhythms in iMS-Bmal1−/− and
control iMS-Bmal1+/+ mice.

Results: The skeletal muscle circadian transcriptome was highly enriched for metabolic processes. Acrophase analysis
of circadian metabolic genes revealed a temporal separation of genes involved in substrate utilization and storage
over a 24-h period. A number of circadian metabolic genes were differentially expressed in the skeletal muscle of the
iMS-Bmal1−/− mice. The iMS-Bmal1−/− mice displayed circadian behavioral rhythms indistinguishable from iMS-Bmal1+/+

mice. We also observed a gene signature indicative of a fast to slow fiber-type shift and a more oxidative skeletal
muscle in the iMS-Bmal1−/− model.

Conclusions: These data provide evidence that the intrinsic molecular clock in skeletal muscle temporally regulates
genes involved in the utilization and storage of substrates independent of circadian activity. Disruption of this
mechanism caused by phase shifts (that is, social jetlag) or night eating may ultimately diminish skeletal muscle’s ability
to efficiently maintain metabolic homeostasis over a 24-h period.
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Background
Skeletal muscle plays a large role in whole-body metab-
olism as it constitutes approximately 40% of body mass
and is a highly metabolically active tissue [1,2]. Basal
metabolic rate is dependent on both the size and activity
of skeletal muscle as cross-bridge cycling and calcium
handling associated with contraction are energetically
expensive processes [2-5]. Skeletal muscle is a principle
contributor to whole-body glucose handling as it is re-
sponsible for approximately 80% of postprandial glucose
uptake [6,7]. It has been widely reported that skeletal
muscle has regulatory mechanisms that modulate substrate
utilization and storage in response to varying metabolic
demands and environmental conditions (for example, nu-
trient status) [3,8-12]. For instance, skeletal muscle rapidly
modulates rates of glucose uptake and utilization in re-
sponse to contraction and/or insulin stimulation [13-15].
While the fluctuations in the role for muscle to store vs.
use is commonly linked with the fed/fasted and active/in-
active behaviors, these changes in storage and use are also
aligned with the 24-h (circadian) light/dark cycles attrib-
uted to the rising and setting of the sun and feeding/activ-
ity behavior [16].
At the core of circadian rhythms is a mechanism

known as the molecular clock. In the last 15 years, many
researchers have shown that the clock mechanism exists
in virtually all cell types in the body including skeletal
muscle [17,18]. The intrinsic molecular clock is most
known for its role in regulating cellular metabolism
even under constant lighting or feeding conditions
[19-26]. These studies have shown that the molecular
clock temporally regulates the rhythmic activation or
repression of rate-limiting metabolic genes to help the
cell anticipate changes in environmental conditions and
metabolic demand [27]. The molecular clock comprises
a transcriptional-translational feedback mechanism driven
by the rhythmic expression of the PAS-bHLH family of
transcription factors BMAL1:CLOCK, which reach max-
imal activity during the inactive phase (that is, light phase
for mice) [28-31]. Direct targets of BMAL1:CLOCK typic-
ally reach peak expression (acrophase) prior to the begin-
ning of the active phase of the day (that is, dark phase for
mice). The capacity of the molecular clock in regulating
metabolism is highlighted by the metabolic phenotypes
observed in genetic core-clock mutant models [32-38].
On-going studies are aimed at utilizing organ-specific
molecular clock mutant models to determine the function
of the clock in each tissue as well as assessing the role
the peripheral clocks play in regulating whole-body me-
tabolism [39-43].
Utilizing high-resolution temporal transcriptome data

coupled with circadian statistics has proved to be an
effective method for identifying genes expressed in a cir-
cadian manner [44,45]. In the present study, we employ
a bioinformatics approach with a publically available
high-resolution circadian data set collected under con-
stant dark conditions to analyze the skeletal muscle
circadian transcriptome (gastrocnemius muscle) with a
focus on the temporal phase of gene expression. We re-
veal that skeletal muscle circadian genes are highly
enriched for metabolic processes, and furthermore, we
identify the temporal pattern of peak expression for
different key metabolic genes separating catabolic vs.
anabolic processes over 24 h. To identify which
circadian-metabolic genes are regulated downstream of
the intrinsic molecular clock, we generated an inducible
muscle-specific Bmal1 knockout (iMS-Bmal1−/−) mouse
and performed a time series transcriptome analysis. Mice
lacking Bmal1 in skeletal muscle displayed no apparent
changes in circadian behavior, yet we observed significant
decreases in the expression of circadian genes involved
in glucose utilization and adrenergic signaling, while
observing significant increases in lipogenic genes. Consis-
tent with a substrate shift from carbohydrate to lipid
utilization, we observed a concomitant shift from a fast
to slow fiber-type gene expression profile indicative of a
more oxidative muscle in iMS-Bmal1−/−. These findings
demonstrate that the endogenous molecular clock in
skeletal muscle contributes significantly to the time of
day shifts in carbohydrate/lipid metabolism.

Methods
High-resolution circadian microarray
Microarray data for the high-resolution circadian time-
course are from gastrocnemius muscles of male C57Bl6
mice collected every 2 h for 48 h under constant dark con-
ditions and ad libitum food availability [46]. The data were
downloaded from NCBI GEO datasets (GSE54652) and
consist of 24 individual arrays, one for each time point from
circadian time 18 to 64 [45,46]. Expression intensities from
the series matrix file for all probesets at all time points were
used as input for JTK_CYCLE analysis, with period length
set to 24 h [47]. We defined circadian genes as having a
JTK_CYCLE adjusted P value of less than 0.05. We utilized
the Bioconductor package to identify mapped probesets
on the Affymetrix Mouse Gene 1.0 ST chip that represent
unique genes, thus eliminating control probesets from
further analyses. Genes with median expression intensities
of at least 100 were considered as expressed in skeletal
muscle. We entered the list of circadian genes into Gene
Ontology Consortium online tools to identify enriched
biological processes [48,49]. Enrichment P values were ad-
justed for multiple testing using Bonferroni correction.

Inducible skeletal muscle-specific Bmal1 inactivation
mouse model
All animal procedures were conducted in accordance with
institutional guidelines for the care and use of laboratory
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animals as approved by the University of Kentucky Insti-
tutional Animal Care and Use Committee. The floxed
Bmal1 mouse [B6.129S4(Cg)-Arntltm1Weit/J] was pur-
chased from The Jackson Laboratory and has no re-
ported breeding, physical, or behavioral abnormalities
[50]. The skeletal muscle-specific Cre-recombinase mouse,
[human skeletal actin (HSA)-MerCreMer] has been previ-
ously characterized [51]. The floxed Bmal1 mouse has
loxP sites flanking exon 8 and is indistinguishable from
wild-type littermates. Breeding with the skeletal muscle-
specific Cre-recombinase mouse generates offspring in
which selective deletion of the bHLH domain of Bmal1 in
skeletal muscle can be induced upon tamoxifen adminis-
tration. Inducible skeletal muscle-specific Bmal1 knockout
mice were generated as follows: the Bmal1flox/flox female
was crossed with the skeletal muscle-specific Cre-recom-
binase male. This yielded an F1 generation of skeletal
muscle-specific Cre+/−;Bmal1+/flox mice. Breeding the F1
generation males to the Bmal1flox/flox females resulted in
the skeletal muscle-specific Cre+/−;Bmal1flox/flox mice
(referred to as iMS-Bmal1flox/flox) needed for this study.
Mouse genotypes were determined by PCR using genomic
DNA isolated from tail snips. Activation of Cre-recombin-
ation was done by intraperitoneal injections of tamoxifen
(Sigma-Aldrich, St. Louis, MO, USA; Cat. No. T5648)
(2 mg/day) for five consecutive days when the mice
reached 12 weeks of age. This age was chosen to elimin-
ate any effects that the lack of Bmal1 might have on
skeletal muscle development and postnatal maturation.
Controls were vehicle (15% ethanol in sunflower seed
oil)-treated iMS-Bmal1flox/flox mice.

Recombination specificity
The iMS-Bmal1 mice were injected (intraperitoneal)
with either vehicle (iMS-Bmal1+/+) or tamoxifen (iMS-
Bmal1−/−) between 12 and 16 weeks of age. Five weeks
post injection, mice were anesthetized with isoflurane,
and the heart, diaphragm, liver, lung, abdominal aorta,
brain, tibialis anterior, soleus, gastrocnemius, brown fat,
white fat, and cartilage were collected and immediately
frozen in liquid nitrogen for DNA analysis. Genomic
DNA was extracted from the tissues using the DNeasy
Blood and Tissue Kit (Qiagen, Venlo, Netherlands). To
assess recombination specificity, PCR was performed
with tissue DNA and primers for the recombined and
non-recombined alleles as described in Storch et al.
[50]. The forward and reverse primers for the non-
recombined allele were the same as the genotyping
primers and yielded a 431-bp product. A second forward
primer 5′-CTCCTAACTTGGTTTTTGTCTGT-3′ was
included to detect the recombined allele, which showed a
band at 572 bp [50]. The PCR reaction was run on a 1.5%
agarose gel (0.0005% ethidium bromide) to visualize the
DNA products.
RNA isolation and real-time PCR
Total RNA was prepared from frozen gastrocnemius
tissue samples using TRIzol (Invitrogen) according to
the manufacturer’s directions. RNA samples were treated
with TURBO DNase (Ambion, Austin, TX, USA) to re-
move genomic DNA contamination. Isolated RNA was
quantified by spectrophotometry (λ = 260 nm). First-
strand cDNA synthesis from total RNA was performed
with a mixture of oligo(dT) primer and random hexamers
using SuperScript III First-Strand Synthesis SuperMix
(Invitrogen, Waltham, MA, USA). All isolated RNA and
cDNA samples were stored at −80°C until further analysis.
Real-time quantitative PCR using TaqMan (Applied Bio-
systems, Waltham, MA, USA) assays was used to examine
the gene expression of Bmal1 (Mm00500226_m1), Rev-
erbα (Mm00520708_m1), Dbp (Mm00497539_m1), Hk2
(Mm00443385_m1), Pdp1 (Mm01217532_m1), Fabp3
(Mm02342495), and Pnpla3 (Mm00504420_m1). The
ΔΔCT method was used for the quantification of real-
time PCR data in the circadian collections.

Wheel activity monitoring
One cohort of mice was used for analysis of circadian
behavior (gene expression not analyzed in this cohort).
A total of 20 mice (mixed genders) were analyzed with
11 receiving tamoxifen treatment and the remaining 9 re-
ceiving vehicle treatment. The mice were maintained in
individual cages with a running wheel under 12L:12D
(LD) conditions for 4 weeks. The wheel running of the ve-
hicle (iMS-Bmal1+/+) or tamoxifen (iMS-Bmal1−/−) mice
were continuously recorded and monitored throughout
the experiment using ClockLab software [52]. To deter-
mine the free-running period of the mice, we released
them into total darkness (DD) for 3 weeks. Activity was
evaluated using voluntary running wheel rotations plotted
in 1-min bins. The free-running period (tau) during the
3-week DD period was calculated using periodogram
analysis in the ClockLab software.

Circadian collections
Forty-eight iMS-Bmal1flox/flox mice were housed in indi-
vidual cages in light boxes, entrained to a 12-h LD cycle
for 14 days, and had ad libitum access to food and water.
Following the 2-week entrainment period, 24 mice were
injected with vehicle and 24 with tamoxifen for five con-
secutive days, generating 24 iMS-Bmal1+/+ and 24 iMS-
Bmal1−/− mice, respectively. The light schedule was kept
the same during injections and for the subsequent 5 weeks.
Five weeks after the last day of injections, mice were re-
leased into constant darkness for 30 h following protocols
established in the circadian field [46,53]. Mice were sacri-
ficed in darkness (dim red light), and skeletal muscles
were collected every 4 h for 20 h (six time points) and fro-
zen for RNA and protein analysis.
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Western blot
Whole cell lysates were prepared from the liver and
gastrocnemius of iMS-Bmal1+/+ and iMS-Bmal1−/− mice
(n = 3/strain). SDS-PAGE (4-15% separating gel, Bio-Rad,
Hercules, CA, USA) and immunoblotting were carried
out with routine protocols. Affinity-purified Bmal1 poly-
clonal antibody (Sigma-Aldrich, SAB4300614) was visu-
alized with IRDye-conjugated secondary antibody using
the Odyssey system (Li-Cor, Lincoln, NE, USA). Each
lane contained 50 μg total protein.

Microarray analysis of iMS-Bmal1+/+, iMS-Bmal1−/−, and
MKO (Dyar et al.)
We pooled equivalent amounts of total RNA from four
mice for each time point (circadian time 18, 22, 26, 30,
34, 38) and treatment (vehicle or tamoxifen). Pooled
RNA samples were used to construct cDNA libraries
that were hybridized to Affymetrix Mouse Gene 1.0 ST
microarrays (Affymetrix, Santa Clara, CA, USA) (1 sam-
ple/time point). Intensity data for iMS-Bmal1+/+ and
iMS-Bmal1−/− gastrocnemius muscles are quantile nor-
malized, and a low pass median intensity filter of greater
than or equal to 100 is applied to both iMS-Bmal1+/+

and iMS-Bmal1−/− datasets separately. Nine thousand
one hundred eighty-four non-redundant, mapped genes
(9,988 probesets) are considered to be expressed in one
or both datasets. Gene expression changes in iMS-
Bmal1−/− muscle tissue were calculated by averaging the
change in expression for each gene throughout the circa-
dian time course (CT18-38, n = 6). Tibialis anterior and
soleus gene expression values for control and muscle-
specific knockout model (MKO) from Dyar et al. [43]
were downloaded from NCBI GEO datasets (GSE43071)
and consists of 18 individual arrays, three for each time
point from circadian time 0 to 20. To compare temporal
gene expression changes for the TA and SOL, we aver-
aged Affymetrix ST 1.0 expression values for each gene
at circadian times 0, 4, 8, 12, 16, and 20. Student’s t test
was used to identify differentially expressed probesets at
a significance of P ≤ 0.05.

Results and discussion
Cellular metabolic processes are highly enriched in the
circadian transcriptome of skeletal muscle
To identify circadian gene expression in skeletal muscle,
we used a publicly available, high-resolution, circadian
time-course microarray dataset from gastrocnemius mus-
cles of male C57BL/6 mice [45,46]. These mice were
housed in constant darkness, and food was provided ad
libitum to eliminate the influence of external environmen-
tal cues. We chose this dataset because it has double the
sampling frequency of previously published circadian
muscle transcriptomes, and this allows for greater preci-
sion for circadian analysis [46,54]. Using the JTK_CYCLE
statistical algorithm [47] for the reliable detection of oscil-
lating transcripts with a 24-h periodicity, we identified
1,628 circadian mRNAs (adjusted P < 0.05). An unbiased
Gene Ontology enrichment analysis of these circadian
genes revealed a significant overrepresentation of cellu-
lar metabolic processes, with approximately 1,004 (62%)
genes directly involved in skeletal muscle metabolic pro-
cesses as well as the regulation of metabolism (Figure 1).
An additional benefit of using the JTK_CYCLE algo-

rithm is its ability to determine the acrophase, or time of
peak expression, of each circadian probeset. Identifying
the acrophase of genes that have common ontologies
may help to predict the potential timing of cellular and
physiological processes. Herein, we report the acrophase
according to their respective circadian times (CT), which
is standardized to the free-running period of the mice
under constant conditions. For the array studies, the
mice were in DD for 30 h so CT 0 denotes the start of
the inactive period, while CT 12 denotes the start of the
active period. To identify the timing of gene expression
and its relationship to metabolic processes in skeletal
muscle, we annotated a subset of circadian genes by
their known functions, timing of peak expression, and
involvement in key metabolic pathways. We focused our
analysis on metabolic functions that involve substrate
(carbohydrate and lipid) utilization as well as storage
and biosynthetic processes.

Lipid metabolism: genes involved in fatty-acid uptake and
β-oxidation peak in the mid-inactive/light phase
Skeletal muscle expresses specialized membrane trans-
porters to facilitate the transport of lipids into the cell
[55-57]. Two lipid transport genes that encode for fatty-
acid binding proteins, Fabp4 (CT 24.0) and Fabp3 (heart/
muscle isoform, CT 6.0), are expressed in a circadian
manner with the highest mRNA expression in the early-
and mid-inactive periods, respectively. Acrophase of cir-
cadian genes involved in lipid metabolism are illustrated
in Figure 2. Normalized expression traces for each gene
are located in Additional files 1, 2, and 3. Previous stud-
ies have demonstrated oscillations in plasma fatty acid
concentrations in mice with peak levels occurring dur-
ing the inactive/light period [58-60]. Further functional
analysis is required to validate the predition that the
rate of fatty-acid uptake in skeletal muscle peaks during
the mid-late inactive period. Upon uptake into the cell,
fatty acids can be stored as triglycerides or be converted
to acetyl-CoA through β-oxidation [61]. Slc25a20 encodes
for an acyl-carnitine translocase that transfers fatty acids
into the inner-mitochondrial matrix and reaches peak ex-
pression in the middle of the inactive period (CT 7.5) [62].
We identified multiple genes that encode for β-oxidation
enzymes to be circadian and also reach peak expression
around the mid-inactive phase. These include the enoyl
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Figure 1 Gene ontology analysis of the skeletal muscle circadian transcriptome. Top 15 enriched GO processes listed from left to right in order
of significance.
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CoA hydratase Ech1 (CT 7.0), the tri-functional enzyme
subunits Hadha (CT 8.0) and Hadhb (CT 8.0), and the
acetyl-CoA acyltransferase Acaa2 (CT 9.0). Malonyl-CoA,
an intermediate formed during de novo fatty acid syn-
thesis, is a potent inhibitor of β-oxidation. The striated
muscle enriched gene Mlycd (CT 7.5) encodes for the
malonyl-CoA decarboxylase that promotes β-oxidation
by reducing cytosolic concentrations of malonyl-CoA and
reaches peak expression during the mid-inactive period
similar to that of the circadian β-oxidation genes. These
observations suggest that rates of β-oxidation are modu-
lated over time of day and potentially through the en-
dogenous molecular clock in skeletal muscle [10,63,64].
Nuclear receptors are known to be potent transcrip-

tional regulators of metabolism as they sense changes in
environmental conditions and induce appropriate changes
in the expression of metabolic genes [65-69]. The nuclear
receptor Estrogen-related receptor alpha (Esrra, CT 7.5)
and the nuclear co-activator PPARγ coactivartor-1 beta
(Ppargc1b, CT 7.0) are both circadian genes in skeletal
muscle with peak expression occurring at the mid-inactive
phase. These factors have been shown to promote mito-
chondrial biogenesis, fatty-acid uptake (targets Fabp3),
and β-oxidation [70,71]. The nuclear co-repressor Nrip1,
also known as Rip140, is a potent negative regulator of
skeletal muscle oxidative metabolism and has been shown
to suppress expression of the fatty-acid transporter, Fabp3,
in skeletal muscle [72-74]. NRIP1 suppresses gene expres-
sion by binding nuclear receptors (including PPARs and
estrogen-related receptors) and recruiting histone deacety-
lases [75]. Interestingly, peak expression of Nrip1 occurs
during the beginning of the active period (CT 13.0) and
may therefore act as a molecular brake to oxidative me-
tabolism as the muscle transitions from lipid to carbohy-
drate utilization during the early active phase.

Lipid metabolism: lipogenic genes reach peak expression at
the end of the active/dark phase
The lipogenic genes Acly (CT23.0), Acaca (CT 23.0),
and Fasn (CT 22.5) involved in de novo fatty-acid synthe-
sis, or the conversion of excess carbohydrates into fatty
acids, reach peak expression at the end of the active phase
(Figure 2) [61,76]. Scd1 (CT 24.0) encodes the enzyme
that catalyzes the rate-limiting reaction of monounsatu-
rated fatty-acid formation to promote lipid bilayer fluidity
and lipogenesis [77,78]. The genes Srebf1 (CT 24.5), Srebf2



Figure 2 Schematic acrophase diagram of circadian genes involved in lipid metabolic processes. The relative location of the circadian genes
(italicized) in respect to the x-axis indicates acrophase or time of peak expression calculated by the JTK_CYCLE algorithm. Location of substrates
and pathways does not represent peak substrate concentrations and/or rates of individual pathways as these were not measured in our analysis.
White/grey shading is representative of the inactive and active phases, respectively.
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(CT 24.0), and Mlxip (CT 23.5) encode transcription fac-
tors that target carbohydrate response elements within
lipogenic gene promoter regions (Acly, Acaca, and Fasn)
and are also circadian with peak expression at the end of
the active phase [79,80]. Consistent with our results,
Srebf1 oscillations have been reported in the liver and
genome-wide binding studies have shown a circadian
recruitment pattern of SREBF1 to the promoters of lipo-
genic genes with maximal binding during the active
(fed) stage [81-84].
The gene Pnpla3 (CT 21.0), also known as adiponu-

trin, promotes lipogenesis by converting LPA to phos-
phatidic acid (PA) [85]. The gene Lpin1 (CT 24.0) which
encodes for the lipin-1 enzyme is responsible for con-
verting phosphatidic acid (PA) to diacylglycerol (DAG),
the upstream metabolite required in phospholipid bio-
synthesis [86,87]. The highly regulated, committing step
in triacylglycerol (TG) synthesis, addition of a fatty-acyl-
CoA to DAG, is performed by the product encoded
by Dgat1 (CT 24.5), which is also expressed in a circa-
dian manner [88]. Once a TG molecule is formed, it
can be elongated by enzymes encoded by Acsl5 (CT
23.0) or Elovl5 (CT 22.5) [89,90]. The observation that
circadian lipogenic genes reach peak expression levels
around the end of the active phase suggests that skeletal
muscle promotes storage of excess energy at the end of
the active/absorptive phase.

Carbohydrate metabolism: genes involved in carbohydrate
catabolism peak in the early active/dark phase
Glycolysis, the breakdown of glucose to form pyruvate,
is primarily regulated at two enzymatic reactions catalyzed
by the hexokinase and phosphofructokinase enzymes [91].
We observe that the hexokinase-2 (Hk2) gene is circadian
with peak expression occurring at the beginning of the
active phase (CT 12.0). Acrophase of circadian genes in-
volved in carbohydrate metabolism are illustrated in
Figure 3. Normalized expression traces for each gene
are located in Additional files 1, 2, and 3. Hk2 is respon-
sible for the first step in glycolysis by phosphorylating
glucose to make glucose-6-phosphate, thereby trapping
glucose within the cell [92]. The rate-limiting step of gly-
colysis involves the catalysis of fructose-6-phosphate to
the highly unstable fructose-1,6-bisphosphate by the en-
zyme phosphofructokinase-1 (PFKM) [93,94]. A potent
allosteric activator of PFKM is fructose-2,6-bisphosphate,
which is the product of the other phosphofructokinase
isozyme phosphofructokinase-2 (PFK2) [95]. Three genes
(Pfkfb-1,3,4) that encode phosphofructokinase-2 subunits
are circadian with peak expression occurring during the



Figure 3 Schematic acrophase diagram of circadian genes involved in carbohydrate metabolic processes. The relative location of the circadian
genes (italicized) in respect to the x-axis indicates acrophase or time of peak expression calculated by the JTK_CYCLE algorithm. Location of
substrates and pathways does not represent peak substrate concentrations and/or rates of individual pathways as these were not measured in
our analysis. White/grey shading is representative of the inactive and active phases, respectively.
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mid- and late-inactive phases (CT 10.0, CT 4.5, and CT
12.0, respectively).
Glycolytic flux through the Kreb’s cycle is controlled

by pyruvate dehydrogenase complex (PDH) [96,97]. PDH
decarboxylates pyruvate to form acetyl-CoA, which is a
substrate for the Kreb’s cycle. The activity of PDH is
regulated at the posttranslational level. Phosphorylation
by kinases (PDKs) inhibits PDH activity, while dephos-
phorylation by phosphatases (PDPs) activates the complex
[98,99]. The Pdk4 gene, which encodes for a PDH kinase
that inhibits PDH, reaches maximal expression at the
mid-inactive phase (CT 6.0). This expression pattern is
similar to that of the β-oxidation genes and suggests that
skeletal muscle substrate preference is pushed toward
utilization of lipids over carbohydrates during the mid- to
late-inactive phase. Conversely, the PDH phosphatase
gene, Pdp1, peaks at the beginning of the active phase
(CT 10.0) in a similar temporal fashion compared to the
glycolytic enzymes described above. This temporal regu-
lation of Pdp1 may therefore help increase glycolytic
flux during the active phase. Dyar et al. observed similar
expression patterns of Pdk4 and Pdp1 in skeletal muscle
and were first to report a shift to carbohydrate utilization
at the beginning of the active phase [43].
Adrb2 encodes for the β2-adrenergic receptor (β2AR) in-

volved in the fight-or-flight response in peripheral tissues
[100,101]. Agonist (that is, catecholamine) binding is well
established to evoke a cell-signaling cascade that promotes
glucose uptake, glycogenolysis, and lipolysis to provide a
readily available source of energy for skeletal muscle
[102-104]. Adrb2 is expressed in a similar pattern to
that of the glycolytic activating genes as it peaks at the
beginning of the active phase. Interestingly, the expres-
sion of Adrb2 coincides with that of oscillating epineph-
rine concentrations in mammals, which has previously
been identified as peaking at the beginning of the active
phase in mouse models [105]. The G-protein receptor
kinase, encoded by Adrbk1, phosphorylates the β2AR,
thereby rendering it susceptible to receptor-mediated
endocytosis via β-arrestin proteins encoded by Arrdc3
and Arrb1 [106-108]. Adrbk1, Arrdc3, and Arrb1 are all
expressed in a circadian manner and antiphasic to the ex-
pression of Adrb2. These observations suggest there is a
time of day difference in adrenergic signaling and that sen-
sitivity to epinephrine may be highest in skeletal muscle
during the active period while being desensitized prior to
the inactive period.

Carbohydrate metabolism: genes involved in carbohydrate
storage peak at the mid-active/dark phase
Excess carbohydrates are stored as glycogen in skeletal
muscle which accounts for approximately 70 to 80% of
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whole body stores [109]. Unlike the liver, skeletal muscle
glycogen content is not responsible for maintaining
blood glucose concentrations but serves as a rapidly ac-
cessible energy depot for active contractions [110].
Glycogenesis is regulated by both glucose-6P concentra-
tions and the enzymatic activity of glycogen synthase
[111,112]. The gene Ppp1r3c (CT 20.0) reaches peak ex-
pression around the mid-inactive phase and encodes a
regulatory subunit of the protein phosphatase-1 (PP-1)
responsible for activating glycogen synthase while also
inhibiting glycogen breakdown (Figure 3) [113]. Enzym-
atic activity of PP-1, and subsequent activation of glyco-
gen synthase, is regulated downstream of the insulin
signaling pathway [114].
Insulin promotes an anabolic signaling cascade that

works in opposition to that of adrenergic signaling to
drive glycogen and lipid storage. Previous reports have
identified a ‘counter-regulatory’ role of the insulin receptor
to selectively inhibit β2AR signaling through phosphoryl-
ation and subsequent internalization of the receptor
[101,115]. Interestingly, the genes that encode the insulin
receptor substrate-1, Irs1 (CT 22.0), and its downstream
PI3-kinase target, Pik3r1 (CT 19.0), are both circadian with
peak expression occurring at the late-active phase while
the genes involved in suppressing PI3-kinase, Pik3ip1 (CT
8.0), and the insulin-receptor substrate-1, Fbxo40 (CT 5.0),
reach peak expression during the inactive phase [116,117].
These data suggest that the molecular clock may act to
prime skeletal muscle to store excess glucose during
the mid- to late-active phase. This prediction is further
supported by previous studies that report skeletal muscle
glycogen content as having a diurnal rhythm with the high-
est levels occurring during the mid-active phase [118-120].
Skeletal muscle glucose uptake is primarily controlled via
the presence/absence of the glucose transporter GLUT4/
Slc2a4 in the plasma membrane (sarcolemma) and trans-
verse tubules. A t-SNARE syntaxin-4 interacting protein,
encoded by Stxbp4, has previously been shown to repress
GLUT4 insertion into the plasma membrane in the ab-
sence of insulin signaling [121-123]. The gene Tbc1d1 en-
codes for Rab-GTPase that represses GLUT4 translocation
in the absence of insulin- or contraction-induced signaling
cascades [124-126]. Interestingly, Tbc1d1 and Stxbp4 are
both expressed in a circadian manner and reach peak
expression in the middle of the active phase (CT 19.0).
Previous reports have identified Tbc1d1 as a circadian
gene in skeletal muscle and other tissues [43,127]. To-
gether, these gene products may play a role in reducing
glucose uptake at the end of the active phase by repres-
sing GLUT4 translocation and/or insertion into the
plasma membrane. This temporal separation of anabolic
and catabolic signaling processes in skeletal muscle may
be vital for maintaining a tight regulation of serum glu-
cose levels, and disruption of which may contribute to
the metabolic phenotypes often reported in clock-mutant
mice models.

Generation of an inducible skeletal muscle-specific mouse
model of Bmal1 inactivation
Use of the high-resolution microarray data set allowed
for the identification of mRNAs expressed in a circadian
pattern, but this could be due to the intrinsic molecular
clock or could be a response to external behavioral (feed-
ing/activity) or neural/humoral cues [24,128,129]. To de-
termine the role of the intrinsic skeletal muscle molecular
clock in the temporal regulation of metabolic gene expres-
sion, we generated an inducible mouse model to inactivate
Bmal1 specifically in adult skeletal muscles. Upon treat-
ment with tamoxifen in 12-week-old adult mice, we detect
recombination of exon-8 (that is, DNA binding region) of
the Bmal1 gene specifically in skeletal muscle (Figure 4A),
confirming the tissue specificity of the mouse model.
We waited until 12 weeks of age to limit possible devel-
opmental effects as BMAL1 has been shown to promote
myogenesis [20,130]. As seen in Figure 4A, recombin-
ation was not detected in the skeletal muscle or non-
muscle tissues of vehicle-treated mice (iMS-Bmal1+/+).
Western blot analysis confirmed the depletion of BMAL1
protein in the skeletal muscle of the iMS-Bmal1−/− mice
with no effect on the liver (Figure 4B). Tamoxifen-induced
loss of Bmal1 in adult skeletal muscle resulted in signifi-
cant and expected gene expression changes of genes in-
volved in the core clock mechanism. In particular, genes
directly activated by the BMAL1/CLOCK heterodimer,
such as Rev-erbα and Dbp, are markedly downregulated
in iMS-Bmal1−/− but not in the iMS-Bmal1+/+ samples
(Figure 4C). Collectively, these results demonstrate the
effective loss of BMAL1 protein and disruption of core-
clock gene expression in the iMS-Bmal1−/− muscle tissue.

iMS-Bmal1−/− display normal circadian activity rhythms
We used voluntary wheel running to assess circadian be-
havior in the iMS-Bmal1 mice 22 to 29 weeks posttreat-
ment. We did not detect any significant differences in
entrainment to light under 12-h light/12-h dark condi-
tions between iMS-Bmal1+/+ and iMS-Bmal1−/−, and ana-
lysis of activity rhythms under constant darkness did not
reveal any changes in circadian behavior (Figure 4D,E).
Clock-lab analysis indicates that both iMS-Bmal1+/+ and
iMS-Bmal1−/− exhibit approximate 24-h period lengths
(23.85 ± 0.083 and 23.77 ± 0.138 h, respectively) with no
differences in amplitude, the relative strength of the
rhythm. These data are consistent with other studies and
confirm that inactivation of BMAL1 in skeletal muscle
does not directly alter circadian activity patterns [43,131].
Therefore, gene expression changes observed in this
model are more likely to be downstream of the endogen-
ous molecular clock mechanism in skeletal muscle.
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Expression of key circadian metabolic genes are
significantly altered in iMS-Bmal1−/− skeletal muscle
Gene expression analysis of iMS-Bmal1+/+ and iMS-
Bmal1−/− muscle tissue reveals that the intrinsic molecular
clock, even in constant conditions, plays a role in tempor-
ally regulating carbohydrate and lipid metabolism. We
performed our transcriptome analysis at 5 weeks postre-
combination to identify early gene expression changes
caused by the loss of the clock mechanism in skeletal
muscle. Analyzing gene expression at this time point
also limits potential off-target effects of tamoxifen treat-
ment by allowing for a sufficient wash-out period. We
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found that the circadian genes involved in carbohydrate
metabolism were most affected by loss of Bmal1. The
expression of the glycolytic enzymes, Pfkfb1, Pfkfb3, and
Hk2 as well as the PDH phosphatase, Pdp1 were all sig-
nificantly downregulated in the gastrocnemius (Figure 5A).
In addition, expression of the adrenergic receptor, Adrb2,
was also significantly decreased. These genes are convin-
cing clock-controlled candidates in skeletal muscle as they
have circadian expression patterns similar to that of
known clock-controlled genes (peak expression during
inactive to active phase transition), and their loss of ex-
pression following Bmal1 inactivation is indicative of
direct transcriptional regulation by the clock. By target-
ing these genes, the molecular clock mechanism can
precisely regulate the timing of carbohydrate utilization
to occur during the active phase. The observation that
circadian genes involved in glucose utilization are
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diminished in our model is in agreement with the
muscle-specific Bmal1 knockout model generated by
Dyar et al. in which they report significant decreases in
glucose oxidation and insulin stimulated glucose uptake
in their muscle tissues [43].
Lipid metabolic processes appear to be elevated as

the nuclear co-repressor, Nrip1, involved in repressing
β-oxidation was significantly decreased with loss of
Bmal1 (approximately 21% decrease, Student’s t test
P value = 0.019). Previous studies have shown that
knockout of Nrip1 results in an increase in succinate
dehydrogenase staining of gastrocnemius muscle con-
sistent with a shift to slow oxidative fiber types [72].
Interestingly, the fatty-acid transporter, Fabp3, and the
β-oxidation genes, Hadha and Hadhb, were signifi-
cantly elevated in the iMS-Bmal1−/− gastrocnemius
tissues (Figure 5B). Two circadian genes involved in
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triacylglycerol elongation, Pnpla3 and Elovl5, were also
increased in the iMS-Bmal1−/−. Altogether, we report
significant expression changes in circadian genes that
are key regulators of metabolism in skeletal muscle. We
think that the gene changes observed in iMS-Bmal1−/−

are either directly or indirectly regulated downstream
of BMAL1/molecular clock in skeletal muscle and not
due to changes in external cues as circadian activity
patterns in iMS-Bmal1−/− are indistinguishable from
vehicle-treated controls. The observation that circadian
genes involved in carbohydrate and lipid metabolism
are disrupted in iMS-Bmal1−/− highlights a fundamen-
tal importance of the intrinsic molecular clock in tem-
poral regulation of substrate utilization and storage in
skeletal muscle in the absence of external cues.
iMS-Bmal1−/− gene expression changes reveal a fast to
slow fiber-type shift
Skeletal muscle comprises different fiber types that
are differentiated based on contractile function as well
as predominant substrate utilization [132-135]. For ex-
ample, fast-type skeletal muscles (type IIX/IIB) primarily
rely on ATP generated from anaerobic metabolism (gly-
colysis/lactic-acid fermentation) to provide quick energy
sources required for short bursts of activity, while slow-
type skeletal muscles and fast-type IIA muscles rely on
oxidative metabolism to promote a more sustained and
less fatigable bout of contractions. We analyzed changes
in gene expression related to fiber type following Bmal1
ablation in adult skeletal muscle and included both
circadian and non-circadian transcripts. We identified a
selective increase in slow-type sarcomeric genes in the
gastrocnemius muscles with a limited effect on fast-type
sarcomeric genes (Figure 6A,B). We chose the list of ‘slow’
and ‘fast’ sarcomeric genes, because these have been shown
to be significantly enriched in either slow-soleus or fast-
EDL myofiber preparations [136]. Additionally, calcium
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Figure 6 Increase in slow type sarcomeric genes in iMS-Bmal1−/−. Average
genes in iMS-Bmal1−/− compared to control values (red line). *P ≤ 0.05; **P
handling genes and nuclear receptors common in slow-
fiber muscles (for example, Casq2, Atp2a2, Ankrd2, Csrp3.)
were significantly increased in iMS-Bmal1−/− (Table 1).
Similar to the changes observed for the circadian metabolic
genes, we see that non-circadian metabolic genes in-
volved in carbohydrate metabolism are significantly
decreased, while genes involved in lipid metabolism are
increased (Tables 2 and 3). This switch from a fast to a
slow fiber type mRNA profile is in agreement with the
observed metabolic changes as slow fiber type muscles
rely more heavily on oxidative metabolism compared to
fast-type skeletal muscle.
Conclusions
Here, we report that the intrinsic molecular clock regu-
lates the timing of genes involved in substrate catabolic
and anabolic processes in skeletal muscle. We have iden-
tified the mid-inactive period as the time of peak expres-
sion of genes involved in fatty-acid breakdown, possibly
serving as the main energy source to skeletal muscle dur-
ing the overnight fasting period. The temporal expression
pattern of genes that regulate glycolysis and glycolytic flux
into the Kreb’s cycle suggests a shift in substrate utilization
during the early active period from lipids to carbohydrates,
which has previously been documented in other muscle-
specific Bmal1 knockout models [43]. Genes involved in
glucose and lipid storage were observed as reaching peak
expression toward the end of the active phase, where we
predict excess energy is stored for usage during the post-
absorptive phase. Expression analysis of time-course data
from iMS-Bmal1−/− skeletal muscle revealed the differen-
tial expression of a number of key circadian metabolic
genes in the absence of BMAL1. These finding suggests
that the temporal regulation and circadian rhythmicity of
these genes is directly downstream of the intrinsic skeletal
muscle molecular clock mechanism. Lastly, we observe a
gene expression profile that is indicative of a glycolytic to
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Table 1 Fiber-type specific gene expression changes in iMS-Bmal1−/−

Gene symbol Fast or slow Gene description ΔExpression (Tam/Veh) Student’s t test

Atp2a1 Fast Calcium handling 0.99 ns

Atp2a2 Slow Calcium handling 1.06 ns

Calm3 Fast Calcium handling 0.84 ***

Casq1 Fast Calcium handling 1.00 ns

Casq2 Slow Calcium handling 2.89 ***

Itpr1 Fast Calcium handling 1.05 ns

Pvalb Fast Calcium handling 1.02 ns

Ankrd2 Slow Nuclear receptor 1.66 *

Csrp3 Slow Nuclear receptor 2.13 **

Fhl1 Slow Nuclear receptor 1.28 **

Nfatc2 Slow Nuclear receptor 0.88 ns

Pdlim1 Slow Nuclear receptor 1.51 ***

Ppara Slow Nuclear receptor 1.23 *

Ppargc1a Fast Nuclear receptor 0.83 *

Sos2 Fast Nuclear receptor 0.84 ***

Average gene expression changes of calcium handling and nuclear receptor genes in iMS-Bmal1−/−. ns, non-significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

Table 2 Metabolic genes upregulated in iMS-Bmal1−/−

Gene symbol Gene function ΔExpression
(Tam/Veh)

Student’s
t test

Agpat3 Lipogenesis 1.59 ***

Acadm Lipolysis 1.31 ***

Acot7 Lipolysis 1.18 ***

Acot9 Lipolysis 1.44 **

Acsl1 Lipolysis 1.24 **

Cd36 Lipid transport 1.18 **

Cox5a Electron transport chain 1.24 ***

Cox6a1 Electron transport chain 1.30 *

Cpt2 Lipolysis 1.11 *

Fabp1 Lipid transport 1.28 *

Fabp5 Lipid transport 1.29 **

Fads2 Lipogenesis 1.29 *

Ldhb Lactate metabolism 1.33 ***

Ndufa8 Electron transport chain 1.24 ***

Ndufb8 Electron transport chain 1.18 **

Plin5 Lipogenesis 1.41 ***

Sdhc Electron transport chain 1.18 ***

Sdhd Electron transport chain 1.21 **

Uqcr10 Electron transport chain 1.14 **

Average gene expression changes of metabolic genes that are significantly
upregulated in iMS-Bmal1−/− skeletal muscle. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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oxidative fiber type shift with loss of Bmal1 in adult
muscle tissue. These findings suggest a potential unidenti-
fied role of Bmal1 in the maintenance of fast-type muscle
fibers, possibly via direct transcriptional regulation of glu-
cose handling. It is widely reported that aging is associated
with a selective loss of fast-type skeletal muscle fibers
[137,138]. In addition, aging is also associated with de-
creases in the robustness of the molecular clock [139,140].
These observations raise the possibility that fast to slow
fiber-type shifts may be a result of dampening of the
molecular clock with age.
Table 3 Metabolic genes downregulated in iMS-Bmal1−/−

Gene symbol Gene function ΔExpression
(Tam/Veh)

Student’s
t test

Agl Glycogenolysis 0.83 ***

Akt1 Glucose uptake 0.84 **

Il15 Glucose uptake 0.86 *

Pak1 Glucose uptake 0.79 *

Pfkm Glycolysis 0.81 ***

Pgm2 Glycogenolysis 0.87 ***

Phka1 Glycogenolysis 0.81 **

Prkab2 Glucose uptake 0.85 *

Prkag2 Glucose uptake 0.83 ***

Prkag3 Glucose uptake 0.71 **

Rab10 Glucose uptake 0.86 **

Slc2a3 Glucose uptake 0.35 ***

Average gene expression changes of metabolic genes that are significantly
downregulated in iMS-Bmal1−/− skeletal muscle. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.



Hodge et al. Skeletal Muscle  (2015) 5:17 Page 13 of 16
Additional files

Additional file 1: Normalized gene expression traces of circadian
metabolic genes. Normalized expression traces of the circadian
metabolic genes from the high-resolution skeletal muscle time-course
transcriptome (data were downloaded from NCBI GEO datasets-GSE54652).
Grey bars indicated the active period and white bars indicate the inactive
period. Note that mice were in constant darkness during the time-course
collection. Red lines indicate the acrophase (time of peak expression)
calculated by JTK_CYCLE algorithm. A 6° polynomial was fitted to the data
to highlight the temporal expression pattern (black line). The genes are
categorized by function and listed in the following order: lipid breakdown,
lipid storage, carbohydrate breakdown, and carbohydrate storage.

Additional file 2: Temporal gene expression traces of circadian
metabolic genes. Gene expression traces for circadian metabolic genes
from the Mouse ST 1.0 Affymetrix gene array for gastrocnemius tissue
collected at circadian times 18 to 38. iMS-Bmal1+/+ control values are
indicated as black diamonds and iMS-Bmal1−/− are indicated as red
squares. Grey bars indicated the active period, and white bars indicate
the inactive period. Note that mice were in constant darkness during the
time-course collection.

Additional file 3: Real-time PCR results for circadian metabolic
genes. Real-time PCR results (C) of time-course expression values for Fabp3,
Pnpla3, Hk2, and Pdp1 in the iMS-Bmal1+/+ (black) and iMS-Bmal1−/− (red).
Paired t test of Fabp3 (P value = 0.02), Pnpla3 (P value = 0.4), Hk2 (P value =
0.001), and Pdp1 (P value = 0.15).
Abbreviations
Acaa2: acetyl-Coenzyme A acyltransferase 2; Acaca: acetyl-Coenzyme A
carboxylase alpha; Acadm: acyl-Coenzyme A dehydrogenase, medium chain;
Acly: ATP citrate lyase; Acot7: acyl-CoA thioesterase 7; Acot9: acyl-CoA
thioesterase 9; Acsl1: acyl-CoA synthetase long-chain family member 1;
Acsl5: acyl-CoA synthetase long-chain family member 5; Actn2: actinin alpha
2; Actn3: actinin alpha 3; Adrb2: β2-adrenergic receptor; Adrbk1: adrenergic
receptor kinase, beta 1; Agl: amylo-1,6-glucosidase, 4-alpha-glucanotransferase;
Agpat3: 1-acylglycerol-3-phosphate O-acyltransferase 3; Akt1: thymoma viral
proto-oncogene 1; Ankrd2: ankyrin repeat domain 2 (stretch-responsive
muscle); Arrb1: arrestin, beta 1; Arrdc3: arrestin domain containing 3;
Atp2a1: ATPase, Ca++ transporting, cardiac muscle, fast twitch 1;
Atp2a2: ATPase, Ca++ transporting, cardiac muscle, slow twitch 2;
BAT: brown adipose tissue; bHLH: basic helix-loop-helix; Bhlhe40: basic
helix-loop-helix family, member e40; Bmal1: brain and muscle ARNT-like 1;
Calm3: calmodulin 3; Casq1: calsequestrin 1; Casq2: calsequestrin 2;
Cd36: (FAT) fatty acid translocase; cDNA: complementary DNA;
Clock: Circadian Locomotor Output Cycles Kaput; CoA: coenzyme A;
Cox5a: cytochrome c oxidase subunit Va; Cox6a1: cytochrome c oxidase
subunit VIa polypeptide 1; Cpt2: carnitine palmitoyltransferase 2; Csrp3: cysteine
and glycine-rich protein 3; CT: circadian time; DAG: diacylglycerol; Dbp: D
site albumin promoter binding protein; DD: dark/dark; Dgat1: diacylglycerol
O-acyltransferase 1; Ech1: enoyl coenzyme A hydratase 1; EDL: extensor
digitorum longus; Elovl5: ELOVL family member 5, elongation of long chain
fatty acids; Esrra: estrogen-related receptor, alpha; Fabp1: fatty acid binding
protein 1; Fabp3: fatty acid binding protein 3; Fabp4: fatty acid binding protein
4; Fabp5: fatty acid binding protein 5; Fads2: fatty acid desaturase 2; Fasn: fatty
acid synthase; Fbxo40: F-box protein 40; FH: femoral head; GTN: gastrocnemius;
Fhl1: four and a half LIM domains 1; Hadha: enoyl-Coenzyme A hydratase
(trifunctional protein), alpha subunit; Hadhb: enoyl-Coenzyme A hydratase
(trifunctional protein), beta subunit; HDAC3: histone deacetylase 3;
Hk2: hexokinase-2; Il15: interleukin 15; iMS-Bmal1: inducible skeletal
muscle-specific Bmal1; Irs1: insulin receptor substrate-1; Itpr1: inositol
1,4,5-trisphosphate receptor 1; JTK_CYCLE: Jonckheer-Terpstra-Kendall Cycle
Algorithm; LD: light/dark; Ldhb: lactate dehydrogenase B; Ndufa8: NADH
dehydrogenase (ubiquinone) 1 alpha subcomplex, 8; LPA: lysophosphatidic
acid; Lpin1: lipin 1; Mlxip: MLX interacting protein; Mlycd: malonyl-CoA
decarboxylase; Murc: muscle-related coiled-coil protein; Myh1: myosin,
heavy polypeptide 1, skeletal muscle, adult; Myh2: myosin, heavy polypeptide 2,
skeletal muscle, adult; Myh3: myosin, heavy polypeptide 3, skeletal muscle,
embryonic; Myh4: myosin, heavy polypeptide 4, skeletal muscle; Myh6: myosin,
heavy polypeptide 6, cardiac muscle, alpha; Myh7: myosin, heavy polypeptide 7,
cardiac muscle, beta; Myh8: myosin, heavy polypeptide 8, skeletal muscle;
Myl2: myosin, light polypeptide 2, regulatory, cardiac, slow; Myl3: myosin,
light polypeptide 3; Myl7: myosin, light polypeptide 7, regulatory;
Myom2: myomesin 2; Myoz1: myozenin 1; Myoz2: myozenin 2; NCBI
GEO: National Center for Biotechnology Information Gene Expression
Omnibus; Ndufb8: NADH dehydrogenase (ubiquinone) 1 beta subcomplex
8; Nfatc2: nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent
2; Nrip1: nuclear receptor interacting protein 1; PA: phosphatidic acid;
Pak1: p21 protein (Cdc42/Rac)-activated kinase 1; PCR: polymerase
chain reaction; PDH: pyruvate dehydrogenase complex; PDK: pyruvate
dehydrogenase kinase; Pdk4: pyruvate dehydrogenase kinase, isoenzyme 4;
Pdlim1: PDZ and LIM domain 1; PDP: pyruvate dehydrogenase phosphatase;
Pdp1: pyruvate dehydrogenase phosphatase catalytic subunit 1;
PFK2: phosphofructokinase-2; Pfkfb1: 6-phosphofructo-2-kinase/fructose-2,
6-biphosphatase 1; Pfkfb3: 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3; Pfkfb4: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
4; Pfkm: phosphofructokinase-1; Pgm2: phosphoglucomutase 2;
Phka1: phosphorylase kinase alpha 1; Pik3ip1: phosphoinositide-3-kinase
interacting protein 1; Pik3r1: phosphatidylinositol 3-kinase, regulatory subunit,
polypeptide 1 (p85 alpha); Plin5: perilipin 5; Pnpla3: patatin-like phospholipase
domain containing 3; PP-1: protein phosphatase-1; Ppargc1b: peroxisome
proliferative activated receptor, gamma, coactivator 1 beta; Ppara: peroxisome
proliferator activated receptor alpha; Pparδ: peroxisome proliferator activator
receptor delta; Ppargc1a: peroxisome proliferative activated receptor, gamma,
coactivator 1 alpha; Ppp1r3c: protein phosphatase 1, regulatory (inhibitor)
subunit 3C; Prkab2: protein kinase, AMP-activated, beta 2 non-catalytic
subunit; Prkag2: protein kinase, AMP-activated, gamma 2 non-catalytic
subunit; Prkag3: protein kinase, AMP-activated, gamma 3 non-catatlytic
subunit; Pvalb: parvalbumin; Rab10: RAB10, member RAS oncogene family;
Rev-erbα: nuclear receptor subfamily 1, group D, member 1; RORE: REV-ERB
response element; Scd1: stearoyl-Coenzyme A desaturase 1; Sdhc:
succinate dehydrogenase complex, subunit C, integral membrane protein;
Sdhd: succinate dehydrogenase complex, subunit D, integral membrane
protein; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis;
Slc25a20: solute carrier family 25 (mitochondrial carnitine/acylcarnitine
translocase); Slc2a3: solute carrier family 2 (facilitated glucose transporter),
member 3; Smtnl1: smoothelin-like 1; Sos2: son of sevenless homolog 2;
Srebf1: sterol regulatory element binding transcription factor 1;
Srebf2: sterol regulatory element binding factor 2; Stxbp4: syntaxin binding
protein 4; TA: tibialis anterior; TAG: triacylglycerol; Tbc1d1: TBC1 domain
family, member 1; Tmod1: tropomodulin 1; Tnnc1: troponin C, cardiac/
slow skeletal; Tnnc2: troponin C2, fast; Tnni1: troponin I, skeletal, slow 1;
Tnni2: troponin I, skeletal, fast 2; Tnnt1: troponin T1, skeletal, slow;
Tnnt3: troponin T3, skeletal, fast; Uqcr10: ubiquinol-cytochrome c reductase,
complex III subunit X; Vcl: vinculin; WAT: white adipose tissue; Xirp1: xin
actin-binding repeat containing 1.
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