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The DUET blind source separation algorithm can demix an arbitrary number of speech signals usingM = 2 anechoic mixtures of
the signals. DUET however is limited in that it relies upon source signals which are mixed in an anechoic environment and which
are sufficiently sparse such that it is assumed that only one source is active at a given time frequency point. The DUET-ESPRIT
(DESPRIT) blind source separation algorithm extends DUET to situations where M ≥ 2 sparsely echoic mixtures of an arbitrary
number of sources overlap in time frequency. This paper outlines the development of the DESPRIT method and demonstrates its
properties through various experiments conducted on synthetic and real world mixtures.
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1. INTRODUCTION

The “cocktail party phenomenon” illustrates the ability of
the human auditory system to separate out a single speech
source from the cacophony of a crowded room using only
two sensors with no prior knowledge of the speakers or the
channel presented by the room. Efforts to implement a re-
ceiver which emulates this sophistication are referred to as
blind source separation techniques [1–3]. The DUET blind
source separation method [4] can demix an arbitrary num-
ber of speech source signals given just 2 anechoic mixtures
of the sources, providing that the time-frequency representa-
tions of the sources do not overlap. The technique is limited
in the following respects.

(1) It is not obvious how to best extend the technique to a
situation where more mixtures are available.

(2) The assumption that only one source is active at a
given time-frequency point is limiting, especially when
M > 2 mixtures may be available.

(3) The anechoic mixing model clearly restricts the types
of environments where DUET can be applied.

A number of extensions to the DUET blind source separa-
tion method have recently been proposed [5–7] that address
these issues. In this paper we summarise and characterise
the performance of these extensions, which we believe em-
body the natural multichannel, echoic extension of DUET.
Other authors have proposed different DUET extensions, for

example, [8–11] describe multichannel extensions to DUET
when M ≥ 2 mixtures are available. It is recognised in [9–
15] that the assumption that only one source is active at
a given time-frequency point is quite a harsh restriction to
place upon large numbers of speech sources and weakened
forms of this assumption are presented in these papers. An
echoic extension to DUET is demonstrated in [9] when the
mixing parameters are known a priori. In this work, we ex-
tend DUET to useM > 2 mixtures and in doing so are able to
separate multiple sources at each time-frequency point, even
when mixing is echoic.

In general, we seek to demixM mixtures of N source sig-
nals taken from a uniform linear array of sensors. In the fre-
quency domain we model theM mixtures X1(ω), . . . ,XM(ω)
of N source signals S1(ω), . . . , SN (ω) as

⎡
⎢⎢⎢⎢⎣

X1(ω)
X2(ω)

...
XM(ω)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1 · · · 1
φ1(ω) · · · φN (ω)

...
...

φM−1
1 (ω) · · · φM−1

N (ω)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
A1(ω)S1(ω)

...
AN (ω)SN (ω)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

V1(ω)
V2(ω)

...
VM(ω)

⎤
⎥⎥⎥⎥⎦
,

(1)



2 EURASIP Journal on Advances in Signal Processing

where An(ω) = ane− jωdn , an and dn are the attenuation and
delay experienced by the nth signal as it propagates to the 1st
sensor, φn(ω) = αne− jωδn , αn and δn are the attenuation and
delay experienced by the nth signal as it travels between two
adjacent sensors, and V1(ω),V2(ω), . . . ,VM(ω) are indepen-
dently and identically distributed noise terms. Equivalently
in the time domain themth anechoic mixture xm(t) of the N
source signals, s1(t), s2(t), . . . , sN (t), can be expressed as

xm(t) =
N∑

n=1
anα

m−1
n sn

(
t − dn − (m− 1)δn

)
+ vm(t), (2)

where the inverse Fourier transform is defined as f (t) =
(1/2π)

∫∞
−∞ F(ω)e jωtdω. The anechoic mixing model (1) may

be altered to become an echoic mixing model by adding
columns to themixingmatrix corresponding to echoic paths:

⎡
⎢⎢⎢⎢⎢⎣

X1(ω)

X2(ω)
...

XM(ω)

⎤
⎥⎥⎥⎥⎥⎦
=A(ω)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1(ω)S1(ω)
...

A1,P1 (ω)S1(ω)
...

AN ,1(ω)SN (ω)
...

AN ,PN (ω)SN (ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

V1(ω)

V2(ω)
...

VM(ω)

⎤
⎥⎥⎥⎥⎥⎦
,

(3)

A(ω)

=

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1 1 · · · 1

φ1,1(ω) · · · φ1,P1 (ω) φN ,1(ω) · · · φN ,PN (ω)
...

... · · · ...
...

φM−1
1,1 (ω) · · · φM−1

1,P1 (ω) φM−1
N ,1 (ω) · · · φM−1

N ,PN (ω)

⎤
⎥⎥⎥⎥⎥⎦
,

(4)

whereAn,p(ω) = an,pe− jωdn,p , an,p and dn,p are the attenuation
and delay experienced by the nth signal as it propagates along
its pth path, to the 1st sensor, φn,p(ω) = αn,pe− jωδn,p , αn,p and
δn,p are the attenuation and delay experienced by the nth sig-
nal as it propagates between two adjacent sensors along its
pth path and Pn is the number of paths the nth source sig-
nal travels upon to reach the sensor array. Equivalently in the
time domain themth echoic mixture can be expressed as

xm(t) =
N∑

n=1

Pn∑

p=1
an,pα

m−1
n,p sn

(
t − dn,p − (m− 1)δn,p

)
+ vm(t).

(5)

This model has the same form as (1) but now there are
N ′ ≥ N signals being received by the sensor array, some
of these signals will be originated from the same source.
Figure 1 illustrates a simple anechoic mixing procedure and
a related echoic mixing procedure. Our treatment assumes
a uniform linear array with spacing ≤ c/2 fmax throughout,
where fmax is the maximum frequency of interest and c is
the speed at which the signals propagate. Furthermore it is

s1(t)

s2(t) s3(t)

x1(t) x2(t) x3(t)

(a)

s1(t)
s1(t) s2(t)

x1(t) x2(t) x3(t)

(b)

Figure 1: 3 sensors pick up 3 anechoic mixtures of 3 signals (a) and
3 echoic mixtures of 2 signals (b).

assumed that the sensor array is located sufficiently far away
from the source locations that planar wave propagation oc-
curs, although not previously stated, this assumption is im-
plicit in the mixing models (1) and (3).

The goal of a blind source separation method is to
estimate the source signals s1(t), s2(t), . . . , sN (t) from the
mixture signals x1(t), x2(t), . . . , xM(t). This paper describes
a time-frequency domain approach to this problem. Such
transform domain approaches are a popular way of extend-
ing independent component analysis type algorithms to the
convolvedmixture problem [16–18] but they must overcome
the well-known permutation ambiguity [19]. DUET (which
we extend in this paper to a sparse convolutive model) over-
comes the permutation problem by parameterising the mix-
ing model. In the 2-channel case (M = 2) with anechoic
mixing (Pn = 1), the DUET algorithm can perform blind
source separation even when N > 2 sources are present and
it is unaffected by the permutation ambiguity. DUET relies
on the sparsity of speech in the time-frequency domain, a
key assumption in many papers [8–15, 20, 21]. Sparsity is
defined in various ways in the literature. We take sparsity to
mean that a small percentage of the time-frequency points
contain a large percentage of the signal power. Moreover
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the significant power containing coefficients for two differ-
ent speech signals rarely overlap. This leads to the W-disjoint
orthogonal (WDO) property [4]

Sn(ω, τ)Sl(ω, τ) = 0 ∀ω, τ,n �= l, (6)

where the time-frequency representation of the signal sn(t) is
given by the windowed Fourier transform

Sn(ω, τ) =
∫∞
−∞

W(t − τ)sn(t)e− jωtdt, (7)

where W(t) is a window function. Note that this is a math-
ematical idealisation and in practice it is sufficient that
|Sn(ω, τ)Sl(ω, τ)| be small with high probability [4, 8]. The
DUET algorithm uses this assumption to separate N speech
signals from one anechoic mixture of the signals by par-
titioning the time-frequency plane. In order to determine
the demixing partitions, DUET uses two mixtures: x1(t) and
x2(t). For simplicity consider the case where W(t) = 1, in
which case the system model (1) becomes

[
X1(ω)

X2(ω)

]
=
[

1 · · · 1

α1e− jωδ1 · · · αNe− jωδN

]
⎡
⎢⎢⎢⎣

A1(ω)S1(ω)
...

AN (ω)SN (ω)

⎤
⎥⎥⎥⎦

+

[
V1(ω)

V2(ω)

]
.

(8)

As the planar wave from the nth source sn(t) travels across
the two-element array, the signal seen by the first sensor is
attenuated or amplified by a real scalar, αn, and delayed by δn
seconds before it reaches the second sensor. Without loss of
generality the N channel coefficients A1(ω), . . . ,AN (ω) can
be absorbed by the N source signals, that is, An(ω)Sn(ω) →
Sn(ω), n = 1, . . . ,N . In the no-noise case, with W-disjoint
orthogonal sources, the two mixtures of the sources are re-
lated to at most one of the source signals at any given point
in the frequency domain. That is

⎡
⎣X1(ω)

X2(ω)

⎤
⎦ =

[
1

αne− jωδn

][
Sn(ω)

]
(9)

for a given value of frequency ω ∈ Ωn, where

Ωn =
{
ω : Sn(ω) �= 0

}
(10)

defines the support of Sn(ω). For such values of ω, the atten-
uation and delay parameters for the nth source can be deter-
mined by

αn =
∣∣∣∣
X2(ω)
X1(ω)

∣∣∣∣, δn = − 1
ω

∠
{
X2(ω)
X1(ω)

}
, (11)

where ∠{αe jβ} = β. Scanning across ω in the support of the
mixtures, (11) will take on N distinct attenuation and delay
value pairings; these N pairings are the mixing parameters.
When noise is present, (11) will be approximately satisfied

and a two-dimensional histogram in attenuation-delay space
constructed using (11) will contain N peaks, one for each
source, with peak locations corresponding to the mixing pa-
rameters. Labelling each ω with the peak its corresponding
amplitude-delay estimate falls closest to, we partition one
of the mixtures in the frequency domain into the original
source signals.

Using the narrowband assumption in the time-frequency
domain, that is, if s1(t) = s(t) and s2(t) = s(t−δ) then for all
δ < Δmax,

S2(ω, τ) ≈ e− jωδS1(ω, τ) (12)

for some max delay Δmax, the expression (11) can be ex-
tended to the time-frequency domain. Neglecting the effect
of noise and assuming (6) is strictly satisfied, the attenuation
and delay parameters of the nth signal are then given by

αn =
∣∣∣∣
X2(ω, τ)
X1(ω, τ)

∣∣∣∣, δn = − 1
ω

∠
{
X2(ω, τ)
X1(ω, τ)

}
(13)

for (ω, τ) ∈ Ωn, where

Ωn =
{
(ω, τ) : Sn(ω, τ) �= 0

}
(14)

defines the support of Sn(ω, τ). Now, similarly scanning
across (ω, τ) in the support of the mixtures, (13) will take
on N distinct attenuation and delay value pairings, the mix-
ing parameters. When noise is present and (6) is approxi-
mately satisfied, (13) will be approximately satisfied and a
two-dimensional histogram in attenuation-delay space con-
structed using (13) will again contain N peaks, one for each
source, with peak locations corresponding to the mixing pa-
rameters. Labelling each (ω, τ) with the peak its correspond-
ing amplitude-delay estimate falls closest to, one of the mix-
tures is then partitioned in the time-frequency domain into
the original source signals.

The remainder of this paper has the following structure.
Section 2 describes the classic ESPRIT direction of arrival es-
timation algorithm and the development of the hard DE-
SPRIT, soft DESPRIT, and echoic DESPRIT extensions to the
DUET blind source separation technique. Section 3 gives an
algorithmic description of the echoic DESPRIT technique.
Section 4 describes a set of synthetic and real-room experi-
ments designed to demonstrate properties and advantages of
the hard DESPRIT, soft DESPRIT, and echoic DESPRIT ex-
tensions to the DUET blind source separation technique.

2. THE DESPRIT TECHNIQUE

2.1. The ESPRIT direction of arrival
estimation algorithm

Classic direction of arrival estimation techniques such
as MUSIC [22] and ESPRIT [23] aim to find the N
angles of arrival of N uncorrelated narrowband signals
s1(t), s2(t), . . . , sN (t) as they impinge onto an array ofM sen-
sors. With accurate estimation, beamforming can be per-
formed to separate the N signals. We present here a synopsis
of the ESPRIT algorithm, for further details consult [23–25].
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x1(t)

x2(t)

(a)

x1(t)

x2(t)

(b)

x1(t)

x2(t)

(c)

Figure 2: ESPRIT subarray separation of a uniform linear array in
the case ofM =M/2,M =M − 1, andM/2 <M < M − 1.

For narrowband signals of centre frequency ω0, a time
lag can be approximated by a phase rotation, that is, for all
δ < Δmax,

ŝ(t − δ) ≈ e− jω0δ ŝ(t) (15)

for some max delay Δmax, where ŝ(t) is the complex analytic
representation of real signal s(t). In this section only, all func-
tions of time are assumed to be in their complex analytic
representation and for notational simplicity we will drop the
{·̂} from them. ESPRIT separates the M mixtures into two
subsets of M mixtures each, where M/2 ≤ M ≤ M − 1.
The first subarray of M sensors must be displaced from a
second identical subarray of M sensors by a common dis-
placement vector. In the case of a uniform linear array (see
Figure 2), the subarrays can be chosen to maximise overlap,
that is,M = M − 1 and the output of the first subarray may
be expressed as

⎡
⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)
...

xM−1(t)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1

φ1
(
ω0
) · · · φN

(
ω0
)

...
...

φM−2
1

(
ω0
) · · · φM−2

N

(
ω0
)

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

A1
(
ω0
)
s1(t)

...

AN
(
ω0
)
sN (t)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

v1(t)

v2(t)
...

vM−1(t)

⎤
⎥⎥⎥⎥⎥⎦

(16)

and the output of the second subarray may be expressed as

⎡
⎢⎢⎢⎢⎢⎣

x2(t)

x3(t)
...

xM(t)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

φ1
(
ω0
) · · · φN

(
ω0
)

φ2
1

(
ω0
) · · · φ2

N

(
ω0
)

...
...

φM−1
1

(
ω0
) · · · φM−1

N

(
ω0
)

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

A1
(
ω0
)
s1(t)

...

AN
(
ω0
)
sN (t)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

v2(t)

v3(t)
...

vM(t)

⎤
⎥⎥⎥⎥⎥⎦
,

(17)

where φn(ω0) = αne− jω0δn , and αn and δn are the attenuation
and delay experienced by the nth signal as it travels from the
first subarray to the second. Both data vectors can be stacked
to form a 2(M − 1)× 1 time-varying vector

z(t) =
[
x1(t)
x2(t)

]
=
[

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)
] [

s(t)
]
+
[
v(t)

]
, (18)

where

A
(
ω0
) =

⎡
⎢⎢⎢⎢⎢⎣

A1
(
ω0
) · · · AN

(
ω0
)

A1
(
ω0
)
φ1
(
ω0
) · · · AN

(
ω0
)
φN
(
ω0
)

...
...

A1
(
ω0
)
φM−2
1

(
ω0
) · · · AN

(
ω0
)
φM−2
N

(
ω0
)

⎤
⎥⎥⎥⎥⎥⎦
,

Φ
(
ω0
) =

⎡
⎢⎢⎢⎣

φ1
(
ω0
)

. . .

φN
(
ω0
)

⎤
⎥⎥⎥⎦ ,

(19)

and the entries of v(t) are noise terms. It follows that the spa-
tial covariance matrix

Rzz
.= E
{[
z(t)

][
z(t)

]H}
(20)

is of the form

Rzz =
[

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)
]
Rss

[
A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)
]H

+ Rvv, (21)

where

Rss = E
{[
s(t)

][
s(t)

]H}
, Rvv = E

{[
v(t)

][
v(t)

]H}
,
(22)

and E{·} is the expectation operator. ESPRIT assumes Rss

is of full rank and thus for a high signal-to-noise ratio the
singular value decomposition (SVD) of Rzz can be computed
to give

Rzz

[
Es Ev

][Λ 0
0 Σ

][
Es Ev

]H
, (23)



T. Melia and S. Rickard 5

where

Λ =

⎡
⎢⎢⎢⎣

λ1 + σ21
. . .

λN + σ2N

⎤
⎥⎥⎥⎦ ,

Σ =

⎡
⎢⎢⎢⎣

σ2N+1

. . .

σ22(M−1)

⎤
⎥⎥⎥⎦ ,

(24)

λ1, . . . , λN � σ21 , . . . , σ
2
2(M−1), λ1, λ2, . . . , λN are related to the

source signal powers and σ21 , σ
2
2 , . . . , σ

2
2(M−1) are related to the

variance of the sensor noise. The N column vectors of Es are
associated with the singular values of Λ and they are said to
span the signal subspace. The 2M −N − 2 column vectors of
Ev associated with the singular values of Σ span the nullspace
of Es, which is often referred to as the noise subspace. (It
is understood that Rzz and its singular value decomposition
(23) have a dependence upon the centre frequency ω0, the
notation omits reference to this variable.) It follows that for
high signal-to-noise ratios there exists a nonsingular matrix
S, such that

Es =
[
E1
E2

]
≈
[

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)
]
S, (25)

where E1 and E2 are the signal subspaces corresponding to
the first and second subarrays, respectively. Providing that E1
and E2 are of rank N , the diagonal matrixΦ(ω0) is related to
E†1E2 via a similarity transform

E†1E2 ≈ S−1Φ
(
ω0
)
S, (26)

where [·]† denotes the Moore-Penrose pseudoinverse, a
least-square solution to the nosnquare matrix inverse. The
ESPRIT algorithm may be summarised in the following way.

Step 1. M narrowband mixtures x1(t), . . . , xM(t) of centre
frequency ω0 are sampled at the K adjacent time points
t1, . . . , tK , these sampled mixtures are used to construct the
data matrix

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
(
t1
) · · · x1

(
tK
)

...
...

xM−1
(
t1
) · · · xM−1

(
tK
)

x2
(
t1
) · · · x2

(
tK
)

...
...

xM
(
t1
) · · · xM

(
tK
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

and an estimate of the spatial covariance matrix is computed

R̂zz = zzH. (28)

Step 2. The singular value decomposition (23) is computed:

R̂zz =⇒
[
E1 Ev1
E2 Ev2

][
Λ 0
0 Σ

][
E1 Ev1
E2 Ev2

]H

(29)

(Ev1 and Ev2 are the top and bottomM − 1 rows of Ev).

Step 3. The N mixing parameters are estimated via an eigen-
value decomposition

(
φ̃1
(
ω0
)
, . . . , φ̃N

(
ω0
)) = eigs

{
E†1E2

}
, (30)

where eigs{H} denotes the eigenvalues of the matrixH.

2.1.1. Simplification of ESPRIT technique

As an example we consider the no-noise mixing model
⎡
⎢⎢⎣
x1
(
t1
) · · · x1

(
tK
)

x2
(
t1
)

. . . x2
(
tK
)

x3
(
t1
)

. . . x3
(
tK
)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 1

φ1
(
ω0
)

φ2
(
ω0
)

φ2
1

(
ω0
)

φ2
2

(
ω0
)

⎤
⎥⎥⎦
[
s1
(
t1
)

. . . s1
(
tK
)

s2
(
t1
)

. . . s2
(
tK
)
]
,

(31)

the spatial covariance matrix is constructed according to
Step 1:

R̂zz =

⎡
⎢⎢⎢⎢⎣

x1
(
t1
) · · · x1

(
tK
)

x2
(
t1
) · · · x2

(
tK
)

x2
(
t1
) · · · x2

(
tK
)

x3
(
t1
) · · · x3

(
tK
)

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

x∗1
(
t1
)

x∗2
(
t1
)

x∗2
(
t1
)

x∗3
(
t1
)

...
...

...
...

x∗1
(
tK
)

x∗2
(
tK
)

x∗2
(
tK
)

x∗3
(
tK
)

⎤
⎥⎥⎥⎦

(32)

and the singular value decomposition is computed as in
Step 2 yielding the 2× 2 signal subspace matrices E1 and E2.
The mixing parameter estimates φ̃1(ω0) and φ̃2(ω0) are then
given by Step 3

(
φ̃1
(
ω0
)
, φ̃2
(
ω0
)) = eigs

{
E−11 E2

}
. (33)

The computation of the singular value decomposition in
Step 2 is not strictly necessary in this case, E1 and E2 may be
simply replaced by

E1 =
[
x1
(
t1
)

x1
(
t2
)

x2
(
t1
)

x2
(
t2
)
]
, E2 =

[
x2
(
t1
)

x2
(
t2
)

x3
(
t1
)

x3
(
t2
)
]

(34)

since
[
x1
(
t1
)

x1
(
t2
)

x2
(
t1
)

x2
(
t2
)
]−1 [

x2
(
t1
)

x2
(
t2
)

x3
(
t1
)

x3
(
t2
)
]

=
[
s1
(
t1
)

s1
(
t2
)

s2
(
t1
)

s2
(
t2
)
]−1 [

1 1

φ1
(
ω0
)

φ2
(
ω0
)
]−1

×
[
φ1
(
ω0
)

φ2
(
ω0
)

φ2
1

(
ω0
)

φ2
2

(
ω0
)
][

s1
(
t1
)

s1
(
t2
)

s2
(
t1
)

s2
(
t2
)
]

=
[
s1
(
t1
)

s1
(
t2
)

s2
(
t1
)

s2
(
t2
)
]−1 [

φ1
(
ω0
)

0
0 φ2

(
ω0
)
][

s1
(
t1
)

s1
(
t2
)

s2
(
t1
)

s2
(
t2
)
]
,

(35)
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where t1 and t2 are two adjacent sample points. As in (26)
the mixing parameters are related to E−11 E2 via a similarity
transform, that is,

E−11 E2 = S−1Φ
(
ω0
)
S,

S =
[
s1
(
t1
)

s1
(
t2
)

s2
(
t1
)

s2
(
t2
)
]
, Φ

(
ω0
) =

[
φ1
(
ω0
)

0

0 φ2
(
ω0
)
]
.

(36)

It follows that in general forM noiseless mixtures Step 3 may
be modified to become

(
φ̃1
(
ω0
)
, . . . , φ̃M−1

(
ω0
)) = eigs

{
E−11 E2

}
, (37)

where

E1 =

⎡
⎢⎢⎣

x1
(
t1
) · · · x1

(
tM−1

)

...
...

xM−1
(
t1
) · · · xM−1

(
tM−1

)

⎤
⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎢⎣

x2
(
t1
) · · · x2

(
tM−1

)

...
...

xM
(
t1
) · · · xM

(
tM−1

)

⎤
⎥⎥⎥⎦ ,

(38)

and t1, t2, . . . , tM−1 are adjacent time samples.
It is also possible to switch the order of the matrix multi-

plication, that is,

(
φ̃1
(
ω0
)
, . . . , φ̃M−1

(
ω0
)) = eigs

{
E2E

†
1

}
; (39)

this approach removes the restriction thatM−1 time samples
are used to estimateM−1mixing parameters, nowK ≥M−1
samples may be used to estimate M − 1 mixing parameters.
This can be shown for theM = 3 case:

E1 =
[
x1
(
t1
) · · · x1

(
tK
)

x2
(
t1
) · · · x2

(
tK
)
]
,

E2 =
[
x1
(
t1
) · · · x1

(
tK
)

x2
(
t1
) · · · x2

(
tK
)
]
,

E2E
†
1 =

[
x2
(
t1
) · · · x2

(
tK
)

x3
(
t1
) · · · x3

(
tK
)
][

x1
(
t1
) · · · x1

(
tK
)

x2
(
t1
) · · · x2

(
tK
)
]†

=
[
φ1
(
ω0
)

φ2
(
ω0
)

φ2
1

(
ω0
)

φ2
2

(
ω0
)
][

s1
(
t1
) · · · s1

(
tK
)

s2
(
t1
) · · · s2

(
tK
)
]

×
[
s1
(
t1
) · · · s1

(
tK
)

s2
(
t1
) · · · s2

(
tK
)
]† [

1 1

φ1
(
ω0
)

φ2
(
ω0
)
]−1

=
[

1 1

φ1
(
ω0
)

φ2
(
ω0
)
][

φ1
(
ω0
)

0

0 φ2
(
ω0
)
]

×
[

1 1

φ1
(
ω0
)

φ2
(
ω0
)
]−1

= A
(
ω0
)
Φ
(
ω0
)
A−1

(
ω0
)
,

(40)

where

A
(
ω0
) =

[
1 1

φ1
(
ω0
)

φ2
(
ω0
)
]
,

Φ
(
ω0
) =

[
φ1
(
ω0
)

0
0 φ2

(
ω0
)
]
.

(41)

Again it follows that in general forM mixtures Step 3 may be
modified to become

(
φ̃1
(
ω0
)
, . . . , φ̃M−1

(
ω0
)) = eigs

{
E2E

†
1

}
, (42)

where

E1 =

⎡
⎢⎢⎢⎣

x1
(
t1
) · · · x1

(
tK
)

...
...

xM−1
(
t1
) · · · xM−1

(
tK
)

⎤
⎥⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎢⎣

x2
(
t1
) · · · x2

(
tK
)

...
...

xM
(
t1
) · · · xM

(
tK
)

⎤
⎥⎥⎥⎦ ,

(43)

and t1, t2, . . . , tK are adjacent time samples with K ≥ M −
1. The simplified ESPRIT algorithm may be summarised as
follows.

Step 1. K ≥M − 1 time samples ofM narrowband mixtures
x1(t), x2(t), . . . , xM(t) are used to construct the matrices

E1 =

⎡
⎢⎢⎢⎣

x1
(
t1
)

. . . x1
(
tK
)

...
...

xM−1
(
t1
) · · · xM−1

(
tK
)

⎤
⎥⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎢⎣

x2
(
t1
) · · · x2

(
tK
)

...
...

xM
(
t1
) · · · xM

(
tK
)

⎤
⎥⎥⎥⎦ .

(44)

Step 2. The M − 1 mixing parameters are estimated via an
eigenvalue decomposition

(
φ̃1
(
ω0
)
, . . . , φ̃M−1

(
ω0
)) = eigs

{
E2E

†
1

}
. (45)

2.1.2. Combining DUET and ESPRIT

The M − 1 eigenvalues obtained in (37) or in (42) serve as
M−1 mixing parameter estimates φ̃1(ω0), . . . , φ̃M−1(ω0) and
theM − 1 attenuation and delay estimates are then given as

α̃m =
∣∣φ̃m

(
ω0
)∣∣,

δ̃m = − 1
ω0

∠φ̃m
(
ω0
)
, m = 1, . . . ,M − 1

(46)

(it may be noted that the classic ESPRIT algorithmmakes the
assumption that the attenuation parameters are unity, i.e.,
α1 = α2 = · · · = αM−1 = 1). The M − 1 delay estimates

δ̃1, . . . , δ̃M−1 are related to M − 1 angle of arrival estimates

θ̃1, . . . , θ̃M−1 onto the line of the sensor array via

δ̃m = D

c
cos

{
θ̃m
}
, m = 1, 2, . . . ,M − 1, (47)
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Table 1: Summary of the properties of the three extensions to
DUET, where the number of echoic paths is the number of extra
(nondirect) paths.

Sensors
utilised

Sources Echoic paths

demixed demixed

at (ω, τ) at (ω, τ)

Classic DUET M = 2 R = 1 P = 0

Hard DESPRIT M ≥ 2 R = 1 P = 0

Soft DESPRIT M ≥ 2 R =M − 1 P = 0

Echoic DESPRIT M ≥ 2 R = �M/2� − P P = �M/2� − R

where c is the propagation speed and D is the array
spacing. Since the attenuation and the delay estimates

(α̃1, δ̃1), . . . , (α̃M−1, δ̃M−1) used in the DUET algorithm to
construct the power weighted histogram are also estimated
by the ESPRIT algorithm, it is possible to combine both tech-
niques to form a hybrid DUET-ESPRIT technique, which
is discussed in the next section. Also in adapting ES-
PRIT for using with DUET, the narrowband assumption on
complex analytic representations (15) is replaced with the
narrowband assumption on time-frequency representations
(12).

2.2. DESPRIT algorithm outline

The combined DUET-ESPRIT technique (DESPRIT) may be
used to extend the DUET blind source separation algorithm
to

(1) the multichannel case (M ≥ 2) using hard DESPRIT,
discussed in Section 2.2.1,

(2) the weakened WDO case (where sources may overlap
in the time-frequency domain) using soft DESPRIT,
discussed in Section 2.2.2,

(3) and the echoic mixing case using echoic DESPRIT, dis-
cussed in Section 2.3.

The properties of these extensions are summarised in
Table 1. All three of these extensions have the same general
outline.

Step 1. An M-element uniform linear array receives M mix-
tures x1(t), x2(t), . . . , xM(t) of N signals s1(t), s2(t), . . . , sN (t).
These M mixtures are transformed into the time-frequency
domain using the windowed Fourier transform.

Step 2. Centred at each sample point in the time-frequency
domain, the ESPRIT algorithm is performed and the mixing
parameters of the source signals active at that point are esti-
mated.

Step 3. The mixing parameter estimates are used to create a
weighted histogram, a technique borrowed from the DUET
algorithm. The peaks of the histogram indicate sources and
the centres of these peaks are used as estimates of the associ-
ated mixing parameters.

Step 4. Demixing is performed by inverting a local mix-
ing matrix dependent on the sources active at each
time-frequency point. The resulting demixed components
are partitioned and combined in a maximum-likelihood
align and sum estimator using the labels from the histogram
to produce the demixture time-frequency representations.

2.2.1. Hard DESPRIT: amultichannel DUET extension

The hard DESPRIT technique extends DUET to handleM >
2 mixtures but still assumes at most one source active at any
time-frequency point and an anechoicmixingmodel. Similar
to (20) the time-frequency spatial covariance matrix may be
defined as

RZZ
.= E
{
Z(ω, τ)ZH(ω, τ)

}
, (48)

where

Z(ω, τ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(ω, τ)
...

XM−1(ω, τ)

X2(ω, τ)
...

XM(ω, τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

andXm(ω, τ) =
∫∞
−∞W(t−τ)xm(t)e− jωtdt. (Again it is under-

stood that RZZ and its singular value decomposition have a
dependence upon the time-frequency point (ω, τ), the nota-
tion omits reference to these variables.) Under a strongWDO
assumption (6) only one source signal is active at each time-
frequency point, as a result RZZ is at most rank one and has a
singular value decomposition of the form

RZZ =
⎡
⎢⎣E1
E2

⎤
⎥⎦
2(M−1)×1

[
EH1 EH2

]
1×2(M−1) . (50)

It follows that

φ̃n(ω, τ) = E†1E2 ∀(ω, τ) ∈ Ωn (51)

is a complex scalar corresponding to the estimated mixing
parameter of the nth source signal. Furthermore when the
expectation operator E{·} is approximated using an instan-
taneous estimate, φ̃n(ω, τ) is given by

φ̃n(ω, τ) =
[
X1(ω, τ)

]†[
X2(ω, τ)

] ∀(ω, τ) ∈ Ωn, (52)

where X1(ω, τ) = [X1(ω, τ), . . . ,XM−1(ω, τ)]T and X2(ω, τ)
= [X2(ω, τ), . . . ,XM(ω, τ)]T , this expression may be restated
as

φ̃n(ω, τ) =
∑M−1

m X∗m(ω, τ)Xm+1(ω, τ)∑M−1
m X∗m(ω, τ)Xm(ω, τ)

∀(ω, τ) ∈ Ωn.

(53)

In the M = 2 case, this expression corresponds to the
DUET parameter estimation step (13) and in general for the
M ≥ 2 case, it corresponds to the parameter estimation step
of a multichannel DUET extension [5].
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2.2.2. Soft DESPRIT: the weakenedWDO assumption

The soft DESPRIT technique extends DUET to handleM > 2
mixtures and also allows for more than one source to be ac-
tive at a given time-frequency point. It assumes, as DUET
and hard DESPRIT do, anechoic mixing. Soft DESPRIT is
an implementation of DESPRIT under a weakenedWDO as-
sumption [6]:

Sn1 (ω, τ)× · · · × SnM (ω, τ) = 0 ∀ω, τ,nl �= nk, l �= k.
(54)

This weakened WDO assumption allows source signals to
overlap in the time-frequency domain, with up to M − 1
source signals coexisting at any given time-frequency point.
Since the strongWDO assumption (6) used by DUET is only
ever approximately true, the weakened WDO assumption
may be adopted as a more realistic source model. The spa-
tial covariance matrix (48) may be approximated as

RZZ ≈ 1
2κ + 1

k=κ∑

k=−κ

[
Z(ω, τ + kΔT)

][
Z(ω, τ + kΔT)

]H
,

(55)

where ΔT is the separation between adjacent time samples in
the time-frequency domain and κ ≥ M/2 − 1. The expecta-
tion operator E{·} is approximated by averaging over the 2κ
samples adjacent to the time-frequency point of interest.

In accordance with our simplified ESPRIT algorithm,
theM − 1 mixing parameter estimates φ̃1(ω, τ), φ̃2(ω, τ), . . . ,
φ̃M−1(ω, τ) are given by (42)

(
φ̃1(ω, τ), . . . , φ̃M−1(ω, τ)

) = eigs
{
E2E

†
1

}
, (56)

where

E1 =

⎡
⎢⎢⎢⎣

x1
(
ω, τ1

)
. . . x1

(
ω, τK

)
...

...

xM−1
(
ω, τ1

) · · · xM−1
(
ω, τK

)

⎤
⎥⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎢⎣

x2
(
ω, τ1

) · · · x2
(
ω, τK

)
...

...

xM
(
ω, τ1

) · · · xM
(
ω, τK

)

⎤
⎥⎥⎥⎦ ,

(57)

and τ1, τ2, . . . , τK are adjacent time points with K ≥M − 1.

2.3. Echoic DESPRIT: extending to reverberant
environments

The echoic DESPRIT extension to DUET leverages M > 2
mixtures to demix up to �M/2� sources from each time-
frequency point, as in the soft DESPRIT extension. How-
ever in echoic DESPRIT the �M/2� sources can consist of the
same source arriving on different paths (�·� denotes round-
ing down to the nearest integer).

2.3.1. Mixing parameter estimation
of coherent source signals

The echoic mixing model (3) makes the assumption that a
source signal sn(t) propagates upon Pn distinct echoic paths
to the sensor array. In order to successfully demix echoicmix-
tures, it follows that a parameter estimation step must allow
for source signals to be coherent (i.e., fully correlated). Both
the DUET and the classic ESPRIT algorithms face problems
when source signals are coherent.

2.3.2. DUET fails for coherent source signals

For DUET in the no-noise case and W(t) = 1, M = 2 mix-
tures of N = 2 source signals are of the form

⎡
⎢⎣
X1(ω)

X2(ω)

⎤
⎥⎦ =

⎡
⎢⎣

1 1

φ1(ω) φ2(ω)

⎤
⎥⎦

⎡
⎢⎣
A1(ω)S1(ω)

A2(ω)S2(ω)

⎤
⎥⎦ , (58)

if the 2 sources are coherent, S1(ω) = S2(ω) = S(ω), then

X1(ω) =
(
A1(ω) + A2(ω)

)
S(ω),

X2(ω) =
(
A1(ω)α1e− jωδ1 + A2(ω)α2e− jωδ2

)
S(ω).

(59)

The DUET parameter estimation step yields

α̃(ω) =
∣∣∣∣
X2(ω)
X1(ω)

∣∣∣∣ =
∣∣∣∣
A1(ω)α1e− jωδ1 + A2(ω)α2e− jωδ2

A1(ω) + A2(ω)

∣∣∣∣,

δ̃(ω) = − 1
ω

∠X2(ω)
X1(ω)

= − 1
ω

∠A1(ω)α1e− jωδ1 + A2(ω)α2e− jωδ2

A1(ω) + A2(ω)
(60)

at each frequency point, which will not result in a peak in the
weighted histogram corresponding to the mixing parameter

pair of either arrivals, as α̃(ω) and δ̃(ω) depend on ω. DUET
fails in this case to correctly estimate the 2 mixing parameter
pairs and this failing is true in general forN coherent sources
S1(ω) = · · · = SN (ω) = S(ω).

2.3.3. ESPRIT fails forN coherent source signals

For ESPRIT in the no noise case, M mixtures of N narrow-
band coherent source signals of centre frequency ω0, are of
the form

z(t) =
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

s(t)

...

s(t)

⎤
⎥⎥⎥⎥⎥⎦
. (61)
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The spatial covariance matrix may be written as

Rzz = E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣ A

(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎦

⎡
⎢⎢⎢⎣

s(t)
...

s(t)

⎤
⎥⎥⎥⎦

×
[
s∗(t) · · · s∗(t)

]⎡⎣ A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎦
H

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

Rzz = E
{
s(t)s∗(t)

}
⎡
⎣ A

(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎦

⎡
⎢⎢⎢⎣

1 . . . 1
...

...

1 . . . 1

⎤
⎥⎥⎥⎦
N×N

×
⎡
⎣ A

(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎦
H

.

(62)

Since an N ×N matrix of all ones is of rank one, the rank of
Rzz will be at most one, and for the rank one case the singular
value decomposition will be of the form

Rzz =
⎡
⎣E1
E2

⎤
⎦
2(M−1)×1

[
EH1 EH2

]
1×2(M−1) , (63)

it follows that
[
E1
]†
M−1×1

[
E2
]
1×M−1 (64)

will also be of rank one and so only a single mixing parameter
estimate

φ̃
(
ω0
) =

A
(
ω0
)
Φ
(
ω0
)
⎡
⎢⎢⎢⎣

1
...

1

⎤
⎥⎥⎥⎦
N×1

A
(
ω0
)
⎡
⎢⎢⎢⎣

1
...

1

⎤
⎥⎥⎥⎦
N×1

(65)

may be obtained, thus ESPRIT fails in echoic environments.

2.3.4. Unitary ESPRIT for 2 coherent source signals

It is demonstrated in [26] that the unitary ESPRIT algorithm
has the ability to estimate the angles of arrival of 2 com-
pletely coherent narrowband source signals. This property
relies upon a modified data matrix construction technique
which may be stated as

z(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t) x∗M−1(t)
...

...

xM−1(t) x∗2 (t)

x2(t) x∗M(t)
...

...

xM(t) x∗1 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (66)

In the no noise case,M mixtures of 2 narrowband source sig-
nals of centre frequency ω0 have a corresponding data matrix
of the form

z(t) =
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦Ψ

(
ω0
)
s(t), (67)

where

A
(
ω0
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2

A1e− jω0δ1 A2e− jω0δ2

...
...

A1e− jω0(M−2)δ1 A2e− jω0(M−2)δ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ
(
ω0
) =

⎡
⎢⎣
e− jω0δ1 0

0 e− jω0δ2

⎤
⎥⎦ ,

Ψ
(
ω0
) =

⎡
⎢⎣
1 e jω0(M−1)δ1

1 e jω0(M−1)δ2

⎤
⎥⎦ ,

(68)

and the attenuation parameters are assumed to be unity, that
is, α1 = · · · = αN = 1. The spatial covariance matrix (20) is
of the form

Rzz = E
{
s(t)s∗(t)

}
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦

×Ψ
(
ω0
)
ΨH

(
ω0
)
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦
H

(69)

and its singular value decomposition is of the form

Rzz =
⎡
⎢⎣
E1

E2

⎤
⎥⎦

⎡
⎢⎣
λ1 0

0 λ2

⎤
⎥⎦
[
EH1 EH2

]
(70)

sinceΨ(ω0) is at most rank 2, and it follows that

[
E1
]†[

E2
]

(71)

is at most rank 2 and so can yield at most 2 mixing parameter
estimates φ̃1 and φ̃2.

WhenN > 2 coherent sources are present,Ψ(ω0) is of the
form

Ψ
(
ω0
) =

⎡
⎢⎢⎢⎢⎢⎣

1 e jω0(M−1)δ1

...
...

1 e jω0(M−1)δN

⎤
⎥⎥⎥⎥⎥⎦

(72)

and since it is only ever rank 2, it follows that only 2 param-
eter estimates are available.
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2.3.5. A newESPRIT technique forN coherent source signals

It is possible to augment the data matrix construction tech-
nique (66) by increasing the number of columns inΨ(ω0) to
N , this will make it possible forΨ(ω0) to be of rankN and so
it is possible to estimate the mixing parameters ofN coherent
source signals. Hence adding structure across the columns of
z(t) allows parameter estimation of correlated and even com-
pletely coherent sources. M mixtures of N possibly coherent
narrowband source signals of centre frequencyω0 are stacked
in a matrix of the form

z(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t) x2(t) · · · x�M/2�(t)
...

...
...

x�M/2� x�M/2�+1(t) · · · xM−1(t)

x2(t) x3(t) · · · x�M/2�+1(t)
...

...
...

x�M/2�+1(t) x�M/2�+2(t) · · · xM(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (73)

where �·� and �·� denote rounding up and down to the near-
est integer. In the no-noise case this may be rewritten as

z(t) =
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦Ψ

(
ω0
)
s(t), (74)

where

Ψ
(
ω0
) =

⎡
⎢⎢⎢⎢⎢⎣

1 φ1
(
ω0
) · · · φ�M/2�−1

1

(
ω0
)

...
...

...

1 φN
(
ω0
) · · · φ�M/2�−1

N

(
ω0
)

⎤
⎥⎥⎥⎥⎥⎦
. (75)

The spatial covariance matrix

Rzz = E
{
z(t)zH(t)

}
(76)

is of the form

= E
{
s(t)s∗(t)

}
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦

×Ψ
(
ω0
)
ΨH

(
ω0
)
⎡
⎢⎣

A
(
ω0
)

A
(
ω0
)
Φ
(
ω0
)

⎤
⎥⎦
H

,

(77)

and by choosingM ≥ 2N , Rzz will have a maximum possible
rank of N . For Rzz of rank N there exists a singular value
decomposition

Rzz =
⎡
⎢⎣
E1

E2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λ1

. . .

λN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
E1

E2

⎤
⎥⎦
H

, (78)

and it follows that the N eigenvalues of [E1]−1[E2] are the
mixing parameters φ1, . . . ,φN .

for ω = (−L/2 : 1 : L/2− 1)2π/LT do

for τ = (0 : Δ : K − 1)T do

X1(ω, τ) =
∑K−1

k=0 W(kT − τ)x1(kT)e− jωkT

...

XM(ω, τ) =
∑K−1

k=0 W(kT − τ)xM(kT)e− jωkT

end

end

Algorithm 1

Our simplified ESPRIT algorithm (Section 2.1.1) may be
adapted to this new technique.

Step 1. M narrowband mixtures x1(t), . . . , xM(t) are used to
construct the matrices

E1 =

⎡
⎢⎢⎢⎢⎢⎣

x1(t) · · · x�M/2�(t)
...

...

x�M/2�(t) · · · xM−1(t)

⎤
⎥⎥⎥⎥⎥⎦
,

E2 =

⎡
⎢⎢⎢⎢⎢⎣

x2(t) · · · x�M/2�+1(t)
...

...

x�M/2�+1(t) · · · xM(t)

⎤
⎥⎥⎥⎥⎥⎦
.

(79)

Step 2. The �M/2�mixing parameters estimates are obtained
via an eigenvalue decomposition

(
φ̃1
(
ω0
)
, . . . , φ̃�M/2�

(
ω0
)) = eigs

{
E2E

†
1

}
. (80)

Using this new technique a uniform linear array of M
sensors may be used to estimate the mixing parameters of
one signal travelling on P echoic paths, providing M ≥ 2P.
It follows that this technique will allow the DESPRIT algo-
rithm to demix M echoic mixtures of an arbitrary number
of speech source signals providing the maximum number of
echoic paths is at most half the number of sensors in the uni-
form linear array.

3. ALGORITHMIC DESCRIPTION

Step 1. A uniform linear array of M sensors receives M pos-
sibly echoic mixtures

x1(t), x2(t), . . . , xM(t) (81)

of N speech signals. These M mixture signals are sampled
every T seconds, and a windowW(t) of length L� KT sec-
onds is shifted by multiples of ΔT seconds to perform K/Δ
L-point discrete windowed Fourier transforms upon K sam-
ples of each mixture (see Algorithm 1).
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for ω = (−L/2 : 1 : L/2− 1)2π/LT do

for τ = (0 : Δ : K − 1)T do

E1 =

⎡
⎢⎢⎢⎢⎢⎣

X1(ω, τ) . . . X�M/2�(ω, τ)
...

...

X�M/2�(ω, τ) . . . XM−1(ω, τ)

⎤
⎥⎥⎥⎥⎥⎦

E2 =

⎡
⎢⎢⎢⎢⎢⎣

X2(ω, τ) . . . X�M/2�+1(ω, τ)
...

...

X�M/2�+1(ω, τ) . . . XM(ω, τ)

⎤
⎥⎥⎥⎥⎥⎦

(φ̃1, . . . , φ̃�M/2�) = eigs
{[

E2

] [
E1

]†}

end

end

Algorithm 2

Hα,δ = 0A×D
for i = 1 : 1 : �M/2� do

for a = minα : (maxα−minα)/A : maxα do

for d = minδ : (maxδ −minδ)/D : maxδ do

if |α̃i(ω, τ)− a| < (maxα−minα)/2A do

if |δ̃i(ω, τ)− d| < (maxδ −minδ)/2D do

Hα,δ(a,d) = Hα,δ(a,d) + |S̃i(ω, τ)|2
end

end

end

Algorithm 3

W(t) is chosen such that the class of source signals of in-
terest satisfy the W-disjoint orthogonal assumption as much
as possible, for speech W(t) is chosen to be an L = 30-
millisecond long Hamming window [4] and Δ = L/2T .

Step 2. At each time-frequency point a simplified ESPRIT
parameter estimation step (Section 2.1.1) is performed, the
�M/2� estimated mixing parameters are used to perform a
demixing step at each time-frequency point via an inver-
sion of the estimated mixing matrix and the Moore-Penrose
pseudoinverse [·]† is used to invert nonsquare matrices (see
Algorithm 2).

Step 3. At each time-frequency point and for i = 1, 2, . . . ,
�M/2� the relative attenuation and delay mixing parameter
estimates are calculated:

α̃i(ω, τ) =
∣∣φ̃i(ω, τ)

∣∣, δ̃i(ω, τ) = − Im
{
loge

{
φ̃i(ω, τ)

}}

ω
,

(82)

an A×D two-dimensional power weighted histogram Hα,δ

of the relative attenuation and delay parameters is also con-
structed (see Algorithm 3):

Step 4. The power weighted histogramHα,δ will have a num-
ber of peaks N ′ ≥ N , each represents a signal received by the
sensor array, in an echoic environment some of these signals
may have originated from the same source. The centres of
each of the peaks provide estimates of the mixing parameters

α̂1, δ̂1, . . . , α̂N ′ , δ̂N ′ . Peak detection may be performed using a
suitable clustering technique.

Step 5. The permutation ambiguity associated with wide-
band implementations of narrowband techniques is over-
come when each of the �M/2� instantaneous source es-
timates S̃1(ω, τ), . . . , S̃�M/2�(ω, τ) is correctly assigned to
one of the N ′ ≥ N demixed estimates at each time-
frequency point. Assignment is performed by determin-
ing which of the �M/2� instantaneous parameter estimates

(α̃1(ω, τ), δ̃1(ω, τ)), . . . , (α̃�M/2�(ω, τ), δ̃�M/2�(ω, τ)) is closest
to each of the N ′ ≥ N peak centres (α̂1, δ̂1), . . . , (α̂N ′ , δ̂N ′).
The measure of closeness of the ith estimate at (ω, τ) to the
nth peak centre is given as

{∣∣∣∣
α̃i(ω, τ)− α̂n

Nα

∣∣∣∣
2

+
∣∣∣∣
δ̃i(ω, τ)− δ̂n

Nδ

∣∣∣∣
2
}
, (83)

whereNα andNδ are normalising factors. Beginning with the
instantaneous mixing parameter estimates associated with
the instantaneous source estimates of lowest power, at each
time-frequency point the closest peak centre is found and
the lowest power instantaneous source estimate is assigned
to the appropriate demixed source estimate. The assignment
is then carried out for the instantaneous mixing parameter
estimates associated with the instantaneous source estimates
of next lowest power and so on. Assignments carried out in
later stages are allowed to overwrite previous assignments in
the belief that the instantaneous mixing parameter estimates
associated with the instantaneous signal estimates of greater
power are the more reliable, since they have been affected by
noise the least. The N ′ ≥ N demixed source estimates are
then synthesised back into the time domain.

4. EXPERIMENTAL SIMULATIONS

In this section we present the results of experiments con-
ducted on various synthetically generated mixtures and on
real-room mixtures. These experiments were designed to
demonstrate properties and advantages of the hard DE-
SPRIT, soft DESPRIT, and echoic DESPRIT extensions to the
DUET blind source separation algorithm.

4.1. Synthetic mixing experiments

4.1.1. The hard DESPRIT extension

Five 3.75-second long speech signals (sampling frequency
16 kHz) taken from the TIMIT database were synthetically
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Figure 3: Undetermined blind source separation via hard DE-
SPRIT: (a) 5 speech sources, (b) 3 anechoic mixtures from a uni-
form linear array, (c) the 2-dimensional power weighted histogram
shows 5 peaks from which (d) 5 demixtures are recovered.

mixed in Matlab to create the three anechoic mixtures corre-
sponding to the signals received by a three element uniform
linear array with microphone spacing D = 2 cm, the mix-
ing parameters used were α1, . . . ,α5 = (1.06, 0.78, 0.87, 1.15,
0.93) and δ1, . . . , δ5 = (0.24, 0.29, 0.5,−0.85, 0.17) samples.

The results of applying the hard DESPRIT algorithm
to the mixtures are presented in Figure 3, as expected five
peaks appear in the power weighted histogram at the mix-
ing parameter locations. The mixtures were partitioned,
aligned, and combined to produce the five demixtures using
a maximum-likelihood approach

Ŝn(ω, τ) =
∑M

m=1Mn(ω, τ)Xm(ω, τ)
(
φ̃∗(ω, τ)

)m−1
∑M

m=1
∣∣φ̃(ω, τ)

∣∣2(m−1) , (84)

where Ŝn(ω, τ) is an estimate of the nth source, Mn(ω, τ) is
the nth binary time-frequency mask (i.e.,Mn(ω, τ) has value
one for the time-frequency points whose associated mixing
parameter estimates lie closest to the nth peak and zeros else-
where), Xm(ω, τ) is the mth mixture, and φ̃(ω, τ) is the mix-
ing parameter estimate obtained at the time-frequency point
(ω, τ). This approach is the multichannel equivalent of [4,
equation (53)]. The ability to blindly separate an arbitrary
number of N sources from M ≥ 2 anechoic mixtures is an
ability of hard DESPRIT, soft DESPRIT, and echoic DESPRIT
inherited from the original DUET algorithm.

4.1.2. The soft DESPRIT extension

Five 1.7-second long speech signals (sampling frequency
16 kHz) taken from the TIMIT database were synthetically
mixed in Matlab to create anechoic mixtures corresponding
to the signals received by a 2-, 3-, and 4-element uniform
linear array with microphone spacing D = 2 cm, the mixing
parameters used were α1, . . . ,α5 = (−0.45, 0.87, 0.32,−0.92,
−0.11) and δ1, . . . , δ5 = (0.24, 0.29, 0.5,−0.85, 0.17) samples.

The soft DESPRIT algorithm was used blindly to demix
five source signals from the 2, 3, and 4 anechoic mixtures of
these signals. As with hard DESPRIT a two-dimensional mix-
ing parameter estimation histogram was computed, unlike
hard DESPRIT, where only a single parameter estimate avail-
able at each time-frequency point soft DESPRIT computes
M−1 eigenvalue estimates at each time-frequency point and
uses these estimates to demix M − 1 signal estimates at each
time-frequency point. Each of theM−1 parameter estimates
was weighted using the associated M − 1 signal power esti-
mates to create a single histogram.

In Figure 4 we plot the parameter histograms for 2, 3,
and 4 anechoic mixtures on the bottom row, in addition
for illustrative purposes we plot the separate histograms as-
sociated with each of the eigenvalue estimates. The eigen-
values have been sorted from low to high powers where
the powers are given by the associated instantaneous signal
power estimates. The average percentage power associated
with each histogram is given as a label to the histogram.
If a strong WDO assumption was adopted, only the high-
power histogram would be considered with any information
available from lower-power histograms being disregarded,



T. Melia and S. Rickard 13

100%
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11.44%
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Figure 4: Soft DESPRIT histograms associated with the low to high power source estimates for 5 sources and 2, 3, and 4 anechoic mixtures.
The average percentage power associated with each histogram is also given as a label to each component histogram. Each plot has an x-axis

with units −2.5 ≤ δ̃ ≤ 2.5 samples and a y-axis with units −2.5 ≤ log(α̃) ≤ 2.5.

however upon examination it is evident that although the
lower-power histograms are less clear they do possess infor-
mation about peak locations, this observation motivates the
soft DESPRIT algorithm.

It seems sensible to suggest that in general as the number
of sensors increases the histograms become clearer, leading
to more accurate source mixing parameter estimates. These
plots certainly do show clearer histograms for more sensors
but it can also be observed that at least in the case of 2–
4 speech sources the first two eigenvalue estimates contain
most of the power, this may suggest that increasing the num-
ber of sensors beyond M = 3 will not be as beneficial as in-
creasing the number of sensors from DUET’s originalM = 2
to M = 3. The next section provides a quantitative descrip-
tion of these phenomena.

4.1.3. Hard DESPRIT versus soft DESPRIT

In an effort to quantify what we mean when we refer to a par-
ticular histogram being “clearer” and “more accurate” than

another we define the following histogram peak measure:

Pα,δ
.=
∑

a,d Qα,δ(a,d)Hα,δ(a,d)∑
a,d Hα,δ(a,d)

, (85)

where

Qα,δ(a,d)

.=
⎧⎪⎨
⎪⎩
1,

∣∣a− αn
∣∣ ≤ εα,

∣∣d − δn
∣∣ ≤ εδ ∀n = 1, . . . ,N ,

0 otherwise,
(86)

εα and εδ are used to define the boundaries of N square re-
gions of the histogram centred upon the mixing parameter
pairs (α1, δ1), . . . , (αN , δN ).

This is illustrated in Figure 5 where the A × D =
100 × 200 histograms for hard DESPRIT and soft DESPRIT
are marked with 4 square regions with boundaries defined
by εα = 5 bins and εδ = 10 bins and centred upon
the mixing parameters α1, . . . ,α4 = (1.08, 1.02, 0.77, 1.21)
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Figure 5: A ×D = 100 × 200 histograms for hard DESPRIT (a)
and soft DESPRIT (b) have 4 square regions with boundaries de-
fined by εα = 5 and εδ = 10 and centred upon the original mixing
parameters.

and δ1, . . . , δ4 = (−0.77,−0.04, 0.36,−0.20) samples. The
peak measure Pα,δ gives the fraction of signal power con-
tained within square regions defined by Qα,δ(a,d) compared
with the total signal power contained within the histogram
Hα,δ(a,d). The peak measure gives an indication of how clear
the histogram peaks are and whether or not they are ob-
scured by unwanted noise. The clearer the histogram, the
larger the peak measure and the more accurate the final
mixing parameter estimates. Ideally a histogram will have
Pα,δ = 1 but in practice Pα,δ ≤ 1.

The measure was used to compare the histograms gen-
erated by the hard DESPRIT and soft DESPRIT algorithms,
in Figure 6 we plot the values of Pα,δ for hard DESPRIT
(solid curve) and for soft DESPRIT (dotted curve) when 2
(·), 3(∗), and 4 (o) sources were present. The red curve is
for the no-noise case (SNR = ∞ dB) and the blue curve is
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Figure 6: Comparison of the fraction of total histogram energy
associated with correct mixing parameter locations for hard DE-
SPRIT (solid) and soft DESPRIT (dotted) when 2(·), 3(∗), and 4
(o) sources are present and for signal-to-noise levels∞ dB (red) and
0 dB (blue).

in a noisy case (SNR = 0 dB). The curves were averaged over
100 trials, in each individual trial themixing parameters were
generated randomly and the sources were chosen randomly
the TIMIT speech database.

For high signal-to-noise values, for example, SNR =
∞ dB (red curve), soft DESPRIT produces “clearer” and
“more accurate” histograms in the sense of our peak measure
(85) compared to hard DESPRIT. The benefit of increasing
the number of sensors is evident in the case of soft DESPRIT
withmost benefit being gained from 3 sensors. This is consis-
tent with Figure 4 where it may be observed that for M = 4
mixtures only 1.74% of the total signal power is associated
with third eigenvalue estimate and so the first and second
eigenvalue estimates make the most significant contribution
to the power weighted histogram. Our peakmeasure suggests
that at least in the case of 2–4 speech sources for M ≥ 3
the first and second eigenvalue estimates are the most use-
ful. There is little benefit in increasing the number of sensors
for hard DESPRIT in this case since the peak measure stays
relatively constant as the number of sensors increases.

For low signal-to-noise values, for example, SNR = 0 dB
(blue curve), hard DESPRIT outperforms soft DESPRIT
producing histograms with a higher peak measure. As the
number of sensors increases, the effect of noise is alleviated
and histograms with a higher peak measure are produced.
The performance of soft DESPRIT disimproves slightly in
this case as the number of sensors increases beyond M = 3,
this is due to the eigenvalue estimates sensitivity to noise.
In this case where 2–4 speech sources are present only the
first and second eigenvalues provide useful mixing param-
eter estimates, the third, fourth, and fifth eigenvalues pro-
vide inaccurate estimates and result in a lower peak mea-
sure when they are used to compute the power weighted his-
togram.
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Figure 7: Histograms for 6 echoic mixtures of 1 source arriving on 3 paths (a), 2 sources arriving on 2 paths each (b), and 2 sources
arriving on 2 paths and 3 paths, respectively, (c). The average percentage power associated with each histogram is also given as a label to each

component histogram. Each plot has an x-axis with units −2.5 ≤ δ̃ ≤ 2.5 samples and a y-axis with units −2.5 ≤ log(α̃) ≤ 2.5.

4.1.4. The echoic DESPRIT extension

Three synthetic mixing experiments were performed demon-
strating the properties of the echoic DESPRIT algorithm.
Two 2.5-second long speech signals (sampling frequency
16 kHz) taken from the TIMIT database were synthetically
mixed in Matlab to create six echoic mixtures corresponding
to the signals received by a six element uniform linear array
with microphone spacing D = 2 cm.

Experiment 1. The first signal was sent upon three paths
with corresponding mixing parameters α1,1,α1,2,α1,3 =
(1.09, 0.81, 0.55), δ1,1, δ1,2, δ1,3 = (−0.45, 0.33, 0.86) samples.

Experiment 2. The first signal was sent upon two paths with
corresponding mixing parameters α1,1,α1,2 = (1.48, 1.09),
δ1,1, δ1,2 = (−0.9,−0.45) samples and the second signal was
sent upon two paths with corresponding mixing parameters
α2,1,α2,2 = (0.81, 0.55), δ2,1, δ2,2 = (0.33, 0.86) samples.

Experiment 3. The first signal was sent upon three paths
with corresponding mixing parameters α1,1,α1,2,α1,3 =
(1.84, 1.48, 0.81), δ1,1, δ1,2, δ1,3 = (−0.09,−0.9, 0.33) sam-
ples and the second signal was sent upon two paths with
corresponding mixing parameters α2,1,α2,2 = (1.09, 0.55),
δ2,1, δ2,2 = (−0.45, 0.86) samples.

Echoic DESPRIT was applied to each of M = 6 echoic
mixtures generated in Experiments 1, 2, and 3 and the cor-
responding parameter histograms are plotted on the bot-
tom row of Figure 7. Again for illustrative purposes we have
plotted the separate �M/2� = 3 histograms associated with
each of the eigenvalue estimates. The eigenvalues have been
sorted from low to high powers, where the powers are given
by the associated instantaneous signal power estimates. The
average percentage power associated with each histogram
is given as a label to the histogram, comparing with soft
DESPRIT, the average percentage of instantaneous power
weighting is more evenly spread amongst the component
histograms. In Experiment 1 only one source is present,
the average percentage power labels are in the same ra-
tio as the square of the mixing parameters α1,1,α1,2,α1,3 =
(1.09, 0.81, 0.55), since the single source is scaled by these
attenuation factors. This may be considered consistent with
the observation that each one of the three peaks dominates
one of the individual histograms. The average power la-
bels for Experiments 2 and 3 do not have the same inter-
pretation available since two sources are present in these
cases.

The results of applying the echoic DESPRIT algorithm
in Experiment 3 are presented in Figure 8, as expected five
peaks (corresponding to five signals arriving at the array)
appear in the power weighted histogram at the mixing
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Figure 8: Underdetermined blind source separation in a simple
echoic environment via echoic DESPRIT: (a) 2 speech sources trav-
elling upon 3 and 2 paths, respectively, (b) 6 echoic mixtures of the
2 signals, (c) the two-dimensional power weighted histogram shows
5 peaks from which (d) 5 demixtures are recovered, 3 of which cor-
respond to the first source and 2 of which correspond to the second
source.
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Figure 9: Real-room blind source separation experiment.

parameter locations and each of the 5 individual echoes is
recovered as a scaled version of one of the original sources.

4.2. Real-room experiments

4.2.1. Impulse responsemeasurement

As a demonstration of the usefulness of the echoic DESPRIT
algorithm in a real world environment the following experi-
ment was performed. As in Figure 9 seven speakers were po-
sitioned at locations on a semicircle and four microphones
were positioned to form a uniform linear array with spac-
ing of D = 2.5 cm located at the locus of the semicircle. A
known white noise signal was played at each speaker position
and then recorded at each of the 4 microphone positions,
subsequently the impulse response between each speaker po-
sition and each microphone position was determined by
deconvolving white noise signal from the recorded signal,
that is,

âm,n(t) = DFT−1
{
DFT

{
xm(t)

}

DFT
{
sn(t)

}
}
, (87)

where DFT{·} denotes the discrete Fourier transform,
âm,n(t) is the estimated impulse response between the nth
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Figure 10: The measured impulse response in a real room between source position 1 and sensor 1 (a) and the measured impulse response
in a real room between source position 1 and the 4 sensors of the microphone array (b).

source position and the mth sensor, sn(t) is the white noise
signal played at the nth position, and xm(t) is its record-
ing by the mth sensor. The top plot of Figure 10 shows the
measured impulse response between the 1st speaker posi-
tion and the 1st microphone of the sensor array. Although
measurement noise dominates our impulse response esti-
mate, there are clearly visible spikes indicating echoic paths
and these spikes are few in number P1 ≈ 5. The bottom
plot of Figure 10 zooms in and overlays the impulse re-
sponses for the 4 microphones, a superficial inspection may
suggest that the impulse responses are merely delayed and
attenuated versions of each other, indicating that an ane-
choic mixing model may be useful in this environment.
Measurement of the reverberation time of the room using
our impulse response measurements is a difficult task, we
consider it to be approximately 10milliseconds long. The
speaker-microphone-room geometry in our experiment is
such that the main propagation paths were direct, ceiling
and floor. These propagation paths had the same relative
attenuation and delay across the microphone array which
was parallel to the floor and ceiling and so a near-anechoic
mixing environment resulted. This geometry would not be
atypical of large rooms such as lecture theatres, conference
rooms, or laboratories such as the one used in our experi-
ment.

4.2.2. Real-room underdetermined blind
source separation experiment

Using the four measured room impulse responses corre-
sponding to each of the source positions 1, 3, 4, 5, and 6, four
real-room mixtures were created from five speech signals.
The DUET, hard DESPRIT, soft DESPRIT, and echoic DE-
SPRIT blind source separation algorithms were performed
on the 4 real-roommixtures (2 of the 4 mixtures for DUET).
The weighted histograms obtained are plotted in Figure 11,
one-dimensional histograms are plotted because the peaks

are located on or very near to the α = 1 line. The plots
are marked with ticks on the x-axis indicating the histogram
peak locations obtained when only one source is located at
the positions 1, 3, 4, 5, and 6. DUET produces many spurious
peaks and only some may be considered to be in the correct
location. Hard DESPRIT produces 5 distinct peaks near and
around the correct locations. Soft DESPRIT produces 5 sim-

ilar peaks but the peak near δ̃ = 4.5 samples dominates the
histogram. Echoic DESPRIT produces 7 distinct peaks, the
dominant 5 are localized around the correct peak locations
and the other two lie between the 3rd, 4th, and 5th peaks
and do not appear in the other histograms indicating that
they may correspond to other propagation paths undetected
by the other algorithms. Section 4.1.3 demonstrates the abil-
ity of hard DESPRIT to outperform soft DESPRIT in noisy
environments, such as the one created using our impulse re-
sponsemeasurements, this ability is evident when comparing
the plots of Figure 11.

5. CONCLUSION

In this work, we explored possible extensions to the DUET
blind source separation algorithm to the case when more
than 2 mixtures are available. Three extensions were pro-
posed, all of which combine the DUET method with the
ESPRIT direction of arrival estimation technique. The first,
called hard DESPRIT, is perhaps the natural extension of
DUET to M > 2 mixtures and still assumes that only one
source is active at any time-frequency point. The second, soft
DESPRIT, allows for up to M − 1 sources to be active at any
time-frequency point provided that no additional sources are
active for the specific frequency over a window of M − 1
adjacent time points. The third, echoic DESPRIT, allows for
the separation of echoic mixtures provided the mixing im-
pulse response is sparse, each source signal travels on a small
number (up to �M/2�) of paths from source to sensor. In
echoic ESPRIT, the constraint is that the number of source
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DUET

�3.7 �2.08 0.15 2.1 4.5

δ̃

(a)

Hard DESPRIT

�3.7 �2.08 0.15 2.1 4.5

δ̃

(b)

Soft DESPRIT

�3.7 �2.08 0.15 2.1 4.5

δ̃

(c)

Echoic DESPRIT

�3.7 �2.08 0.15 2.1 4.5

δ̃

(d)

Figure 11: The histogram obtained by DUET algorithm when applied to 2 of the 4 real-room mixtures and the histograms obtained by the
hard DESPRIT, soft DESPRIT, and echoic DESPRIT algorithms when they are applied to the 4 real-room mixtures.

arrivals active at a given time-frequency point cannot exceed
�M/2�. Results of tests on simulated and real-world mixtures
demonstrate the capability of the extensions.
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