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Abstract The muon anomalous magnetic moment aμ and
the hadronic vacuum polarization are examined using data
analyzed within the framework of a suitably broken HLS
model. The analysis relies on all available scan data sam-
ples and leaves provisionally aside the existing ISR data.
Our HLS model based global fit approach allows for a better
check of consistency between data sets and we investigate
how results depend on different strategies which may be
followed. Relying on global fit qualities, we find several
acceptable solutions leading to ambiguities in the recon-
structed value for (aμ)th. Among these, the most conserva-
tive solution is ahad,LO

μ [HLS improved] = 687.72(4.63) ×
10−10 and (aμ)th = 11 659 175.37(5.31) × 10−10 corre-
sponding to a 4.1σ significance for the difference �aμ =
(aμ)exp − (aμ)th. It is also shown that the various contribu-
tions accessible through the model yield uniformly a factor
2 improvement of their uncertainty. The breaking procedure
implemented in the HLS model is an extension of the for-
mer procedure based on a mechanism defined by Bando,
Kugo and Yamawaki (BKY). This yields a quite satisfactory
simultaneous description of most e+e− annihilation chan-
nels up to and including the φ meson (π+π−, π0γ , ηγ ,

π+π−π0, K+K−, K0K
0
) and of a set of 10 (mostly radia-

tive) decay widths of light mesons. It also allows to achieve
the proof of consistency between the e+e− → π+π− anni-
hilation and the τ± → π±π0ν decay and gives a solution to
the reported problem concerning the measured partial width

ratio Γ (φ → K+K−)/Γ (φ → K0K
0
). Prospects for im-

proving the VMD based estimates of aμ are emphasized.

a e-mail: benayoun@in2p3.fr

1 Introduction

The muon anomalous magnetic moment aμ is a physics
piece of information which has been measured with the re-
markable accuracy of 6.3 × 10−10 [1, 2]. From a theoretical
point of view, aμ is the sum of several contributions; the
most prominent contributions can be predicted with a very
high accuracy by the Standard Model. This covers the QED
contribution which presently reaches an accuracy better than
1.6 × 10−12 [3] or the electroweak contribution where the
precision is now 1.8 × 10−11 [4]. The light-by-light contri-
bution to aμ is more complicated to estimate and is currently
known with an accuracy of 2.6 × 10−10 [5].

Another important contribution to aμ is the hadronic vac-
uum polarization (HVP). Perturbative QCD allows to com-
pute a part of this with an accuracy of the order 10−11; this
covers the high energy tail and the perturbative window be-
tween the J/ψ and Υ resonance regions. For the region be-
low this threshold, one is in the non-perturbative region of
QCD where estimates of the hadronic VP cannot so far be
directly derived from QCD, relying on first principles only.
However, this may change in a future. Indeed, some recent
progress in Lattice QCD [6–8] gives hope that reliable cal-
culations of the HVP are now in reach in the next years.
They would be an important complement to the standard ap-
proaches, as well as to the approach presented here.

One is, therefore, left with estimates numerically derived
from experimental data. Indeed, it has been proved long ago
that the contribution of an intermediate hadronic state Hi to
aμ is related with the annihilation cross section σHi

(s) ≡
σ(e+e− → Hi) by:

aμ(Hi) = 1

4π3

∫ scut

sHi

dsK(s)σHi
(s)

where K(s) is a known kernel [4] enhancing the weight of
the low s region, close to the threshold sHi

of the final state
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Hi . Then, the total non-pertubative HVP can be estimated
by aμ(H) =∑aμ(Hi), where the sum extends over all final
states Hi which can be reached in e+e− annihilations.

The accuracy of aμ(Hi) is, of course, tightly related with
the accuracy of the experimental data set used to perform
numerically the integration shown above. When different
data sets are available for a given annihilation channel Hi ,
a combination of the corresponding aμ(Hi)’s is performed
by weighting each estimate with the reported uncertainties
affecting each data set, using standard statistical methods
(see [9], for instance). Possible mismatches between the var-
ious estimates are accounted for by methods like the S-factor
technics of the Particle Data Group [10]. In this approach, of
course, the accuracy of each aμ(Hi) is solely determined by
all the measurements covering the channel Hi only, without
any regard to the other channels Hj (j �= i).

This method succeeds in providing very precise val-
ues for the relevant contributions. Summing up the non-
perturbative HVP estimated this way with the rest, one ob-
tains an estimate of aμ quite comparable to the BNL av-
erage measurement [1, 2]. However, the prediction based
on e+e− annihilation data or τ decay data [4, 11–16] ex-
hibits a long-standing discrepancy; the exact value of this
discrepancy has gone several times back and forth, depend-
ing on whether one trusts the τ data based analyses or the
scan e+e− annihilation data, which are obviously more di-
rectly related with aμ(H). With the advent of the high statis-
tics data samples collected using the Initial State Radiation
(ISR) method [17–19], a precise value for this—possible—
discrepancy has become harder to define unambiguously.

In order to get a firm conclusion concerning the numer-
ical difference between the measured and calculated values
of the muon anomalous magnetic moment �aμ = (aμ)exp −
(aμ)th, one should first understand why τ based and e+e−
based analyses differ; one should also understand the dif-
ferences between scan data and ISR data and possibly the
differences between the various available ISR data samples,
as the KLOE samples [17, 19] and the BaBar sample [18]
seem to lead to somewhat conflicting results.

Anyway, while all proposed values for (aμ)th differ from
the average for (aμ)exp, the theoretical uncertainties start to
be comparable to the experimental one. Therefore, it be-
comes interesting to look for a method able to reduce the
uncertainty on (aμ)th by simply using the existing data. It
is also an important issue to have a framework where the
properties of each data set can be examined.

In order to cover the low energy regime of strong inter-
actions, the most common approach is to use effective La-
grangians which preserve the symmetry properties of QCD.
At very low energies, Chiral Perturbation Theory (ChPT)
represents such a framework. However, the realm covered by
the usual ChPT is very limited (not much greater than the η

mass); Resonance Chiral Perturbation Theory (RχPT) per-
mits to go much deeper inside the resonance region; it thus

defines a framework suited to study the non-perturbative
hadronic VP (HVP).

It was soon recognized [20] that the coupling constants
occurring at order p4 in ChPT were saturated by low ly-
ing meson resonances of various kinds (vector, axial, scalar,
pseudoscalar) as soon as they can contribute. This em-
phasized the role of the fundamental vector meson nonet
and confirmed the relevance of the Vector Meson Dom-
inance (VMD) concept in low energy physics. Soon af-
ter, [21] proved that the Hidden Local Symmetry (HLS)
model [22, 23] and the Resonance Chiral Perturbation The-
ory (RχPT) were equivalent. Therefore, one may think that
the HLS model provides a convenient and constraining QCD
inspired framework for an improved determination of the
HVP. It is, therefore, quite legitimate to check wether the
HLS model allows a better determination of the HVP than
the usual method sketched above.

The basic HLS model has an important limitation for
HVP studies: The vector resonances entering the model are
only those embodied in the lowest mass vector meson nonet.
This certainly limits upwards the relevant energy range to
�1.05 GeV, i.e. slightly above the φ(1020) meson mass;
going beyond while staying within the standard HLS frame-
work certainly entails uncontrolled uncertainties due to the
contribution of higher mass vector meson nonets.

However, relying on the standard method, one can es-
timate the contribution of the region

√
s ∈ [mπ0 ,mφ] to

83.3% of the total HVP and show that its uncertainty is also
a large fraction of the total HVP uncertainty: � 4 × 10−10

when using only scan data or �2.7 × 10−10 when using also
the recent ISR data samples. For comparison, the uncertainty
provided by the region above �1.05 GeV is �4 × 10−10.
Therefore, any significant improvement on the knowledge
of (aμ)th in the region

√
s ≤ 1.05 GeV is certainly valuable.

The (basic) HLS model provides a framework where
the interrelations between the various observed decay chan-
nels are made explicit. The point is that the use of an ad-
equate model allows for a global fit strategy. All available
cross-section data are used to constrain the model parame-
ters, which in turn allows us to predict physical amplitudes.
Therefore, if the model provides a statistically acceptable
common solution to some set H ≡ {Hi} of different pro-
cesses,1 each covered by one or several data sets, the fit re-
sults can serve to reconstruct reliably the aμ(Hi) (Hi ∈ H).

Indeed, if a global fit of the set H of the various data
samples is successfully performed, then the parameter val-
ues and their error covariance matrix summarize reliably all
the knowledge of the set H, including the physics correla-
tions among them. Then, all cross sections contained in H

1These can be cross sections or various kinds of meson partial widths,
or also decay spectra. Indeed, any piece of information able to con-
strain the model parameters is valuable.
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can be estimated with an information improved by having
taken into account all the underlying physics correlations.

With the present formulation, of the HLS model, the var-
ious aμ(Hi) can be reliably and accurately determined up to
�1.05 GeV, just including the φ resonance region. All the
rest should presently be estimated by the methods usual in
this field.

One can substantiate the benefits drawn for using such a
global model:

• As the model is global, it implies algebraic relations be-
tween the various channels it encompasses. Therefore, the
accuracy of the estimate for aμ(Hi) is determined by the
statistics available for any channel Hi and also by the
statistics associated with all the other channels contained
in H.

For instance, the accuracy for aμ(π+π−) is certainly
determined by the available statistics for e+e− → π+π−
but all other data, acting as constraints, also contribute
to the accuracy for aμ(π+π−). This is the role of the
e+e− → ηγ or e+e− → π0γ annihilation data, but also
those of the decay width for φ → η′γ or of the dipion
spectrum in the τ → ππν decay, etc.

Conversely, the accuracy for aμ(π0γ ), for instance, is
not only governed by the statistics available for e+e− →
π0γ , but also by those provided by the e+e− → π+π−
or e+e− → ηγ data, etc.

Therefore, the improvement expected from a global
model should affect simultaneously all the channels con-
tained in H and contributing to aμ.

• As the breaking procedure is global, it affects simultane-
ously all physics channels related with each other by the
Lagrangian model. A successful global fit thus implies
that it is validated by the fit quality of the largest possi-
ble set of data samples. This high degree of consistency
indicates that the breaking model2 is not simply had hoc.

• Any data set is certainly subject to specific systematics;
however, taking into account that the study we plan relies
on 45 different data sets covering 6 different annihilation
channels, 10 partial width decays (taken from the Review
of Particle Properties [10]) and some decay spectra,3 one
may consider the effects of correlated systematics reason-
ably well smeared out. Indeed, one may consider unlikely
that the systematics affecting as many different objects
can pile up.

2We mean that the breaking procedure we define is certainly a model,
but it is not intended to solve only one issue in isolation, like the consis-
tency between e+e− → π+π− and τ → ππν, without any regard to
the rest of the correlated physics. Stated otherwise, it is validated only
if its consequences for the other related physics channels are accepted
by the corresponding data.
3Actually, it affects the dipion spectrum in the decay τ → ππν and in
the anomalous η/η′ → ππγ decays, among others.

Basically, what is proposed is to introduce the theoretical
prejudice represented by one formulation of the VMD con-
cept in order to constrain the data beyond genuine statistical
consistency of the various data samples referring to the same
physics channel. It has already been shown [24] that theoret-
ical (VMD) relationships among various channels are highly
constraining. The present work plans to better explore such
a framework with a much improved modelling.

Conceptually, the idea to include some theoretical preju-
dice in order to reduce the uncertainties on aμ is not com-
pletely new. A method to complement the e+e− → π+π−
data with the constraints of analyticity, unitarity and chiral
symmetry has been initiated by [25–27] with the aim of im-
proving the π+π− contribution to aμ, but this has not been
finalized.

For the present study, we have found appropriate to dis-
card the data collected using the Initial State Radiation (ISR)
method [17–19]; indeed, because of the complicated struc-
ture of their systematics, they almost certainly call for a
more complicated statistical treatment than the usual e+e−
scan data. The use of ISR data will be addressed in a forth-
coming publication.

The HLS model [22, 23] complemented with its anoma-
lous sector [28] provides a framework able to encompass
a large realm of low energy physics. This anomalous sec-
tor will be referred to hereafter as FKTUY sector. The non-
anomalous sector allows to cover most e+e− annihilation
channels and some τ decays. Thanks to its anomalous sec-
tor, the same framework also includes the radiative decays
of light flavor mesons with couplings of the form4 V Pγ

and Pγ γ and also several anomalous annihilation channels.
Actually, up to the φ meson mass, the only identified chan-
nel which remains outside the scope of the HLS model is the
e+e− → π0ω annihilation channel, due to the large effect of
high mass vector resonances [29, 30] presently not included
in the HLS model.

However, in order to use the HLS model beyond rather
qualitative studies and yield precise descriptions of experi-
mental data, symmetry breaking procedures have to be im-
plemented. A simple mechanism breaking the SU(3) fla-
vor symmetry [31] has been introduced, followed by sev-
eral useful variants [32–34]. Nonet symmetry breaking in
the pseudoscalar sector has also been introduced by means
of determinant terms [35]. This breaking procedure has been
shown to describe precisely the radiative decays of light
mesons [36, 37] and to meet [38] all expectations of Chi-
ral Perturbation Theory.

In order to account for the reported mismatch between
the pion form factor in e+e− annihilation and in the τ decay,

4In the following, we may denote by V and P any of respectively the
vector or the pseudoscalar light flavor mesons. This does not rise am-
biguities.
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it has been proposed [39] to take into account loop effects.
Indeed kaon loops produce a mixing of the neutral vector
mesons which is a consequence for the K0 −K± mass split-
ting. These turn out to modify effectively the vector meson
mass term by identified s-dependent terms.

Introducing the physical vector fields which correspond
to the eigenstates of the loop modified vector meson mass
matrix, provides a mixing mechanism of the triplet ρ0–ω–φ

system. In this change of fields the charged vector mesons
remain unchanged. With this s-dependent mixing of neu-
tral vector mesons, the fit residuals to the pion form factor
in e+e− annihilations and in τ decays did not exhibit any
longer any mass dependence [39]; thus this mechanism pro-
vides an important part of the solution to the so-called e+e−-
τ puzzle.5

However, this solution is only partial. Indeed, if the dip-
ion spectrum lineshape in the decay of the τ lepton is clearly
predicted [24, 39] from e+e− data, there is still some prob-
lem with its absolute magnitude. This issue has been found
to be cured by allowing (i) a mass (δm) and a coupling (δg)
difference between the neutral and charged ρ mesons, (ii) a
rescaling of the τ dipion spectra consistent with the reported
uncertainties on the absolute scales of the various measured
spectra [40–42]. The results returned by fits did not lead to
a significant mass difference6 but, instead, δg and the fitted
scales of the experimental spectra were found highly signif-
icant [24].

However, the numerical values of these parameters (never
more than a few percent) suggest that some unaccounted for
isospin breaking effects have not yet been included.

On the other hand, the HLS model supplemented with the
SU(3)/U(3) breaking reminded above accounts successfully
—and simultaneously—for the measured cross sections in
the e+e− → π+π−, e+e− → π0γ , e+e− → ηγ , e+e− →
π+π−π0 annihilation channels and for the additional set of
9 decay widths, especially the radiative decays of the form
V Pγ or Pγ γ , needed in order to constrain more tightly the
model. This has been proved in [46]. However, as it stands,
the HLS model fails to account for the annihilation chan-
nels e+e− → K+K− and e+e− → K0K

0
simultaneously.

This is obviously related to the puzzling issue thoroughly
discussed in [47] concerning the branching fraction ratio

φ → K+K−/φ → K0K
0
. The reported disagreement with

theoretical expectations is found significant and amounts to
a few percent. This also allows thinking that some isospin
breaking effects are not yet fully accounted for.

5A similar result has been obtained in [16] relying rather on a ρ0–γ

mixing mechanism; it should be interesting to study a more general
V –γ mechanism supplementing the ρ0–ω–φ mixing scheme.
6The mass difference following from fit corresponds to δm = 0.68 ±
0.40 MeV is in accord with what is expected for the electromagnetic
mass difference [43, 44] of the ρ mesons [45] δm � 0.81 MeV.

In the present paper, we define a symmetry breaking pro-
cedure which is nothing but an extension of the BKY mech-
anism referred to above, but including now breaking in the
non-strange sectors. This mechanism is only an upgrade of
the BKY mechanism and applies likewise to the two differ-
ent sectors (the so-called LA and LV sectors) of the non-
anomalous HLS Lagrangian. We show that the τ scale is-
sue is solved by breaking the LV Lagrangian piece while

the φ → K+K−/φ → K0K
0

puzzle yields its solution from
applying the same mechanism to the LA Lagrangian piece.
Stated otherwise, within the framework of the HLS model
broken in this way, the e+e−–τ and the φ → KK puzzles
appear as twin phenomena yielding parent explanations.

Actually, equipped with this upgraded breaking mecha-
nism, the HLS model provides a satisfactory description of
all the physics information listed above, including now both
e+e− → KK annihilations.

Having discarded the 3 existing ISR data samples, a
priori 45 different data sets of scan data are relevant for
our present analysis. At each step of our analysis, we have
checked the consistency of the various data samples with
each other by relying, as strictly as possible, on the infor-
mation provided by the various groups without any further
assumption. We have found that 2 among them have a be-
havior not in agreement with what can be expected from the
rest (43 data sets). One could have attempted to use them
by weighting their contribution to the global χ2 (a sort of
S-factor); however, for now, we have preferred discarding
them. Therefore our analysis relies on 43 data sets—mostly
produced by the CMD-2 and SND Collaborations—and 10
accepted partial width information, which represents already
an unusually large set of data consistently examined and sat-
isfactorily understood.

The paper is organized as follows. In Sect. 2, we briefly
outline the basics of the HLS model and its various sectors.
In Sect. 3, we define the upgraded breaking procedure which
is a trivial extension to the u and d sectors of the BKY
breaking scheme as redefined in [34]—the so-called “new
scheme”. Section 4 and Sect. 5 examine the consequence
for the modified BKY breaking scheme on the two different
parts (LA and LV ) of the non-anomalous HLS Lagrangian.
In Sect. 6 we first remind the loop mixing scheme [39, 46]
of the vector mesons and, next, construct the pion form fac-
tor in e+e− annihilation and in the decay of the τ lepton.
The condition Fπ(0) = 1 has some consequences for how
parametrizing the Breit–Wigner amplitudes should be done
for narrow objects like the ω and φ mesons. Other topics are
also examined: the direct ωππ coupling and the φ → KK

couplings. The anomalous sector is examined in Sect. 7
where we also provide the expressions for the e+e− → π0γ ,
e+e− → ηγ and e+e− → π+π−π0 cross sections. The ex-
pression for the various couplings of the form Pγ γ and
V Pγ are also derived; these are important ingredients for
the set of radiative decays included into the HLS framework.
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We have found it appropriate to summarize the main
features of the HLS model under the upgraded breaking
scheme which underlies the present study; this is the mat-
ter of Sect. 8. Section 9 is devoted to list the different data
sets available for each physics channel; in this Section, our
fitting method, previously defined and used in [24, 39, 46],
is reminded.

At this point, we are in position to confront our model
and the data. Section 10 examines the fit properties of the
available e+e− → π+π−π0 data and Sect. 11 reports on the
simultaneous analysis of the e+e− → K+K− and e+e− →
K0K

0
annihilation data. The analysis of the e+e− → KK

channels allows us to show how the problem raised by both
φ → KK decay widths is solved within the new release of
the broken HLS model.

Section 12 provides our analysis of the dipion spectrum
in the τ decay in conjunction with all e+e− data. It is
shown therein that e+e− data and τ data are fully recon-
ciled; the precise mechanism solving this issue, somewhat
unexpected, is exhibited.

The short Sect. 13 is devoted to examining the exact
structure of the ωππ coupling and compare with similar
results of other authors [48, 49]. Similarly, another short
Sect. 14 examines in some detail some properties of the π0–
η–η′ mixing; it is shown here that the conclusions derived
in [38] about the mixing angles θ0 and θ8 introduced by
[50, 51] are confirmed, together with their relationship with
the traditional singlet–octet mixing angle θP . In Sect. 15,
one examines the fitted values of the parameters involved
in the absolute scale of the FKTUY anomalous Lagrangian
pieces and compare with existing estimates; this leads to the
conclusion that the usual assumption c3 = c4 is consistent
with data.

Section 16 is devoted to study in detail the consequences
for our HLS model determination of the non-perturbative
part of the photon hadronic vacuum polarization. This is
found to yield much reduced uncertainties compared to esti-
mates derived by the direct averaging of data.

The consequence for g − 2 are also examined with the
conclusion that the theoretical prediction differs from the
BNL measurement [2]. The significance of this difference
is shown to stay in between 4.07σ and 4.33σ . This looks

an important improvement, as we are still not using the ISR
data.

Finally Sect. 17 provides a summary of our conclusions
and the perspectives. A large part of the formulae have been
pushed inside several Appendices in order to ease as much
as possible the reading of the main text.

2 The HLS Lagrangian

The Hidden Local Symmetry Model (HLS) has been pre-
sented in full detail in [22] and, more recently, in [23]. One
can also find brief accounts in [34, 52].

Beside its non-anomalous sector, which allows to address
most e+e− annihilation channels and some τ decays up to
about the φ meson mass [39, 46], the HLS Model also con-
tains an anomalous (FKTUY) sector [28] which provides
couplings of the form V V P , V PPP , γPPP , V Pγ or
Pγ γ among light flavor mesons. These are the key in or-
der to incorporate within the HLS framework the radiative
decays of the form V Pγ or P → γ γ , or decays importantly
influenced by the box anomaly like η/η′ → π+π−γ (see
[37, 53] for instance). It has been shown that, while imple-
menting (U(1)) nonet symmetry and SU(3) symmetry break-
ings, one reaches a remarkable agreement with data [36, 37].

The anomalous pieces of the HLS Model are also the key
tool when dealing with annihilation processes like e+e− →
π0γ , e+e− → ηγ or e+e− → π0π+π− as successfully
shown in [46].

In order to be self-contained, and without going into un-
necessary detail, let us briefly remind the salient features of
the HLS Model relevant for the present purpose.

One defines the ξ fields by:

ξR,L = exp [iσ/fσ ] exp [±iP/fπ ] (1)

where the scalar field σ is usually eliminated by means of
a suitable gauge choice [22] (the so-called unitary gauge).
However the decay constant fσ still survives through the
ratio a = f 2

σ /f 2
π which is a basic (free) ingredient of the

HLS Model. The standard VMD Lagrangian corresponds to
having a = 2. The pseudoscalar field matrix P :

P = P8 + P0 = 1√
2

⎛
⎜⎜⎜⎝

1√
2
π3 + 1√

6
η8 + 1√

3
η0 π+ K+

π− − 1√
2
π3 + 1√

6
η8 + 1√

3
η0 K0

K− K
0 −

√
2
3η8 + 1√

3
η0

⎞
⎟⎟⎟⎠ , (2)

contains singlet (P0) and octet (P8) terms. By π3 we de-
note the bare neutral pion field; the traditional naming π0

will be devoted to the fully renormalized neutral pion field.

On the other hand, the usual η and η′ meson fields are
(essentially) combinations of the η8 and η0 fields shown
in (2).
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The HLS Lagrangian is defined by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LHLS = LA + aLV

LA = −f 2
π

4 Tr[(DμξLξ
†
L − DμξRξ

†
R)2]

≡ −f 2
π

4 Tr[L − R]2

LV = −f 2
π

4 Tr[(DμξLξ
†
L + DμξRξ

†
R)2] ≡ −f 2

π

4 Tr[L + R]2

(3)

where the covariant derivatives are given by:{
DμξL = ∂μξL − igVμξL + iξLLμ

DμξR = ∂μξR − igVμξR + iξR Rμ

(4)

with:⎧⎪⎪⎨
⎪⎪⎩

Lμ = eQAμ + g2
cos θW

(Tz − sin2 θW )Zμ

+ g2√
2
(W+

μ T+ + W−
μ T−)

Rμ = eQAμ − g2
cos θW

sin2 θWZμ

(5)

exhibiting the Z, W± boson fields together with the photon
field Aμ. The vector field matrix is given by:

V = 1√
2

⎛
⎜⎜⎝

(ρI + ωI )/
√

2 ρ+ K∗+

ρ− (−ρI + ωI )/
√

2 K∗0

K∗− K
∗0

φI

⎞
⎟⎟⎠ . (6)

The quark charge matrix Q is standard and the matrix
T+ = [T−]† is constructed out of matrix elements of the
Cabibbo–Kobayashi–Maskawa matrix [23, 39]. One should
note that the neutral charge entries of the vector field matrix
V are expressed in terms of the so-called ideal fields (ρI , ωI

and φI ).
In the expressions above, one observes the electric charge

e, the universal vector coupling g and the weak coupling g2

(related with the Fermi constant by g2 = 2mW

√
GF

√
2). As

the influence of the Z boson field is quite negligible in the
physics we address, the Weinberg angle θW plays no role.

We do not present here the anomalous sectors which can
be found in the original HLS literature [22, 23, 28]. A sum-
marized version, well suited to the present purpose, can be
found in [46]) and will not be repeated.

The non-anomalous Lagrangian LHLS at lowest order in
field derivatives can be found expanded in [34, 52]. Its τ

sector is explicitly given in [39, 46].
The HLS Lagrangian fulfills a U(Nf ) × U(Nf ) sym-

metry rather than SU(Nf ) × SU(Nf ). The additional ax-
ial U(1) symmetry has several undesirable features [35, 54],
especially a ninth light pseudoscalar meson. This symme-
try can easily be reduced by adding appropriate terms to
the effective Lagrangian. Defining [22] the chiral field U ≡
ξ

†
LξR = exp 2iP/fπ , this reduction is achieved by adding

determinant terms [35] to the HLS Lagrangian. After this
operation, one gets [38]:

L = LHLS + LtHooft = LHLS + μ2

2
η2

0 + 1

2
λ∂μη0∂

μη0 (7)

where μ has obviously a mass dimension and λ is dimen-
sionless. In the following, the additional Lagrangian piece
will not be modified while breaking symmetries. Actually,
in the present work, one is only concerned by the perturba-
tion of the pseudoscalar meson kinetic energy.

3 The BKY–BOC breaking of the HLS Lagrangian

The HLS Lagrangian above is certainly an interesting and
attractive framework. However, without introducing suitable
mechanisms for symmetry breaking effects, one cannot ac-
count for the experimental data at the level of precision re-
quired by their accuracy. There is no unique way to imple-
ment such a mechanism within the HLS model and, actu-
ally, several SU(3) breaking schemes exist. The basic SU(3)
symmetry breaking scheme has been proposed by Bando,
Kugo and Yamawaki (BKY) [31]. It has, however, some un-
desirable properties which have motivated its modification.
A first acceptable modification has been proposed by Bra-
mon, Grau and Pancheri [32, 33] and another one in [34],
where the various schemes have been critically examined.
Following this study, we prefer using in the following the
so-called “new scheme” variant defined in [34]; when refer-
ring to the BKY mechanism throughout this paper, we al-
ways mean the “new scheme” variant just mentioned. It will
be referred to as either BKY or BKY–BOC.

This breaking mechanism (BKY–BOC) has been exam-
ined in detail and its predictions—relying on fits to exper-
imental data—have been found to meet the corresponding
ChPT expectations [38] at first order in the breaking param-
eters. It has also been extensively used in several successful
studies performed on radiative decays of light mesons [36]
and on e+e− annihilation cross sections [46]. Up to now, the
BKY mechanism was limited to SU(3) symmetry breaking
effects; the issue now is to examine its extension to isospin
symmetry breaking.

Briefly speaking, our variant of the BKY mechanism
[34] turns out to define the broken non-anomalous HLS La-
grangian pieces by:⎧⎨
⎩

LA ≡ −f 2
π

4 Tr[(L − R)XA]2

LV ≡ −f 2
π

4 Tr[(L + R)XV ]2
(8)

where XA and XV are matrices carrying the SU(3) sym-
metry breaking associated with, respectively, LA and LV .
These are written as:{

XA = Diag(1,1, zA)

XV = Diag(1,1, zV )
(9)

and departures of zA and zV from 1 account for SU(3)
symmetry breaking effects in the LA and LV Lagrangian
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pieces.7 A priori, these two parameters are unrelated and
should be treated as independent of each other.

In order to extend to isospin symmetry breaking, we pro-
pose to generalize (9) above to:{

XA = Diag(qA, yA, zA)

XV = Diag(qV , yV , zV ).
(10)

As isospin symmetry breaking is expected milder than
SU(3) breaking, the additional breaking parameters are ob-
viously expected to fulfill:

|qA − 1|, |yA − 1| � |zA − 1|,
|qV − 1|, |yV − 1| � |zV − 1|. (11)

In previous fits, performed with only SU(3) symmetry
breaking, we got (see for instance [39, 46]) |zA − 1|, |zV −
1| � 0.5. Such ways of extending the BKY breaking mech-
anism have been already proposed within similar contexts
[55, 56].

We find appropriate to define:⎧⎨
⎩

qA/V = 1 + εu
A/V = 1 + ΣA/V +�A/V

2

yA/V = 1 + εd
A/V = 1 + ΣA/V −�A/V

2

(12)

exhibiting the sum and difference of εu
A/V and εd

A/V . Indeed,
the expressions for most physical couplings are simpler in
terms of these rather than in terms of εu

A/V and εd
A/V .

As clear from (8), the BKY breaking of the HLS La-
grangian exhibits a global character. It does not correspond
to some systematic way of including specific breaking terms
of given kind or order as done within ChPT. As the numer-
ical values of the breaking parameters are phenomenologi-
cally derived from fits to a large set of experimental data,
they account globally for several effects of different ori-
gin without any way to disentangle the various contribu-
tions. This remark is especially relevant for the breaking pa-
rameters corresponding to the u and d entries of XA and
XV which are small enough that several competing effects
can mix together8; because of their relatively large magni-
tude, the SU(3) breaking effects can be more easily identi-
fied [36, 38].

4 Breaking the LA Lagrangian piece

The pseudoscalar kinetic energy term of the full (broken)
Lagrangian is carried by LA + LtHooft. In terms of bare
fields, it is:

7In the following XA and XV are named breaking matrices; this conve-
nient naming should not hide that the true breaking matrices are rather
XA − 1 and XV − 1.
8This may include effects due to the quark mass breaking and to elec-
tromagnetic corrections. It may also absorb corrections to hadronic ver-
tices which can hardly be derived from an effective Lagrangian.

LKin = qAyA∂π+ · ∂π− + q2
A + y2

A

4
∂π3 · ∂π3

+ qAzA∂K+ · ∂K− + yAzA∂K0 · ∂K
0

+
[

z2
A

3
+ q2

A + y2
A

12

]
∂η8 · ∂η8

+
[

z2
A + q2

A + y2
A

6
+ λ

2

]
∂η0 · ∂η0

+ √
2
(q2

A + y2
A) − 2z2

A

6
∂η8 · ∂η0

+ q2
A − y2

A√
12

∂π0 · ∂η8 + q2
A − y2

A√
6

∂π0 · ∂η0 (13)

which is clearly non-canonical. In order to restore the canon-
ical structure, one should perform a change of fields. This is
done in two steps, as in [38].

4.1 First step PS field renormalization

The first step renormalization turns out to define the (step
one) renormalized pseudoscalar field matrix P R1 in term of
the bare one P by:

P R1 = X
1/2
A PX

1/2
A . (14)

The charged pion and both kaon terms in this expression
actually undergo their final renormalization already at this
(first) step. Indeed, the axial currents are defined as in [38]
and are given by:

J a
μ = −2fπ [Tr[T aXA∂μPXA] + λδa,0∂μη0] (15)

in terms of the bare fields and of the Gell–Mann matrices
T a , normalized such as Tr[T aT b] = δa b/2. The π±, K±

and K0/K
0

decay constants are defined by the relevant axial
current matrix elements closed on the renormalized PS me-
son fields: 〈0|Jπ±/K

μ |π±
R 〉 = ifπ/Kqμ. As one chooses the

renormalized (charged) pion decay constant to coincide with
its experimental central value [57] (fπ± = 92.42 MeV), this
turns out to impose qAyA = 1. At leading order in breaking
parameters, this implies ΣA = 0. Then, the breaking matrix
XA writes:

XA = Diag

(
1 + �A

2
,1 − �A

2
, zA

)
(16)

depending on only two free parameters (�A and zA). On the
other hand, the kaon decay constant is:

fK± = √
zA

(
1 + �A

4

)
fπ . (17)

One thus yields a marginal change compared to the previous
BKY breaking scheme [34, 38] (dealing only with SU(3)
symmetry) as one got [fK±/fπ±]2 = zA. Anticipating some-
what on our numerical results, let us mention that the fits
always return �A � (5. ÷ 6.)%, much larger than expected
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from solely an effect of the light quark mass difference [58];
this will be further discussed in Subsect. 11.2.

As clear from (16), the XA matrix resembles the usual
quark mass breaking matrix. However, the entry zA is es-
sentially related with the ratio [fK/fπ ]2 � 1.5, while the
corresponding entry in the quark mass breaking matrix is
numerically � 20. Therefore, the correspondence between
these two matrices is only formal.

The following relationship defines some bare PS fields in
terms of their (fully) renormalized partners:
⎧⎪⎪⎨
⎪⎪⎩

π± = π±
R

K± = 1√
zA

(1 − �A

4 )K±
R

K0 = 1√
zA

(1 + �A

4 )K0
R

(18)

This produces changes going in opposite directions for
the couplings involving the physical K± and K0 mesons
compared to their bare partners. This has a clear influence
on the cross section ratio σ(e+e− → K+K−)/σ (e+e− →
K0K

0
). On the other hand, one also gets at leading order

in breaking parameters the following relationship between
some bare PS fields and the (first step) renormalized PS
fields:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π3 = π
R1
3 − �A

2
√

3
η

R1
8 − �A√

6
η

R1
0

η0 = −�A√
6
π

R1
3 +

√
2

3
zA−1
zA

η
R1
8 + 1

3
2zA+1

zA
η

R1
0

η8 = − �A

2
√

3
π

R1
3 + 1

3
zA+2
zA

η
R1
8 +

√
2

3
zA−1
zA

η
R1
0

(19)

4.2 Second step PS field renormalization

While propagating the field redefinition displayed into (18),
(19) in the expression for LKin (see (13)), one should neglect
second (and higher) order terms in the breaking parameters
�A and λ. Indeed, both of these are expected small (of the
order of a few percent at most); instead, as |zA − 1| is rather
large (zA � 1.5), we do not proceed alike with the SU(3)
breaking term. Doing so, in terms of the (redefined) fields,
the only surviving non-canonical piece L0,8 writes:

2L0,8 = [∂η
R1
0

]2 + [∂η
R1
8

]2

+ λ

9

[(
2 + 1

zA

)
∂η

R1
0 + √

2

(
1 − 1

zA

)
∂η

R1
8

]2

(20)

and is independent of �A. As we get—at leading order—the
same dependence as before [38], the diagonalization proce-
dure for this term is known (see Sect. 3.1 in [38]). Let us
only recall the results in the present notation set:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
R1
3 = πR

3

η
R1
8 = 1+v cos2 β

1+v
ηR

8 − v sinβ cosβ
1+v

ηR
0

η
R1
0 = − v sinβ cosβ

1+v
ηR

8 + 1+v sin2 β
1+v

ηR
0

(21)

where:⎧⎪⎪⎨
⎪⎪⎩

cosβ = 2zA+1√
3(2z2

A+1)
, sinβ =

√
2(zA−1)√

3(2z2
A+1)

v =
√

1 + λ
(2z2

A+1)

3z2
A

− 1 � λ
2

(2z2
A+1)

3z2
A

.

(22)

It thus looks more appropriate to use v (�λ/2) rather
than [38] λ as a breaking parameter, as it allows to work with
simpler expressions. v is the first parameter in our model
which exhibits the intricacy between U(1) and SU(3) break-
ings (λ and zA). The canonical PS fields—denoted by the
superscript R—are finally defined by (18), (19), (21).

4.3 The π0–η–η′ mixing

The physically observed η and η′ are traditionally described
as mixtures of the singlet and octet PS fields η8 and η0 in-
volving one mixing angle named here θP . Some authors, fol-
lowing [54, 59] prefer now using mixtures of the uū + dd̄

and ss̄ wave functions. However, as these two approaches
are equivalent, we prefer sticking to the traditional descrip-
tion.

Since [50, 51], it is admitted that the most appropri-
ate ChPT description of the η–η′ mixing involves two de-
cay constants (F 0 and F 8) and two mixing angles (θ0 and
θ8). However, [38] has shown how, within VMD, the usual
octet–singlet mixing scheme connects with this new ap-
proach. In this reference, it was also shown that, relying
on experimental data, the broken HLS model favors θ0 = 0
with a very good accuracy; this led to a relation between
θ8 and θP numerically close to θ8 = 2θP . Comparing ac-
cepted ChPT numerical values for θ8—like those in [51]—
with the one derived from θP (determined in VMD fits) was
found quite satisfactory. Moreover, it was shown that fits to
experimental data lead to an algebraic relation of the form
θP = f (λ, zA). We will check whether this relation for θP

still fits within the present form of our broken HLS model.
As in all previous studies in this series, one could have

limited oneself to considering only the η–η′ mixing, decou-
pling this from the π0 sector. However, it is a classical mat-
ter of Chiral Perturbation Theory to address the issue of π0–
η mixing, as this is related with the (light) quark mass differ-
ence [60]. Therefore, it may look interesting to see if such a
phenomenon could be exhibited from the experimental data
we deal with. In this case, there is no reason not to address
the issue of the relevance of a full π0–η–η′ mixing mecha-
nism. We choose to parametrize this PS mixing using [61]:⎧⎪⎪⎨
⎪⎪⎩

π3
R = π0 − εη − ε′η′

η8
R = cos θP (η + επ0) + sin θP (η′ + ε′π0)

η0
R = − sin θP (η + επ0) + cos θP (η′ + ε′π0)

(23)

where π3
R , η8

R and η0
R are the already redefined fields (see

(21) above), the physically observable mesons being π0, η
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and η′. In the smooth limit of vanishing ε and ε′, one re-
covers the usual η–η′ mixing pattern with one (θP ) mixing
angle, while the pion field decouples. Even if one does not
expect a large influence of ε and ε′ in the full data set collec-
tion we consider, it does not harm to examine their effects
and, if relevant impose ε = ε′ = 0 to the model.

Finally, at leading order in breaking parameters, the pseu-
doscalar meson kinetic energy term is canonical when ex-
pressed in terms of the fully renormalized fields (those car-
rying a R subscript).

4.4 About the θ8, θ0 and θP mixing angles

Let us define:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gπ0
(v) = (1 − 2v) → (�1–20%)

g0(v) = 1 − v
3

(2zA+1)2

(2z2
A+1)

→ (�1–10%)

g8(v) = 1 − 2v
3

(zA−1)2

(2z2
A+1)

→ (�1–0.3%)

(24)

These functions tend to unity when the UA(1) symmetry is
restored (λ = 0). The property g8(v) � 1 is the simplest way
to justify the approximation done in our previous works to
parametrize nonet symmetry breaking by the parameter x

(see, for instance, the discussion in [38]). Using these func-
tions, one can derive from (15) the following axial currents:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J
π3
μ = fπ {∂μπ3

R + �A gπ0
(v)[ 1

2
√

3
∂μη8

R + 1√
6
∂μη0

R]}

J
η0

μ = fπ {�A√
6
∂μπ3

R + zA+2
3 g0(v)∂μη0

R

− √
2 zA−1

3 g8(v)∂μη8
R}

J
η8

μ = fπ { �A

2
√

3
∂μπ3

R − √
2 zA−1

3 g0(v)∂μη0
R

+ 2zA+1
3 g8(v)∂μη8

R}

(25)

The mixing angles θ8, θ0 [50, 51] yield the following ex-
pressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan θ8 = 〈0|∂μJ 8
μ|η′〉

〈0|∂μJ 8
μ|η〉 = tan (θP − A),

tanA ≡ √
2 zA−1

2zA+1
g0(v)

g8(v)

tan θ0 = − 〈0|∂μJ 0
μ|η〉

〈0|∂μJ 0
μ|η′〉 = tan (θP + B),

tanB ≡ √
2 zA−1

zA+2
g8(v)

g0(v)

(26)

One can easily check that g8(v)/g0(v) � 1 − λ/2. A prop-
erty to check from fits using the present form of the model is
whether θ0 is still consistent with zero [38]. In this case, θP

is still no longer a free parameter, but fully determined by
λ and zA, i.e. by breaking parameters and θP tends to zero
when the symmetries are restored.

One should also note that the usual ChPT definition
of the π0 decay constant (〈0|Jπ3

μ |π0〉 = iqμfπ0 ) provides
fπ0 = fπ± , not influenced by our isospin breaking proce-
dure. However, as will be seen shortly—and as already em-
phasized in [38] for the decays η/η′ → γ γ —this is not the
quantity actually involved in the decay π0 → γ γ .

5 Breaking the LV Lagrangian piece

The LV Lagrangian, is defined by (8)–(12). It yields the fol-
lowing vector meson mass term (m2 ≡ ag2f 2

π ):

Lmass = m2

2

[
(1 + ΣV )ρ2

I + (1 + ΣV )ω2
I + 2�V ρI · ωI

+ zV φ2
I + 2(1 + ΣV )ρ+ · ρ−] (27)

while keeping only the leading terms in the breaking param-
eters ΣV and �V (the K∗ mass term has been dropped out).
As can be seen, the canonical structure of the mass term is
broken by a ρ

Î
· ω

Î
term.

In order to restore the canonical form of the mass term,
one should perform a field redefinition in only the (ρ

Î
−ω

Î
)

sector. Interestingly, the requested transform is not a rotation
but:(

ρI

ωI

)
=
(

ρR1

ωR1

)
− �V

(
hV ωR1

(1 − hV )ρR1

)
(28)

makes the work when non-leading terms in ΣV and �V are
neglected.9 In terms of the R1 renormalized fields, one gets:

Lmass = m2

2

[
(1 + ΣV )ρ2

R1
+ (1 + ΣV )ω2

R1
+ zV φ2

R1

+ 2(1 + ΣV )ρ+ · ρ−] (29)

having renamed for convenience φI ≡ φR1 . A few remarks
are worth being done:

(1) Beside the two breaking parameters ΣV and �V , one
gets a third free parameter hV which governs the mixing
of ρR1 and ωR1 .

Therefore, the exact content of isospin 1 (ρI ) inside
ωR1 and of isospin 0 (ωI ) inside ρR1 should be extracted
from data.

(2) The masses for ρR1 , ωR1 and ρ± remain degenerated at
leading order in the breaking parameters as the needed
R1 change of fields results in a vector meson mass term
independent of �V .

Therefore, even if one may legitimately think that
breaking isospin symmetry inside LV could result into

9Equation (27) can be diagonalized by a 45◦ rotation, however, this
solution is physically unacceptable as it has not the requested smooth
limit when �V → 0.
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a non zero (Lagrangian) mass difference [24] δm2 be-
tween the charged and the neutral ρ mesons, our break-
ing procedure rules out such a possibility at leading or-
der in breaking parameters. Actually, electromagnetic
corrections [43, 44], presently neglected, generate such
a mass difference. Such a term has been considered
in [24] but found numerically insignificant; prelimi-
nary studies within the present framework leading to the
same conclusion, we have given up considering explic-
itly a ρ0 − ρ± mass difference.

(3) The field transform (29) propagates to the vector me-
son kinetic energy by generating a term of the form
�V ∂ρ0

R1
∂ωR1 which breaks the canonical structure of

the kinetic energy. This is a classical issue [62] known to
imply the occurrence of wave-function renormalization
factors [62] which are absorbed into the effective cou-
plings defined by the Lagrangian vertices. In our case,
they are certainly absorbed in our breaking parameters.
This is exactly the same issue which arises in the elec-
troweak Standard Model with the γ –Z0 mixing. This
has been investigated in detail within Z0 lineshape stud-
ies (at the one plus two-loop level) and by the LEP ex-
periments. The same issue also appears when treating
the γ –ρ0 mixing and has been discussed in [16].

The second step renormalization of the vector meson
fields, which accounts for loop effects [39, 46], is consid-
ered below.

6 The fully broken non-anomalous HLS Lagrangian

For definiteness, we name (abusively) from now on “HLS
Lagrangian” the full expression given in (7), i.e. including
the determinant terms. The HLS Lagrangian is explicitly
provided in Appendix A, dropping out for conciseness all
terms not relevant for the purpose of the present study.

At the present step—which does not still include the (sec-
ond step) redefinition of the neutral vector fields [39, 46]—
several remarks are worth being done:

• The vector meson masses occurring in the Lagrangian ful-
fill m2

ρ0 = m2
ρ± = m2

ω . Thus, no mass splitting is gener-
ated, except for the φ meson.

• The couplings ρππ undergo isospin breaking (ΣV ) but
remain strictly identical for the charged and neutral ρ

mesons. Instead, a direct ωππ coupling is generated; it
is proportional to (1 − hV )�V .

• The ρ0–γ and ρ±–W± transition amplitudes10 may
slightly differ, as hV �V /3 should not exceed a few per-
cent level.

10Compare fργ and fρW as given by (93) and (94).

Therefore, non-vanishing δm2 = m2
ρ0 −m2

ρ± and δgρππ =
gρ0π+π− − gρ±π±π0 , as stated in [24], are not derived by
extending the XA/XV breaking scheme to include isospin
symmetry breaking.11

Therefore, non-vanishing δm2 and δgρππ are not the way
followed by the (broken) HLS model in order to account for
the (slightly) different normalizations of the pion form fac-
tor in τ decays and in e+e− annihilations. The actual mech-
anism at work is emphasized below.

6.1 Loop mixing of vector mesons

As remarked in [39], pseudoscalar loops modify the vector
mass matrix by s-dependent terms. In this way, the ρ, ω and
φ squared masses become s-dependent through contribu-
tions at real s of analytic functions,12 namely the KK loops
and, for the ρ, also the charged pion loop. Conceptually, this
turns out to remark that the inverse vector meson propaga-
tor written D−1

V (s) = s − m2
V − Π(s) in order to exhibit the

loop effects, can be thought as D−1
V (s) = s −m2

V (s), reflect-
ing the running character of the vector meson squared mass.

More important, however, is that this s-dependent mass
matrix becomes non-diagonal, showing that, at one-loop or-
der, the ρ, ω and φ (corresponding here to the R1 renor-
malized vector fields) are no-longer mass eigenstates. Mass
eigenstates can easily be constructed by standard perturba-
tive methods [63] as shown in [39]; one observes that they
become s-dependent.

This mass matrix can be written:

M2(s) = M2
0 (s) + δM2(s) (30)

where13:

M2
0 (s) = Diag

(
m2

ρ + Πππ(s),m2
ω,m2

φ

)
(31)

is treated as the unperturbed part of the squared mass ma-
trix. The pion loop is weighted by the square of the ρR1ππ

coupling constant (see (92) in Appendix A) and has been in-
cluded in the ρR1 entry as Πππ(s) is not really small in the
timelike region. Instead, as the ωR1ππ coupling is first order
in �V , the pion loop contribution to the ωR1 entry should be
neglected (� O(�2

V )). The values for these (Higgs–Kibble)
masses can be found in (93); they fulfill mρ = mω. On the
other hand, δM2(s) is given by:

δM2(s) =
⎡
⎣ ερ ερω ερφ

ερω εω εωφ

ερφ εωφ εφ

⎤
⎦ (32)

11As stated above, electromagnetic corrections contribute to generate a
non-vanishing δm2 without, however, a significant influence on the fit
properties.
12Actually, the anomalous FKTUY Lagrangian and the Yang–Mills
terms contribute respectively with V P and V V loops; one can con-
sider their influence absorbed in the subtraction polynomials of the PP

loops [39].
13Entries are ordered respectively ρR1 , ωR1 and φR1 .
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and contains only the perturbations generated by kaon loop
effects. The kaon loop transition from a vector meson V to
another one V ′ has been denoted εV V ′ .

One should note [39] that M2 is an analytic function of
s satisfying the (so-called) hermitian analyticity condition:
M2(s∗) = [M2(s)]†.

The entries of these matrices are appropriately parametrized
in terms of:⎧⎪⎪⎨
⎪⎪⎩

ε1(s) = Π+(s) − Π0(s)

ε2(s) = Π+(s) + Π0(s)

Πππ(s) = g2
ρππΠ ′(s), (gρππ = ag

2 (1 + ΣV ))

(33)

where Π ′(s) denotes the amputated pion loop, while Π+(s)

and Π0(s) denote, respectively, the amputated charged and
neutral kaon loops; their analytic expressions can be found
in the Appendices of [39]. ε1(s) ε2(s) do not contain sym-
metry breaking terms beyond the effects of the kaon mass
splitting. The expressions for the entries in δM2(s) are given
in Appendix B and show this dependence explicitly (see
(97)).

One can construct, as in [39], the eigensolutions of M2.
These are the final (step two) renormalized vector fields de-
noted respectively by ρR , ωR and φR and are related with
their R1 partners by:⎛
⎜⎜⎝

ρR1

ωR1

φR1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

ρR − αωR + βφR

ωR + αρR + γφR

φR − βρR − γωR

⎞
⎟⎟⎠ (34)

where the s-dependent mixing angles are defined by:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(s) = ερω

λρ−λω

β(s) = − ερφ

λρ−λφ

γ (s) = − εωφ

λω−λφ

(35)

using the eigenvalues of M2 (at first order):

λρ(s) = m2
ρ + Πππ(s) + ερ(s),

λω(s) = m2
ω + εω(s), λφ(s) = m2

φ + εφ(s)
(36)

The ερ(s), εω(s) and εφ(s) quantities, defined in (97), only
depend on the kaon loop functions and on breaking parame-
ters.

6.2 The pion form factor in e+e− annihilations
and in τ decays

The pion form factor in the τ± decay to π±π0ντ can easily
be derived from the Lagrangian piece Lτ given in (94):

Fτ
π (s) =

[
1 − a

2
(1 + ΣV )

]
− ag

2
(1 + ΣV )F τ

ρ (s)
1

Dρ(s)
(37)

where:⎧⎪⎪⎨
⎪⎪⎩

Fτ
ρ (s) = f τ

ρ − ΠW(s)

Dρ(s) = s − m2
ρ − Π ′

ρρ(s)

f τ
ρ = agf 2

π (1 + ΣV ), m2
ρ = ag2f 2

π (1 + ΣV )

(38)

and the loop functions are:⎧⎪⎪⎨
⎪⎪⎩

ΠW(s) = ag
2 (1 + ΣV )[(1 − a

2 (1 + ΣV ))�π (s)

+ 1
2z2

A

(zA − a
2 (1 + ΣV ))�K(s)] + PW(s)

Π ′
ρρ(s) = [ ag

2 (1 + ΣV )]2[�π (s) + 1
2z2

A

�K(s)] + Pρ(s)

(39)

where �π (s) and �K(s) denote respectively the amputated
charged pion and kaon loops, PW(s) and Pρ(s) being sub-
traction polynomials. In order to fulfill current conservation,
these polynomials should vanish at s = 0. Here, as in former
studies [24, 39, 46], identifying P ±P ∓ and P ±P 0 loops has
been found numerically justified.

If one compares with the corresponding formulae in [24]
(Subsect. 2.1.1), one sees that δm2 and δg—supposed to
reflect different properties of the charged and neutral ρ

mesons—have been deleted. As the loop functions vanish
at s = 0, one clearly has Fτ

π (0) = 1.
The pion form factor in e+e− annihilations is not as sim-

ply derived. One needs first to propagate the transformation
in (34) into the Lagrangian equation (92) and collect all con-
tributions to, respectively, ρR , ωR and φR . In this way, the
V –γ couplings associated with the fully renormalized vec-
tor fields become:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
γ
ρ = agf 2

π (1 + ΣV + hV �V

3 + α(s)
3 +

√
2β(s)
3 zV )

f
γ
ω = agf 2

π

3 (1 + ΣV + 3(1 − hV )�V − 3α(s)

+ √
2γ (s)zV )

f
γ
φ = agf 2

π

3 (−√
2zV + 3β(s) + γ (s))

(40)

including the mixing angle contributions. Using the La-
grangian pieces given in (99), one can construct easily the
pion form factor:

Fe
π(s) =

[
1 − a

2

(
1 + ΣV + hV �V

3

)]
− Fe

ργ (s)
gρππ

Dρ(s)

− Fe
ωγ (s)

gωππ

Dω(s)
− Fe

φγ (s)
gφππ

Dφ(s)
(41)

where:

gρππ = ag
2 (1 + ΣV ),

gωππ = ag
2 [(1 − hV )�V − α(s)], gφππ = ag

2 β(s)
(42)

The loop corrected V –γ transitions amplitudes Fe
V γ (s)

are defined by:

Fe
V γ (s) = f

γ

V − ΠV γ (s),
(
V = ρ0

R, ωR, φR

)
, (43)

with the s-dependent loop terms ΠV γ (s) being defined in
Appendix C. All ΠV γ (s) are requested to vanish at s = 0
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because of current conservation. The inverse ρ propagator
Dρ(s) is defined by (see (36)):

Dρ0(s) = s − λρ(s) = s − m2
ρ − Πρρ(s) (44)

As the ρ self-mass Πρρ(s) vanishes at s = 0, one cer-
tainly has Dρ0(0) = −m2

ρ . Concerning the ω and φ mesons,
one can correspondingly write their inverse propagators as:

DV (s) = s − m2
V − ΠV V (s), (m2

ω = m2
ρ, m2

φ = zV m2
ρ)

(45)

and one can legitimately assume their self-energies to also
vanish at s = 0. Then, Dω(0) = −m2

ρ and Dφ(0) = −zV m2
ρ

should certainly be fulfilled. However (most of) the ω self-
energy cannot be computed in closed form and the 3-pion
part of φ self-energy too. Therefore, convenient forms for
their propagators should be considered. This issue is read-
dressed just below for both mesons.

At this step, it is of concern to compare the properties of
the isospin 1 part of Fe

π(s) with Fτ
π (s). The most important

pieces of information are listed in Table 1. The difference
displayed for the non-resonant term is tiny. One can see that
there is no mass difference between the charged and neutral
ρ mesons, nor different couplings to a pion pair. Instead,
most of the difference is actually carried out by the transi-
tion amplitudes (see the fifth data line in Table 1) which are
significantly s-dependent, as can be inferred from Figs. 6
and 7 in [46].

Finally, it is interesting to note that the renormalization
factor introduced in couplings involving a kaon pair plays in
opposite directions for charged and neutral kaon pairs.

6.3 The ωππ direct coupling and the condition Fe
π(0) = 1

As can be seen from (42), the fully broken HLS model re-
veals a total coupling of the ω to a pion pair given by:

gωππ = ag

2

[
(1 − hV )�V − α(s)

]
.

This expression illustrates that the ωππ coupling in our
model is a priori a superposition of a direct isospin breaking
term and of another piece generated by vector meson mixing
through kaon loops. This kind of sharing has been empha-
sized several times [48, 49]. The full data set we use should
give the most precise and motivated estimate for these two
pieces as this is still presently controversial [48, 49, 64].

On the other hand, the parametrization of the ω contri-
bution to the pion form factor may pose a conceptual prob-
lem related with the condition Fe

π(0) = 1 which is worth
addressing.

The pseudoscalar meson loops which enter the V V ′ tran-
sition amplitudes (see (32), (35) and (97)) behave as O(s)

near the origin. The running vector meson masses (see (36))
are such that λρ(s) − λω(s) vanishes at the origin, while the

two other differences which come into (36) tend to a non-
zero constant. Therefore, ab initio, the mixing angles are
expected to fulfill:

β(0) = γ (0) = 0, α(0) �= 0 (46)

Even if clear in the previous publications using the loop
mixing mechanism (Fig. 7 in [39] or Fig. 6 in [46] clearly
show that α(0) � −5%), this was not explicitly pointed
out. Therefore, the s-dependent ωππ coupling generated by
loop mixing14 does not vanish at the origin. This has some
consequences.

Indeed, using (40) and (42), and the vanishing properties
of the functions ΠV γ (s), ΠV V (s) and β(s) at the origin, one
gets:

Fe
π(0) = 1 + a

6

[
α(0)

3
− (1 − hV )�V

][
1 + m2

ρ

Dω(0)

]
(47)

when keeping only the first-order terms in breaking param-
eters.

As already discussed at the end of the previous Subsec-
tion, it is motivated to assume the ω self-energy Πωω(s)

vanishing at the origin. Moreover, this allows to stay con-
sistent with the so-called “Node theorem” [65, 66]. Then,
the inverse propagator Dω(s) = s − m2

ρ − Πωω(s) fulfills
Dω(0) = −m2

ρ . This provides the vanishing of the last
bracket in the formula above and, thus, Fe

π(0) = 1, whatever
the values for hV , �V and α(0).

However, in most applications, for objects carrying such
a narrow width as the ω and φ mesons, one generally uses
approximate inverse propagators, e.g. either15:

DV (s) = s − m̃2
V + im̃V Γ̃V (BWa) or

DV (s) = s − m̃2
V + i

√
sΓ̃V (BWb)

with values for m̃V and Γ̃V either taken from the Review
of Particle Properties or extracted from one’s fits. Then,
with either of these Breit–Wigner lineshapes, the condition
Fe

π(0) = 1 is not necessarily fulfilled. From our model re-
sults, this condition is even violated at a few percent level.
However, it is easy to check that either of:

Dω(s) = s − m2
ρ − s

m2
ρ

(
m̃2

ω − m2
ρ − im̃ωΓ̃ω

)
(BW′

a)

(remember that m2
ρ = m2

ω) and:

Dω(s) = s − m2
ρ − s

m2
ρ

(
m̃2

ω − m2
ρ − i

√
sΓ̃ω

)
(BW′

b)

14Actually, the non-identically vanishing ε1(s) function providing the
vector meson mixing via loops is also generated by isospin symmetry
breaking, however in the pseudoscalar sector.
15Within the ongoing discussion, phenomenological values—e.g. not
derived from the broken HLS model parameters values—for vector
mesons masses and widths, are denoted with a tilde symbol in order
to avoid confusion.
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Table 1 Comparison of the
pion form factor information in
τ decay and in e+e−
annihilation. Second column
lists only isospin 1 related
information. In the last entry of
the rightmost data column, the
upper sign refers to K+K−

pairs, the lower to K0K
0

Fτ
π (s) F e

π (s) (I = 1)

Non-Resonant Term [1 − a
2 (1 + ΣV )] [1 − a

2 (1 + ΣV + hV �V

3 )]
ρ Mass Squared ag2f 2

π (1 + ΣV ) ag2f 2
π (1 + ΣV )

ππ Coupling gρππ
ag
2 (1 + ΣV )

ag
2 (1 + ΣV )

Amplitudes f
γ
ρ & f τ

ρ agf 2
π (1 + ΣV ) agf 2

π (1 + ΣV + hV �V

3 + α(s)
3 +

√
2β(s)
3 zV )

f
γ
ρ

f τ
ρ

1 + hV �V

3 + α(s)
3 +

√
2β(s)
3 zV

Renormalization factor of
KK couplings

1
zA

1
zA

(1 ∓ �A

2 )

certainly cures this disease. This turns out to parametrize

the ω self-energy Πωω(s) with an ansatz which satisfies its

vanishing at the origin.

It is worth stressing that using standard Breit–Wigner

lineshapes or their modified partners provides practically

unchanged fit results. This is due to the fact that the ρ and ω

masses (with tilde or not) are close to each other, and then,

the factor s/m2
ρ is very well approximated by 1 all along the

sensitive region of the ω peak.

In order to substantiate the possible changes, we have run

our code using BWa and BW′
a as inverse ω propagators. As

a typical example of modification, one can compare m̃ω =
782.44±0.06 MeV and Γ̃ω = 8.46±0.09 MeV while fitting

with BWa, and m̃ω = 782.49 ± 0.06 MeV and Γ̃ω = 8.36 ±
0.08 MeV when using instead BW′

a. For definiteness, in the

fits presented in this paper, Dω(s) will be modified as just

explained. As β(0) = 0, the pion form factor value at s = 0

is not sensitive to how the φ propagator is approximated.

Even if our choice is motivated, others are certainly pos-

sible as exemplified in [13, 49]. Transposed to our model,

the just mentioned choice would turn out to weight the full

ω contribution to the pion form factor by a factor s/m̃2
ω or

s/m2
ρ which restores Fe

π(0) = 1. The behavior of this choice

is identical to ours, basically because m̃ω and mρ are very

close to each other.

6.4 The charged and neutral kaon form factors

We give here the annihilation cross sections/form fac-

tors within the extended BKY–BOC breaking of the HLS

Lagrangian. Cross sections and form factors are related

through:

σ(e+e− → PP) = 8πα2
em

3s5/2
q3
P

∣∣Fe
P (s)

∣∣2 (48)

for any meson pair PP . qP =
√

s − 4m2
P /2 is the P mo-

mentum in the center-of-mass system. The kaon form fac-
tors are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fe
Kc

(s) = [1 − a
6zA

(2 + zV + 2ΣV + 2�V

− �A

2 (2 + zV )] − gρK+K−Fργ (s)

Dρ(s)

− gωK+K−Fωγ (s)

Dω(s)
− gφK+K−Fφγ (s)

Dφ(s)

F e
K0

(s) = −[ a
6zA

(1 − zV + ΣV − �V + �A

2 (1 − zV ))]
− g

ρK0K
0Fργ (s)

Dρ(s)
− g

ωK0K
0Fωγ (s)

Dω(s)
− g

φK0K
0 Fφγ (s)

Dφ(s)

(49)

where the γ –V transition amplitudes FV γ have been already
defined (see (43)). The V KK couplings can be read off from
the corresponding Lagrangian pieces ((100) and (101)).

The kaon form factors fulfill:

Fe
Kc

(0) = 1, F e
K0

(0) = 0 (50)

However, it is easy to check that these conditions are both
fulfilled, only if:

m2
ρ

Dω(0)
= zV m2

ρ

Dφ(0)
= −1 (51)

Therefore a fixed width Breit–Wigner shape for the φ

should be adapted as already discussed for the ω.

6.5 Parametrization of the φ propagator

As for the pion form factor, in order to fulfill Fe
Kc

(0) = 1
and Fe

K0
(0) = 0, one should impose that the ω and φ inverse

propagators at s = 0 are equal in magnitude and opposite in
sign to their respective Lagrangian masses (m2

φ = zV m2
ω =

zV m2
ρ ). Here again, this turns out to parametrize the full self-

energy Πφφ(s) by an ansatz vanishing at s = 0. For the two-
body loops, this is well known [39]; however, the three-body
loop is not known in closed form (as for Πωω(s)).

However, in contrast with the case for ω, using:

Dφ(s) = s − zV m2
ρ

− s

zV m2
ρ

(
m̃2

φ − zV m2
ρ − im̃φΓ̃φ

)
(BW′

a) (52)
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for the φ inverse propagator, instead of the usual (fixed
width) BWa form, should be further commented, as

√
zV mρ

significantly differs from m̃φ normally fitted16 (e.g. with
BWa).

Even if anticipating on our fit results, it is worth dis-
cussing this matter right now. As far as cross sections are
concerned, the two kinds of fits provide almost identical
results. In order to yield this result, almost all parameters
vary within errors except for17 zV , which could have been
expected. However, it will be shown that this change has
a marginal influence on all information of physics impor-
tance. Anyway, such kind of information is interesting as it
provides a hint on the model dependence of numerical re-
sults. Therefore, it has been of concern to compare results
obtained with either of BWa and BW′

a, when appropriate.
Before closing this Section, one may note that, at the φ

peak location (
√

s � 1020 Mev), the modified Breit–Wigner
lineshape provides:

zV m2
ρ + s

zV m2
ρ

(
m̃2

φ − zV m2
ρ

)� [(1.020) MeV
]2

which explains why the fit remains successful when using
BW′

a and also why zV should change correspondingly, tak-
ing into account that m2

ρ cannot much vary. The fit quality

of the e+e− → KK cross sections will illustrate the validity
of this parametrization of the φ propagator.

6.6 The Coulomb interaction factor

Beyond modelling, there is an important issue to discuss
when dealing with the charged kaon form factor. In the de-
cay φ → K+K−, and more generally as close to the KK

threshold, one has to take into account the Coulomb interac-
tion among the emerging charged kaons. This has been first
addressed in [67] and recently readdressed (and corrected) in
[47]. The net result of this effect is to multiply the charged
kaon cross section by the Coulomb factor18:

Z(s) =
[

1 + παem

1 + v2

2v

]
, v =

√
s − 4m2

K±

s
(53)

In [68], and later in [69], the cross section for charged
kaons is multiplied by Z(s)/Z(m2

φ). This turns out to con-
sider the Coulomb interaction as a breaking mechanism
which affects the charged kaon sector and not the neutral

16More substantially, with appropriate fits, one yields
√

zV mρ �
925 MeV, while a direct fit yields m̃φ � 1020 MeV!
17In fits with BWa for the φ meson, one gets zV = 1.368±0.005, while
with BW′

a the fit returns zV = 1.472 ± 0.001.
18Actually, the full electromagnetic correction factor is more compli-
cated, but the main effect comes from the Coulomb factor. One as-
sumes that the kaon data which have been submitted to fit have been
appropriately corrected for soft photon corrections, which allows to
cancel out the term named Ci in [47].

one; as the corresponding φ branching fractions are fit in-
dependently, this should not affect their results. One may
just have to remark that this turns out to incorporate the
Coulomb effects inside the corresponding estimates for the
φ → K+K− branching fraction.

6.7 About the φ → K+K−/φ → K0K
0

ratio

Up to well defined phase space factors generated by the kaon
mass splitting, the partial width ratio φ → K+K−/φ →
K0K

0
is the square of the corresponding s-dependent effec-

tive coupling ratio. Neglecting for each coupling corrections
terms of order greater than 1, one can derive from (100) and
(101):

gφK+K−

g
φK0K

0
= −

√
2zV − β(s) − γ (s)√
2zV + β(s) − γ (s)

[1 − �A] � − [1 − �A]

(54)

where the last equation follows from remarking (see Fig. 7 in
[46]) that the mixing angle β(s)—defined by (35)—is negli-
gibly small compared to

√
2zV in the φ mass region. There-

fore, this mechanism proposes a way for this ratio to depart
from unity.

In their throughout study of the φ → K+K−/φ →
K0K

0
ratio, the authors of [47] examined this issue using

several other mechanisms than this one and concluded that
none of them was able to accomodate a coupling constant
ratio smaller than one (in absolute magnitude). The global
fit, based on the suitably broken HLS model, provides a
new approach. In this framework, the determination of �A

is constrained by both e+e− → KK annihilation cross sec-
tions separately, and by some more light meson anomalous
decays, which also depend on �A.

7 The HLS anomalous sector

In order to treat radiative decays, i.e. the V Pγ couplings,
and some important annihilation channels (namely e+e− →
π0γ , e+e− → ηγ and e+e− → π0π+π−) within the HLS
framework, one needs to incorporate the appropriate La-
grangian pieces. These are given by the Wess–Zumino–
Witten (WZW) terms [70, 71] which traditionally account
for the triangle (AAP ) and box (APPP ) anomalies, to-
gether with the FKTUY Lagrangian pieces [23, 28]:

Lanom. = LWZW +
4∑

i=1

ci Li (55)

where the four ci are constants left unconstrained by the-
ory [28]. A closer examination of the FKTUY Lagrangian
allows to identify five different pieces—listed in Appendix
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D—and one then remarks that the accessible physics is sen-
sitive to the difference c1 − c2 and not to each of them sep-
arately. One is then left a priori with three unconstrained
parameters [23].

When no breaking is at work, the amplitudes for the
couplings19 P0γ γ and P0π

+π−γ at the chiral point—
computed within the FKTUY–HLS framework20—coincide
with those directly derived from the WZW piece in isolation
[46]. Due to a sign error21 in the FKTUY Lagrangian piece
LAV P , it was asserted in [46] that the constraint c3 = c4 was
mandatory in order to recover this property. Actually, this
property is automatically satisfied [22, 23]. In addition, we
have verified that this property is maintained within our fully
broken HLS model.

However, the condition c3 = c4, which is fulfilled by
VMD models [23] is successful and only turns out to reduce
the freedom in fits. Nevertheless, one has examined relaxing
this condition and found that our fit results are well compat-
ible with the constraint c3 = c4.

7.1 Breaking the anomalous HLS Lagrangian

At this step, the anomalous HLS Lagrangian can be written:

Lanom. = LAAP + LAPPP + LV V P + LV PPP (56)

with pieces listed in Appendix D. As for the non-anomalous
HLS Lagrangian, each among these pieces may undergo
specific symmetry breaking independently of each other.
This may lead to plenty of free parameters as illustrated by
M. Hashimoto [56] who implemented combined SU(3) and
Isospin symmetry breakings in the anomalous sector.

A simpler mechanism has also been proposed for SU(3)
breaking by Bramon, Grau and Pancheri [32, 33]; how-
ever, this was insufficient to account for both K∗[±,0] →
K [±,0]γ decay widths. In [36, 39] it was proposed to sup-
plement it with a breaking of the vector field matrix re-
sembling a vector field redefinition. Quite unexpectedly, this
provides a (successful) parametrization for the K∗ radia-
tive partial widths identical to those proposed by G. Mor-
purgo [72] within a completely different context. Interest-
ingly, this combined mechanism leaves totally unaffected
the other sectors of the LV V P piece we deal with; this is
well accepted by all data considered [36, 39]. This combined
breaking mechanism has been studied in detail [46] for all
pieces of Lanom. with similar conclusions.

19Here and in the following P0 denotes either of the π0, η and η′
mesons.
20E.g. using (55) and the V –γ transitions provided by the non-
anomalous HLS Lagrangian.
21We gratefully acknowledge B. Kubis (HISKP, Bonn University) for
having kindly pointed out the issue.

The combined breaking mechanism, as presented in [46],
has been examined by combining SU(3) and Isospin symme-
try breakings using the complete data set discussed below
within the minimization code underlying the present study.
It was concluded that possible Isospin symmetry break-
ing effects—not propagated from the field redefinitions
provided by non-anomalous HLS Lagrangian breaking—
provide invisible effects. It was then decided to neglect this
additional possible source of Isospin symmetry breaking, as
the parameter freedom it gives is found useless.

Therefore, for sake of clarity, one only quotes the specific
forms for the decay amplitudes K∗[±,0] → K [±,0]γ , refer-
ring the interested reader to [46] for more information.

As a summary, our dealing with the anomalous sector—
except for the limited K∗ sector—involves only 3 parame-
ters: c1 − c2 and c3 and c4; former studies [24, 37, 46] re-
main valid, as the condition c4 − c3 = 0 is well accepted by
the data, as will be shown shortly.

7.2 Radiative couplings

For what concerns the radiative decays of light mesons and
the e+e− → Pγ annihilation processes, one needs LAAP

and an effective piece named L′
AV P defined below.

In terms of the final renormalized pseudoscalar fields and
assuming the π0–η–η′ mixing defined in Sect. 4, one can
write:

LAAP = −3αem

πfπ

(1 − c4)ε
αβμν∂αAβ∂μAν

×
[
gπ0γ γ

π0

6
+ gηγ γ

η

2
√

3
+ gη′γ γ

η′

2
√

3

]
(57)

At leading order in breaking parameters, the coefficients
gP0γ γ are given by22:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gπ0γ γ = 1 − 5�A

6 + ε√
3
{ 5zA−2

3zA
cos θP − √

2 5zA+1
3zA

sin θP }
+ ε′√

3
{ 5zA−2

3zA
sin θP + √

2 5zA+1
3zA

cos θP }
gηγ γ = cos θP

3 { 5zA−2
3zA(1+v)

+ v 1+2zA

1+2z2
A

− �A

2 }
− √

2 sin θP

3 { 5zA+1
3zA(1+v)

+ v 1−zA

1+2z2
A

− �A

2 } − ε√
3

gη′γ γ = sin θP

3 { 5zA−2
3zA(1+v)

+ v 1+2zA

1+2z2
A

− �A

2 }
+ √

2 cos θP

3 { 5zA+1
3zA(1+v)

+ v 1−zA

1+2z2
A

− �A

2 } − ε′√
3

(58)

These clearly depend on the breaking parameters �A, zA

and v (the PS nonet symmetry breaking) and on the π0–
η–η′ mixing scheme (see (24)), especially on the singlet–
octet mixing angle θP . One should note that fπ/gπ0γ γ is

22One could expand the (1 + v)−1 factor and keep only the contri-
butions of orders 1 and v. However, in the present case, it does not
simplify the expressions.
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another way to define the neutral pion decay constant. The
other equations also illustrate that the so-called octet and
singlet decay constants as derivable from there have little to
do with the standardly defined ones, i.e. from the currents in
(25). This question has raised some confusion which moti-
vated the study in [38].

In order to treat the e+e− → π0π+π− annihilation pro-
cess the part of the LAPPP Lagrangian describing the so-
called box anomalies is needed. This can be written:⎧⎪⎪⎨
⎪⎪⎩

LAPPP = −iEεμναβAμ[gπ0π+π−γ ∂νπ
0 + gηπ+π−γ ∂νη

+ gη′π+π−γ ∂νη
′]∂απ−∂βπ+

E = − e

π2f 3
π
[1 − 3

4 (c1 − c2 + c4)]
(59)

with:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gπ0π+π−γ = 1
4 [1 − �A

2 + cos θP√
3

{ε + √
2ε′}

− sin θP√
3

{√2ε − ε′}]
gηπ+π−γ =

√
3

12 [{1 + 2vzA
1−zA

2z2
A+1

− �A

2 } cos θP

− {1 − vzA
2zA+1
2z2

A+1
− �A

2 }√2 sin θP ] − ε
4

gη′π+π−γ =
√

3
12 [{1 − vzA

2zA+1
2z2

A+1
− �A

2 }√2 cos θP

+ {1 + 2vzA
1−zA

2z2
A+1

− �A

2 } sin θP ] − ε′
4

(60)

Equations (58) and (60) show how the triangle and box
anomaly amplitudes behave under isospin, SU(3) and PS
nonet symmetry breakings. One should especially note the
intricacy of SU(3) and PS nonet symmetry breakings.

In order to derive the radiative decay couplings, an ef-
fective Lagrangian has been built up from LV V P and the
non-anomalous Lagrangian in the same way as in [46]. This
can be written in terms of the renormalized R1 fields:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L′
AV P = GεμναβFμν∂αAβ with G = − eg

4π2fπ

c4+c3
2

GFμν =∑P=π0, η, η′ P [gPργ ∂μρ
R1
ν + gPωγ ∂μω

R1
ν

+ gPφγ ∂μφ
R1
ν ] + gπ±ρ∓γ [π+ ∂μρ−

ν

+ π− ∂μρ+
ν ]

(61)

The expression for the various coupling constants gV Pγ can
be found in Appendix E. In order to derive the physical cou-
plings, one should first apply the transformation given in
(34) and then collect the various contributions to each of the
(neutral) ρR , ωR and φR .

Concerning the AV P couplings, it is quite interesting
to compare the expressions in (108)–(110) with the corre-
sponding ones in [38, 39], derived using an approximate ex-
pression for nonet symmetry breaking23 (the x parameter
in the quoted papers). Indeed, the three variants by which
nonet breaking occurs (see (107)) are close together and can
reasonably well approximated by xeff = 1 − v � 1 − λ/2.

23In order to restore the condition c3 �= c4, one should simply make in
[39] the replacement c3 → (c3 + c4)/2.

7.3 Breaking the V V P and V PPP anomalous
Lagrangians

The V PPP anomalous Lagrangian is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LV PPP = −iDεμναβ{[g0
ρπ∂νπ

0

+ g0
ρη∂νη + g0

ρη′∂νη
′]ρR1

μ

+ [g0
ωπ∂νπ

0 + g0
ωη∂νη + g0

ωη′∂νη
′]ωR1

μ

+ g0
φπ∂νπ

0 φ
R1
μ }∂απ−∂βπ+

with D = − 3g(c1−c2−c3)

4π2f 3
π

(62)

where one has limited oneself to display the V P0π
+π− sec-

tor. The leading terms of the couplings occurring in this ex-
pression are given in Appendix F.

The LV V P Lagrangian piece plays an important role in
the annihilation process e+e− → π0π+π−. Its relevant part
is:

LV V P = C

2
εμναβ

{[
∂μωR1

ν − (1 − hV )�V ∂μρR1
ν

]

× [∂αρ+
β π− + ∂αρ−

β π+]+ ∂μρR1
ν ∂αω

R1
β π0

+ [g̃ωπ0 ∂μωR1
ν ∂αω

R1
β + g̃ρπ0 ∂μρR1

ν ∂αρ
R1
β

+ g̃�π0∂μ�R1
ν ∂α�

R1
β

]
π0},

(
C = −Ncg

2c3

4π2fπ

)

(63)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃ωπ0 = −�A

4 − hV �V + ε cos θP −√
2 sin θP

2
√

3

+ ε′
√

2 cos θP +sin θP

2
√

3

g̃ρπ0 = −�A

4 − (1 − hV )�V + ε cos θP −√
2 sin θP

2
√

3

+ ε′
√

2 cos θP +sin θP

2
√

3

g̃�π0 = −ε
√

2 cos θP +sin θP

zA

√
6

+ ε2
cos θP −√

2 sin θP

zA

√
6

(64)

When going from R1-renormalized to the fully renormalized
vector fields R, one has to take some care with attributing the
s-dependence between the two neutral fields of each mono-
mial in the last two lines of (63). This should be tracked for
each R1 field while applying (34).

7.4 The e+e− → P0γ annihilation cross sections

Using the Lagrangian pieces given above, the transition am-
plitudes γ ∗ → Pγ can be written similarly to [46]:

T (γ ∗ → P0γ )

= iY

[
g

c3 + c4

2
KP0(s)

− (1 − c4)LP0

]
εμναβkμεν(q)pαεβ(p),

P0 = π0, η, η′ (65)
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where Y = −αemNc/πfπ has been factored out. q is the in-
coming photon momentum (q2 = s), p the outgoing photon
momentum (p2 = 0) and Nc = 3. The pieces provided by
LAAP are24:

Lπ0 = gπ0γ γ

3
, Lη = gηγ γ√

3
, L′

η = gη′γ γ√
3

(66)

using the gP0γ γ couplings defined in (58), where the (1 −
c4) has been factored out. The resonance contributions are
gathered in KP0(s):

KP0(s) =
∑

Vi=ρR,ωR,φR

H
P0
Vi

(s)FV R
i γ (s)

DVi
(s)

, P0 = π0, η, η′

(67)

where the H
P0
Vi

(s)—given in Appendix G—are the reso-
nance couplings to P0γ and the FV R

i γ (s) are the V –γ tran-
sition amplitudes defined in (43). The DVi

(s) are the vector
mesons inverse propagators already encountered. The cross
sections can then be written:

⎧⎨
⎩

σ(e+e− → P0γ ) = 3πα3
em

8π2f 2
π
[ s−m2

P0
s

]3|Fe
P0γ

(s)|2
Fe

P0γ
(s) = g

c3+c4
2 KP0(s) − (1 − c4)LP0

(68)

7.5 The e+e− → π0π+π− annihilation cross section

Following as closely as before the notations in [46], the am-
plitude for the γ ∗ → π+π−π0 is given by:

T (γ ∗ → π+π−π0)

= [Tsym(s) + Tbrk(s) + TAV P (s)
]
εμναβεμ(q)p0

νp
+
α p−

β

(69)

where εμ(q) (q2 = s) is the (heavy) photon polarization vec-
tor. Tsym is the symmetric part of the amplitude (in terms of
the ρπ ‘final’ states), while Tbrk (denoted Tρ in [46]) breaks
this symmetry. We have found appropriate to introduce sep-
arately the contribution TAV P (s) to the full amplitude gener-

24The corresponding expressions given in [46] carry a missprint: Each
of the right-hand sides of (41) is missing a factor of 2.

ated by the LAV P Lagrangian piece (see (105)); its first term
is symmetric in terms of the ρπ ‘final’ states. One has25:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tsym(s) = ie

4π2f 3
π
[4gπ0π+π−γ (1 − 3

4 [c1 − c2 + c4])
− 9

4g[c1 − c2 − c3](N1(s) + N0(s))

+ 3
2m2g(1 + ΣV )c3N1(s)N2(s)]

Tbrk(s) = ie

4π2f 3
π
[ 3

2m2g(1 + ΣV )c3][ Fργ (s)

D
ρ0 (s)

(N3(s)

+ N4(s)) + Fφγ (s)

Dφ(s)
N5(s)]

TAV P (s) = − ie

4π2f 3
π
[ c4−c3

4 m2(1 + ΣV )][N2(s)

+ 3N3(s) + 9N6(s)]

(70)

where all parameters and functions have been already de-
fined, except for the Ni(s) functions which are given and
commented in Appendix H. One has kept as much as possi-
ble the notations used in [46] in order to exhibit the effects
of our additional isospin symmetry breaking effects by sim-
ple inspection. Finally, TAV P (s) identically vanishes when
c4 = c3.

The differential cross section writes:

d2σ(e+e− → π+π−π0)

dx dy

= αem

192π2
s2G(x,y)

∣∣Tsym(s) + Tbrk(s) + TAV P (s)
∣∣2 (71)

using the (x and y) parametrization proposed by E. Ku-
raev and Z. Siligadze [73] who provided the kernel func-
tion G(x,y) reminded in Appendix H. Note also that each
of Tsym(s), Tbrk(s) and TAV P (s) also depend on x and y.

8 Ugraded breaking of the HLS model: a summary

In the former studies performed along the present lines [24,
39, 46], roughly speaking, one incorporated nonet symmetry
and SU(3) symmetry breaking in the pseudoscalar (PS) sec-
tor. In the vector meson sector, only SU(3) symmetry break-
ing was considered.

However, some important effects can be already at-
tributed to isospin breaking effects in the PS sector. Indeed,
it is the non-vanishing character of the mixing “angles” α(s)

and β(s) which induces s-dependent ρ–ω and ρ–φ mixings
at the one loop level. This non-vanishing of the α(s) and
β(s) functions proceeds from the kaon mass splitting which
breaks the symmetry between the neutral and charged kaon
loops and, then, allows to choose the analytic function ε1(s)

as non-identically vanishing. Therefore, except for the ω–φ

25 The N5 contribution was wrongly omitted in the study [46]; the error
was due to having missed that the two occurrences of the function γ

in the numerator in the last equation (115) come with two different
arguments (s+− and s). The authors of the study [46] apologize for
this inconvenience.
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system which would mix anyway at one loop, the full loop
mixing mechanism for vector mesons is the prominent con-
sequence for this limited account of isospin breaking.26

This quite limited breaking scheme, allows already for a
good account [24, 39, 46] of the available data. However,
within the realm accessible to the HLS model, two experi-
mental issues remain unsolved:

(i) The dipion spectrum lineshape in τ decays is consistent
with expectations from e+e− annihilations [39, 46], but
not its absolute scale [24].

(ii) The partial width ratio Γ (φ → K+K−)/Γ (φ → K0K
0
)

is found inconsistent with all reported expectations [47].
Obviously, this inconsistency propagates to the corre-
sponding e+e− annihilation cross sections.

The first topic has been shown to get a satisfactory—
but not perfect—solution by allowing some difference be-
tween ρ0 and ρ± meson properties to be fitted from data. If
the effect of a non-vanishing δm2 = m2

ρ0 − m2
ρ± was found

small, those generated by a non-vanishing δg = gρ0π+π− −
gρ±π0π± was found especially significant [24]. Moreover,
some rescaling of the τ spectra, consistent with the reported
experimental scale uncertainties remained unavoidable.

The second topic is experimentally addressed by consid-
ering [68, 69] that the Coulomb interaction27 plays as a sym-
metry breaking mechanism which modifies the SU(3) rela-
tionship gφK+K− = g

φK0K
0 between coupling constants to

gφK+K− = g
φK0K

0

√
Z(m2

φ). This approach, which turns out

to consider the Coulomb interaction as some breaking ef-
fect, may look unsatisfactory; anyway, it does not fit with
our breaking scheme.

These two issues motivated an upgrade of the breaking
scheme of the HLS model in order to check whether an ac-
ceptable solution can be derived. The extension to isospin
breaking of the BKY–BOC breaking mechanism is a pri-
ori an obvious candidate to examine. This has been done in
the preceding Sections with several interesting conclusions,
which can be summarized as follows:

(j) One does not find any signal for a mass or a coupling
difference between the ρ0 and ρ± mesons.28 However
the coupling difference between ρ–γ and ρ–W might
be enforced with respect to [24, 39, 46] if the break-

26Actually, as noted in previous works [39], V P and V V loops con-
tribute to the vector meson mixing; the effect of these additional loops
can be considered as absorbed by the subtraction polynomials of the
kaon loops.
27The function Z(s) in (53).
28Electromagnetic effects beyond the HLS model and the BKY break-
ing scheme may, of course, change a little bit this picture; however, the
phenomenological consequences of letting free this mass difference are
known to be negligible [24] as reminded before.

ing parameter product hV �V is found significantly non-
zero (see Table 1),

(jj) Everything goes as if the universal coupling g remains
unchanged in the anomalous sector, while one observes
that g is effectively modified to g(1+ΣV ) for the whole
non-anomalous sector. Therefore, isospin breaking in
the HLS model generates some mild disconnection be-
tween anomalous and non-anomalous processes which
needs to be explored.

(jjj) The partial width ratio Γ (φ → K+K−)/Γ (φ → K0K
0
)

is found subject to isospin breaking in a novel way com-
pared with the various possibilities examined in [47],

Topics (j) and (jj) are both important for scale issues. In-
deed, by disconnecting somewhat more than before the ra-
tio of transition amplitudes ρ–γ and ρ–W , one allows the
HLS model to get more freedom for the purpose to account
for scale issues. More important, both τ and e+e− physics
share the same universal coupling (g(1 + ΣV )), but it is no
longer common with the scale of the anomalous processes
which remains governed by g. Moreover, none among the
anomalous couplings, all displayed in several of the Appen-
dices, exhibits a dependence upon ΣV . Stated otherwise, the
anomalous couplings—which fix the scales of the anoma-
lous meson decay and annihilation processes—no longer
constrain the non-anomalous process scales as sharply as
formerly assumed [24, 39, 46].

Concerning the topics (ii) and (jjj), it should be stressed
that the parameter �A governing the change of this ra-
tio is not involved only in the ratio. Indeed, each of the

e+e− → K+K− and e+e− → K0K
0

cross sections should
keep valid absolute scales separately. Moreover, as clear
from Appendices E, F, G and H, and from (58) and (60)
given above, this change of scale should also fit with all
anomalous processes, including the π0 → γ γ partial width,
now within the partial width data sample submitted to the
global fit.

Before ending up this Section and this Part, let us remark
that the upgraded breaking of the HLS model allows to ad-
dress the question of the π0–η–η′ mixing in an unusually
large context. Moreover, as seen in Subsect. 6.3, the exact
structure of the ωππ coupling discussed several times in
the literature [48, 49, 64] can also be examined within the
largest possible data set.

A last remark is worth being emphasized. The scale treat-
ment and the partial width ratio quoted in (i) and (ii), within
the upgraded breaking of the HLS model show up as two
different aspects of the same mechanism. Indeed, the former
proceeds from applying the extended BKY–BOC breaking
scheme to LV , while the latter follows from applying the
same mechanism to LA.
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9 The data sets and their handling

In this Section, we outline the data sets submitted to the
global fit and the way correlated and uncorrelated uncer-
tainties are dealt with. Nothing really new is involved here
compared to what is already stated in [24, 39, 46], except
for the data sets associated with the e+e− → K+K− and
e+e− → K0K

0
cross sections. One may, thus, consider that

this Section is, to a large extent, a simple reminder provided
in order to ease the reading of the present paper.

9.1 The e+e− → π+π+ data

Four data sets have been collected recently in Novosibirsk
at the VEPP2M ring. The first one [74, 75], covering the
region from about 600 to 960 MeV, is claimed to carry a re-
marquably small systematic error (0.6%). Later, CMD-2 has
published two additional data sets, one [76]—covering the
energy region from 600 to 970 MeV—is supposed to reach a
systematic error of 0.8%, and a second set [77] closer to the
threshold region (from 370 to 520 MeV) has an estimated
systematic error of 0.7%. On the other hand, the SND col-
laboration has published [78] a data set covering the invari-
ant mass region from 370 to 970 MeV. Except for the two
data points closest to threshold which carry a sizable sys-
tematic error (3.2%), a reported systematic uncertainty of
1.3% affects this spectrum. These four data sets may be re-
ferred to in the following as “new timelike data” [39].

When dealing with these data sets, statistical and uncor-
related systematic uncertainties have been added in quadra-
ture as usual. However, these four data sets also carry a com-
mon correlated systematic uncertainty estimated to 0.4%
which affects all of them in the same way [79]. This is ac-
counted for by modifying appropriately the covariance ma-
trix as outlined in [39, 46]—see also Subsect. 9.7 below—
and by accounting for the data set to data set correlations.
This is performed by treating these four data sets altogether,
as if they were subsets of a single (merged) data set.

In order to be complete, we have also included in our fit
all data on the pion form factor collected formerly by the
OLYA and CMD Collaborations as tabulated in [80] and
the DM1 data [81] collected at ACO (Orsay). These data
will be referred to globally as “old timelike data”. The sys-
tematic uncertainties carried by OLYA data (4%) and CMD
(2%) contain an uncorrelated part which has been added in
quadrature to the reported statistical errors. A common cor-
related part of the systematics, conservatively estimated [79]
to 1%, has been dealt with appropriately. Instead, the accu-
racy of the DM1 data set being poor and its weight marginal,
we did not find any need to go beyond the published uncor-
related errors.

9.2 The e+e− → (π0/η)γ data

Since 1999, several data sets on the anomalous annihila-
tion channels e+e− → π0γ and e+e− → ηγ have been
made available by the CMD-2 and SND Collaborations. In
our analysis, we only use the provided data points up to√

s = 1.05 GeV.
The first one used is the data set from CMD-2 [82] on

the ηγ final state (η → π+π−π0) which carries a system-
atic error of 4.8%. CMD-2 has also provided [83] a second
data set on the ηγ final state, tagged with the decay mode
η → 3π0. The systematic uncertainty carried by this sample
is estimated to 6.1% and 4.1% for, respectively, the energy
regions below and above 950 MeV. More recently, CMD-2
has also published two more data sets [84] covering both the
(π0/η)γ final states, tagged with the 2-photon decay modes,
in the energy region from 600 to 1380 MeV. These are re-
ported to carry a 6% systematic error.

The SND Collaboration has recently published [85] two
different data sets for the ηγ final state with an estimated
systematic uncertainty of �4.8%. The first one covers the
energy region from 600 to 1360 MeV and the second from
755 to 1055 MeV. A sample covering the energy range from
600 to 970 MeV for the π0 → γ γ decay mode was also
published [86]. Finally, two data sets for both (π0/η)γ final
states with 14 data points (from 985 MeV to 1039 MeV)
from SND [87] are also available; these exhibit the much
lower systematic error of 2.5%.

Altogether, these two Collaborations have provided 86
measurement points for the e+e− → π0γ cross section and
182 for e+e− → ηγ for

√
s ≤ 1.05 GeV. Preliminary anal-

yses [46] did not reveal any need to split up correlated and
uncorrelated parts of the systematic errors for the (η/π0)γ

data samples. Nevertheless, we have made a few checks by
comparing fit results derived by adding in quadrature sta-
tistical and systematic uncertainties with fit results derived
assuming the reported systematic error to be 100% bin-to-
bin correlated. We did not observe any significant difference.
Therefore, when analyzing the e+e− → (π0/η)γ data, the
reported statistical and systematic uncertainties have been
simply added in quadrature as in [46].

9.3 The e+e− → π0π+π− data

This channel is important as it provides a single place where
the box anomaly sector [70, 71] is present. Other physics
channels involving the box anomaly in the η/η′ sectors ex-
ist (η/η′ → π+π−γ ) and may be relevant. However, the
overall experimental situation is unclear [37, 46], even if the
Crystal Barrel data sample [53] may look secure. Therefore,
we find preferable to wait for confirmation with new data
samples which could come from BES and KLOE.

There are several published data sets for the e+e− →
π0π+π− annihilation channel with various statistical and



Page 20 of 52 Eur. Phys. J. C (2012) 72:1848

systematic uncertainties. We first included in our data sam-
ple the data sets collected by CMD-2 which consist of a
measured sample covering the ω region [75] affected with
a global scale uncertainty of 1.3% and two others which
cover the φ region with a reported scale error of, respec-
tively, 4.6% [88] and 1.9% [89]. The most recent CMD-2
data sample [90] also covers the φ region with a scale un-
certainty of 2.5%.

SND has published two spectra covering altogether the
region from 0.44 to 1.38 GeV, the former below 980 MeV
[91], the latter above [92]. For both data samples, the corre-
lated part of the systematic uncertainty has been extracted in
order to be treated as a scale uncertainty (3.4% for [91] and
5% for [92], respectively); the uncorrelated parts have been
added in quadrature with the reported statistical errors.

Former data sets are also considered which cover the re-
gion in between the ω and φ peaks where physics constraints
are valuable. The most useful has been collected by the ND
Collaboration with 10% systematics and can be found in
[93], the latter is a small data sample from CMD [94] pro-
viding 5 measurement points with 15% systematics in the
intermediate region. Concerning these two complementary
data samples, we perform as in [46] and do not extract the
correlated part of the systematics as the accuracy is poor
enough that this could not lead to visible effects in global
fits. Finally, there also exists a small data sample from DM1
[95] which has been used for illustrative purposes only [46].

The analysis of these data samples has been performed in
[46]; however, as the N5 term which contributes to the cross
section (see (70)) was missing, the analysis is redone and the
conclusions revisited.

9.4 The τ± → π±π0ντ data

In the collection of data samples submitted to global fitting,
we also use the ALEPH [40], CLEO [42] and BELLE [41]
data sets. When dealing with τ data, it is important to note
that the relevant quantity, sensitive to the spectrum lineshape
and to its absolute normalization is given by:

1

Γτ

dΓππ(s)

ds
= Bππ

1

N

dN(s)

ds
(72)

where Γτ is the full τ width, Bππ the branching ratio to
ππν, and 1/N dN(s)/ds is the normalized spectrum of
yields as measured by the various experiments.

The data published by the ALEPH Collaboration corre-
spond directly to the quantity shown in the left-hand side of
(72). Instead, each of CLEO and BELLE has published sep-
arately the normalized spectrum of yields and the measured
branching ratio Bππ . In the τ data handling, we have con-
sidered the reported uncertainties on these measured Bππ ’s
as bin-to-bin correlated scale uncertainties; these come into
the various χ2 associated with each data set in the way re-
minded in Subsect. 9.7. Stated otherwise, they are no longer
fitted as previously done [24].

Following closely the experimental information provided
by [40–42], the scale uncertainties have been estimated to
0.51% (ALEPH), 1.53% (Belle) and 1.74% (CLEO). On the
other hand, a possible absolute energy scale uncertainty of
0.9% r.m.s. affecting the CLEO data sample [42] has not
been found significant [24, 39] and is not considered in the
present study. All these experiments have provided their sta-
tistical and systematic error covariance matrices; these are
the main ingredient of the χ2 functions used in the fits.

As the HLS model relies on the lowest mass vector meson
nonet only, it cannot access Γτ which is therefore taken from
the Review of Particle Properties [96]. Finally, our model
provides [39]:

dΓππ(s)

ds
= |Vud |2G2

F

64π3m3
τ

∣∣Fτ
π (s)

∣∣2G0(s) (73)

with:⎧⎪⎨
⎪⎩

G0(s) = 4
3

(m2
τ −s)2(m2

τ +2s)

s3/2 Q3
π

Qπ =
√

[s−(m
π0+mπ+ )2][s−(m

π0−mπ+ )2]
2
√

s

(74)

and Fτ
π (s) is given in (37). Isospin symmetry breaking spe-

cific of the τ decay will be considered and taken into account
as emphasized in Sect. 12.

Of course, the published τ spectra extend much beyond
the validity range of the HLS model, as this presently stands.
Therefore, when using it, we have to truncate at some s

value. Consistency with the treatment of scan data would
imply a truncation at 1.05 GeV. However, various studies
[24, 41] showing the behavior of fit residual clearly observe
that ALEPH data on the one hand and Belle and CLEO data,
on the other hand, exhibit inconsistent behavior starting in
the 0.9÷1. GeV region. Therefore, we have preferred trun-
cating the spectrum at 1. GeV, where the three spectra are in
reasonable agreement with each other.

9.5 The e+e− → KK data

Several data sets have been collected by the CMD-2 and
SND Collaborations on both annihilation cross sections
e+e− → K+K− and e+e− → K0K

0
. Here also, we have

discarded the data points above 1.05 GeV.
The oldest data sets, published by CMD-2 [88], provide

the spectra for both the neutral and charged decay chan-
nels with a systematic uncertainty of 4%. Recently CMD-
2 has reanalyzed four data sets for the neutral decay mode
[97] getting small systematic errors (1.7%). More recently,
CMD-2 has also published two scans of the charged mode
spectrum [98] with a systematic uncertainty of 2.2%.

On the other hand, SND has published in 2001 several
data sets [68]: 2 for the charged decay channel with a sys-
tematic error of 7.1%, 2 data sets in the neutral mode with
KS → π0π0 and 2 more with KS → π+π−, with respec-
tively 4.2% and 4.0% systematics.
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The quoted systematics are treated as correlated scale un-
certainty as outlined in Subsect. 9.7 below.

9.6 The partial width data set

In order to work out the fit procedure and get enough con-
straints on the physics parameters of the model, an impor-
tant input is the set of decay partial widths [39]. All decay
modes of the form V Pγ and Pγ γ not related with the cross
sections listed above should be considered. This covers the
radiative partial widths ρ± → π±γ , η′ → ωγ and φ → η′γ
on the one hand and (η′/η/π0) → γ γ on the other hand.
They have been extracted from the Review of Particle Prop-
erties [96]. The accepted values for radiative partial widths
for K∗± → K±γ and K∗0 → K0γ have also to be used
[96].

As the currently available data on e+e− → π+π− stop
slightly below 1 GeV, the phase of the φ → π+π− ampli-
tude and its branching ratio as measured by SND [99] are
relevant pieces of information, not included in the above
listed annihilation data.29 In contrast, the corresponding in-
formation for the ω meson is irrelevant as it is fully con-
tained in the amplitude for e+e− → π+π− (see (41)) and is
already part of the data sample.

With respect to former studies within the same frame-
work, the only new piece of information included in the fit
data set is the partial width π0 → γ γ . Indeed, as can be
seen from (58), the corresponding amplitude may constrain
�A as well as the e+e− → KK annihilation amplitudes.

In fits involving all the above quoted annihilation chan-
nels, one has no longer to consider the leptonic widths
(ρ0/ω/φ) → e+e− and the decay widths (ρ0/ω/φ) →
(η/π0)γ as they are essentially extracted from some of the
cross sections listed above which permanently enter our fit
procedure.

Therefore, the additional decay information to be used
as input to final fits represents in total 10 more pieces of
information.

9.7 Outline of the fit procedure (the method)

For all data sets listed above, one always has at one’s dis-
posal the statistical error covariance matrix. For scan data,
this may include the uncorrelated part of the systematic er-
rors; if not done at start, enough information is generally
provided to allow one to perform this (quadratic) sum. In the
case of τ data, the systematic error covariance matrix may

29However, one might have to be cautious with these data. Indeed,
as emphasized in [46]—see Sect. 13 therein—the single piece of in-
formation truely model independent is the product Bee Bππ . Therefore
separate values for Bee and Bππ , given as “experimental” values in
the various releases of the Review of Particle Properties, are actually
model dependent to an unknown extent.

be provided by the experimental groups (as ALEPH [40],
for instance).

In this case, for each group of data sets (π+π−, π0γ ,

ηγ , π+π−π0, K+K−, K0K
0
, π±π0ν) one computes the

partial χ2:

χ2
i = (m − M)T V −1(m − M) (Experiment # i) (75)

using matrix notations, and denoting by m and M the mea-
surement vector and the corresponding model function vec-
tor. V is the error covariance matrix already referred to. The
function to minimize is simply the sum of the χ2

i .
Actually, this is the procedure to estimate χ2

i when the
corresponding data sample is not subject to an overall scale
uncertainty. If such a scale uncertainty takes place for some
data set, one should perform a modification.

Let us assume that the data set i is subject to a scale un-
certainty; this is supposed30 to be a random variable ε(0, σ )

of zero mean (unbiased) and with r.m.s. σ , independent of s.
Then any fit corresponds to getting one sampling of ε(0, σ ),
named λi . In this case, (75) should be modified to:

χ2
i = [m − M − Aλi]

T V −1 [m − M − Aλi] + λ2
i

σ 2
(76)

where [100] A is traditionally the vector of the model values
M and the other notations are obvious. One can solve for λ,
which turns out to perform the change:

V −1 �⇒ W−1(σ 2) = [V + σ 2AAT
]−1

= V −1 − σ 2

1 + σ 2(AT V −1A)

(
V −1A

)(
V −1A

)T (77)

in (75). The modified covariance matrix W depends on the
vector A. As just stated, the best motivated choice for the
vector A is the model function A = M . However, this im-
plies a recursive determination of the modified covariance
matrix, and, therefore, recalculating (or inverting) large ma-
trices at each step of the minimization procedure (several
hundreds of times for each fit attempt). It happens, however,
probably because the experimental data we deal with are al-
ready accurate enough, that choosing A = m (i.e. the mea-
surement vector of the corresponding experiment) does not
sensitively affect the results and strongly improves the con-
vergence speed of the minimization procedure [46]. There-
fore, unless otherwise stated, we always perform this ap-
proximation.

30In practical use, a data set # i, subject to a scale uncertainty λi,0 is
supposed to have been corrected in order to absorb a possible bias;
this is the reason why the corresponding random variable is supposed
unbiased, e.g. carrying zero mean. If not, (76) should be modified by
performing λi → λi − λi,0.
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9.8 The discarded data sets

There exists data sets which have been discarded for the
present study. The most important are the three data sets col-
lected using the Initial State Radiation (ISR) method by the
KLOE [17, 19] and BaBar [18] Collaborations. These sup-
pose a specific statistical treatment as the structure of the
reported systematic errors is much more complex than for
any set of scan data. The method used in [46] for KLOE
2008 data [17] allows to deal with, but should be studied
carefully with each ISR data set separately.

In order to keep clear the message of the present study,
we prefer avoiding using now data sets invoking delicate sta-
tistical methods. Therefore, the ISR data sets [17–19] will be
treated in a forthcoming publication. Because of their high
statistics, if well understood, these data samples may im-
prove the physics results derived by using the model and the
fit procedure presented in this study.

Other data sets could have been useful:

• Those providing the pion form factor in the spacelike re-
gion close to s = 0 [101, 102]. Indeed such data could
severely constrain the pion form factor in the threshold
region. This was illustrated in [39] where an archaic form
of our model has been used. However, we gave up using
them—especially [101]—because there is some suspicion
concerning their estimated overall scale. Such a kind of
data would nevertheless help in getting more precise in-
formation on g − 2.

• More data involving the box anomaly, especially in the
η/η′ sectors may also help in constraining the model
parameters. For instance, the dipion spectra in η/η′ →
π+π−γ provide such information. Some available data
collected in [37], especially those for η′ → π+π−γ pro-
vided by the Crystal Barrel Collaboration [53], might be
considered sometime. However, new data sets on this sub-
ject, with larger statistics and better systematics should
come from the KLOE and BES Collaborations, especially
concerning the decay process η → π+π−γ . These are
certainly more easy to handle than the e+e− → ηπ+π−
annihilation data which in fine carry the same physics in-
formation.

9.9 The physics parameter set

It looks appropriate to give the list of the free model param-
eters to be fitted from data. The model parameters are of
various kinds:

• The basic HLS (4) parameters: the universal vector cou-
pling g; the relative weight a of the Lagrangian pieces LA

and LV , expected a � 2 from most VMD models; finally
the weights c3, c4 and c1 − c2 of the anomalous FKTUY
Lagrangian pieces to be added to the HLS Lagrangian in
order to address the full set of data outlined in the above
Subsections.

• SU(3) breaking parameters which modifies the physics
content of the HLS Lagrangian (zA, zV and zT ), to-
gether with the parameter named λ which accounts for
nonet symmetry breaking in the pseudoscalar sector. This
amounts to a total of 4.

• The isospin breaking parameters �A, ΣV , �V and hV

which affect the non-anomalous HLS Lagrangian. These
represent the Direct Isospin Breaking mechanism intro-
duced in this paper through the BKY mechanism.

• Some parameters [61] allowing the π0–η–η′ mixing. The
η–η′ mixing angle θP and the parameters named above
ε and ε′, which may account for, respectively, the π0–η

and π0–η′ mixings. The last couple of parameters is not
important for g − 2 estimates but may provide interesting
physics information. One may anticipate on fit results by
saying that the condition θ0 = 0 is well accepted by the
data as in previous analyses [38]; as a matter of conse-
quence θP can be (and will be) chosen as entirely fixed by
the nonet symmetry breaking parameter λ (see (26)). One
will also see that the pair ε and ε′ can be safely replaced
by a single free parameter [61]. Therefore, the number of
really free parameters accounting for the π0–η–η′ will be
reduced to one.

• Some subtraction parameters (8) involved in the mixing
functions of vector mesons, in the ρ meson self-energy
and in the γ –V transition amplitudes.

• Some more parameters (4) describing the mass and width
of the narrow ω and φ mesons. As a detailed description
of the loop corrections to their inverse propagators is of
little importance for the present purpose, there is no need
to go beyond.

Stated otherwise, only the parameters �A, ΣV , �V and
hV are new and all others have been already dealt with in
previous releases of the present model [24, 39, 46].

One may be surprised to face a so large number (�25) of
parameters to be fitted from data. This only reflects that the
number of physics pieces of information and of processes to
account for is also exceptionnally large: more than 900 data
points, six annihilation channels (π+π−, π0γ , ηγ , K+K−,

K0K
0
, π+π−π0), 10 radiative decay modes (V Pγ , Pγ γ

including now the π0 → γ γ partial width), the φ → π+π−
decay and finally the dipion decay mode of the τ lepton.
All these pieces of information should get simultaneously a
satisfactory description.

It should be stressed that the parameter space is sharply
constrained, as will be confirmed and illustrated by the
present study. One should also stress that the π+π−, π0γ

and ηγ cross sections, together with the decay modes re-
ferred to above, allow already a good determination of all fit
parameters except for two: c1 − c2 and �A. The former is
derived from fitting the 3 pion cross section, the second from
fitting both KK annihilation channels. Actually, in order to
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accurately determine ΣV , the dipion spectrum in the decay
of the τ lepton also plays a crucial role.

This peculiarity leads us to a motivated critical analysis
of the available π+π−π0, KK and τ data sets. As one plans
to motivate a value for the hadronic contribution to g − 2,
our dealing with the corresponding data should also be mo-
tivated.

As far as cross sections are concerned, it is already known
from our previous studies that the π+π−, π0γ and ηγ an-
nihilation cross sections are very well described within a si-
multaneous fit including also the decay data already listed.
This can be seen in [39, 46]; indeed Fig. 2 in [39] and Figs. 1
and 2 in [46] are indistinguishable from what is derived in
the present study.

10 Reanalysis of the π+π−π0 annihilation channel

Taking into account the error described in Footnote 25, the
analysis of the model description of the π+π−π0 data is
worth being redone. We take profit of this case in order to
exemplify how the dealing with data sets is done.

The available 3-pion data sets can be gathered into 3 dif-
ferent groups:

(i) The former data set collected by the Neutral Detec-
tor (ND) at Novosibirsk and published in [93]: we in-
clude in this group the few data points from [94]. These
mostly cover the energy region in between the ω and φ

peaks.
(ii) A CMD-2 data set covering the ω region [75] together

with a corresponding SND data sample [91] which ac-
tually extends up to 980 MeV.

(iii) Several CMD-2 data sets covering the φ region and ex-
tracted from [88–90], accompanied by a data set from
SND [92] starting at 970 MeV.

The small data sample from DM1 [95] is used for illus-
trative purposes and is not included in the fit procedures. It
would not influence the fit results.

In fit procedures, it is very hard to run MINUIT normally
because integrating the parameter dependent 3-pion cross
section (see (70) and (71)) renders prohibitive the execu-
tion time. Therefore, we still use here the iterative method
described and motivated in Sect. 10.3 of [46].

The choice of the 3-pion data sets considered in the
global fit was performed in [46] relying on the data sets
listed in (i). Indeed, the π+π− data used in the global fit
serve to fix all parameters, except for the ω and φ mass and
width parameters which are derived from having included
the π0γ and ηγ cross sections; therefore, the ND data hav-
ing a large lever arm (see downmost Fig. 5), they are alone
able to determine accurately the value for c1 − c2 (see third
line in Fig. 3).

Here one proceeds otherwise in order to learn more as
each of the just above mentioned data set carries intrinsi-
cally a value for c1 − c2. Nevertheless, the group of data
sets needed in order to fix all parameters except for c1 − c2

has been enlarged: Beside the π+π−, π0γ and ηγ cross
sections, we have included the τ decay information from
ALEPH, Belle and CLEO. This will be justified later on. On
the other hand, one assumes c3 = c4 which is justified in
Sect. 15.

Fits are performed by including either the CMD-2 data
sets or SND data sets, each in isolation. On the other hand,
separate (and independent) fits are performed in either of the
ω and φ regions. Therefore, in these fits, the ω region fits are
not influenced by the φ region information and conversely.
Moreover, CMD-2 and SND data are not influencing each
other. The data sets associated with the so-called ω and φ

regions is not ours; it has been performed by the experimen-
tal groups who published the corresponding data sets sepa-
rately.

It should be stressed, especially in the present case, that
the notion of data set covers, as importantly, the data points,
the full error covariance matrices (i.e. including the correla-
tions reflected by the non-diagonal entries), and all the ad-
ditional pieces of information provided by the experimental
groups. Among this last kind of information, the global scale
uncertainty included in the systematics should be suitably
accounted for. As far as scan data are concerned, the statis-
tical methods we use are the standard (text–book) methods
briefly reminded in Subsect. 9.7.

The results of these fits are summarized in Fig. 1 and
are commented on now. As a word of caution, it should be
noted that the experimental errors shown in these plots are
the quadratic sum of the reported statistical and systematic
errors, neglecting all correlations. As the error bars do not
(and cannot) take into account the correlations, they should
only be considered as a visual indication of what is going
on. The real distance of data points to its best fit curve is
instead accurately reflected by the χ2 values which, indeed,
take appropriately into account all the reported pieces of in-
formation about the error covariance matrix.

Top left Fig. 1 shows the fit of only the CMD-2 data in the
φ region; this provides a good fit31 (χ2/npoints = 110/80)
returning c1 − c2 = 1.21 ± 0.10. Top right Fig. 1 shows the
case for the SND data in the φ region in isolation; the fit
is much better (χ2/npoints = 26/33) but returns c1 − c2 =
2.18±0.13. These two fit values for c1 −c2 differ by �10σ ,
clearly tagging an inconsistency between the CMD-2 and
SND data sets in the φ region.

31The numbers for χ2/npoints are the 3-pion sample contributions
to the global χ2 and its number of data points. One cannot provide
the number of degrees of freedom as several hundreds of (other) data
points are involved in each fit.
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Fig. 1 Best fits to
e+e− → π+π−π0 cross
sections for data sets in
isolation. Left column displays
fits of the CMD-2 data, right
column displays fits of the SND
data. Top shows the φ region,
bottom the ω region. The
plotted data are extracted from
[89, 90] (CMD-2) and [92]
(SND) for the φ region and
from [75] (CMD-2) and [91]
(SND) for the ω region. The
empty circles (bottom right plot)
are superimposed on the SND fit
results and are not used in the
fit displayed in this Figure

On the other hand, one has performed likewise for the
ω region in isolation. One then gets for CMD-2 data a large
χ2/npoints = 26/13 with c1 −c2 = 1.29±0.04 (bottom left
Fig. 1). A closer examination of these data shows that an
important part of this relatively large χ2 is due to only the
first data point which falls right on the vertical axis in this
Figure.

Instead, the SND ω region data yield χ2/npoints =
48/49 and c1 −c2 = 1.12±0.06 (bottom right Fig. 1). These
two fit values for c1 − c2 differ by �3σ ; then, one may con-
sider that the CMD-2 and SND data sets in the ω region are
in reasonable agreement with each other.

One should note from fitting the SND ω data set, the
important effect of correlations: In the bottom right Fig. 1,
the large distance of the (SND) data points to their fitting
curve is compensated by the correlations in such a way
that χ2/npoints remains quite reasonable. The high level of
compensation can be checked by computing the “diagonal”
part32 of the χ2 which reflects the visual impression pro-
vided by the bottom right Fig. 1; one gets χ2

diag = 554!

32Denoting by V the full covariance matrix constructed as explained in
Subsect. 9.7, the (full) χ2 can be split up into its diagonal part χ2

diag =∑
i V

−1
i,i (�i)

2 and its non-diagonal part χ2
non diag =∑

i �=j V −1
i,j �i�j ,

In addition, one has found instructive to plot the CMD-
2 data together with the SND ones and the fit performed
to the SND data in isolation. Thus, the bottom right Fig. 1
illustrates that the correlations reported by SND allow a rea-
sonable reconstruction of the cross section valid for both the
SND and CMD-2 data sets.

For information, the fit performed using only the ND
data33 yields χ2/npoints = 25/37 and c1 − c2 = 1.30 ±
0.06, in good accord with the previous fit result c1 − c2 =
1.17 ± 0.07, derived under comparable conditions (see sec-
ond data column in Table 3 of [46]); the difference between
these two estimates for c1 − c2 can be attributed to the influ-
ence of the τ data samples.

The various estimates for c1 − c2 derived from our fits
are gathered in Fig. 3 using obvious notations. Using the fit
values for c1 − c2, as tag of consistency, this plot clearly
shows that the φ region SND data set behaves differently
from the other three-pion data sets.

From these considerations, one can conclude that:

where �i is the difference of the ith measurement and the correspond-
ing value of the theoretical cross-section.
33As reminded above, this data set covers the region in between the ω

and φ peaks.
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Fig. 2 Simultaneous fit of
e+e− → π+π−π0 cross section
on the φ region data from
[89, 90] (CMD-2) and [92]
(SND)

• In the ω region, there is a good agreement between
CMD-2 and SND data from within the filter of our model.

• In the φ region, at minimum χ2, one can get a reasonable
description of both CMD-2 and SND data, but with much
different values for the fit parameters as reflected by their
c1 − c2 values.

Therefore, one observes a qualitative difference between all
CMD-2 data and the SND data in the ω region, on the one
hand, and the SND data in the φ region, on the other hand.

One has pushed a little further the analysis by two more
series of fits:

• One has simultaneously submitted to fit the CMD-2
and SND data but only in the φ region. One gets the
result shown in Fig. 2. The fit might look reasonable
(χ2/npoints = 176/113) and returns c1 − c2 = 1.94 ±
0.07, close to the SND value, as can be seen from Fig. 3.

• One has submitted separately to fit the CMD-2 data
and the SND ones but simultaneously in the ω and φ

regions. The CMD-2 data return χ2/npoints = 136/93
with c1 − c2 = 1.31 ± 0.04, while the SND data return
χ2/npoints = 102/82 with c1 − c2 = 1.23 ± 0.06. Fig-
ure 4 displays the corresponding best fit curves with data

superimposed.34 Even if the χ2/npoints and the fit value
for c1 − c2 are reasonable, top right Fig. 4 leads us to
avoid using the SND φ region data.35

From this series of fit, one can conclude that it is possible
to fit simultaneously the CMD-2 and SND data in the φ re-
gion and get a reasonable solution. However, mixing the ω

and φ regions returns, in the case of SND, an unacceptable
solution, even if the χ2/npoints may look reasonable.

Therefore, one is led to include in the set of data samples
submitted to the global fit all 3-pion data referred to above,
except for the SND φ region data set. The corresponding fit
has been performed and is shown in Fig. 5 with c1 − c2 =
1.18 ± 0.03; the 3-pion data contribute to the global fit with
χ2/npoints = 220/179. The result shown at the last line in
Fig. 3 shows that the global fit performs, as expected, a good

34Here also, one may wonder that the top right Figure corresponds to a
quite reasonable fit quality. We thus remind once more that, for all fig-
ures shown, the effects of correlated uncertainties is not—cannot be—
shown. In the case of SND, this is larger than 5%. Along the same lines,
one should mention that the errors plotted are always the quadratic sum
of statistical and uncorrelated systematic uncertainties.
35In this case, the so-called “diagonal” part of the χ2 at minimum is
larger than 1100.



Page 26 of 52 Eur. Phys. J. C (2012) 72:1848

Fig. 3 c1 − c2 values returned
by fits. CMD2 ω denotes the fit
result of the data from [75],
SND ω those from [91],
ND + CMD the fit result to the
merged data from [93] and [94],
CMD2 φ indicates that only the
merged data from [88–90] have
been used in the fit, SND φ

corresponds to the fit of the data
from [92] and SND + CMD2 φ

provides the (simultaneous) fit
result of [88–90, 92]. Finally,
the last line shows the result for
the selected data consisting of
the sample reported in [75,
88–91, 93, 94]. The vertical
dotted line serves to show how
the fits perform the averaging

(fitted) average of c1 − c2. This also indicates that the data
sets considered are statistically consistent with each other.

11 Analysis of the KK annihilation data

As reminded in Subsect. 9.5 above, several data samples are
available collected by the CMD-2 and SND Collaborations
on VEPP–2M at Novosibirsk. The CMD-2 data are extracted
from [88, 97, 98] and the corresponding SND data from
[68]. The quoted systematics are treated as a scale uncer-
tainty and dealt with as explained in Subsect. 9.7.

The published data being cross sections, the fitting func-
tion is:

σ(s) = 8πα2
em

3s5/2
q3
K

∣∣Fe
K(s)

∣∣2 with

qK = 1

2

√
s − 4m2

K, (K = K±, K0/K
0
) (78)

for each of the 2-kaon annihilation channels; the kaon form
factors Fe

K(s) are given by (49). Both cross sections are cor-
rected for the intermediate photon dressing. Moreover, for
the charged kaon channel, the additional Coulomb factor
[47, 67] Z(s), reminded in (53), is understood and is not
“renormalized” as in [68, 69] with Z(m2

φ).

11.1 Fitting the KK data

In order to perform this analysis, we have done a first se-
ries of fits using separately the CMD-2 neutral and charged
KK channels and the corresponding data from SND. In or-
der to avoid φ peak information not following from the KK

data, we have decided to remove the data from the π0γ and
ηγ annihilation channels from the fit procedure. However,
anticipating on our final results, we have included the three
data sets from ALEPH, Belle and CLEO referred to above.

Therefore, the additional data sample is composed of all
e+e− → π+π+ data, all τ± → π±π0ν data and 18 partial
width decays (all V Pγ and Pγ γ modes and also the three
leptonic decays (ρ/ω/φ) → e+e− modes). None among
these pieces of information has any direct influence on the
description of e+e− → KK , even through the φ mass and
width parameters which are, thus, solely determined by the
KK data.

The results are shown in Fig. 6, left side for the K0K
0

data and right side for K+K−. One observes a good descrip-

tion of the K0K
0

data for each of the samples provided by
the SND or CMD-2 Collaborations. The picture is quite dif-
ferent for the K+K− data; the CMD-2 data sample is well
fitted, while the SND sample is poorly fitted. Additional in-
formation for these peculiar fits is displayed in the first two
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Fig. 4 Simultaneous fit of the
e+e− → π+π−π0 data in the ω

and φ regions. Top figures show
the case for the merged data
from [91, 92]. Bottom figures
display the fit results for CMD-2
data from [75, 89, 90]

lines of Table 2. One can see there, that the value for χ2/N

associated with the K0K
0

data are the same for both data
samples, while they differ significantly for the correspond-
ing K+K− data samples.

Fitting simultaneously both CMD-2 and SND K0K
0

data
samples only, returns the same χ2 information, illustrating
that the corresponding data samples are perfectly consistent
with each other. Simultaneous fits of all KK data confirm
this property (see third line in Table 2). Interestingly, the
χ2’s at best fit in the third and fourth lines practically coin-
cide with the sum of the corresponding information in the

first two lines of the same Table. This illustrates that the so-
called additional data set sharply constrain the KK cross
sections. Moreover, in view of the fit results for CMD-2
data, one can consider that the constraints are well fulfilled
by data, giving a strong support to our modelling.

The ratio of cross sections σ(e+e− → K0K
0
)/σ (e+e−

→ K+K−) is observed to provide a valuable piece of in-
formation, as it allows to magnify the effects mentioned just
above. This is shown in Fig. 7, where the data for this ratio
are plotted normalized to the ratio of cross sections as com-
ing out from our fits. The data ratio plotted in the top Fig. 7

Table 2 Fit quality of the K+K− and K0K
0

data. Beside the addi-
tional data sample (see text), each line in the first column tells which
KK data samples have been included in the fit procedure. χ2

0 is the χ2

value for K0K
0

data, χ2
c is the corresponding information for K+K−

data. The N ’s are the respective numbers of data points. The last data
column provides the global fit probability for each case

χ2
0 /N χ2

c /N �A (%) Fit Prob (%)

K0K
0 + K+K− (SND stand-alone) 60.10/60 56.54/26 8.54 ± 1.93 33.7

K0K
0 + K+K− (CMD-2 stand-alone) 59.30/59 29.00/36 5.98 ± 0.86 85.8

K0K
0

(SND & CMD-2) 115.68/119 – 5.51 ± 3.21 81.8

K0K
0 + K+K− (SND & CMD-2) 119.83/119 88.09/62 6.29 ± 0.80 40.4

K0K
0

(SND & CMD-2) + K+K− (CMD-2) 118.54/119 29.27/36 6.09 ± 0.79 80.8
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Fig. 5 Global fit of the
e+e− → π+π−π0 data. Top left
enhances the ω region, top right
the φ region. The data
superimposed are all fitted.
Bottom plot shows the
intermediate region; all plotted
data are included in the fit
procedure, except for the DM1
data set. The particular data sets
used are described in the main
text and in the captions to
previous Figures

is derived from the information given in [69] and one can
estimate its uncertainty to �2.3÷2.4%.

The CMD-2 data points normalized to the fit expectations
bin per bin is perfectly consistent with 1 over the whole s

region covered by the φ resonance. The dotted lines in top
Fig. 7 represent the experimental scale uncertainty and do
not take into account the uncertainties on the fitting func-
tions. This also illustrates that our modified Breit–Wigner
lineshape is very well accepted by the data.

In contrast, the SND data exhibit a behavior reasonably
well averaged by the fit function ratio; however, it does not
look consistent with flatness—at least as well as for CMD-2
data.

It follows from these considerations that the largest self-
consistent data set for the KK channel is made by merging

all CMD-2 data and the K0K
0

data provided by SND (see
last line in Table 2).

As a matter of information, beside getting an appropriate

description of both e+e− → K0K
0

and e+e− → K+K−
cross sections, it is worth remarking that the radiative partial
widths included in the fitted data set are also well accounted
for. For instance, including also the e+e− → (π0/η)γ cross

sections in the fitted data set, the remaining set of 10 radia-
tive decays yields a quite remarkable χ2/n = 6.5/10, with
estimated Γ (π0 → γ γ ), Γ (η → γ γ ) and Γ (η′ → γ γ ) at
respectively 0.27σ , 1.77σ and 0.23σ from their accepted
values [10]. As the corresponding couplings are strongly
affected—especially gπ0γ γ —by �A (see (58)), we consider
that physics validates our model.

11.2 The HLS solution of φ → KK puzzle

The partial width decays φ → KK are defined by:

Γ (φ → KK) = q3
K

6π
|gφKK |2,

(
qK = 1

2

√
m2

φ − 4m2
K

)

(79)

Therefore, one has:

Γ (φ → K+K−)

Γ (φ → K0K
0
)

= Br(φ → K+K−)

Br(φ → K0K
0
)

= R

∣∣∣∣gφK+K−

g
φK0K

0

∣∣∣∣
2

Z(m2
φ)

� RZ
(
m2

φ

)
(1 − 2�A) (80)



Eur. Phys. J. C (2012) 72:1848 Page 29 of 52

Fig. 6 Fit of the e+e− → KK

data. Left side are K0K
0
, right

side K+K−

where R = 1.528 originates from the ratio of momenta and
the Coulomb factor computed at the φ peak is Z(m2

φ) =
1.049. The ratio of couplings has been given in (54). There-
fore, using �A from the last line in Table 2, one gets:

Br(φ → K+K−)

Br(φ → K0K
0
)

= 1.41 ± 0.03 (81)

The same ratio can be computed from information given
by CMD-2 in a recent paper [69] and amounts36 to 1.47 ±
0.04. The difference between the CMD2 estimate and ours
amounts to about 2σ . Our final result, obtained by using
the largest possible ensemble of data sets, provides �A =
(6.34 ± 0.70) × 10−2 and then the ratio of branching ratios
becomes 1.40 ± 0.02.

Therefore, the HLS model, equipped with the (BKY) di-
rect isospin symmetry breaking mechanism, provides a so-
lution to the long-standing puzzle concerning the φ → KK

decays as thoroughly analyzed in [47] and more recently

36The uncertainty might be somewhat overestimated, as one has as-
sumed independent the errors for Br(φ → K+K−) and Br(φ →
K0K

0
).

discussed in [68]. In our approach, the mechanism responsi-
ble for this is, in fine, the kaon field renormalization which
should be performed within the HLS model once isospin
symmetry breaking is performed à la BKY–BOC. Indeed,
as the neutral and charged kaon field renormalization fac-
tors play in opposite directions (see (18)), they pile up in the
ratio.

The relatively large value found for �A indicates that
several sources contributes to the BKY breaking of isospin
symmetry. The contribution to �A due to the light quark
mass difference [58] (�1%) is certainly not the single source
and others—like electromagnetic corrections—are certainly
absorbed within the numerical value for �A. Moreover, it
is also likely that different corrections at the V K+K− and

V K0K
0

vertices may influence the fit value for �A. Being
global, the BKY breaking mechanism cannot allow to disen-
tangle the various contributions to �A which share a com-
mon order of magnitude (each at the percent level). The situ-
ation is quite different from the breaking of SU(3) symmetry
which is widely dominant numerically and can motivatedly
be compared to ChPT expectations [38].
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Fig. 7 Ratio of the

e+e− → K0K
0

and
e+e− → K+K− cross sections
normalized to the model ratio.
Top panel displays the case for
CMD-2 data, Bottom panel
those for SND data. In the top
panel, the residual experimental
systematics band (2.3%) is
figured by dashed lines.
Correlated systematics between
charged and neutral modes are
expected to cancel out in the
experimental ratios

12 Analysis of the τ decay data

Using Fτ
π (s), the pion form factor in the decay of the τ lep-

ton (see Subsect. 6.2), the partial width of the two-pion de-
cay is given by (73). On the other hand, the quantity which
encompasses the full experimental information in this field
is (72):

H(s) = 1

Γτ

dΓππ(s)

ds
SEWGEM(s) = Bππ

1

N

dN(s)

ds

as, indeed, the lineshape and the absolute magnitude of each
experimental spectrum are merged together. The full width
Γτ is taken from the RPP [10]. The last two factors in
the middle expression above account for isospin symmetry
breaking effects specific of the τ decay: SEW = 1.0235 for
short range corrections [103], GEM(s) for long range cor-
rections [104–106].

In former studies, it was shown that the lineshape alone
was perfectly consistent with annihilation data [24, 39].
However, if one also takes into account the absolute magni-
tude—represented by the branching ratio Bππ in the for-
mula reminded just above—the agreement is poor. In order
to reach a satisfactory description of the data, Ref. [24] in-
troduced a mass difference δm2 and a coupling difference
δg between the neutral and charged ρ mesons, which under-
lays all reported stand-alone fits to τ spectra [13]. However,

additional scale factors were needed and their fitted values
were found consistent with the reported scale uncertainties
[40–42].

However, the present study, as reflected by Table 1 above,
has clearly demonstrated that isospin breaking of the HLS
model does not necessarily result in non-vanishing δm2 and
δg at leading order.37 As emphasized above, the BKY–BOC
breaking scheme instead leads to a difference between the
universal vector coupling (g) as it comes in the anoma-
lous sector and in the non-anomalous sector of the HLS
Lagrangian (g(1 + ΣV )). We prove, here, that this pro-
vides a much better account of all data than only assum-
ing some mass and width differences supplemented with
some residual rescaling. Stated otherwise, it is because Di-
rect Isospin Breaking acts differently in the anomalous and
non-anomalous sectors that the model yields an almost per-
fect description for all data, without any need for some addi-
tional rescaling. In this mechanism, the single sensible dif-
ference between the pion form factor in e+e− annihilations
and in τ decays resides in the difference between the transi-
tion amplitudes γ –V and W–V .

37Our present results as well as formers [24] tend to indicate that an
electromagnetic correction to the ρ mass does not give a significant
effect (see Footnote 6).
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Fig. 8 Global Fit of the dipion
spectrum in the decay of the τ

lepton. The data points are those
from ALEPH [40], Belle [41]
and CLEO [42]. The inset
magnifies the ρ peak region

Figure 8 shows the global fit result for the function
H(s) defined just above together with the data points from
ALEPH [40], Belle [41] and CLEO [42] Collaborations.38

The inset magnifies the ρ peak region. One can clearly con-
clude to a nice agreement between model and data, all along
the fitted region—from threshold to 1 GeV. The correspond-
ing pion form factor in e+e− annihilations coming out of the
global fit is represented in Fig. 9. These two Figures illus-
trate that the simultaneous description of e+e− and τ data
allowed by the model is, indeed, as successful in both sec-
tors.

Figure 10 shows in two different manners the τ resid-
ual behavior. Top Fig. 10 displays the usual residuals for
the function H(s), while downmost Fig. 10 represents
(Hmodel(s) − Hdata(s))/Hmodel(s). These can be compared
with respectively Fig. 3 and Fig. 4 from [24] where the (δm2,
δg) parametrization of isospin breaking was used. The com-
parison clearly indicates that the present model better per-
forms for all τ data sets and, especially, for the ALEPH [40]
data.

38When dealing with τ plots, the error bars represent the diagonal er-
rors, i.e. no account of bin-to-bin correlations is attempted.

In order to allow for a deeper comparison with the

previous release [24] of the present model, we reproduce

in Table 3 (first data column) the fit results reported in

[24] together with our new fit results under various condi-

tions.

The second data column in Table 3 is derived excluding

the KK data sets in order to be as close as possible to [24].

One observes, for almost all data sets, better fit results than

in the former release of our model [24]. There is no effect

in introducing the 3-pion data set from SND [91] (covering

the ω region) as the χ2
3π/dof = 1.11 is unchanged. It is also

worth noting that the partial width for η → γ γ is found at

0.43σ from its accepted value [10]; the distance is 0.11σ for

η′ → γ γ and 0.47σ only for the newly introduced π0 →
γ γ decay mode.

One may conclude therefrom that the HLS model,

equipped with the mixing schemes provided by loops and

by the direct isospin breaking procedure, provides a fully

satisfactory solution to the e+e− − τ puzzle, both in mag-

nitude and in shape. The relatively poorer fit quality for the

BELLE data might be related with the absolute scale issue
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Fig. 9 Global Fit of the pion
form factor squared in e+e−
annihilations. The data points
are those from CMD-2 [75–77]
and SND [78]. One has not
plotted the so-called “old
timelike” data also (mostly)
collected at Novosibirsk. The
inset magnifies the ρ peak
region and the behavior at the
ρ–ω interference region

Table 3 Comparison of the fit qualities between the fit results of the
model as it was in [24] (second data column) and as it is now (third
data column). KK data were not submitted to fit in [24]. The ‘+1’
added to the number of data points for τ data stands for the experimen-
tally given r.m.s. affecting the (fitted) global scale. The 3-pion data set

information is displayed boldface in order to show the difference in the
fit data set: In the second data column, the 3-pion data set from SND
[91] has been (newly) introduced and in the last data column only the
3-pion data sets collected below the φ region are considered

χ2/N (δm2, δg, c3 = c4) Statistical Information

[24] excl. KK excl. π+π−π0 A B

Decays 16.20/9 5.53/10 6.13/10 11.36/10 5.94/10

New Timelike π+π− 126.47/127 119.73/127 130.33/127 127.50/127 129.65/127

Old Timelike π+π− 60.45/82 51.64/82 56.36/82 56.09/82 56.60/82

π0γ 66.07/86 66.84/86 61.19/86 67.21/86 66.93/86

ηγ 135.78/182 128.89/182 122.64/182 122.62/182 121.37/182

π+π−π0 139.44/126 200.92/179 – 230.98/179 105.91/99

K+K− – – 29.93/36 35.16/36 29.85/36

K0K
0

– – 120.07/119 117.94/119 119.99/119

ALEPH 36.51/(37 + 1) 21.25/37 15.92/37 16.80/37 16.16/37

Belle 28.29/(19 + 1) 27.02/19 34.19/19 32.22/19 33.62/19

CLEO 39.46/(29 + 1) 35.12/29 35.86/29 36.09/29 36.03/29

χ2/dof 648.68/680 656.93/726 612.63/703 853.98/881 722.05/801

Global Fit Probability 80.1% 96.8% 99.4% 73.7% 97.9%
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Fig. 10 Global Fit of the
function H(s) = Bππ/NdN/ds

in τ decays. Top figure shows
the residuals as a function of s;
downmost figure shows the
function
(Hfit(s) − Hdata(s))/Hfit(s). The
fitted region extends from
threshold to 1.0 GeV/c, i.e. over
the region where the behavior of
the data sets from ALEPH [40],
Belle [41]and CLEO [42] reach
some agreement

Fig. 11 Ratio of the transition
amplitudes ρ0–γ and ρ±–W±,
fργ /fρW following from the
global fit and neglecting loop
corrections. This corresponds to
the ratio shown in Table 1 and
reproduced in Sect. 12. Top
figure shows the real part as a
function of s, bottom figure the
imaginary part. Uncertainties
due to fit parameter errors are
not given; the uncertainty band
for fργ /fρW − 1 can estimated
to a few percent
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Fig. 12 Ratio of the couplings
gωππ/gρππ as a function of

√
s,

as coming from the global fit
(this ratio is explicitly given in
Sect. 13). The vertical line
locates the PDG mass of the ω

meson. The uncertainty band
due to fit parameter errors is not
shown

Fig. 13 A set of recent
estimates of the muon
anomalous magnetic moment
aμ together with the BNL
average value [1, 2]. These are
extracted from [14] (DHMZ10),
[16] (JS11), [115] (HLMNT11)
and [13] (DHea09). Our own
results are figured by A and B
for respectively solutions A and
B. The statistical significance of
the difference between the
estimated and measured values
of aμ is displayed on the right
side of the Figure for each of the
reported analyses

revealed by the stand-alone fit39 provided by BELLE [41].
Therefore, one can confirm that:

• The main drawback of the breaking model in [24] was
a too tight correlation between the universal coupling

39The fit published by BELLE reveals a very significant improvement
if the absolute normalization of their spectrum is left free; instead of
returning an absolute scale of 1, the best fit exhibits a significant �2%
shift.

in anomalous and in non-anomalous processes. This has
been cured by defining the Direct Isospin Breaking mech-
anism substantiated by a highly significant value for
ΣV = (3.74 ± 0.42)%.

• The breaking model in [13] may account insufficiently for
the difference between the ρ0–γ and ρ±–W± transition
amplitudes.

Therefore, the reported discrepancies between the pion
form factor in e+e− annihilations and in τ decays can al-
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ways be attributed to an incomplete treatment of isospin
symmetry breaking. For information, Fig. 11 displays the
ratio of the transition amplitudes fργ and fρW as coming
from the global fit and already given in Table 1:

f
γ
ρ

f τ
ρ

= 1 + hV �V

3
+ α(s)

3
+

√
2β(s)

3
zV

We have found appropriate to provide in the third data
column of Table 3 the results of the fit obtained keeping the
KK data sets, while excluding all the π+π−π0 data sets.
The fourth data column reports on the fit quality reached
using the full data set we considered safe. This means all
data sets discussed above, except for two SND data sets: The
e+e− → 3π data set collected above 970 MeV [92] and the
e+e− → K+K− data set. These have been shown to provide
either an unacceptable behavior for the fit solution [92], or a
poor χ2 [68]. In this configuration, one fits 906 data points
(including the 10 individual decay modes) corresponding to
881 degrees of freedom. The global fit probability is highly
favorable (71%). This configuration will be referred to in the
following as “Solution A” or “Configuration A”.

In this Solution A, one observes some tension between
the KK and π+π−π0 data groups. Indeed, comparing its
content with the second data column, one observes that the
π+π−π0 data group yields a χ2 increased by 30 units. In-
stead, comparing Solution A with the third data column in
Table 3, one does not observe any significant degradation

the fit quality of the KK data group: The χ2 for the K0K
0

data group is improved by 2 units, while the χ2 for K+K−
data group is worsened by 6 units.

As this 30 unit increase of the (π+π−π0) χ2 may look
abnormal, we have tried tracking its origin. This issue is
clearly related with having introduced the KK data which
influence the model description of the φ region. Therefore,
we have redone fits excluding all the π+π−π0 data sets cov-
ering the φ region. One obviously remarks a significant ef-
fect; this configuration will be named hereafter “Solution B”
or “Configuration B”.

In the following, any differential effect between what has
been named Solutions A and B is examined carefully and
commented.

13 Structure of the ω → ππ coupling

As noted in Subsect. 6.3, the coupling ω → ππ in the up-
graded broken HLS model is given by:

gωππ = ag

2

[
(1 − hV )�V − α(s)

]
. (82)

This expression exhibits two contributions of different ori-
gin. The first part is a constant term generated by the Direct
Isospin Breaking procedure defined at the beginning of this

paper, the second is generated by the kaon loop mixing pro-
cedure already defined in [39, 46] and reminded above. This
structure resembles that given in [48, 49]. It is interesting to
examine the behavior of the ratio:

gωππ

gρππ

= [(1 − hV )�V − α(s)
]

as a function of
√

s. It is given in Fig. 12, where the vertical
line figures the ω mass location. Of course, the effective part
of this function is determined by the ω Breit–Wigner distri-
bution and is concentrated within a few tens of MeV’s apart
from the ω peak position.

From the best fit discussed in the above Section (see the
second data column in Table 3), one gets the central val-
ues for the fit parameters and their error covariance matrix.
These have been used to generate gωππ by Monte Carlo
methods. Computed with using the RPP [10] mass for the
ω meson, this gives40:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gωππ = (−0.071 ± 0.003) + i(0.150 ± 0.002)

�V = (−5.22 ± 0.75) × 10−2, hV = 1.690 ± 0.107

a = 2.288 ± 0.006, g = 5.556 ± 0.014,

ΣV = (3.74 ± 0.50) × 10−2

(83)

The observed useful correlations are 〈δΣV δ�V 〉 = −0.056,
〈δΣV δhV 〉 = 0.028 and 〈δhV δ�V 〉 = 0.232.

In order to stay consistent with [48, 49] definitions, one
can consider that gI

ρππ = ag(1+ΣV )/2 and gI
ωππ = ag(1−

hV )�V /2 are the couplings of the ideal fields, defined as
such before applying the loop mixing. Therefore, the quan-
tity G:

G = gI
ωππ

gI
ρππ

= (1 − hV )�V (1 − ΣV ) (84)

should be close to the parameter carrying the same name in
[49]. One finds G = (3.47 ± 0.64) × 10−2 to be compared
with the two estimates of the same parameter given in [49]:
G = (7.3 ± 3.2) × 10−2 when relying on the data from [75]
and G = (4.4 ± 0.4) × 10−2 when using, instead, the [76,
77] data.

Referring to (28), one can conclude41 that there is much
more isospin 0 inside the physical ρ than isospin 1 inside
the physical ω. In this case, one also gets for the direct term
ag(1 − hV )�V /2 = −0.332 ± 0.024. Comparing this num-
ber with Re(gωππ ), it is clear that ag(1 − hV )�V /2 and

40The quoted uncertainties for �V , hV , a and ΣV are the improved
uncertainties returned by the routine MINOS of the MINUIT package
[107].
41The isospin 0 component inside the physical ρ meson is given by
hV �V , while the isospin 1 part inside the ω is given by (1 − hV )�V .
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Re(α(m2
ω)) compensate to a large extent, in such a way that

gωππ is highly dominated by its imaginary part.42

14 The π0–η–η′ mixing properties

The mixing of pseudoscalar neutral mesons has been ad-
dressed in Sect. 4, especially in Subsects. 4.3 and 4.4. The
present Section is devoted to examining how the upgraded
breaking scheme developed in this paper performs compared
to the results previously derived in this field [38]. In order to
perform this study, we let free the pseudoscalar mixing angle
θP , which mostly determines the relationship between the
physical η and η′ fields and their underlying octet and sin-
glet components η0

R and η8
R . The parameters ε and ε′ which

account for, respectively, the π0–η and π0–η′ mixing are
also let free.

As shown in [38] and revisited in Subsect. 4.3 above, the
ChPT mixing angles [50, 51] θ0 and θ8 can be expressed in
terms of the nonet symmetry breaking parameter λ (or, bet-
ter, using instead v defined in (22)), zA the SU(3) breaking
parameter of the Lagrangian LA and the singlet–octet mix-
ing angle θP . Therefore, they can be estimated from fitting
the data already defined.

14.1 The mixing angles θ0, θ8 and θP

The mixing angles θ0 and θ8 have been recently introduced
with the 2-angle description of the η/η′ mixing [50, 51]. The
broken HLS model provides expressions for these in terms
of the singlet–octet mixing angle θP and of the breaking pa-
rameters zA and λ (see (26) and also [38]).

Therefore, using the fit results (parameter central values
and their error covariance matrix) one can reconstruct the
values for θ0 and θ8. Having left free θP , one obtains the
results shown in the first data column of Table 4. Therefore,
as in former studies, one observes that θ0 is small and its
distance to zero is only 2.8σ ; this should be compared with
the estimate θ0 = −4◦ given with no quoted uncertainty in

Table 4 Some parameter values derived when leaving free θP and λ

(first data column) or when relating them by imposing θ0 = 0 to the fit
(second data column)

General Fit Constrained Fit

θ0 −1.11◦ ± 0.39◦ 0

θ8 −23.88◦ ± 0.34◦ −23.82◦ ± 0.34◦

θP −12.66◦ ± 0.35◦ −12.91◦ ± 0.18◦

λ (8.52±3.55)×10−2 (8.52±3.55)×10−2

42In traditional fits with the Orsay phase parametrization of the ω con-
tribution to the pion form factor, this property is reflected by a value
for this phase close to π/2.

[51]. The value for θ8 is numerically as expected from other
kinds of data [51]. The ’tHooft parameter [35] λ is found
of the order 10 %, twice smaller than in [38] where an ap-
proximate treatment of nonet symmetry breaking was used.
Finally, the singlet-octet mixing angle θP is still found twice
smaller than θ8, as in the former study [38].

As the distance to zero of θ0 is 2.8σ , the non-identically
vanishing of θ0 is on the border of statistical significance.
Therefore, imposing the condition θ0 = 0 is worth being
considered; this turns out to algebraically relate θP to zA

and λ by tan θP = tanB (see (26)). Performing such a fit re-
turns the results shown in the second data column of Table 4
with a quite comparable probability.

It is interesting to observe that the value for θ8 is nearly
unchanged and that the value for λ is affected below the
10−4 level only. One also observes that the value for θP gen-
erated by the appropriate (26) is found in agreement with
its fitted value (when this parameter is left free). We con-
clude therefrom that assuming θ0 = 0 does not degrade the
fit quality and is consistent with data.

One should also note that the nonet symmetry breaking
parameter λ = 8.5% has a statistical significance of 2.4σ .
Performing an approximate nonet symmetry breaking [38],
the value for λ was overestimated by a factor of 2.

14.2 The π0–η and π0–η′ mixing properties

These mixing properties are reflected by the parameters
named respectively ε and ε′ as displayed in (23). Comparing
analogous fits performed by letting free and unconstrained
θP , ε and ε′, we did not find sensitively different results than
those obtained by imposing the constraint on θP resulting
from the condition θ0 = 0. Therefore, from now on, all pre-
sented fit results will refer to this configuration. One should
note that the numerical results given in the above Sections
have also been derived under these conditions.

The global fit returns ε = (4.89 ± 0.44) × 10−2 and
ε′ = (1.68 ± 0.44) × 10−2, reflecting that the π0–η mix-
ing is certainly much more important than the π0–η′ mixing
phenomenon. With the concern of reducing the number of
free parameters, we have also assumed [61]:⎧⎨
⎩

ε = ε0 cos θP

√
2 cos θP −sin θP√
2 cos θP +sin θP

ε′ = −2ε0 sin θP

√
2 cos θP +sin θP√
2 cos θP −sin θP

(85)

with θP still determined by the constraint θ0 = 0. This re-
duces the number of free parameters by one more unit. The
fit returns ε0 = (3.16 ± 0.23) × 10−2 with an unchanged
probability; this corresponds to values for ε and ε′ very close
(2σ each) from the corresponding fitted values, while the
global fit probability is unchanged. The partial widths for
the three decays P → γ γ are all well accounted for: 1.64σ

(η), 0.11σ (η′) and 0.06σ (π0). Additional fit detail can be
found in Table 3.



Eur. Phys. J. C (2012) 72:1848 Page 37 of 52

The question of whether the present ε0 can be identi-
fied with the variable carrying the same name in [61] is
unclear.43 Indeed, an important part of isospin symmetry
breaking effects are already included in the definition of the
renormalized PS fields (see (19) and (21)) which undergo
the rotation defined by (23). Therefore, our ε, ε′ and ε0 carry
only a part of the isospin breaking effects, while another part
(governed by �A) has been propagated to all sectors of the
effective Lagrangian.

15 The values of the FKTUY parameters

Our global fit modelling is in position to provide the most
accurate information concerning the parameters c3, c4 and
c1 −c2 defining the scales of the various FKTUY anomalous
pieces [28] of the HLS Lagrangian.

In order to get the most accurate results, we have ex-
plored the parameter behavior and found that the least corre-
lated combinations are c4 +c3, c4 −c3 and c1 −c2. Running
under the configuration A defined above, one gets:

c+ ≡ c4+c3
2 = 0.962 ± 0.016,

c− ≡ c4−c3
2 = (−3.98+1.88

−1.96

)× 10−2,

c1 − c2 = 1.208+0.058
−0.054

(86)

with g = 5.541 ± 0.016, while configuration B leads to:

c+ ≡ c4+c3
2 = 0.978 ± 0.020,

c− ≡ c4−c3
2 = (−6.75+2.74

−2.81

)× 10−2,

c1 − c2 = 1.123+0.063
−0.060

(87)

with g = 5.530 ± 0.015. The correlation coefficients are
similar in both cases: 〈[δc+][δ(c1 − c2)]〉 � −0.20,
〈[δc+][δc−]〉 � −0.10 and 〈[δc−][δ(c1 − c2)]〉 � 0.80.
Therefore, our global fit yields quite consistent numerical
values wathever the configuration44 for the FKTUY param-
eters.

These values can be compared with existing estimates.
Using the π0γ γ ∗ form factor, [23] yields c+ = 1.06 ± 0.13,
while the partial width ω → π0γ provides c+ = 0.99 ±
0.1—when using g = 5.80 ± 0.91. Our own estimates are
consistent with these with, however, (MINOS) uncertainties
five times more precise.

43The quantity named ε0 in [61] is related with R = (ms − m̃)/(md −
mu) by ε0 = √

3/(4R). For instance, [108] gives R = 37.2±4.1, while
[109] relying on QCD sum rules proposes R = 33 ± 6. These provide
respectively ε0 = (1.16±0.13)% and ε0 = (1.31±0.24)%, which have
little to do with our fit result.
44Running our code excluding the KK data (see second data column in

Table 3) yields c+ = 0.967 ± 0.021, c− = (−5.18+2.80
−3.23) 10−2 and c1 −

c2 = 1.074+0.064
−0.068) with g = 5.530 ± 0.015. This configuration pushes

the significance for a non-zero c− at the � 1.7σ level.

A rather unprecise value for the ratio c̃ = c−/c+ has also
been derived [23] relying on the decay ω → π0μ+μ−, c̃ =
0.42 ± 0.56, consistent with our results but still much less
precise.

From our results, which happen to be the most precise
in this field, one may conclude that data only favor a partial
fulfilling of the VMD assumptions [23], in the sense that
c3 − c4 = 0 is in agreement with data at the 2σ level, while
c1 − c2 + c4 = 4/3 is badly violated. This can be rephrased
as follows: the VMD assumptions [23] are experimentally
fulfilled in the triangle anomaly sector and strongly violated
in the box anomaly sector. This confirms the previous parent
analysis [46] and former studies on the box anomaly in the
η/η′ → π+π−γ decays [37].

In order to go beyond, better data on the annihila-
tion channels involving anomalous couplings ([π0/η]γ ,
π+π−π0) are needed; including new processes like the
η/η′ → π+π−γ decay spectra or information on the l+l−π0

annihilation channels may also help as their dependence
upon c3 − c4 or c1 − c2 is more important than in the previ-
ous channels.

It thus follows from the present analysis that assuming
c3 = c4 is justified. In this case, one obtains the following
results:

c4 = c3 = 0.950 ± 0.014, c1 − c2 = 1.194 ± 0.060,

g = 5.556 ± 0.014,
(88)

for Configuration A and:

c4 = c3 = 0.951 ± 0.016, c1 − c2 = 1.169 ± 0.060,

g = 5.553 ± 0.012
(89)

for Configuration B.
In both cases, the correlation coefficient is 〈[δc3][δ(c1 −

c2)]〉 � −0.20. Therefore, the condition c4 = c3 drasti-
cally reduces the correlation among the surviving FKTUY
parameters. Moreover, the fit quality is not significantly
changed while assuming c4 = c3. Indeed, configuration A
yields χ2/dof = 858.08/882 (71.2% probability) instead of
χ2/dof = 853.98/881 (73.7% probability) and configura-
tion B χ2/dof = 728.38/882 (97.0% probability) instead of
χ2/dof = 722.05/881 (97.9% probability), where the dif-
ference mostly affects the set of partial widths which is al-
ways well fitted. Therefore, the improvement obtained with
the upgraded breaking model is not due to releasing the con-
dition c4 = c3. From these considerings, it is justified to im-
pose c3 = c4 for the rest of this study.

16 Hadronic contributions to g − 2

In [24], one analyzed in full detail the hadronic contribu-
tion to g − 2 of most of the data sets used in the present
study. The framework was the previous release of the present
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model studied in detail in [24, 46]. Within this framework,
only the simultaneous account of both annihilation channels
to KK was missing. On the other hand, one might find un-
satisfactory that some global rescaling of experimental τ di-
pion spectra was still playing an important role, even if this
rescaling was in accord with expectations. These two issues
motivated the present study.

As shown above, the upgraded model allows by itself
a satisfactory account of all considered spectra simultane-
ously. It is therefore worth reexamining within our upgraded
framework, how the hadronic contribution to g − 2 is esti-
mated and how this estimate evolves depending on the vari-
ous kinds of data groups considered.

16.1 The π+π− contribution to g − 2: VMD estimates

The most important hadronic contribution to g − 2 is the
π+π− channel. Several experiments [75, 76, 78] and some
analyses [13, 24, 110] give the π+π− contribution to g − 2
provided by the energy region [0.630–0.958] GeV. There-
fore, it is worth considering the information provided by this
reference region; this allows to substantiate the improve-
ment which can be expected from VMD-like models. In-
deed, several kinds of information are worth considering:

• While unifying the description of e+e− annihilation and τ

decays, one expects an increased precision on the anoma-
lous magnetic moment of the muon aμ(ππ).

• While having a framework which encompasses most of
the physics up to the φ region, the stability and the ro-
bustness of the aμ(ππ) estimates can be examined. The
relative statistical consistency of the various data groups
is also an issue which can be addressed, relying on their
behavior under global fits.

Table 5 displays our estimate for the ππ contribution to
aμ = (g − 2)/2 provided by the reference energy range un-
der various fit configurations. In each case, the fitted (cen-
tral) parameter values and their error covariance matrix are

used in order to sample several thousand parameter vectors,

assuming a n-dimensional Gaussian error distribution. Each

vector of sampled parameter values is, then, used to compute

aμ(ππ). The corresponding distribution of the aμ(ππ)’s is

then fitted to a Gaussian function. The results displayed in

Table 5 are the central values and the standard deviations

of this distribution which intrinsically takes into account the

correlations among the fitted parameters. Unless otherwise

stated, the FSR correction is included in all reported contri-

butions of the π+π− channel to aμ.

Beside the experimental spectra, there is always a set

of partial width decays submitted to fit. These have been

defined in Subsect. 9.6. In the results reported below, one

should keep in mind that the accepted values [10] for the

(ρ/ω/φ) → (π0/η)γ and (ω/φ) → e+e− partial widths are

included in the set of partial widths submitted to the fit as

long as the experimental spectra for the e+e− → (π0/η)γ

annihilation channels are not used. As emphasized in [46],

this hides some model dependence which might be some-

what conflicting with our own model. This explains why

one should prefer any configuration where the e+e− →
(π0/η)γ data are submitted to the global fit.

Also, when the data for the two annihilation channels

e+e− → KK are not considered in the fit, one chooses to

fix ε0 = �A = 0, as we have no real sensitivity to them.

Likewise, c1 − c2 is absent from fits as long as the e+e− →
π+π−π0 data are not considered. Finally, the parameters

fixing the mass and width of the φ meson are left free only

when the fitted data allow to constrain them.

In the first line of Table 5, one finds the value for aμ(ππ)

derived by submitting to fit the scanned data for the an-

nihilation process e+e− → π+π−—together with the full

set of partial width decays. This result compares well with

the value derived using the previous release of our broken

Table 5 The contribution to 1010aμ(ππ) from the invariant mass re-
gion 0.630–0.958 GeV/c. The first line provides the fit results using
all the e+e− → π+π− annihilation data set group. The next line uses
the previous data group and the three τ spectra. By “++” at any given
line, we always mean all data sets belonging to the groups referred to

in the preceding lines, plus the data set group indicated at this line.
FSR corrections are taken into account. An appropriate set of radia-
tive decays is always understood. The last line refer to what has been
named Solution/Configuration A

Data Set Fit Solution Statistical Information

χ2/dof Probability

e+e− → π+π− 360.00 ± 1.64 177.38/208 93.3%

+[τ ] data (ABC) 359.8 ± 1.47 262.94/293 89.6%

+ + (e+e− → [π0/η]γ ) 360.09 ± 1.60 436.94/549 99.9%

+ + (e+e− → π+π−π0) 360.91 ± 1.45 661.22/727 96.1%

+ + (e+e− → KK) 362.79 ± 1.43 858.08/882 71.2%
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HLS model,45 as can be seen by comparing with the rele-
vant piece of information reported in Table 4 of [24].

As there is no longer any mismatch between e+e− and
τ data, both in magnitude and in lineshape (see Sect. 12), it
is legitimate to merge them. This merging provides the new
and important result given in the second line of Table 5. One
clearly observes that the merged ππ data give a result per-
fectly consistent with the e+e− → π+π− data alone with
a quite nice probability. The central value for aμ(ππ) is
nearly unchanged and the uncertainty slightly improved.

This is, of course, the main effect of having upgraded
our symmetry breaking procedure of the HLS Lagrangian.
In this new framework, there is no need for an auxiliary
rescaling [24] of the τ spectra and the net result is a per-
fect consistency of the e+e− → π+π− data with/without
the τ data considered as constraints. This statement can be
substantiated by comparing this result with those reported
in the entry “NSK + A B C” of [24] (aμ(ππ) = (364.48 ±
1.34) × 10−10) which exhibited a shift of about 5 × 10−10

produced by the three τ data sets, a �3.6σ effect.
The third line in Table 5, displays the effect of replac-

ing the (ρ/ω/φ) → (π0/η)γ and the (ω/φ) → e+e− par-
tial widths by the cross sections for e+e− → (π0/η)γ . The
central value for aμ(ππ) is practically unchanged, while
its standard deviation is increased by �9%. The follow-
ing line in Table 5 displays the effect of including the
full e+e− → π+π−π0 data group already defined. As in
[24], one observes a perfect consistency of the results for
aμ(ππ). In total, the standard deviation is slightly reduced
(σ(aμ(ππ)) � 1.5×10−10). At this point one may conclude
that the central value is marginally modified by fully includ-
ing the (ρ/ω/φ) → (π0/η)γ and e+e− → π+π−π0 data
groups within the fit procedure. The variations of the un-
certainty returned by the fits might rather reveal statistical
fluctuations.

The last line in Table 5 displays the effect of including the
two e+e− → KK cross sections into the fitted data set. One
observes some effect, as aμ(ππ) undergoes a 1.9 × 10−10

shift upwards while the fit probability remains quite good.
This fit configuration—referred to as Solution/Configuration
A—encompasses the largest set of data samples considered
safe. This turns out to consider that the 30 unit increase of
the χ2 associated with the π+π−π0 data group, even if
large, is not abnormal (see the fourth data column in Ta-
ble 3).

The result shown in the last line of Table 5, may reveal
some tension among the data set groups. In order to ex-
plore this issue, one has redone fits excluding the π+π−π0

data group, and examined the effects of using the selected

45Even if expected, this proves that the effects produced by having
introduced ΣV do not modify the fit description of the e+e− → π+π−
data.

e+e− → K0K
0

and e+e− → K+K− data, either separately
or together. The corresponding results are displayed in Ta-
ble 6. Comparing the statistical information here with those
in the last line in Table 5 renders somewhat suspicious the
quoted 30 unit increase of χ2

π+π−π0 .
A final piece of information is provided by performing

the fit using the π+π−π0 data group data amputated from
the data points collected in the region above 1 GeV (there-
fore, excluding the φ region). This fit configuration has al-
ready been referred to as Solution/Configuration B. The rea-
son which motivates this removal is that the π+π−π0 data
before introducing the KK data is only constrained in the φ

region by the relatively unprecise data on the π0γ and ηγ

channels. One then obtains:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Solution B: aμ(ππ) = (362.44 ± 1.49) × 10−10,

χ2/dof = 722.05/801,Prob. = 97.9%

Solution A: aμ(ππ) = (362.19 ± 1.44) × 10−10,

χ2/dof = 854.00/881,Prob. = 73.7%

(90)

where the result for Solution A is reminded.
These differences indicate that all physics channels cov-

ering the φ region are worth to be reconsidered, as already
argued from discussing the fit results in Table 3. Indeed, the
difference in fit quality between Configurations A and B re-
veals some tension between the KK data and the π+π−π0

data collected in the φ region. Fortunately, the physics in
the φ region is still accessible at VEPP–2M. It seems also
in the realm of the KLOE detector, as this turns out to run
DA�NE within a ±20 MeV interval apart from the φ mass
peak value.

16.2 The π+π− contribution to g − 2:
comparison with data

An interesting piece of information comes from comparing
our (VMD) estimates derived from global fitting with the
corresponding estimates provided by the various experimen-
tal groups.

Table 7 displays the published experimental results con-
cerning the contribution of the 0.630–0.958 GeV/c region
to aμ(ππ). We first list the three important results from
CMD-2 and SND; as we also use the data sets from OLYA

Table 6 The contribution to 1010aμ(ππ) from the invariant mass re-
gion 0.630–0.958 GeV/c using KK data sets under various conditions.
All π+π−π0 data have been excluded from fit. FSR corrections have
been performed

Fit Solution χ2/dof Probability

only e+e− → K+K− 360.79 ± 1.49 474.69/585 99.97%

only e+e− → K0K
0

362.83 ± 1.47 580.78/668 99.34%

both e+e− → KK 362.81 ± 1.47 613.29/704 99.40%
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Table 7 The various published estimates of the contribution to
1010aμ(ππ) from the invariant mass region 0.630–0.958 GeV/c. The
quoted averages always refer to all experimental results displayed in
the preceding lines. The line “OLD” information refers to our aver-

age performed using the data sets collected before those of CMD-2
and SND (see text). Our fit solutions A and B are derived using the τ

spectra from [40–42]. KLOE–2010 estimate for aμ(ππ) is ours, as the
experimental spectrum stops slightly below

√
s = 0.958 GeV [19]

Data Set Experimental Result Average Fit solution

CMD-2 (1995) [75] 362.1 ± (2.4)stat ± (2.2)syst

CMD-2 (1998) [76, 77] 361.5 ± (1.7)stat ± (2.9)syst

SND (1998) [78] 361.0 ± (1.2)stat ± (4.7)syst

Average 361.26 ± (2.66)tot

OLD 354.1 ± (3.3)stat ± (8.1)syst

Average (excl. ISR) 360.65 ± (2.55)tot

Fit Solution A A: 362.79 ± 1.43tot

Fit Solution B B: 363.16 ± 1.47tot

KLOE–2008 [17] 356.7 ± (0.4)stat ± (3.1)syst

KLOE–2010 [19] 353.3 ± (0.6)stat ± (3.2)syst

BaBaR [18, 110] 365.2 ± (1.9)stat ± (1.9)syst

Total Average 360.53 ± (1.44)tot

and CMD [80], we also give at the line flagged by “OLD”
our average using these data sets together with those from
NA7 [111], TOF [112], M2N [113], DM1 [81], all collected
before those from [75–78].

The third data column provides, first, our average derived
using the data sets from [75–78] and, next, also those includ-
ing the older data sets referred to just above. Our results are
directly comparable with these as we do not yet use ISR
data.

Both solution A and solution B results favorably com-
pare with the scan (ππ) data averaging as the uncertainty is
reduced by a factor close to 2.

The following lines of Table 7 display, for information,
the experimental results derived from the data sets collected
using the ISR method and the global average of the ISR and
scan data.

One should stress that our results for aμ(ππ), derived ex-
cluding the ISR data, provide information already compara-
ble in precision to those obtained using them. This motivates
to examine the ISR data in view of including them into the
fit procedure.

One may also compare our estimates with the weighted
average of the τ data [40–42] which gives 1010aμ(ππ) =
365.21 ± 2.67exp in the reference region, including FSR
corrections; applying the ρ–γ corrections proposed in [16],
this becomes 1010aμ(ππ) = 361.66 ± 2.67exp and provides
1010aμ(ππ) = 361.15 ± 1.76exp when averaged with the
e+e− data. This indicates that examining the idea proposed
in [16] in a wider context is an interesting issue. Indeed,
this could lead to another successful VMD-like model and,
therefore, may contribute to a motivated evaluation of the
model dependence of aμ estimates.

As a summary, one may conclude that our global model
provides a good determination of the contribution to aμ(ππ)

from the invariant mass region 0.630–0.958 GeV/c. The ac-
curacy of our VMD estimates is found much improved com-
pared to direct averaging of the experimental data and their
central values are found consistent within uncertainties. By
including ISR data at a later stage, the precision of the result
might be further increased.

16.3 Hadronic contribution to g − 2

In Table 8, one displays the contribution of each of the ex-
amined channels to aμ from their respective thresholds up
to 1.05 GeV/c, i.e. slightly above the φ peak.

The first two data columns show the results correspond-
ing to the so-called configurations/solutions A and B . These
have been derived by fitting the data sets referred to in the
preceding Sections and the motivation to consider both so-
lutions valid can be emphasized from Table 3.

The last two data columns exhibit the averages of exper-
imental data for each of the measured channels submitted
to the global fit. These differ by excluding (third data col-
umn) or including (fourth data column) in the averaging the
ISR data sets collected by KLOE [17, 19] and BaBar [18]
for the π+π− final state. As we have excluded for now the
ISR data from our analysis, the gain due to the global fit can
be directly inferred by comparing with the third data col-
umn; nevertheless, it is interesting to compare the accuracy
of solutions A and B to the averages derived using the high
statistics ISR data.

As expected, the improvement generated by the global
fit affects all the channels considered and is always a fac-
tor of 2 or more (see the π+π−π0 channel) better than the
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Table 8 Contributions to 1010aμ from thresholds up to 1.05 GeV/c
The experimental errors merge the reported statistical and systematic
uncertainties in quadrature. FSR effects (3.43 × 10−10) have been in-

cluded into the π+π− contribution. The first two data columns display
our fit results and the last two data columns report the direct numerical
integration of the relevant data

Process Solution B Solution A Data (excl. ISR) Data (incl. ISR)

π+π− 498.54 ± 1.97 497.98 ± 1.76 498.53 ± 3.73 497.72 ± 2.12

π0γ 4.64 ± 0.04 4.28 ± 0.04 3.35 ± 0.11tot

ηγ 0.65 ± 0.01 0.67 ± 0.01 0.48 ± 0.02tot

η′γ 0.01 ± 0.00 0.01 ± 0.00 –

π+π−π0 42.03 ± 0.60 40.88 ± 0.52 43.24 ± 1.47tot

K+K− 16.87 ± 0.20 16.93 ± 0.18 17.88 ± 0.54tot

K0K
0

12.02 ± 0.09 12.07 ± 0.08 12.31 ± 0.33tot

Total Up to 1.05 GeV 574.76 ± 2.10 572.82 ± 1.90 575.79 ± 4.06tot 574.98 ± 2.66tot

average of the same data. The first line even shows that our
accuracy is comparable—actually slightly better—than the
average derived using the ISR data.

It is interesting to note that the sum of all contributions
for solution B is in accordance with the result expected
from the standard sum as reported in the third (or fourth)
data column. Solution A, instead, gives a smaller sum than
the experimental average of the same data; the distance is
2.97 10−10, i.e. � 1.6σtheor. or � 0.7σexp.

It is interesting to examine the individual channel con-
tributions. Those from the π0γ and ηγ channels, as calcu-
lated from data, rely on pretty poor statistics and generally
cover restricted energy ranges [82–87] (see Subsect. 9.2); in-
stead, our model results are estimated (significantly) larger
and cover precisely the full energy range from thresholds to
1.05 GeV. This especially concerns the region in between
the ω and φ peaks.

Our model estimates for the π+π−π0 and K+K− chan-
nels are found smaller than the experimental averages at the

1 or 2 σexp levels, while the K0K
0

contribution corresponds
to the experimental expectation. This confirms the need for
a better experimental knowledge of all annihilation channels
in the φ region.

The first data line in Table 9 reports the results derived
from fits with our global model. The second line (“missing
channels”) provides the experimental averaged contribution
to aμ from the channels unaccounted for within our model
(the 4π , 5π , 6π , ηππ and ωπ final states). This has been
computed using the trapezoidal integration rule. As the cor-
responding data are sparse below 1.05 GeV, this estimate
might have to be improved.

The line “Total Model” provides the estimate of the full
hadronic vacuum polarization (HVP), merging our model
results with the additional listed contributions.

The corresponding experimental average taking into ac-
count all available ISR data sets [17–19] has been estimated

[16] to aμ(e+e−) = (690.75 ± 4.72tot) × 10−10, including
the contributions above 5.2 GeV calculated using pertur-
bative QCD. For comparison, the corresponding total av-
erage provided by [110] is aμ(e+e−) = (695.5 ± 4.0exp ±
0.7QCD) × 10−10 (not accounting for the recent KLOE data
set [19]); accounting for all the available ISR data sets,
[14] yields as experimental average aμ(e+e−) = (692.3 ±
4.2tot) × 10−10.

In order to illustrate the impact of τ data, we present sep-
arately the fit results derived when including or when ex-
cluding the τ data sets from the fitted data sets, keeping for
the rest the configurations leading to solutions A and B as
previously defined.

Including τ data sets results in an increased value of the
hadronic VP by � 3 × 10−10. This will be commented on
below. One also remarks that our uncertainties are compa-
rable to the experimental one, even if our estimates are pe-
nalized by having—provisionally—discarded the ISR data.
Our estimates also compare favorably with the revised es-
timate excluding all ISR data given by [13]: aμ(e+e−) =
(690.9 ± 5.2exp+rad ± 0.7QCD) × 10−10.

16.4 The anomalous magnetic moment of the muon aμ

Table 10 displays our final results concerning aμ. We still
report on the results derived in the fit configurations A and
B , using or not the τ data in the fit procedure. The leading-
order (LO) hadronic VP discussed in the previous Subsec-
tion is reminded in the first line. In order to yield our es-
timate of aμ under the various quoted configurations, one
should add the effect of higher-order hadronic loops taken
from [16], the light-by-light contribution [5]; we took the
latest estimate of the pure QED contribution46 [3] and the

46The recent [114] value aμ[QED] = 11658471.8096(0.0044) dis-
played in Table 10 should be updated to aμ[QED] = 11658471.8960
(in units of 10−10). In order to compare with already published results
we prefer keeping the former value for our estimates of the HVP and
of g − 2.
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Table 9 Hadronic VP contributions to 1010aμ with FSR corrections included. Numbers within brackets refer to respectively statistical and sys-
tematic errors. Numbers within square brackets are the total uncertainties

Final State Range (GeV) Contribution (incl. τ ) Contribution (excl. τ )

Solution A Solution B Solution A Solution B

e+e− → hadrons threshold → 1.05 572.82[1.90] 574.76[2.10] 569.86[2.15] 571.40[2.27]

missing channels threshold → 1.05 1.55(0.40)(0.40)[0.57]
J/ψ 8.51(0.40)(0.38)[0.55]
Υ 0.10(0.00)(0.10)[0.10]
hadronic (1.05, 2.00) 60.76(0.22)(3.93)[3.94]
hadronic (2.00, 3.10) 21.63(0.12)(0.92)[0.93]
hadronic (3.10, 3.60) 3.77(0.03)(0.10)[0.10]
hadronic (3.60, 5.20) 7.64(0.04)(0.05)[0.06]
pQCD (5.20, 9.46) 6.19(0.00)(0.00)[0.00]
hadronic (9.46, 13.00) 1.28(0.01)(0.07)[0.07]
pQCD (13.00,∞) 1.53(0.00)(0.00)[0.00]
Total 1.05 → ∞ 112.96 ± 4.13tot

+ missing channels

Total Model threshold → ∞ 685.78 ± 4.55 687.72 ± 4.63 682.82 ± 4.66 684.36 ± 4.71

Table 10 The various contributions to 1010aμ. �aμ = (aμ)exp − (aμ)th is given in units of 10−10 and the last line displays its significance

1010aμ Values (incl. τ ) Values (excl. τ )

Solution A Solution B Solution A Solution B

LO hadronic 685.78 ± 4.55 687.72 ± 4.63 682.82 ± 4.66 684.36 ± 4.71

HO hadronic −9.98 ± 0.04exp ± 0.09rad

LBL 10.5 ± 2.6

QED 11 658 471.8096 ± 0.016tot

EW 15.32 ± 0.10hadr ± 0.15Higgs

Total Theor. 11 659 173.43 ± 5.25 11 659 175.37 ± 5.31 11 659 170.47 ± 5.34 11 659 172.0 ± 5.39

Exper. Aver. 11 659 208.9 ± 6.3tot

�aμ 35.47 ± 8.20 33.53 ± 8.24 38.43 ± 8.26 36.89 ± 8.29

Significance (nσ ) 4.33σ 4.07σ 4.65σ 4.45σ

electroweak (EW) contribution is taken from [4]. Summing
up all these, one obtains the values given as “Total Theor.”
which should be compared with the average [1] of the dif-
ferent measurements for aμ, recently updated [2].

The difference between our theoretical estimates and the
experimental average [2] is finally given together with their
respective statistical significance. The significance of this
difference varies between 4.07σ (solution B including τ ’s)
to 4.65σ (solution A excluding τ ’s). The difference be-
tween including τ ’s and excluding them is a �0.4σ ef-
fect. [13] provides an estimate excluding the KLOE data
[17]—and the more recent ISR data sets not available at that
time—reaching a difference with the BNL average [2] of
(30.1 ± 8.6) × 10−10, a 3.5σ significance. Our least signifi-
cant estimate (solution B including τ ’s) is, instead, 4.07σ .

Figure 13 displays our results together with the most re-
cently published estimates. On top of the Figure, one finds
the estimates using or not the τ data provided in [14]. The
following entry is the estimate given in [16] which com-
bines e+e− and τ data (after correcting for the ρ0–γ mix-
ing). The last entry [115] is derived including the ISR data
(HLMNT11); this is the latest result using the final KLOE
[19] and BaBar [18] data.

We have also displayed the latest result [13] derived ex-
cluding ISR data which directly compares to ours. This
indicates that the improvement provided by the global fit
method corresponds to increase the discrepancy of the BNL
measurement [2] with the Standard model prediction by
�0.6÷0.8σ . Therefore, the discrepancy starts reaching an
interesting significance.
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16.5 Influence of data set choices on the estimate for aμ

In order to derive our estimates for aμ, we have defined a
paradigm, unusual in this field. Indeed, one usually performs
the average using all data sets contributing to a given final
state in isolation; the prescription used is the S-factor tech-
nics of the Particle Data Group. However, this supposes the
simultaneous handling of statistical and systematic uncer-
tainties. The most common way of performing this handling
is to use as weights the quadratic sum of statistical and sys-
tematic uncertainties [9].

In our approach, especially in this paper, the underlying
paradigm is different and can be formulated in the following
way:

• All different channels are correlated by their underlying
common physics and an Effective Lagrangian approach
is presently the best tool to deal with the non-perturbative
QCD regime.

• All data sets, covering or not the same physics chan-
nel are considered by taking into account the peculiari-
ties of their uncertainties as reported by the experimen-
tal groups. There is, in principle, no real difficulty in or-
der to deal with statistical uncertainties. It is commonly
assumed that uncorrelated systematics and statistical un-
certainties could be added in quadrature and we fol-
lowed this rule. Other systematics involving bin-to-bin or
experiment-to-experiment correlations should be treated
as such; the method is standard47 and has been sketched
in Subsect. 9.7.

• The Lagrangian model should allow for a good descrip-
tion of a large number of data sets in as many different
physics channels as possible. The goodness of the global
fit should be accompanied by a good description of each
group of data sets—ideally each data set. As tag for this
property, we choosed the χ2/npoints value for each data
set group; this tag should not too much exceed 1. Refer-
ring to our case, the π+π−, π0γ , ηγ physics channel data
and the reported partial width decays already represent an
acceptably good starting point, allowing a critical exami-
nation of the data associated with further additional chan-
nels.

47In the scan experiments we deal with in the present paper, all reported
correlated systematics can be considered as global scale uncertainties
for which the standard method applies. For ISR experiments [17–19],
the situation is different as several independent sources of systematics
are defined which, additionally, vary all along the spectra. The standard
method can be extended to this case [46]; however, it should better be
reformulated in a way which avoids introducing as many scale fac-
tors to be fitted as sources of different systematics. Indeed, this may
produce fit instabilities and, on the other hand, one has to deal with
correlations between physics parameters and these scale factors which
may be uneasy to handle.

• Including a new data set, or a new group of data sets,
should not result in a significant degradation of the al-
ready accounted for data sets. This should be observed
at the global level and at the local levels (i.e. for each
group). Following from the analyses in Sects. 10 and 11,
peculiarities of their fit behavior led us to discard from
our global fit the K+K− data set and one of the π+π−π0

data sets provided by SND. This turns out to require that
the (large) set of data samples considered be statistically
self-consistent: Only 2 data sets out of 45 did not pass this
consistency criterium.

At this point, given the (broken) Lagrangian one uses,
the selection criteria are only the global fit quality and the
“local” (data set specific) fit properties reflected by the vari-
ous χ2/npoints values, discarding any possible consequence
for the value for aμ. With Solutions A and B, one has also
avoided any kind of data set reweighting by discarding the
two data sets exhibiting some faulty behavior compared to
the rest.

Nevertheless, it is a simple exercise to switch on the
two discarded SND data sets within our fitting code.
For information, this leads to �aμ = (aμ)exp − (aμ)th =
(34.00 ± 8.21) × 10−10, a 4.14σ effect. However, this is
associated with an exceptionally poor global fit probabil-
ity (1.75%) and to χ2

π+π−π0/npoints = 331/212 = 1.56 and

χ2
K+K−/npoints = 93/62 = 1.50. Interestingly, and some-

what unexpectedly, the χ2/npoints for the other data sets
are practically unchanged compared to Table 3, except
for the decay data set account which is sharply degraded:
χ2

decays/npoints = 20.5/10 � 2. This may reflect that our bro-
ken HLS model is so sharply constrained that poor data sets
are mostly reflected by poor global fit probabilities.

A tag value of χ2/npoints = 1.3, as yielded for the cho-
sen π+π−π0 final state data, is on the border of what could
look reasonable to us (see third data column in Table 3).
Nevertheless, compared with χ2/npoints = 1.1 (see second
data column in Table 3), it looks acceptable; however, this
corresponds to an increase by 30 units of the absolute mag-
nitude of χ2

π+π−π0 , when introducing the selected kaon data.
One may, indeed, consider that this indicates some tension
within the φ region data calling for a closer experimental ex-
amination which can be performed at the existing facilities
covering the φ region.

Awaiting for better data in the φ region, we have been
left with two challenging solutions: Solution A which uses
all the data sets we have considered as secure, and solution B
obtained by removing all π+π−π0 data sets above the KK

threshold.

16.6 The differential effect of the various τ data samples

In view of the discussions above, we have chosen to display
all our final results for aμ, in the fit configurations corre-
sponding to solutions A and B. On the other hand, as can be
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read off Table 3, at the fit properties level, one can consider
that the so-called e+e− − τ puzzle is over.

However, one still observes a (2÷2.5) × 10−10 increase
of the returned values for aμ produced by the τ data. As
stated already above, the τ data are essential in order to re-
turn a reasonably precise value for our fit parameter48 ΣV .
Therefore, the shift attributable to the τ data can be consid-
ered as a normal consequence when fitting a model with a
more constraining set of data samples.

Nevertheless, Table 3 indicates that the χ2/npoints are
sensitively different for ALEPH (�0.43), CLEO (�1.26)
and BELLE49 (�1.77). This difference of fit quality leads
us to examine the effects of removing the CLEO data sam-
ple and/or the BELLE data sample for our fitted data set.

When keeping only the ALEPH data sample, we get
�aμ = 38.47 ± 8.22 (a 4.68σ significance) and �aμ =
36.81 ± 8.90 (a 4.13σ significance) for respectively solu-
tions A and B. As can be seen from Table 10, these strikingly
resemble the corresponding values for �aμ derived when
keeping only e+e− data in our fit procedure (i.e. exclud-
ing all τ data). In these peculiar configurations, the ALEPH
data fit quality which was already very good (χ2/npoints �
16/37), becomes impressively better (χ2/npoints � 4/37).

Going a step further, we have examined the effect of
considering only ALEPH and CLEO data. In this case, our
fit returns �aμ = 36.02 ± 8.22 (4.38σ significance) and
�aμ = 34.74 ± 8.26 (4.21σ significance) for respectively
solutions A and B. One can check with Table 10 that these
values become closer to their partners when fitting exclud-
ing τ samples.

Therefore, using only the τ data samples from ALEPH
[40] and/or CLEO [42] returns values for �aμ consistent
well within errors with those derived using only e+e− data.
The slightly different behavior of BELLE data may be re-
lated with the normalization issue sketched in footnote 49.

16.7 On the significance of the HLS value for �aμ

In view of the considerations developed in the two preceding
Subsections, one can certainly consider that the most conser-
vative estimates for �aμ are those derived while including
τ data as they are reported by ALEPH, BELLE and CLEO.
This corresponds to the information provided in the first two
data columns of Table 10.

48The numerical accuracy of the scan e+e− data alone does not permit
a precise determination of ΣV which is returned by MINUIT with large
errors.
49 Leaving free the absolute normalization of their dipion spectrum
improves the stand–alone fit of the BELLE Collaboration [41] from
80/52 to 65/51. This corresponds to a best normalization of 1.02±0.01.
Such a re-normalization of their absolute scale has some influence on
the value for aμ. One should remind that we do not have any longer
fitted rescaling factors in our fitting functions.

This means that the disagreement between the BNL mea-
surement [2] and the Standard model prediction for �aμ

lays in between 4.07 and 4.33σ . Moreover, from our analy-
sis of the differential effects of the various available τ data
samples, one may consider these bounds as conservative and
that the significances in the right part of Table 10 cannot be
discarded.

In view of this, in the perspective of taking into account
relatively poor data set group, one has rerun our code in
order to get the solution when weighting the contributions
of50:

• all π+π−π0 data in our global sample by 179/232.41,
• the BELLE data sample by 19/32.31,
• the CLEO data sample by 29/36.48,

in the global χ2 while leaving the other weights (all equal
1) unchanged. This turns out to rescale globally the uncer-
tainties associated with the corresponding data sets by the
inverse of these weights, assuming that their relatively poor
quality is only due to an overall underestimate of the un-
certainties by a factor of respectively 1.14 (π+π−π0), 1.30
(BELLE) and 1.12 (CLEO). This may look as a way to infer
some sort of S-factors inside the global fit procedure.

This reweighting procedure51 provides as total hadronic
VP contribution to aμ (686.32 ± 4.60) × 10−10 and �aμ =
(34.93 ± 8.23) × 10−10, a 4.25σ significance.

Going a step further, another check may look appro-
priate. As the contributions of the π+π−π0, BELLE and
CLEO data to the total χ2 have been weighted in order to
reduce their influence, one can do alike with those groups
of data which exhibit too favorable individual χ2’s. Still
referring to fitting with configuration A, this turns out to
weight the “Old Timelike” data by 82/56.61, the π0γ data
group by 86/68.37, the ηγ data group by 182/123.31, the
ALEPH data by 37/15.92 while keeping unit weights for the
“New Timelike” and both KK data groups. This leads to
an hadronic VP of (685.00 ± 4.58) × 10−10 and to �aμ =
(36.25 ± 8.21) × 10−10 corresponding to a 4.41σ discrep-
ancy. This is almost identical to the value found with Solu-
tion B, excluding τ ’s, as can be seen from Table 10.

Therefore, these exercises enforce our conclusion that the
most conservative value for �aμ exhibits a discrepancy of
4.07σ and values as large as �(4.30÷4.50)σ are not un-
likely.

50The weights used in this Subsection refer to partial χ2’s obtained
by fitting under Configuration A with assuming c3 = c4; it is the rea-
son why they slightly differ from the corresponding numbers given in
Table 3.
51We have also made a fit leaving free scale factors affecting the co-
variance matrices of the 3-pion data as a whole, of the BELLE and
CLEO data. The hadronic VP we get is (686.73 ± 4.49)× 10−10, quite
similar to this value.
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17 Conclusion and perspectives

Several aspects should be emphasized. They can be grouped
into two items: Low energy hadronic physics description
and g − 2 related topics.

Concerning the first item, the present study indicates that
the HLS model suitably broken is able to encompass most
low energy physics in an energy range extending up to the φ

meson mass. More precisely, among the non-baryonic possi-
ble final states, one covers52 most channels with multiplicity
n < 4.

More precisely, equipped with the so-called upgraded di-
rect symmetry breaking—in the u, d and s sectors—and
including the mixing of neutral vector mesons produced at
one-loop, the HLS model accounts quite satisfactorily for all
the examined physics pieces of information. This covers the
6 annihilation channels having significant cross sections up
to the φ meson mass and a few more spectra like the dipion
spectrum in the τ decay and, also, an additional list of par-
tial width decays. Previous studies [37, 46] have also shown
that the dipion spectra in the η/η′ → ππγ decays fall inside
the scope of the HLS model.

It is an attractive feature of this framework to exhibit
a parent character between the long reported issues repre-
sented by the e+e− − τ and the φ → KK puzzles: Indeed,
it is the same breaking mechanism implemented in the LA

and in the LV pieces of the HLS Lagrangian which provides
a solution to both. It permits—together with the s-dependent
vector meson mixing—to finalize the consistency of the
e+e− and τ physics and to reproduce the branching frac-

tion ratio φ → K+K−/φ → K0K
0
. This is materialized by

a satisfactory simultaneous fit of both e+e− → KK cross
sections and of the pion form factor in both e+e− annihila-
tion and τ decay.

The upgraded model thus provides a tool allowing a si-
multaneous treatment of a large number of experimental
spectra. It also permits a critical analysis of the fit behavior
of any data set in consistency with the others. Then, one is in
position to discard motivatedly some data samples which do
not behave satisfactorily within a global fit procedure and
could then put some shadow on derived numerical results.
We have shown that such data samples are only few: 2 out
of the 45 considered spectra. It should be stressed that dis-
carded data sets are always identified because of their full
redundancy with some other data sets, which are found to
behave normally within the global model; stated otherwise,

52Among these, only the process e+e− → ηππ has not been exam-
ined; however, the good description of the η/η′ → ππγ decays re-
ported in [46] indicates that it could be successfully considered. On
the other hand, the e+e− → ωπ0 annihilation is too much influenced
by high mass vector resonances [29, 30] to be accounted for by the
standard HLS model.

this removal is not expected to produce a bias and, a con-
trario, any effect resulting of keeping them is suspicious.

The model provides a tool which has the virtue of ex-
hibiting the physics relationship between the various physics
channels. Within the global fit procedure involving the data
on each channel, the model parameters yield a better accu-
racy which propagates to all the reconstructed pieces of in-
formation, especially the photon hadronic vacuum polariza-
tion and, thus, improves significantly g − 2 estimates.

Indeed, we have shown that the various components of
the HVP yield central values in accordance with expecta-
tions and an uncertainty improved by a factor of 2 quite
uniformly within the fit range. This has been shown for

the π+π−, π0γ , ηγ , π+π−π0, K+K− and K0K
0

channel
contributions up to 1.05 GeV. Up to this energy, these chan-
nels represent altogether more than 80% of the hadronic VP
and one of the two dominant sources of uncertainty.53

In order to figure out the gain in terms of statistics, one
can make the following statement: considering globally the
existing data sets is equivalent to having ×4 more statistics
simultaneously in each of the considered channels without
any increase of the systematics. Therefore, considering ad-
ditionally the high statistics ISR data leaves some room for
improved estimates of the HVP, provided the dealing with
systematics can be reasonably well performed. One should
nevertheless stress that the global method we advocate, used
with only the standard scan data samples provides already
as good results as all scan and ISR data using the standard
numerical integration of the experimental cross sections.

One may also try to figure out the improvement expected
from including the high statistic ISR data samples [17–19]
within the fit procedure. Being optimistic, one may think
that the uncertainty on the HVP contribution up to 1.05
GeV could be divided by 2, from �2 × 10−10 (see Ta-
ble 8) to �1 × 10−10. Let us also assume that the ISR
data samples will not rise unsolvable bias problems. Tak-
ing into account the rest of the HVP, which carry an un-
certainty of �4 × 10−10 (see Table 9), the uncertainty on
the full HVP would decrease from �4.60 × 10−10 (see Ta-
ble 9) to �4.25 × 10−10. Using the information collected in
Table 10, the total uncertainty on aμ would decrease from
�5.30 × 10−10 to �5.00 × 10−10 and the uncertainty on
�aμ would decrease from �8.20×10−10 to �8.00×10−10.
This may look a marginal improvement; the reason for this
is the large value for the systematics generated by hadronic
HVP in the region 1.05÷3.10 GeV (see Table 9), which thus
becomes a prominent issue for future significant improve-
ments.54

53The other dominant error comes from the hadronic VP between 1.05
and 2 GeV.
54Actually, even if the uncertainty on the HVP contribution coming
from the energy region up to 1.05 GeV vanishes, this would not en-
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However, this is not the end of the story. In the course of
the paper, and this is well expressed by Tables 9 and 10, we
saw that below 1.05 GeV systematics may produce signifi-
cant shifts of the central values for the HVP and thus for aμ.
This was observed, for instance, in the A and B configura-
tions, where the shift for the HVP—and for aμ—amounts
to �2.00 × 10−10 (see also Subsect. 16.6). Because of this,
there is still valuable experimental work to do also in the
sub-GeV domain to decrease and/or better understand sys-
tematic errors. More precisely, a better experimental knowl-
edge of all channels in the φ mass region—0.95÷1.05
GeV—may result in improving quite significantly our es-
timate on g − 2 and in resolving some of the ambiguities
discussed in the main text. As stated above, the information
in this mass region has an important influence down to the
threshold regions. This is certainly within the scope of ex-
isting machines and detectors.55

What are the prospects for the future?
A new muon g − 2 experiment at Fermilab is expected

to come into operation in 5 years from now. The accuracy is
expected to improve to 0.14 ppm from its current 0.54 ppm.
This also requires a factor 4 improvement of the hadronic
vacuum polarization. As demonstrated by our analysis, it is
possible to improve the low energy part up to and including
the φ by a systematic application of effective field theory
methods in form of a resonance Lagrangian approach. How-
ever, as mentioned above, the main effort will be required in
the range above the φ up to about 3 GeV. In this range, major
progress is expected from CMD3 and SND at VEPP 2000 at
Novosibirsk, from BESIII at Beijing, as well as from ex-
ploiting additional yet unanalyzed ISR data from BaBar and
Belle. Within the 5 years available until a new experimental
result for aμ will be realized, lattice QCD is expected to be
able to produce results which are competitive with standard
evaluations based on data. This also would provide impor-
tant cross checks for the present results and, more generally,
for the effective Lagrangian approach.

For now, one can conclude that the paradigm represented
by a global model which encompasses the largest possible
set of data indeed results in a highly significant improve-
ment of the photon HVP uncertainty and of the uncertainty
on g − 2. As the global model allows to detect problem-
atic data sets susceptible of generating biases, it must be ac-
companied by the most accurate possible treatment of the
reported experimental systematics.

tail a significant improvement of the global uncertainty for aμ! Stated
otherwise, reducing the HVP error in the region from threshold to 1.05
GeV from �4 × 10−10 to �2 × 10−10 has much more dramatic effects
than reducing it from �2 × 10−10 to �1 × 10−10. This is a pure alge-
braic effect following from having to perform quadratic sums for final
uncertainties.
55One may remark that scan data for the e+e− → π+π− cross section
in the φ region are still not available.

Taking into account the ambiguities generated by a lim-
ited number of data sets, the most conservative estimate
for the hadronic vacuum polarization leads to a significance
for a non-zero �aμ of 4.1σ . Solving these ambiguities dis-
cussed in the main text may result in a significant increase
of this conservative bound.
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Appendix A: The full HLS non-anomalous Lagrangian
before loop mixing

The non-anomalous Lagrangian of the Hidden Local Sym-
metry Model can be written:

LHLS = (LA + LV ) = LV MD + Lτ (91)

in order to split it up into convenient pieces. Removing the
pseudoscalar field kinetic energy term, which is canonical,
one has:

LV MD = +ie

[
1 − a

2

(
1 + ΣV + �V

3

)]
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(92)
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in terms of the first step renormalized vector fields.56 The
pseudoscalar fields shown here are renormalized (it is the
origin of the zA and �A terms). Of course, we have only
kept the lowest order symmetry breaking contributions.

Some parameters have been introduced in (92) for con-
venience; these are (m2 = ag2f 2

π ):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m2
ρ0 = m2

ω = m2[1 + ΣV ], m2
φ = m2zV

fργ = agf 2
π [1 + ΣV + hV

�V

3 ],
fωγ = agf 2

π

3 [1 + ΣV + 3(1 − hV )�V ],
fφγ = −agf 2

π

√
2

3 zV

(93)

On the other hand, using:

m2
ρ± = m2[1 + ΣV ], fρW = agf 2

π [1 + ΣV ] (94)

one has at lowest order in the breaking parameters:
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where one has limited oneself to write down only the terms
relevant for our purpose. The (classical) photon and W mass
terms [23, 34] are not considered and have been given only
for completeness. However, it is worth remarking that the
photon mass term does not prevent the photon pole to reside
at s = 0 as required [52], at leading order.

Our breaking scheme generates new couplings for the
charged ρ mesons:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L±
τ = − iVudg2

2 W+ · [ iag
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3
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6
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(96)

because of the field redefinition given by (19), (22) and (23).
Therefore, the broken HLS model predicts decay modes
τ → π(η/η′)ν of small intensity absent from the original
Lagrangian.

56In order to avoid heavy notations, the subscript R1, which actually
affects each of the vector fields in (92) has been removed.

Appendix B: Elements of the δM2 matrix

The perturbation δM2 to the full mass matrix M2 is defined
in (32). Keeping only the leading terms in isospin breaking
parameters, its matrix elements are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ερ = [ gρKK

zA
]2(1 + 2ΣV )[ε2(s) + (2hV �V − �A)ε1(s)]

εω = [ gρKK

zA
]2(1 + 2ΣV )[ε2(s)

+ (2(1 − hV )�V − �A)ε1(s)]
εφ = 2[ gρKK

zA
]2z2

V [ε2(s) − �Aε1(s)]
ερω = [ gρKK

zA
]2(1 + 2ΣV )[ε1(s) + (�V − �A)ε2(s)]

ερφ = −√
2[ gρKK

zA
]2zV (1 + ΣV )[ε1(s)

+ (hV �V − �A)ε2(s)]
εωφ = −√

2[ gρKK

zA
]2zV (1 + ΣV )[ε2(s)

+ ((1 − hV )�V − �A)ε1(s)]

(97)

The functions ε1(s) and ε2(s) and the constant gρKK have
been already defined in the main text by (33). We have also
defined:

gρKK = ag

4
(98)

Appendix C: Lagrangian pieces with renormalized
vector fields

Coupling to a pion pair comes from the two Lagrangian
pieces57:

LV ππ = iag

2
[1 + ΣV ]{ρ0

R + [(1 − hV )�V − α(s)
]
ωR

+ β(s) φR

} · π− ↔
∂ π+

LAππ = ie

[
1 − a

2

(
1 + ΣV + �V

3

)]
A · π− ↔

∂ π+ (99)

which exhibit the couplings to a pion pair depending on mix-
ing angles.

Similarly, the Lagrangian pieces relevant for couplings to
K+K− are given by:

LV K+K− = iag

4zA

[
1 + ΣV − �A

2

]
× {[1 + hV �V + α(s)

+ √
2zV β(s)

]
ρ0

R + [1 + (1 − hV )�V − α(s)

+ √
2zV γ (s)

]
ωR − [√2zV (1 − ΣV ) − β(s)

− γ (s)
]
φR

} · K− ↔
∂ K+

57Throughout this Section, one takes profit of introducing irrelevant
second-order terms in breaking parameters in order to write down ex-
pressions in the most concise way.
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LAK+K− = ie

[
1 − a

6zA

[
2 + zV + 2ΣV + 2�V

− �A

2
(2 + zV )

]]
A · K− ↔

∂ K+ (100)

and by:

L
V K0K

0 = iag

4zA

[
1 + ΣV + �A

2

]
× {[1 − hV �V − α(s)

− √
2zV β(s)

]
ρ0

R − [1 − (1 − hV )�V + α(s)

+ √
2zV γ (s)

]
ωR + [√2zV (1 − ΣV ) + β(s)

− γ (s)
]
φR

} · K0 ↔
∂ K

0

L
AK0K

0 = −ie
a

6zA

[
1 − zV + ΣV − �V

+ �A

2
(1 − zV )

]
A · K0 ↔

∂ K
0

(101)

for K0K
0

couplings. Setting b = a(zV − 1)/6 and μ =
zV

√
2, the s-dependent loop transition functions ΠV γ are:

Πργ =
[

1 − a

2

(
1 + ΣV + �V

3

)]
Π

γ
ππ(s)

gρππ

+
(

zA − a

2
− b

)
εS(s)

gρππ

+ b
εD(s)

gρππ

Πωγ =
[

1 − a

2

(
1 + ΣV + �V

3

)][
(1 − hV )�V

− α(s)
]Πγ

ππ(s)

gρππ

+
(

zA − a

2
− b

)
εS(s)

gρππ

− b
εD(s)

gρππ

Πφγ =
[

1 − a

2

(
1 + ΣV + �V

3

)]
β(s)

Π
γ
ππ (s)

gρππ

−
(

zA − a

2
− b

)
μ

εS(s)

gρππ

+ bμ
εD(s)

gρππ

(102)

where:

εS(s) = ε2(s) + ε1(s) and εD(s) = ε2(s) − ε1(s) (103)

The expressions in (102) are very close to their partner in
[39] or [46], as only first-order perturbation terms are mean-
ingful.

Appendix D: The anomalous Lagrangian pieces

The full Anomalous Lagrangian can be written:

Lanomalous = LV V P + LAV P + LAAP + LV PPP + LAPPP

(104)

where A denotes the electromagnetic field. It incorpo-
rates the Wess–Zumino–Witten terms and the FKTUY La-

grangian [28]. The Lagrangian pieces occurring in (104)
are58 [23]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LV V P = − Ncg
2

4π2fπ
c3ε

μναβTr[∂μVν∂αVβP ]
LAV P = − Ncge

8π2fπ
(c4 − c3)ε

μναβ∂μAνTr[{∂αVβ,Q}P ]
LAAP = − Nce

2

4π2fπ
(1 − c4)ε

μναβ∂μAν∂αAβTr[Q2P ]
LV PPP

= −i
Ncg

4π2f 3
π
(c1 − c2 − c3)ε

μναβTr[Vμ∂νP ∂αP∂βP ]
LAPPP = −i Nce

3π2f 3
π
[1 − 3

4 (c1 − c2 + c4)]εμναβ

· AμTr[Q∂νP∂αP∂βP ]

(105)

where the ci are parameters not fixed by the model. Nc is
the number of colors fixed to 3. The V and P field matrices
are the bare ones.

Appendix E: The VR1Pγ coupling constants

In order to express the VR1Pγ couplings, it is appropriate to
define the angle δP = θP − θ0 (tan θ0 = 1/

√
2):

⎧⎨
⎩

sin θP = 1√
3
(cos δP + √

2 sin δP )

cos θP = 1√
3
(
√

2 cos δP − sin δP )
(106)

and some parameter expressions which reflect the various
ways, nonet symmetry breaking in the PS sector occurs:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = 1 − 3z2
A

2z2
A+1

v

x′ = 1 − 3zA

2z2
A+1

v

x′′ = 1 − 3
2z2

A+1
v

(107)

where v is the nonet symmetry breaking parameter de-
fined in (22). Finally, we also have defined G = −eg(c3 +
c4)/(8π2fπ). The ρ0

R1
Pγ coupling constants are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0
ρ0π0γ

= G
2 [1 − 3[�A

2 + (1 − hV )�V ]
− 3ε sin δP + 3ε′ cos δP ]

g0
ρ0ηγ

= G
2 [√2(1 − x′) cos δP − (2x + 1) sin δP

+ [�A

2 + (1 − hV )�V ] sin δP − ε]
g0

ρ0η′γ = G
2 [(2x + 1) cos δP + √

2(1 − x′) sin δP

− [�A

2 + (1 − hV )�V ] cos δP − ε′]
gρ±π∓γ = G

2

(108)

58For clarity, the new constant parameters are denoted exactly as they
are defined in [23].
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In the ωR1Pγ sector, one has:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0
ωπ0γ

= 3G
2 [1 − 1

3 [�A

2 + hV �V ] − ε
3 sin δP + ε′

3 cos δP ]
g0

ωηγ = G
6 [√2(1 − x′) cos δP − (2x + 1) sin δP

+ 9[�A

2 + hV �V ] sin δP − 9ε]
g0

ωη′γ = G
6 [(2x + 1) cos δP + √

2(1 − x′) sin δP

− 9[�A

2 + hV �V ] cos δP − 9ε′]

(109)

and, finally, the φR1Pγ sector provides much simpler ex-
pressions:
⎧⎪⎪⎨
⎪⎪⎩

g0
φπ0γ

= G
2 [ 2ε

zA
cos δP + 2ε′

zA
sin δP ]

g0
φηγ = G

3zA
[(2 + x′′) cos δP − √

2(1 − x′) sin δP ]
g0

φη′γ = G
3zA

[√2(1 − x′) cos δP + (2 + x′′) sin δP ]
(110)

Finally, the K∗ sector is described by:
⎧⎨
⎩

gK∗±K±γ = G
2

√
zT

zA
[2 − 1

zT
](1 − �A

4 )

gK∗0K0γ = −G
2

√
zT

zA
[1 + 1

zT
](1 + �A

4 )
(111)

where zT is another breaking parameter [39, 46] not dis-
cussed here.

Appendix F: The V PPP coupling constants

The V PPP coupling constants in the P0π
−π+ (P0 =

π0, η, η′) have been defined for the R1 renormalized fields
in (62). With an obvious naming, they are obtained by mul-
tiplying each of:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0
ρπ0 = − 1

4 [�A

2 + 3(1 − hV )�V − cos θP√
3

(ε1 + √
2ε2)

− sin θP√
3

(ε2 − √
2ε1)]

g0
ρη = 1

4
√

3
[[1 + 2zA

1−zA

2z2
A+1

v] cos θP

− √
2[1 − zA

2zA+1
2z2

A+1
v] sin θP ]

g0
ρη′ = 1

4
√

3
[√2[1 − zA

2zA+1
2z2

A+1
v] cos θP

+ [1 + 2zA
1−zA

2z2
A+1

v] sin θP ]
g0

ωπ0 = 3
4

g0
ωη = −

√
3

12 [cos θP − √
2 sin θ ][hV �V + 3�A

2 ] − 3
4ε

g0
ωη′ = −

√
3

12 [√2 cos θP + sin θ ][hV �V + 3�A

2 ] − 3
4ε′

g0
φπ = 0

(112)

by D = −3g(c1 − c2 − c3)/(4π2f 3
π ), which depends on

the FKTUY parameters c1 − c2 and c3 not constrained by
the model. Only the leading correction terms have been re-
tained.

Appendix G: The V Pγ couplings for renormalized
vector fields

Let us define the quantities:

k0[VR1P0γ ] = 1

GNc

g0
VR1P0γ

,

(
G = − egc3

4π2fπ

)
(113)

for each VR1 = ρR1, ωR1, �R1 and P0 = π0, η, η′. The
g0

VR1P0γ
can be found in Appendix E in (108), (109), (110).

The functions H
P0
Vi

occurring in (66) provide the couplings
of the physical vector fields to a photon and a neutral meson.
They are given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H
P0
ρR

= k0[ρR1P0γ ] + α(s)k0[ωR1 P0γ ] − β(s)k0[�R1 P0γ ]
H

P0
ωR

= k0
[ωR1P0γ ] − α(s)k0

[ρR1 P0γ ] − γ (s)k0
[�R1 P0γ ]

H
P0
�R

= k0
[�R1P0γ ] + β(s)k0

[ρR1 P0γ ] + γ (s)k0
[ωR1P0γ ]

(114)

These definitions help in writing the cross sections in a
way similar to those in [46]. When expanded, the H

P0
Vi

func-
tions may contain contributions of order greater than 1 in
some of the breaking parameters. These higher-order contri-
butions are irrelevant and can be dropped out.

Appendix H: The functions Ni(s) in e+e− → π0π+π−
annihilations

The amplitude for the transition γ ∗ → π0π+π− is much
simply expressed in terms of the following complex func-
tions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0(s)

= 2ε1(cos θP −√
2 sin θP )+2ε2(

√
2 cos θP +sin θP )−�A

√
3

6
√

3
1

D
ρ0 (s)

N1(s) = Fωγ (s)

Dω(s)

+ [α(s) − (1 − hV )�V ] Fργ (s)

D
ρ0 (s)

+ γ (s)
Fφγ (s)

Dφ(s)

N2(s) = 1
D

ρ0 (s+−)
+ 1

Dρ+ (s0−)
+ 1

Dρ− (s0+)

N3(s) = [α(s+−) − (1 − hV )�V ][ 1
D

ρ0 (s+−)
− 1

Dω(s+−)
]

N4(s) = [ ε1(cos θP −√
2 sin θP )+ε2(

√
2 cos θP +sin θP )√

3

− [�A

2 − (1 − hV )�V ]] 1
D

ρ0 (s+−)

N5(s) = γ (s+−)−γ (s)
2D

ρ0 (s+−)

N6(s) = 2ε1(cos θP −√
2 sin θP )+2ε2(

√
2 cos θP +sin θP )−�A

√
3

6
√

3

· 1
D

ρ0 (s+−)

(115)

s+−, s0− and s0+ are the invariant mass squared of the cor-
responding pion pairs from the final state. s is the off–shell
photon invariant mass squared. All other parameters and
functions have been defined in the body of the text.
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The connection with the Kuraev–Siligadze (x, y) parame-
trization [73] is defined by (m0 = mπ0 , mπ = mπ± ):⎧⎪⎪⎨
⎪⎪⎩

s+− = s(2x + 2y − 1) + m2
0

s+0 = s(1 − 2y) + m2
π

s−0 = s(1 − 2x) + m2
π

(116)

The integration limits can be found in [73]; they are also
reminded in [46]. The Kuraev–Siligadze kernel is:

G(x,y) = 4

(
x2 − m2

π

s

)(
y2 − m2

π

s

)

−
(

1 − 2x − 2y + 2xy + 2m2
π − m2

0

s

)2

(117)
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