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Abstract Stronger constraints on the pseudoscalar cou-
pling constants of an axion to a proton and a neutron are
obtained from an indirect measurement of the effective
Casimir pressure between two Au-coated plates by means
of micromechanical torsional oscillator. For this purpose,
the additional effective pressure due to two-axion exchange
is calculated. The role of boundary effects and the validity
region of the proximity force approximation in application
to forces of axion origin are determined. The obtained con-
straints are up to factors of 380 and 3.2 stronger than those
found recently from other laboratory experiments and are
relevant to axion masses from 10−3 to 15 eV.

1 Introduction

Starting from the prediction of axions in 1978 [1,2], axion
physics has become a wide subject stimulating development
of elementary particle theory, gravitation, and cosmology
(see [3,4] for a review). Axions are pseudoscalar particles
which appear as a consequence of breaking the Peccei and
Quinn symmetry [5]. They provide an elegant solution for
the problem of strong CP violation and large electric dipole
moment for the neutron in QCD. Since the proper QCD
axions were constrained to a narrow band in parameter space
[6], a lot of invisible axion-like particles have been proposed
in different unification schemes. Among others, the models
of the hadronic (KSVZ) [7,8] and the GUT (DFSZ) [9,10]
axions, which can be used to solve the problem of strong CP
violation in QCD, have attracted particular attention (see,
for instance, a number of variants of the model of hadronic
axion containing the relationship between the axion–nucleon
coupling constant and the Peccei–Quinn symmetry break-
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ing scale [11,12]). At the moment axion-like particles with
masses ma from approximately 10−5 to 10−2 eV and of about
1 MeV are not excluded by astrophysical constraints [4,13].
Keeping in mind that the latter may be more model-dependent
than the laboratory constraints [14,15], it seems warranted
to look for some alternative phenomena which could be used
for constraining axion-like particles of any mass. Additional
interest in this subject is due to the role of axions as possible
constituents of dark matter [16,17].

Previously constraints on axion–nucleon coupling con-
stants have been obtained [18–20] from the laboratory experi-
ments of Eötvos [20,21] and Cavendish [22,23] type. At first,
this analysis was performed for massless axions but later it
was generalized [24] for the case of massive ones. The result-
ing constraints were found in the range of axion masses from
approximately 10−9 to 10−5 eV. In [25] constraints on the
axion–nucleon coupling constants were obtained from mea-
surements of the thermal Casimir–Polder force between a
Bose–Einstein condensate of 87Rb atoms and a SiO2 plate
[26]. These constraints refer to larger axion masses from
10−4 to 0.3 eV. In fact, the effective potential arising between
two fermions from the exchange of a pseudoscalar axion-like
particle is spin-dependent [24]. Taking into account that the
test bodies in the experiments [20–23,26] are unpolarized,
the additional force constrained in [24,25] comes from the
two-axion exchange.

Using the same approach, in [27] stronger constraints on
axion–nucleon coupling constants over the wide range of
axion masses from 3×10−5 to 1 eV were obtained from mea-
surements of the Casimir force gradient between a sphere and
a plate coated with nonmagnetic and magnetic metals per-
formed by means of dynamic atomic force microscope [28–
32]. The strengthening up to a factor of 170, as compared to
the constraints of [25], was achieved. This demonstrates that
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various experiments on measuring the Casimir interaction
[33] are promising for further constraining the parameters of
an axion. In the past, these experiments were successfully
used to obtain stronger constraints on the Yukawa-type cor-
rections to Newtonian gravity due to exchange of light scalar
particles [34] and from extra-dimensional physics with low-
energy compactification scale [35] (see review [36] and the
most recent results [37–42]).

In this paper, we obtain stronger constraints on the pseu-
doscalar coupling constants of axion-like particles to a proton
and a neutron from measurements of the effective Casimir
pressure by means of micromechanical torsional oscillator
[43,44]. For this purpose, we calculate the additional effec-
tive pressure in the configuration of two parallel plates arising
due to two-axion exchange between a sphere and a plate (note
that the experimental configuration [43,44] involves a sphere
oscillating in the perpendicular direction to the plate, so that
the effective pressure arises in the proximity force approxi-
mation [33,36]). The stronger limits on axion–nucleon cou-
pling constants are obtained over the range of axion masses
from 10−3 to 15 eV. The strengthening by factors from 2.2 to
3.2 in comparison with the limits of [27] is achieved over the
range of axion masses from 10−3 to 1 eV, respectively. As
compared to the limits of [25], the obtained constraints are
stronger up to a factor of 380. Our model-independent con-
straints are applicable on equal terms to axions and axion-like
particles. Because of this, below both terms are used synony-
mously. All equations are written in the system of units with
h̄ = c = 1.

2 Pressure between two metallic plates due to two-axion
exchange

In the experiment [43,44], the effective Casimir pressure
between two Au plates was determined from dynamic mea-
surements using a micromechanical torsional oscillator. The
oscillator consisted of a heavily doped polysilicon plate of
area 500 × 500 µm2 and thickness D = 5 µm suspended
at two opposite points above the platform at the height of
about 2 µm. Two independent electrodes located on the plat-
form under the plate were used to measure the capacitance
between the electrodes and the plate. They were also used to
induce oscillation in the plate at the resonance frequency of
the micromachined oscillator. A large sapphire sphere coated
with layers of Cr and Au was attached to the optical fiber
above the oscillator. The sphere radius was measured to be
R = 151.3 µm. A silicon plate below the sphere was also
coated with layers of Cr and Au.

In the dynamic measurements, the vertical separation
between the sphere and the plate was varied harmonically
with the resonance frequency of oscillator, ωr, in the pres-
ence of the sphere. The Casimir force between the sphere

and the plate caused the difference between ωr and the nat-
ural frequency of the oscillator ω0. This difference has been
measured and recalculated into the gradient of the Casimir
force acting between the sphere and the plate, F ′

sp(a), using
the solution for linear oscillator motion (a is the absolute
sphere-plate separation). According to the proximity force
approximation (PFA) [33,36],

Fsp(a) = 2π RE(a), (1)

where E(a) is the Casimir energy per unit area of two parallel
plates (semispaces). Calculating the negative derivative of
both sides of (1), one obtains the effective Casimir pressure
between two parallel plates,

P(a) = − 1

2π R
F ′

sp(a), (2)

which is the physical quantity indirectly measured in [43,44].
Note that under the condition a � R the relative error in
the gradient of the Casimir force computed using (1) does
not exceed (0.3–0.4)a/R [45–49]. Taking into account that
below we consider separations a < 300 nm, this is of less
than 0.1 % error.

Now we calculate the additional pressure between two
parallel semispaces separated with a gap a due to two-axion
exchange between nucleons. In this section, we consider
homogeneous semispaces and postpone the account of finite
thickness of the plate and layer structure of both test bodies
to Sects. 3 and 4. First we perform a direct derivation of the
additional pressure Padd(a) by summing up the energies of
pair nucleon-nucleon interactions over the two semispaces
and calculating the negative derivative of the obtained result.
This pressure can be considered as an addition to the indi-
rectly measured Casimir pressure (2) if the additional force
between a sphere and a plate due to two-axion exchange is
related to the additional energy per unit area of two parallel
plates by the PFA, so that

Fsp,add(a) = 2π REadd(a), (3)

Padd(a) = − 1

2π R
F ′

sp,add(a).

Then we determine the application region of (3) from the
comparison with the exact result for F ′

sp,add(a).
Let the coordinate plane x, y coincide with the boundary

plane of the lower semispace and let the z axis be perpendic-
ular to it. The effective potential due to two-axion exchange
between two nucleons (protons or neutrons) situated at the
points r1 and r2 of the upper and lower semispaces, respec-
tively, is given by [24,50,51]

Vkl(|r1 − r2|) = −g2
ak g2

al ma

32π3m2

K1(2ma |r1 − r2|)
(r1 − r2)2 . (4)

Here, gak and gal are the coupling constants of an axion to
a proton (k, l = p) or a neutron (k, l = n) interaction,
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m = (mn + m p)/2 is the mean of the neutron and proton
masses, and K1(z) is the modified Bessel function of the
second kind. Equation (4) was derived under the condition
|r1 − r2| � 1/m. Taking into account that in the experiment
[43,44] we have a > 160 nm, this condition is satisfied with
large safety margin.

The additional energy per unit area of the two semispaces
due to two-axion exchange can be written as

Eadd(a) = 2π
∑

k,l

nk,1nl,2

∞∫

a

dz1

0∫

−∞
dz2

∞∫

0

ρdρ

×Vkl(
√

ρ2 + (z1 − z2)2), (5)

where Vkl is defined in (4) and

n p,i = ρi

mH

Zi

μi
, nn,i = ρi

mH

Ni

μi
. (6)

Here i = 1, 2 numerates semispaces, ρ1,2 are the respec-
tive densities, Z1,2 and N1,2 are the numbers of protons
and the mean number of neutrons in the atoms (molecules)
of respective semispaces. The quantities μ1,2 are given by
μ1,2 = m1,2/mH, where m1,2 and mH are the mean masses
of the atoms (molecules) of the semispaces and the mass of
the atomic hydrogen, respectively. The values of Z/μ and
N/μ for the first 92 elements of the Periodic Table with
account of their isotopic composition can be found in [34].

Calculating the negative derivative of (5) with respect to a,
one obtains the additional pressure between two semispaces

Padd(a) = − ma

m2m2
H

C1C2
∂

∂a

∞∫

a

dz1 I (z1), (7)

where

I (z1) ≡
0∫

−∞
dz2

∞∫

0

ρdρ
K1(2ma

√
ρ2 + (z1 − z2)2)

ρ2 + (z1 − z2)2 . (8)

Here, the coefficients C1,2 for the materials of the semispaces
are defined as

C1,2 = ρ1,2

(
g2

ap

4π

Z1,2

μ1,2
+ g2

an

4π

N1,2

μ1,2

)
. (9)

Using the integral representation [52]

K1(z)

z
=

∞∫

1

du
√

u2 − 1e−zu (10)

and introducing the new variable v = √
ρ2 + (z1 − z2)2, one

can rearrange (8) into the form

I (z1) = 2ma

0∫

−∞
dz2

∞∫

z1−z2

dv

∞∫

1

du
√

u2 − 1e−2mauv. (11)

By integrating with respect to v and z2, we arrive at

I (z1) = 1

2ma

∞∫

1

du

√
u2 − 1

u2 e−2ma z1u . (12)

Substituting this in (7) and differentiating with respect to a,
we finally obtain

Padd(a) = − 1

2π R
F ′

sp,add(a)

= − C1C2

2m2m2
H

∞∫

1

du

√
u2 − 1

u2 e−2maau . (13)

Now we determine the application region of (13) in the
experimental configuration of [43,44] which involves not the
two parallel plates, but a sphere above a plate. By summing
the potential (4) over the volumes of a sphere and a semispace
it was shown [27] that

− 1

2π R
F ′

sp,add(a) = − CsC p

2Rm2m2
H

∞∫

1

du

√
u2 − 1

u2

×e−2maau�(R, mau), (14)

where the function �(r, z) is defined as

�(r, z) = r − 1

2z
+ e−2r z

(
r + 1

2z

)
(15)

and Cs and Cp are the constants for the sphere and plate
materials as defined in (9). From (15) we can see that

�(R, mau)

R
= 1 − 1

2Rmau

+ e−2Rmau
(

1 + 1

2Rmau

)
. (16)

Thus, (14) leads to approximately the same results as (13)
under the condition Rma � 1. Numerical computations
show that (13) and (14) deviate less than approximately 1 %
under the condition Rma > 10. Because of this, for the exper-
imental parameters of [43,44], (13) can be used for axion
masses ma > 10−2eV. For smaller masses, calculations of
forces due to two-axion exchange using the PFA become not
sufficiently exact. In this case one should compute the addi-
tional effective pressure using (14). Note that similar results
concerning the application region of the PFA to Yukawa-type
forces are obtained in [53,54].

3 Estimation of boundary effects

Here, we consider the sphere above the plate of finite thick-
ness and finite area and estimate errors in the additional force
gradient arising from treating this plate as infinitely large.
For convenience in calculations, we replace the square of the
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area 500 × 500 µm2 by the disc of radius L = 250 µm. The
replacement of a square by a disc of smaller area may only
increase the boundary effects which, as we show below, are
sufficiently small.

By summing the potential (4) over the volumes of a sphere
and a plate (disc) of thickness D and radius L , an additional
contribution due to the two-axion exchange to the quantity
measured in [43,44] can be presented in the form [27]

− 1

2π R
F ′

add(a) = − maCsC p

2Rm2m2
H

× ∂

∂a

2R+a∫

a

dz1[R2 − (R + a − z1)
2]G(z1, ma), (17)

where

G(z1, ma) ≡ ∂

∂z1

0∫

−D

dz2

L∫

0

ρdρ

× K1(2ma

√
ρ2 + (z1 − z2)2)

ρ2 + (z1 − z2)2 . (18)

Using (10), introducing the variable v defined above and inte-
grating with respect to it, we obtain

G(z1, ma) =
∞∫

1

du

√
u2 − 1

u

∂

∂z1

0∫

−D

dz2

×[e−2mau(z1−z2) − e−2mau
√

L2+(z1−z2)2 ].
(19)

After integrating and differentiating in (19) over z2 and z1,
respectively, we get

G(z1, ma) =
∞∫

1

du

√
u2 − 1

u
[e−2maau(1 − e−2ma Du)

−e−2mau
√

L2+z2
1 + e−2mau

√
L2+(z1+D)2 ].

(20)

Now we substitute (20) in (17). In doing so, we integrate
only the first term on the right-hand side of (20) with respect
to z1 and perform the differentiation with respect to a. The
result is

− 1

2π R
F ′

add(a) = − CsCp

2Rm2m2
H

∞∫

1

du

√
u2 − 1

u2

×[e−2maau(1 − e−2ma Du)�(R, mau)

− Y (mau, L , D)], (21)

where the function�(r, z) is defined in (16) and the following
notation is introduced:

Y (mau, L , D) ≡ 2mau

2R+a∫

a

dz1(R + a − z1)

×[e−2mau
√

L2+z2
1 − e−2mau

√
L2+(z1+D)2 ]. (22)

From the comparison of the right-hand sides of (21) and
(14), it is seen that the first term of (21) generalizes (14)
for the case of a plate of finite thickness D. In the limiting
case D → ∞ the first term of (21) coincides with (14). The
second term on the right-hand side of (21) takes into account
the boundary effects.

Now we estimate the relative role of boundary effects
in the calculation of the additional force gradient due to
two-axion exchange using the experimental parameters of
[43,44]. Taking into account that the quantity in square brack-
ets on the right-hand side of (22) is positive, one can only
increase the integral by omitting the part of the integration
domain where the quantity in the round brackets is negative.
This results in the inequality

Y (mau, L , D) < 2mau

R+a∫

a

dz1(R + a − z1)

×[e−2mau
√

L2+z2
1 − e−2mau

√
L2+(z1+D)2 ]. (23)

The second exponent on the right-hand side of this equation
under the condition D � L can be approximated as

e−2mau
√

L2+(z1+D)2 ≈ e−2mau
√

L2+z2
1 e

−mau
2z1 D+D2√

L2+z2
1

≈ e−2mau
√

L2+z2
1

⎛

⎝1 − mau
2z1 D + D2
√

L2 + z2
1

⎞

⎠ , (24)

where the last transformation is performed for small axion
masses ma ∼ 1/R leading to the largest boundary effects
[the dominant contribution to the integral (21) is given by
u ∼ 1]. Substituting (24) in (23), one obtains

Y (mau, L , D) < 2(mau)2

R+a∫

a

dz1(R + a − z1)

×e−2mau
√

L2+z2
1

2z1 D + D2
√

L2 + z2
1

< 2(mau)2e−2mauL D

L
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×
R+a∫

a

dz1(R + a − z1)(2z1 + D)

≈ 2RD

3L
(ma Ru)2e−2mauL . (25)

From (25) it is seen that under the conditions ma R ≈ 1
and u ∼ 1 it follows that

Y (mau, L , D) < 3 × 10−4 R. (26)

Under the same conditions, the contribution of the remain-
ing terms in the square brackets of (21) is equal to 3×10−2 R.
Thus, the boundary effects contribute less than 1 % under
the integral (21). We have checked by means of numerical
computations that the contribution of the boundary effects
to the normalized gradient of the additional force also does
not exceed 1 %. Because of this, the role of additional forces
due to two-axion exchange in the experiment [43,44] can be
calculated under the assumption of the infinitely large area
of the oscillator plate.

4 Account of layer structure of test bodies

As was mentioned in Sect. 2, the test bodies in the experiment
[43,44] were not homogeneous. The Si plate of an oscillator
of finite thickness D was coated with a Cr layer of thickness
�Cr

p = 10 nm and with an outer Au layer of thickness �Au
p =

210 nm. The sapphire (Al2O3) sphere was coated with a Cr
layer of thickness �Cr

s = 10 nm and then with an Au layer of
thickness �Au

s = 180 nm. The densities of all these materials
are presented in the second column of Table 1.

Now we adapt the results of Sect. 2 for the additional
effective pressure due to two-axion exchange for the case of
experimental layer structure of both bodies and finite thick-
ness of the oscillator plate. We begin with (13), which can
be used in the experimental configuration of [43,44] within
the application region of the PFA. The layers are taken into
account one by one. For instance, to account for the Au layer
on the plate, we subtract from (13), written for two Au semis-
paces, the effective pressure between the same semispaces,
but separated by the gap a +�Au

p . Then we add the effective

Table 1 The values of densities (column 2) and quantities Z/μ (column
3) and N/μ (column 4) are presented for different materials (column
1). See text for further discussion

Material ρ (g/cm3) Z
μ

N
μ

Au 19.28 0.40422 0.60378

Cr 7.15 0.46518 0.54379

Si 2.33 0.50238 0.50628

Al2O3 4.1 0.49422 0.51412

pressure for Au–Cr semispaces separated by the same gap
and subtract the pressure for these semispaces separated by
the gap a + �Au

p + �Cr
p etc. Similar procedure is used to

account for the layer structure of the upper plate. Finally, for
the experimental configuration one obtains

Padd(a) = − 1

2π R
F ′

sp,add = − 1

2m2m2
H

∞∫

1

du

√
u2 − 1

u2

×e−2maau X p(mau)Xs(mau), (27)

where

X p(mau) ≡ CAu(1 − e−2mau�Au
p )

+CCre
−2mau�Au

p (1 − e−2mau�Cr
p )

+CSie
−2mau(�Au

p +�Cr
p )

(1 − e−2mau D),

Xs(mau) ≡ CAu(1 − e−2mau�Au
s )

+CCre
−2mau�Au

s (1 − e−2mau�Cr
s )

+CAl2O3 e−2mau(�Au
s +�Cr

s ). (28)

Here, the coefficients CAu, CCr, and CSi are defined in (9).
They are calculated using the respective values for Z/μ and
N/μ presented in the third and fourth columns of Table 1
[34]. The quantities Z/μ and N/μ for Al2O3 are also given
in Table 1 [27].

As was found in Sect. 2, in the experimental config-
uration [43,44], the PFA is applicable to calculate addi-
tional forces due to two-axion exchange under the condition
ma > 10−2 eV. For axions of smaller masses a more exact
expression (14) should be used. It can be adapted for the
experimental layer structure using the procedure described
above. The result is

− 1

2π R
F ′

sp,add = − 1

2m2m2
H R

∞∫

1

du

√
u2 − 1

u2

×e−2maau X p(mau)X̃s(mau), (29)

where the function X̃s is defined as

X̃s(mau) ≡ CAu[�(R, mau)

−e−2mau�Au
s �(R − �Au

s , mau)]
+CCre

−2mau�Au
s [�(R − �Au

s , mau)

−e−2mau�Cr
s �(R − �Au

s − �Cr
s , mau)]

+CAl2O3 e−2mau(�Au
s +�Cr

s )

×�(R − �Au
s − �Cr

s , mau). (30)

Here, the functions X p and � are given in (28) and (15),
respectively.
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5 Constraints on axion–nucleon coupling constants

The experimental data of [43,44] for the effective Casimir
pressure were obtained at separations a > 160 nm and found
to be in good agreement with the Lifshitz theory [55] under
the condition that the low-frequency behavior of the dielectric
permittivity of Au is described by the plasma model (the
Casimir force is entirely determined by the outer Au layers
on both test bodies and, as opposed to the additional force
due to two-axion exchange, is not influenced by the layers
situated below). No signature of any additional interaction
was observed in the limits of the total experimental error,
�P(a), in the pressure measurements.

This means that the effective additional pressure should
satisfy the following inequality:
∣∣∣∣−

1

2π R
F ′

sp,add

∣∣∣∣ ≤ �P(a). (31)

The left-hand side of this inequality is given by the magni-
tudes of either (27) (for axion masses allowing the use of the
PFA) or (29) (for axions of smaller masses). The total exper-
imental error in the indirectly measured pressures, �P(a),
recalculated with the 67 % confidence level for convenience
in comparison with the previously obtained constraints, is
equal to 0.55, 0.38, and 0.22 mPa at separations a = 162,
200, and 300 nm, respectively.

We have found numerically (see Fig. 1) the values of the
axion to nucleon coupling constants gap, gan and masses ma

satisfying the inequality (31). For this purpose, the expres-
sions (27) and (29) were substituted in (31) over the mass
intervals 10−2 eV < ma < 15 eV and 10−3 eV < ma <

10−2 eV, respectively. We do not consider the axion masses
ma < 10−3 eV because in this case the respective Comp-
ton wavelengths become too large and one cannot neglect

Fig. 1 Constraints on the coupling constants of an axion to a proton or
a neutron obtained from indirect measurements of the effective Casimir
pressure versus the axion mass. The lines from bottom to top are plotted
under the conditions g2

ap = g2
an , g2

an � g2
ap , and g2

ap � g2
an , respec-

tively. In an inset line is plotted under the condition g2
ap = g2

an for
larger masses. The regions of the plane above each line are prohibited
and below each line are allowed

the role of boundary effects (see Sect. 3). For ma > 15 eV
the constraints on gap and gan following from this experi-
ment become much weaker. In different intervals of ma , the
strongest constraints follow from the inequality (31) consid-
ered at different separation distances. Thus, for ma < 0.1 eV
the strongest constraints result at a = 300 nm and for
0.1 eV ≤ ma < 0.5 eV and 0.5 eV ≤ ma < 15 eV at
a = 200 and 162 nm, respectively.

In Fig. 1, we present the obtained strongest constraints on
the constants g2

ap(n)/(4π) as functions of the axion mass ma .
The lines correspond to the equality sign in (31). In Fig. 1
the three lines from bottom to top are plotted under the con-
ditions g2

ap = g2
an , g2

an � g2
ap, and g2

ap � g2
an , respectively,

for axion masses below 2 eV. The regions of the (ma, g2
ap(n))

plane above each line are prohibited by the results of experi-
ment [43,44], because the coordinates of their points violate
inequality (31). The regions below each line are allowed by
the results of this experiment. As can be seen in Fig. 1, for
axions with masses ma < 10−2 eV the obtained constraints
are almost independent of ma . In an inset to Fig. 1 we plot the
obtained constraints over a wider range of ma (up to 15 eV)
under the condition g2

ap = g2
an . As is seen in this figure, with

increasing ma the strength of constraints quickly decreases.
In Table 2, we present the maximum allowed values of the
axion–nucleon coupling constants over the most interesting
region of masses from ma = 10−3 to 2 eV (column 1) par-
tially overlapping with an axion window. The values in col-
umn 2 are obtained under the conditions g2

ap = g2
an , and

Table 2 Maximum values of the coupling constants of an axion to a
proton and a neutron, allowed by indirect measurements of the Casimir
pressure between Au plates, are calculated for different axion masses
(column 1) under the conditions g2

ap = g2
an (column 2), g2

an � g2
ap

(column 3), and g2
ap � g2

an (column 4)

ma (eV)
g2

ap
4π

= g2
an

4π

g2
an

4π
� g2

ap
4π

g2
ap

4π
� g2

an
4π

0.001 8.51 × 10−5 1.49 × 10−4 1.98 × 10−4

0.01 8.74 × 10−5 1.52 × 10−4 2.04 × 10−4

0.05 9.66 × 10−5 1.67 × 10−4 2.30 × 10−4

0.1 1.08 × 10−4 1.84 × 10−4 2.59 × 10−4

0.2 1.28 × 10−4 2.16 × 10−4 3.11 × 10−4

0.3 1.48 × 10−4 2.49 × 10−4 3.62 × 10−4

0.4 1.71 × 10−4 2.88 × 10−4 4.21 × 10−4

0.5 1.96 × 10−4 3.29 × 10−4 4.85 × 10−4

0.6 2.22 × 10−4 3.73 × 10−4 5.50 × 10−4

0.7 2.51 × 10−4 4.21 × 10−4 6.24 × 10−4

0.8 2.84 × 10−4 4.76 × 10−4 7.06 × 10−4

0.9 3.21 × 10−4 5.37 × 10−4 7.97 × 10−4

1.0 3.62 × 10−4 6.05 × 10−4 8.99 × 10−4

1.5 6.48 × 10−4 1.08 × 10−3 1.61 × 10−3

2.0 1.13 × 10−3 1.88 × 10−3 2.81 × 10−3
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(a)

(b)

Fig. 2 a Comparison between the constraints on the coupling constant
of an axion to nucleon obtained here under the condition g2

ap = g2
an

(the solid line) with those obtained previously from experiments on
measuring the thermal Casimir–Polder force (the dashed line 1) and the
gradient of the Casimir force (the dashed line 2). The regions of the
plane above each line are prohibited and below each line are allowed. b
Constraints on the coupling constant gan following from magnetometer
measurements [56] (line 1), from the Cavendish-type experiments [22,
23,57] (lines 2 and 3, respectively), and obtained in this work from
measurements of the Casimir pressure by means of micromachined
oscillator [43,44] (line 4)

columns 3 and 4 contain the maximum values of g2
an/(4π)

and g2
ap/(4π) found under the conditions g2

an � g2
ap and

g2
ap � g2

an , respectively.
In Fig. 2a the constraints derived in this paper are com-

pared with those found previously [25,27] from measure-
ments of the thermal Casimir–Polder force [26] and from
experiments on measuring the gradient of the Casimir force
between Au surfaces [28,29]. For the sake of definiteness,
the comparison is made under the most reasonable condi-
tion g2

ap = g2
an . The solid line in Fig. 2a reproduces the

lower line in Fig. 1 obtained here. The dashed lines 1 and
2 reproduce the constraints obtained [25,27] from measure-
ments of the Casimir–Polder force and the gradient of the
Casimir force over the regions of axion masses ma ≤ 0.3 eV
and ma ≤ 1 eV, respectively. The regions of the plane above
each line are prohibited and below each line are allowed by
the results of the respective experiment.

As can be seen in Fig. 2a, at ma = 10−3 and 1 eV our
present constraints are stronger by the factors of 2.2 and 3.2,

respectively, than those obtained from measurements of the
gradient of the Casimir force (the dashed line 2). In compari-
son with the constraints from measurements of the Casimir–
Polder force (the dashed line 1), the present constraints are
stronger up to a factor of 380. This strengthening is achieved
for the axion mass ma = 0.3 eV.

Now we compare the obtained here strongest model-
independent constraints on the coupling constant gan (the
lower line in Fig. 1) with other model-independent con-
straints obtained to the present day. Line 1 in Fig. 2b shows
the constraints found [56] with the help of a magnetome-
ter using spin-polarized K and 3He atoms. These constraints
are obtained in the region of axion masses from 10−10 to
6 × 10−6 eV. The line 2 shows the constraints found in [24]
from the Cavendish-type experiment [22,23] for ma from
10−9 to 10−5 eV. The results of a more modern Cavendish-
type experiment [57] were used to constrain gan in the region
from ma = 10−6 to ma = 10−2 eV [58]. These results are
shown by line 3 in Fig. 2b. Our constraints obtained here are
shown by line 4. As is seen in Fig. 2b, the model-independent
constraints become weaker with increasing ma (the same
takes place for the constraints on Yukawa-type corrections
to Newtonian gravity arising from the exchange of scalar
particles [36–42]). It can be seen, however, that in the range
of axion masses from 2 × 10−3 to 0.3 eV our constraints
following from the Casimir effect are the strongest model-
independent constraints.

A lot of constraints on an axion were obtained using
some model approaches. Thus, the planar Si(Li) detector
placed inside the low-background setup was used to detect
the γ -quanta appearing in the deexcitation of the nuclear
level excited by a solar axion [59]. In the framework of the
model of hadronic axions, where the coupling constant is
a function of the mass, the upper limits for the axion mass
ma ≤ 159 eV [59] and ma ≤ 145 eV [60] were obtained.
From the neutrino data of supernova SN 1987A it was found
[61] that for the model of hadronic axions gap(n) < 10−10 or
gap(n) > 10−3 with a narrow allowed region in the vicinity
of gap(n) = 10−6. From astrophysical arguments connected
with stellar cooling by the emission of hadronic axions a
similar bound gap(n) < 3 × 10−10 was obtained [62,63].
It should be noted, however, that the emission rate suffers
from significant uncertainties related to dense nuclear mat-
ter effects [63]. In addition to a pseudoscalar coupling of
axions to nucleons, it is possible also to introduce the scalar
one [64] and consider respective coupling constants g(s)

ap(n).

Several constraints on the product of constants |gang(s)
an | were

obtained from experiments on neutron diffraction [65]. Thus,
it was shown [65] that |gang(s)

an | < 10−11 within the range
of axion masses 2 × 10−5 eV < ma < 2 × 103 eV. When
the axion mass increases up to 2×106 eV, the corresponding
constraint becomes less stringent: |gang(s)

an | < 10−7.
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At the end of this section, we note that subsequent inde-
pendent measurements of the gradient of the Casimir force in
[28–32] confirmed both the experimental results of [43,44]
and their agreement with the Lifshitz theory under the condi-
tion that the low-frequency behavior of the dielectric permit-
tivity of Au is described by the plasma model (the conclusion
of [66], claiming an agreement with the Drude model low-
frequency behavior over the same range of separations was
shown [67] to be based on an unaccounted systematic error).

6 Conclusions and discussion

In this paper we have derived stronger constraints on the
pseudoscalar coupling constants of an axion to a proton and a
neutron from measurements of the effective Casimir pressure
by means of a micromachined oscillator. For this purpose, we
have calculated the additional pressure between two parallel
plates due to two-axion exchange and determined the validity
region of the PFA when it is applied to the forces of axion
origin. The role of boundary effects due to a finite area of the
oscillator plate was determined.

The obtained constraints are applicable over a wide region
of axion masses from 10−3 to 15 eV, partially overlapping
with an axion window. Under the assumption that gap = gan ,
they are stronger up to a factor of 380 than the previously
known laboratory constraints in this mass range derived from
measurements of the thermal Casimir–Polder force and up to
a factor of 3.15 than those found from measurements of the
gradient of the Casimir force by means of AFM.

The obtained results demonstrate that measurements of the
Casimir interaction using different laboratory techniques are
useful in searching axion-like particles and constraining their
coupling constants to nucleons. In future, it seems promising
to consider the potentialities of more complicated experi-
mental configurations, specifically, with corrugated bound-
ary surfaces, for obtaining stronger constraints on the param-
eters of axion-like particles.
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