
J
H
E
P
0
1
(
2
0
1
6
)
0
9
3

Published for SISSA by Springer

Received: September 2, 2015

Revised: December 11, 2015

Accepted: December 29, 2015

Published: January 18, 2016

Non-perturbative tests of continuum HQET through

small-volume two-flavour QCD

LPHAA
Collaboration

Patrick Fritzsch,a,b,1 Nicolas Garronc and Jochen Heitgerd
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1 Introduction

Heavy quark systems, notably B- and Bs-mesons, provide a unique opportunity to perform

stringent tests of the Standard Model and probe signals of new physics. To maximize the

impact of experiments performed at the Large Hadron Collider, for example, it is imperative

to control various aspects of the underlying theory. In particular, strong interaction effects

must be understood at the quantitative level, including reliable estimates of systematic

uncertainties.

Although in principle lattice QCD in a large physical volume L3 allows for ab initio

computations of hadronic matrix elements and energy levels, the presence of heavy and

light quarks still renders computations very demanding. Current state-of-the-art lattice

simulations of QCD with Nf ≥ 2 dynamical quarks usually reach lattice spacings down

to a ∼ 0.05 fm, while satisfying mπL & 4 in order to keep the finite-size effects under

control. Due to increasing computer power and algorithmic advances over the last decade,

it has become possible to simulate close to the physical pion mass for the figures just given.

However, additionally including relativistic b-quarks with their “heavy” physical mass of

about 4 GeV requires very fine lattice spacings a � 1/mh ∼ 0.05 fm in order to monitor
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its discretization effects in the spirit of Symanzik’s local effective theory. Associated with

this is the problem of large scale separations, mB/mπ = O(100), to be accommodated in a

single simulation, which remains out of reach in the near future. Therefore, one still needs

to take a detour to an effective description for the heavy quark. Here we focus on the

Heavy Quark Effective Theory (HQET) [1–4] which provides a natural framework to study

heavy-light mesons through a systematic expansion in the inverse heavy quark mass, 1/mh.

A non-perturbative implementation of HQET on the lattice [5], including the next-

to-leading order in the 1/mh-expansion, has been tested and applied successfully for the

quenched case in the past [6–8]. It requires to solve a set of matching relations between

quantities in continuum QCD and lattice HQET in a small physical volume. In two-

flavour QCD, the resulting non-perturbative set of HQET parameters [9] was recently

used to extract phenomenologically relevant parameters such as the b-quark mass, the

B-meson decay constant and hyperfine splittings from large-volume simulations [10–12].

At present there are efforts to extend the matching strategy to include the vector meson

channel [13, 14] in order to compute fB∗ and form factors of semi-leptonic B(s) → π (K)

transitions.

In this paper we probe predictions of HQET by studying the asymptotic behaviour

1/mh → 0 of continuum-extrapolated lattice QCD observables, computed in a small volume

(L ≈ 0.4 fm) with Nf = 2 dynamical flavours of non-perturbatively O(a)-improved massless

Wilson fermions. Extrapolations to the static limit are performed, which not only gives nu-

merical evidence of the correctness of static order HQET but also allows assessing the size of

the 1/mh-effects. As such, the present study constitutes a non-trivial non-perturbative test

of HQET being an effective theory of QCD and extends earlier work in quenched QCD [15]

to the physically more realistic situation with dynamical light quarks. In particular, we

investigate a considerable set of observables at varied kinematics, which in the spirit of

the general non-perturbative matching strategy mentioned above are usually employed to

define suitable matching relations. Complementary to perturbative studies [13, 14, 16],

this yields non-perturbative insights into their heavy quark mass asymptotics and provides

criteria for which of them are to be preferred within the matching strategy of [5], such as

impact of mass-dependent cutoff effects in the continuum limit extrapolations, numerical

accuracy and magnitude of higher-order corrections in 1/mh.

In contrast to a non-perturbative matching of (lattice) HQET to continuum QCD, the

perturbative approach relies on a perturbative evaluation of matching (resp. conversion)

functions, often called Wilson coefficients. To properly recover the static limit in HQET

as mh → ∞, also our QCD observables — non-perturbatively evaluated at finite quark

mass — still have to be combined with matching functions of this kind. These are only

perturbatively known, up to three-loop order in most cases. To disentangle in our tests

the genuine non-perturbative properties of the theory encoded in the observables from

perturbative effects induced by the conversion functions, we map out their mh-dependence

towards the static limit for conversion functions of different perturbative orders. This

comparison gives a rough idea on the systematic error that is involved, when the matching

between HQET and QCD is performed perturbatively. As will be exposed by the example

of the pseudoscalar decay constant below, we observe that — with perturbative matching at
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work — the agreement between the large-mass QCD asymptotics and the HQET prediction

may not be as good as expected, even if a three-loop expression for the conversion function

is used. We take this as an indication that in an effective theory framework for heavy quarks

the matching should be done non-perturbatively, if one wants to have the systematic errors

under control. In addition, we consider QCD observables, which have a non-trivial static

limit but do not depend on any conversion function. Hence, their mh → ∞ limit is much

less affected by systematic uncertainties such that they are among the cleanest observables

in our non-perturbative tests of the effective theory approach to heavy-light physics.

Some preliminary results on a smaller subset of observables, data ensembles and statis-

tics have already been reported in [17, 18].

2 Observables

This paper follows up our previous work [19] on the definition of a line of constant physics

in Nf = 2 lattice simulations. It allows us to non-perturbatively study the quark mass

dependence of relativistic QCD meson observables in a finite box of extent L1 ≈ 0.4 fm [20].

We explore a wide range of quark masses that starts below the charm sector and goes

beyond the bottom quark region. This is done in a partially quenched setup, i.e., the light

quark mass is set to the approximately vanishing mass of a degenerate sea quark doublet

and the heavy quark is quenched. We generically refer to the latter as heavy quarks of mass

mh. Equivalently, we will assign to them the dimensionless mass parameter z = L1Mh from

now on, where Mh ≡ M denotes some fixed value of the renormalization group invariant

(RGI) heavy quark mass. In [19] we have already shown that in such a small box the

lattice spacing can be chosen small enough so that all heavy quarks up to a certain value

can be simulated relativistically while keeping cutoff effects in the O(a) improved theory

well under control. For any unexplained notation, the reader may consult [15, 19].

Since our interest lies in relating predictions made by HQET non-perturbatively to the

proper counterpart in QCD towards the limit 1/mh → 0, we furthermore take into account

measurements of HQET observables that have been done in the framework of a general

non-perturbative matching strategy of HQET and QCD in the very same volume L1, but

to a much higher statistical accuracy. Additional details can be found in appendices B and

C of reference [9]. Working in a finite (and small) volume, all matrix elements and energies

become effective quantities which intrinsically depend on the scale L1. For notational

brevity we often suppress this dependence in the following.

Our main observables are built from Schrödinger functional (SF) correlation func-

tions [21, 22] in a T ×L3 volume with T = L = L1 fixed and periodic boundary conditions

in space. The fermion fields are taken periodic only up to a phase,

ψ(x+ k̂L) = eiθψ(x) , ψ(x+ k̂L) = ψ(x)e−iθ , k = 1, 2, 3 , (2.1)

where we use θ ∈ {0, 0.5, 1}. In correlation functions, this periodicity angle θ amounts to a

projection onto quark and antiquark momenta with components ±θ/L. In time direction,

Dirichlet boundary conditions are imposed at x0 = 0, T where source quark and antiquark

fields are separately projected onto vanishing spatial momentum. We are interested in the
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pseudoscalar (PS) and vector (V) channel using finite-volume heavy-light QCD currents.

They are given by the time component of the axial vector and spatial components of the

vector current, respectively:

A0(x0) = ψl(x0)γ0γ5ψh(x0) , Vk(x0) = ψl(x0)γkψh(x0) , 0 < x0 < T . (2.2)

To be more precise, we use their O(a) improved [23, 24] and non-perturbatively renormal-

ized [25] lattice versions. Furthermore, we need the pseudoscalar heavy-light current

P (x0) = ψl(x0)γ5ψh(x0) , 0 < x0 < T , (2.3)

the renormalization factor of which, ZP(µ, g2
0), has been determined non-perturbatively in

the SF scheme at scale µ = 1/L1 during the production runs reported in [9]. Since they

have not been quoted in that reference we list them together with further details in table 4.

2.1 Definitions

How to non-perturbatively set up a line of constant physics in the envisaged small volume

L1 ≈ 0.4 fm has already been reported in [19]. In that volume we have four different ensem-

bles with non-perturbatively O(a) improved dynamical Wilson fermions made of a doublet

of massless quarks. The range of lattice spacings used is 0.01 fm . a . 0.02 fm.1 This

ensures feasible continuum limit extrapolations of the QCD observables to be introduced

below, which depend on the dimensionless RGI heavy quark mass fixed to

z ≡ L1Mh ∈ {2, 2.7, 3, 3.3, 4, 6, 7, 9, 11, 13, 15, 18, 21} . (2.4)

In contrast to our previous work, we added four additional z-values at the lower end to also

cover the charm quark region. Details about the latter, which were needed to perform the

additional measurements, are listed in table 4. In the computation of HQET observables

we can naturally rely on larger lattice spacings (0.025 fm . a . 0.067 fm). We use the

“HQET[L1]” lattices with T = L = L1 as specified in table C.1 and C.2 of ref. [9]. For

completeness we list some additional details in table 5 that were not published there.

The HQET observables themselves are computed using two different static actions,

referred to as HYP1 and HYP2 [29], in order to have an improved noise-to-signal behaviour

compared to the original Eichten-Hill action. For the present purpose of testing HQET we

want to express all observables in terms of matrix elements computed in a finite volume.

The interested reader can find the corresponding notation in terms of the traditional SF

correlation functions in appendix A and reference [15]. In passing we just note that only

states, which are eigenstates of spatial momentum with eigenvalue zero, enter them.

1Note added. In contrast to large volume simulations we are not affected by critical slowing down

towards the continuum limit in our lattice QCD simulations with the Hybrid Monte Carlo algorithm [26].

In volumes below L ≈ 0.5 fm sectors of topological charge Q 6= 0 are highly suppressed such that effectively

only the Q = 0 sector contributes, see for instance [27, 28].
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2.2 Effective masses

The small-volume effective pseudoscalar and vector meson mass in terms of Hilbert space

matrix elements read, adopting an operator notation for the quark bilinear composite fields,

ΓPS(x0) = −∂̃0 ln
[
〈Ω(L)|A0|B(L)〉

]
, (2.5a)

ΓV(x0) = −∂̃0 ln
[
〈Ω(L)|Vk|B∗(L)〉

]
, (2.5b)

ΓP(x0) = −∂̃0 ln
[
〈Ω(L)|P |B(L)〉

]
, (2.5c)

where |Ω(L)〉 ≡ e−x0 H|ϕ0(L)〉 denotes the state with vacuum quantum numbers given in

terms of the Hamiltonian H and the SF intrinsic vacuum boundary state |ϕ0(L)〉 at x0 = 0.

Having in mind a variation of the heavy quark mass for our non-perturbative tests later

on, we denote a general heavy-light pseudoscalar state by |B(L)〉 ≡ e−x0 H|ϕB(L)〉 and a

heavy-light vector state by |B∗(L)〉 ≡ e−x0 H|ϕB∗(L)〉. Both are again given through the

time evolution operator and the well-defined boundary states |ϕX〉 with quantum numbers

in the respective channel, X = B,B∗. Since all states naturally depend on the finite volume

(or box) size L and are also considered as functions of the RGI heavy quark mass M

(or z), we drop these dependencies for the moment to ease notation, as we do so for their

additional dependence on the SF-specific periodicity angle θ of the fermion fields. Here and

from now on, we fix x0 = T/2 ≡ L/2 in the correlation functions employed to construct

the observables above and those to be introduced in the subsections below. It is then

worth to emphasize that the time evolution operator e−T H/2 suppresses high-energy states

exponentially such that |Ω(L)〉 and |B(L)〉, upon expanding them in terms of eigenstates

of H, are dominated by contributions from states with energies of at most ∆E = O(1/L)

above the ground state. Therefore, as HQET is expected to apply to correlation functions

at large Euclidean time separations, it particularly describes their large-mass behaviour at

large x0 ≥ O(1/mh) in the present SF setup, too.

Whereas physical masses must be computed in large-volume simulations, the definition

of our observables is such that they agree with the physical ones in the large-volume limit

L→∞.

2.3 Decay constants and ratios

Furthermore and analogously, we define the following QCD observables, suppressing again

their dependence on M , L and θ:

YPS ≡ +

[ 〈Ω|A0|B〉
|||Ω〉|| · |||B〉||

]

R

, YV ≡ −
[ 〈Ω|Vk|B∗〉
|||Ω〉|| · |||B∗〉||

]

R

, (2.6)

RPS/P ≡ −
[〈Ω|A0|B〉
〈Ω|P |B〉

]

R

, RPS/V ≡ −
[ 〈Ω|A0|B〉
〈Ω|Vk|B∗〉

]

R

, (2.7)

YPS/V ≡
YPS

YV
, Rspin ≡

3

4
ln
〈B|B〉
〈B∗|B∗〉 , (2.8)

where YPS and YV are the finite-volume heavy-light pseudoscalar and vector decay constant,

respectively. As L→∞, they become proportional to the physical heavy-light pseudoscalar
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and vector meson decay constants. Accordingly, YPS/V is the ratio of the two, which in

large volume becomes proportional to fB/fB∗ , if the heavy quark is set to the b-quark. The

ratio Rspin is proportional to the spin splitting between the pseudoscalar and vector channel

and, as predicted by HQET, has to vanish in the static limit owing to the heavy-quark spin

symmetry. These observables also involve boundary-to-boundary SF correlation functions,

see appendix A, which properly cancel the multiplicative renormalization factors of the

boundary quark fields.

All quantities involving [•]R are understood to be renormalized non-perturbatively,

while for others such factors either drop out or are not needed at all, such that alltogether

they thus are finite and possess a well-defined continuum limit.

2.4 Quantities with different kinematics

The SF is especially useful, if one wants to probe physics with different kinematics. Here

we do so by changing the fermionic phase angle θ as mentioned earlier. Whereas in the last

section all observables were meant to be evaluated at the same values, i.e., θ0 ∈ {0, 0.5, 1},
we now turn our attention to quantities that are made of two matrix elements of heavy-light

composite fields referring to fermionic periodicity phases different from eachother. With

the same notational conventions as before they read

Rf (θ1, θ2) =
〈B|B〉θ1
〈B|B〉θ2

, RPS/PS(θ1, θ2) =
〈Ω|A0|B〉θ1
〈Ω|A0|B〉θ2

, (2.9a)

Rk(θ1, θ2) =
〈B∗|B∗〉θ1
〈B∗|B∗〉θ2

, RV/V(θ1, θ2) =
〈Ω|Vk|B∗〉θ1
〈Ω|Vk|B∗〉θ2

, (2.9b)

R1(θ1, θ2) =
1

4
ln
[
Rf (θ1, θ2)Rk(θ1, θ2)3

]
, RP/P(θ1, θ2) =

〈Ω|P |B〉θ1
〈Ω|P |B〉θ2

, (2.9c)

YPS/PS(θ1, θ2) =
YPS(θ1)

YPS(θ2)
, YV/V(θ1, θ2) =

YV(θ1)

YV(θ2)
, (2.9d)

where in our actual calculations we consider the following pairs of phase angles: (θ1, θ2) ∈
{(0, 0.5), (0.5, 1), (0, 1)}.

It is important to note that all multiplicative renormalization and improvement factors

cancel in these ratios.2 In this respect and because one expects cancellations of cutoff

effects at every fixed value of z, these QCD observables (as well as their counterparts in

HQET) may be seen as “gold plated” observables for the purpose of testing the asymptotic

behaviour of heavy-light physics as z →∞ for different kinematical setups.

2.5 Observables in HQET

After the continuum limit of the previously defined QCD observables has been taken, we

aim for an extrapolation to the static limit, 1/z → 0, in order to compare their asymptotic

behaviour to the one predicted by HQET in the continuum. According to the systematic

heavy quark expansion, all quantities approach a well-defined value in that limit. Classi-

cally, the leading asymptotic behaviour of our effective masses (2.5), for instance, is linear

2They differ from 1 (or 0 for R1) only due to θ1 6= θ2, both at finite z and in the static limit.
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in the heavy quark mass z, but it receives logarithmic modifications on the quantum level

owing to the scale dependent renormalization of the effective theory to compare with, viz.

LΓ(L,M)
z→∞∼ Cmass(z) · z ·

[
1 + O

(
z−1
)]
, (2.10)

where Cmass(z) denotes the conversion function that relates the heavy quark’s pole mass

to the RGI heavy quark mass M = z/L1.

A generic conversion function CX(z) carries all the logarithmic dependence of a given

quantity X to some order in perturbation theory such that only power corrections in 1/z

remain in the effective theory. For more details, we refer to appendix B and appendix B

of [15]. To avoid a remnant renormalization scheme dependence in the (static) effective the-

ory, we favour to fully express the asymptotic behaviour in terms of renormalization group

invariants (RGIs). For the quantities of section 2.3, i.e., X ∈ {PS,V,PS/P,PS/V, spin},
this means

YPS(L,M)
z→∞∼ CPS(z) ·XRGI(L) ·

[
1 + O

(
z−1
)]
, (2.11)

YV(L,M)
z→∞∼ CV(z) ·XRGI(L) ·

[
1 + O

(
z−1
)]
, (2.12)

RPS/P(L,M)
z→∞∼ CPS/P(z) · 1 ·

[
1 + O

(
z−1
)]
, (2.13)

RPS/V(L,M)
z→∞∼ CPS/V(z) · 1 ·

[
1 + O

(
z−1
)]
, (2.14)

YPS/V(L,M)
z→∞∼ CPS/V(z) · 1 ·

[
1 + O

(
z−1
)]
, (2.15)

Rspin(L,M)
z→∞∼ Cspin(z) · X

spin
RGI(L)

z
·
[
1 + O

(
z−1
)]
. (2.16)

The ratios RPS/P, RPS/V and YPS/V, along with the associated CX, approach 1 in the

static limit of HQET, whereas the effective decay constants YPS and YV both approach the

finite-volume RGI static-light decay constant XRGI(L) in this limit, as a consequence of the

heavy-quark spin symmetry. In the two-flavour theory at hand [30], the renormalization

scale was implicitly fixed by a value for the renormalized SF coupling of ḡ2(µ)|µ=L−1
max
≡

4.61. However, since for the purpose of this study we are working at a slightly different

physical volume L1 . Lmax, the universal part Zstat
A,RGI/Z

stat
A (µ) of the total renormalization

factor, which relates a matrix element of the static axial current renormalized at a scale µ,

XR(µ), to the RGI one, had to be re-evaluated. The outcome for µ = L−1
1 based on the

data of [30] is

XRGI =
Zstat

A,RGI

Zstat
A (µ)

·XR(µ) ,
Zstat

A,RGI

Zstat
A (µ)

∣∣∣∣∣
µ=L−1

1

= 0.875(7) , ḡ2(µ)
∣∣
µ=L−1

1
≡ 4.484 , (2.17)

which allows us to directly compute the (renormalization scale and scheme independent)

quantity XRGI instead of the renormalized (and thus scale dependent) static-light decay

constant XR(µ) in finite volume. Some additional technical details on XRGI and its error

budget are postponed to appendix C.
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By contrast, the RGI matrix element of the spin splitting operator, Xspin
RGI, is not known,

because the corresponding RG running is not available for the dynamical flavour theory.

Note that in principle it would be possible to extract it from our QCD data according to

the given asymptotic behaviour, (2.16), but with the only perturbatively known conversion

function Cspin we do not expect the result to be particularly meaningful.

Our most stringent tests of HQET will finally arise from the QCD observables defined

in section 2.4. In these quantities, the conversion functions cancel such that no logarithmic

corrections are left to all orders in perturbation theory and non-perturbatively. Hence, all

uncertainties from the matching between QCD and HQET are absent and one just faces

the genuine power corrections in 1/z of the effective theory. This makes the comparison

of continuum QCD in the limit 1/z → 0 and continuum HQET at static order entirely

non-perturbative and very well controllable, without encountering any systematic errors

induced by the perturbatively evaluated CX. Exploiting again the heavy-quark symmetry,

the HQET counterparts of these QCD observables in the static limit are:

Rstat
f (θ1, θ2) = exp

[
lim

1/z→0
R1(z, θ1, θ2)

]
= lim

1/z→0
Ri(z, θ1, θ2) , for i = f, k , (2.18a)

Rstat
PS (θ1, θ2) = lim

1/z→0
Ri/i(z, θ1, θ2) , for i = PS,V,P , (2.18b)

Rstat
X (θ1, θ2) = lim

1/z→0
Yi/i(z, θ1, θ2) , for i = PS,V . (2.18c)

3 Results

In the following subsections we first discuss exemplary continuum extrapolations for some

of our test observables before we turn our attention to the main results, i.e., their extrap-

olations as 1/z → 0 to the static limit of HQET. Additional details about our continuum

extrapolations can be found in appendix C.

3.1 Representative continuum extrapolations

For the quantities of subsections 2.2 – 2.4, which as properly renormalized QCD observables

are now generically denoted by ΩQCD = ΩQCD(L,M, a), we perform extrapolations to the

continuum limit (CL) using a global fit ansatz in order to have better control over mass-

dependent lattice artefacts. Due to the latter, we exclude some points at coarsest lattice

spacings from these global QCD continuum extrapolations.

In general we aim at taking the continuum limit of a QCD observable according to the

global fit ansatz

ΩQCD(L, z, a) = ΩQCD(L, z)
[
1 + (a/L)2 ·

{
ρ0 + ρ1z + ρ2z

2
}]

, (3.1)

which accounts for terms proportional a/L× aM and (aM)2. From earlier studies [15, 31]

it is known that an exclusion limit of aM > 0.7 has to be imposed on the data entering

in the extrapolating fits, in order to avoid contaminations which are potentially dangerous

for a reliable continuum limit.
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Figure 1. Continuum extrapolation and resulting continuum z-dependence of YPS(θ0, z) (left) and

YPS/PS(θ1, θ2, z) (right). Dashed lines of the continuum extrapolation cover data points that enter

the global fit, while the dotted part extends to all points. The data points used and shown have

been tree-level improved in advance, cf. appendix C.

To assure stability in our CL results, different fit ansaetze have also been studied

(e.g., allowing for a cubic term in a/L with mass-dependent coefficient or omitting some

of the lightest masses, say z ≤ 4); these lead to consistent results. As the general scaling

behaviour towards the continuum limit looks rather similar among the different observables,

we only show two representative examples here. In the left panel of figure 1 we present

the result for the effective pseudoscalar decay constant at θ0 = 0.5 and in the right the

outcome for a ratio of the same quantity evaluated at different kinematical parameters,

namely at (θ1, θ2) = (0.5, 1). As yet we have not taken into account the error stemming

from the tuning of the heavy quark mass (2.4) at finite lattice spacing. The uncertainty

of the continuum heavy quark mass M = z/L1 is ∆M/M = ∆z/z = 1.01% [19]. We add

its error

∆MΩQCD(L,M, 0) =
∂ΩQCD(L,M, 0)

∂M
∆M (3.2)

quadratically, before performing any extrapolations to the static limit as they are presented

in the following subsections. The derivative is estimated numerically from the data at hand.

Its contribution to the total error budget is actually negligible, as can be inferred from the

continuum mass dependence displayed in figure 1, for instance. In appendix C we list a

representative selection of results at finite lattice spacing and its continuum limit.

In some cases, continuum extrapolations of associated observables in HQET have also

to be performed. Taking the continuum limit of observables in the static theory is much

more straightforward, because there is obsviously no dependence on z and thus no mass-

dependent cutoff effect that needs to be controlled in addition. However, they depend on

the two static actions employed here (HYPi, i = 1, 2), and hence this suggests to adopt a
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(θ1, θ2) = (0, 1)1.58
1.6
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Rstat
PS (θ1, θ2) HYP1 HYP2 cont.

(θ1, θ2) = (0.5, 1)1.38

1.4

1.42

(θ1, θ2) = (0, 0.5)

0 0.005 0.01 0.015 0.02 0.025
1.14

1.15

(a/L)2

Figure 2. Continuum extrapolations of two representative static observables at different kinemat-

ical parameters.

joint continuum extrapolation of a given HQET observable according to

ΩHQET
i (L, a) = ΩHQET(L)

[
1 + (a/L)2 ·Ai

]
. (3.3)

As two explicit examples we show in figure 2 the continuum extrapolation of Rstat
X (θ1, θ2)

and Rstat
PS (θ1, θ2). The numerical results are listed in table 2 and 3, respectively.

Before turning our attention to the main results, we want to add some general remarks

on their presentation and the analysis underlying them.

3.2 Results including perturbative conversion functions

As emphasized before, for certain (continuum-extrapolated) observables ΩQCD(L,M, 0) ≡
ΩQCD(L, z) we need to take into account logarithmic corrections when comparing HQET

with QCD in the heavy quark mass limit. Hence, we divide by the corresponding conver-

sion function CΩ(M/ΛMS) and, in a few cases where convenient, cancel the leading mass

dependence by an appropriate multiplication with some power ` of z, such as ` = −1 in the

case of Ω = LΓ, for instance. An exactly known conversion function by definition removes

all logarithmic contributions, while the remainder can then be assumed to be organized as

a “power series” in 1/z, resembling continuum HQET in the asymptotic regime of large z.

We thus perform extrapolations to the static limit of HQET of quantities with perturbative

conversion functions according to the fit ansatz
[
z` · ΩQCD(L,M, 0)

/
CΩ(M/ΛMS)

]
= Ω[0] + Ω[1]z−1 + Ω[2]z−2 , z−1 . 0.26 , (3.4)

where Ω[0] represents the static limit of the observable in question as extracted through this

fit from the relativistic QCD data. (The choice 1/z . 0.26 is motivated below.) In practice,

we must rely on a perturbative evaluation of the conversion functions up to limited order

that have uncertainties decreasing only logarithmically (see, e.g., ref. [32]). Since those have

to be combined with our non-perturbative lattice data, we generically cannot disentangle
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logarithmic and power-like contributions exactly up to some definite value of 1/z. A safe

statement that can be made, however, is that one asymptotically expects eq. (3.4) to yield

a good description of the data in the sense that the l.h.s. of (3.4) approaches Ω[0] in the

limit z →∞. To what extent a quantity Ω[0] agrees with its HQET counterpart is subject

of the discussion below.

To represent our data, we employed several unconstrained (and weighted) polynomial

fits in 1/z along (3.4) by varying the range of points that enter the fit with the degree of

the polynomial. Even though the full data set — down to masses of ∼ 70% of the charm

quark mass — is well described by a quadratic interpolation within our statistical accuracy,

it is not surprising that this variation, depending on the observable under consideration,

has a visible effect on the result of the static extrapolation. More precisely, we observe the

clear general trend (motivating the z-range choice in (3.4)) that a fit of degree n should

include data in the interval [0, n ·∆z−1], with ∆z−1 ≈ 0.13, in order to keep the static limit

unchanged (within errors) and thereby independent of the employed polynomial fit ansatz.

This statement holds separately true for the data incorporating CΩ evaluated at two- or

three-loop order in perturbation theory. However, as will become evident in the sequel, the

dominantly significant, systematic effect on the static extrapolation results originates from

the only perturbative knowledge of the conversion functions that are required to relate

QCD observables at finite z to their HQET counterparts, before the static limit is taken.

Asymptotic behaviour of effective meson masses. First, we study the large quark

mass behaviour of the effective meson masses (2.5) according to its leading asymptotics

in this regime that is given by eq. (2.10). The raw data and the continuum-extrapolated

values for representative θ-values are collected in tables 6 and 7 of appendix C. Following

eq. (3.4), we combine the effective meson masses with their associated conversion function

Cmass and remove the leading heavy quark mass dependence. The remaining finite piece

of
[
LΓX(L,M, 0)

/(
zCmass(M/ΛMS)

)]
then should approach 1 in the static (i.e., 1/z → 0)

limit for all X = PS,V,P.

Figure 3 confirms this expectation, where for each individual observable and θ0 ∈
{0, 0.5, 1} we depict the remaining (i.e., subleading) asymptotic behaviour of our continuum

data points for the effective meson masses using Cmass evaluated at two- and three-loop

order, cf. eq. (B.7). For ease of presentation, only the statistical errors of LΓX(z, θ0) are

included in the figures. With the fit ansatz (3.4) and all errors taken into account, the

results in the static limit, Ω
[0]
X , agree for all X = PS,V,P with 1 within errors indeed. In

order to better judge the validity range of the asymptotic 1/z-expansion reflected by the

extrapolating fits to the static limit — as well as the size of possible particular systematic

effects at the physical scale of the b- and c-quark — here and in subsequent figures we add

vertical error bands corresponding to zb = L1Mb ≈ 13.25 [10] and zc = L1Mc ≈ 3.04 [33].

Another non-trivial test consists in studying ratios of masses, in which the leading

asymptotics drops out completely. Such a case is displayed in the bottom-right panel of

figure 3. This is a first explicit example with the heavy-quark spin symmetry at work,

according to which HQET predicts lim1/z→0[ΓPS/ΓV] = 1. The deviation from one at

the b-quark scale (z = zb), dominated by the spin-splitting term, is about 2%. With
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Figure 3. Subleading asymptotic behaviour of effective meson masses at different kinematical

parameters using two- and three-loop conversion functions. In comparison, the lower right panel

shows the asymptotic behaviour of the ratio of effective pseudoscalar and vector meson masses. In

this ratio, QCD-HQET conversion functions and the leading power in z cancel.

increasing 1/z, higher-order terms appear to become relevant and contribute with opposite

signs, leading to a deviation of about 20% at the charm quark mass scale. At least for

ΓPS/ΓV, this supports the general expectation that HQET does not provide an all too good

description for charm physics any more.
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1/z
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Figure 4. Asymptotic behaviour of ratios of effective decay constants at different kinematical

parameters involving two-, three- and four-loop conversion functions.

Asymptotic behaviour of ratios of heavy-light currents. Owing to the definitions

in subsections 2.2 and 2.3, the finite-volume continuum QCD observable YPS/V = YPS/YV

approaches in the large-volume limit a combination of ratios of pseudoscalar to vector

heavy-light meson decay constants and masses, which becomes of phenomenological rele-

vance at the b-quark mass scale:

lim
L→∞

YPS/V(z, θ0)
∣∣z=zb
θ0=0

=
fB

fB∗

√
mB

mB∗
. (3.5)

Thus it is interesting to also inspect the 1/z-dependence of YPS/V. As before, after ex-

trapolating to the continuum limit and accounting for the proper full (logarithmic) mass

dependence via attaching the function CPS/V(z) to two-, three- and even four-loop accu-

racy, cf. eq. (B.6), we obtain YPS/V(z, θ0) and the corresponding extrapolations to the static

limit of HQET reproduced in the left panel of figure 4. Again, we find that for every θ0

the static HQET prediction (= 1) is reached within errors, with an almost linear approach

as 1/z → 0 for z > 10; its slope grows with the flavour-twisted momentum θ0.

As discussed in appendix B, the conversion formula for the ratio of decay constants

fB/fB∗ , CPS/V, is even known to four-loop accuracy [34], because in the entering difference

of anomalous dimensions the unknown four-loop anomalous dimensions of the currents

themselves drop out. It was already noted in [32, 34] (and is also reflected in the middle-

right panel of figure 10 in appendix B) that the perturbative expansion of CPS/V exhibits a

bad behaviour, since the perturbative coefficients grow further with the loop order such that

the concept of asymptotic convergence of the perturbative series appears to be meaningful

only for rather small couplings or masses far above the mass of the b-quark. At the scale of
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the b-quark mass, for instance, every known perturbative order approximately contributes

by an equal amount.3 The worrying behaviour of perturbation theory for CPS/V may

also be read off from the data points in figure 4, where in fact no signs of an asymptotic

convergence with the loop order in CPS/V from about the b-quark mass scale on of any of

the curves through the points can be stated. This is even more so for

FPS/V(z, θ0) ≡ YPS/V(z, θ0)

(
ΓPS(z, θ0)

ΓV(z, θ0)

)−1/2

, (3.6)

in the right panel of figure 4, as a direct effective finite-volume estimates of fB/fB∗ involving

CPS/V, too, where ΓPS/ΓV cancels the ratio of meson masses in YPS/V. The growing

deviations of the data points from the polynomial fits in 1/z towards the charm quark

scale for this quantity are inherited from the corresponding behaviour of the higher-order

terms in ΓPS/ΓV (see previous paragraph).

Despite large differences of YPS/V/CPS/V (or FPS/V/CPS/V) at z = zc due to the pertur-

bative evaluation of CPS/V, truncated at 2-, 3- or 4-loop order, these decrease significantly

and one recovers a universal static limit at 1/z = 0 as it is expected from the static ef-

fective theory prediction. Thus it seems plausible that the nature of the observed large

differences at 1/z > 0 are related to potentially large renormalon ambiguities introduced

via perturbative conversion function as explained in appendix B. From what is known in

the literature, renormalon ambiguities become manifest in power corrections and thus are

incoporated in our fit functions.

Asymptotic behaviour of effective decay constants. We now turn to an example,

where the serious concerns about the usefulness of perturbation theory for the evaluation

of the conversion functions raised in the foregoing discussion yet becomes evident in a

mismatch between the large-mass asymptotics on the QCD side and a non-trivial, non-

perturbative HQET prediction itself. These are the effective finite-volume pseudoscalar

and vector meson decay constants YPS and YV, which according to subsection 2.5 have to

obey the predictions

YPS(θ0, z)

CPS(z)
= XRGI(θ0) + O(1/z) ,

YV(θ0, z)

CV(z)
= XRGI(θ0) + O(1/z) , (3.7)

in the asymptotic regime of 1/z → 0. Recall that XRGI is the renormalization group invari-

ant matrix element of the static axial current, eq. (2.17), and its occurrence as the static

limit of both QCD observables is a consequence of the degeneracy of pseudoscalar and vec-

tor channels at static order of HQET owing to the heavy-quark spin symmetry. As outlined

around (2.17) and in appendix C, the renormalization factors entering in XRGI were deter-

mined non-perturbatively in the Schrödinger functional renormalization scheme [30] so that

XRGI is numerically available without perturbative uncertainties at an overall precision of

about 1%, see table 1.

3In [32] it was also demonstrated that a rearrangement of the perturbative series (i.e., re-expanding

the relevant anomalous dimension function in the coupling at a different scale such as to obtain smaller

perturbative coefficients) does not lead to a substantially more stable perturbative prediction.
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Figure 5. Comparison of the static extrapolations of YPS(θ0, z) and YV(θ0, z) to the non-

perturbative HQET results in the continuum (indicated as the data points in the middle bewteen the

panels). In the left panels we use conversion functions CX, X = PS,V, evaluated at two-loop, while

in the right panels they are evaluated at three-loop order of perturbation theory. Additionally, the

lower panels show (weighted) quadratic fits to all data points, while the upper panels only include

data points in the expected applicability domain of HQET (1/z < 0.2). A linear extrapolation over

the further restricted range 1/z . 0.13 would lead to compatible results.

static limit in QCD static HQET static limit in QCD

for 1/z < 0.2 for 1/z ≤ 0.5

θ0 Y
[0]
PS Y

[0]
V XRGI Y

[0]
PS Y

[0]
V

0.0 1.413(20) 1.413(33) 1.461(17) 1.3978(57) 1.4206(50)

0.5 1.348(18) 1.350(32) 1.403(11) 1.3427(48) 1.3642(45)

1.0 1.242(16) 1.248(29) 1.299(14) 1.2400(41) 1.2630(45)

Table 1. Selected results of static extrapolations using the three-loop CX, X = PS,V, and the

associated non-perturbative result computed in static effective theory; all numbers refer to the

continuum limit.

The comparison between the z-dependence of the small-volume pseudoscalar and vec-

tor meson decay constants, together with its static extrapolations, and the non-perturbative

HQET results, after prior continuum limit extrapolations of all individual pieces involved,

is presented in figure 5. The various panels distinguish between two- and three-loop per-

– 15 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
3

turbative evaluations of the conversion functions CPS, CV, respectively, as well as between

extrapolations quadratic in 1/z including data with 1/z < 0.2 only and over the whole

range. We also remark that by linear fits over the further restricted range 1/z . 0.13

we arrive at compatible extrapolations. All errors from our numerical simulations and

extrapolations were taken into account as explained earlier, but we obviously can not do

so for any systematic error from the conversion functions because of their perturbative

nature. While the degeneracy of pseudoscalar and vector channels at static order is nicely

reproduced by the unconstrained fits via the coincidence of the respective 1/z = 0 limits

of YPS/CPS and YV/CV, the agreement of the extrapolation of the relativistic QCD results

with the associated predictions at static order of HQET does not look very convincing.

As can be inferred from table 1 and figure 5, the results obtained in the static effective

theory (black data points in the center of the figure) differ systematically for each value

of θ0 from the results of the static extrapolations using unconstrained quadratic fits that

represent the data very well. Although these differences tend to decrease when going from

the two-loop to the three-loop evaluation of the CX, X = PS,V, the disagreement still

remains at the 1−2σ level of the statistical errors. One thus may speculate whether this is

just an unfortunate statistical effect, but given the previously discussed doubts on the re-

liability of perturbation when matching the quark-mass dependent QCD results to HQET

via the conversion functions, it may also very well be attributed to the only perturbative

approximation of CPS and CV.

In order to discuss the possibility that the use of perturbation theory for the CX is

actually responsible for the observed disagreement between the results of the 1/z → 0 ex-

trapolations of the QCD data and the genuinely non-perturbative static HQET predictions,

let us go back to the very definition of XRGI in eq. (2.17) and appendix C. It is an example

for a renormalization group invariant, which is independent of schemes and scales, allow-

ing a clean factorization of observables into a non-perturbative matrix element of some

composite field operator and a multiplicative matching (resp. conversion) function that

possesses a perturbative expansion. In the situation at hand, we always refer to the axial

vector current A0 in the lowest-order (i.e., static) effective theory, where its multiplicative

renormalization factor is not protected against a scale dependence by a suitable axial Ward

identity, as it is the case for the axial current in QCD. Along the lines of ref. [32] one can

express the lowest-order HQET approximation of the QCD matrix element of A0, in slight

adaption of our notation introduced before, as

YPS(m∗) = CPS(M/Λ)×XRGI + O(1/mh) ,

with CPS(M/Λ) = exp

{∫ g∗
dx

γmatch(x)

β(x)

}
, (3.8)

such that at leading order in the inverse heavy quark mass, 1/mh, the conversion func-

tion CPS defines a RGI-mass scaling function that contains the full (logarithmic) mass

dependence, whereas the non-perturbative matrix element in the static effective theory,

XRGI, becomes a pure mass independent number. Here, the renormalization scale µ of the

static current is identified with µ = m∗, where m∗ is implicitly defined by the solution of

m∗ = m(m∗), m being the renormalized (running) heavy quark mass.
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The mass dependence is induced via the renormalized coupling g∗ ≡ ḡ(m∗) that is

understood as a function of the ratio of renormalization group invariants, g∗ = g∗(M/Λ),

and can be determined in perturbation theory for any value of M/Λ from an integral

expression for Λ/M , analogous to eq. (3.8), but in terms of the beta-function and the quark

mass anomalous dimension. Moreover, γmatch in (3.8) denotes the anomalous dimension in

a renormalization scheme for the static axial current, Astat
0 , called the matching scheme,

which is defined by the condition that — in this scheme and at µ = m∗ — matrix elements

of Astat
0 are equal to the QCD ones up to O(1/mh) (cf. appendix B, and refs. [15, 32, 35]

for more details).4 The crucial observation at this point is now that, in the transition

to renormalization group invariants leading to (3.8), the perturbative running enters in

CPS(M/Λ) = YPS(m∗)/XRGI through the only perturbative knowledge of the beta-function

and the anomalous dimensions of the quark mass and Astat
0 . Hence, it does not come as a

too big surprise that the large-mass extrapolation of YPS(m∗)/CPS(M/Λ), which combines

fully non-perturbative QCD results with a perturbative matching function, fails to meet the

expected static order HQET limit XRGI = XR(µ = L−1
1 )/

[
XR(µ = L−1

1 )/XRGI

]
, a fully

non-perturbative number, both factors of which are precisely known for our setup via the

data from the non-perturbative computation in [30], see eq. (2.17) and appendix C. On the

other hand, replacing in the calculation of XRGI the non-perturbative value XRGI/XR(µ =

L−1
1 ) = Zstat

A,RGI/Z
stat
A (µ = L−1

1 ) = 0.875(7) of (2.17) by the corresponding value at µ = L−1
1

obtained from perturbative running (using the available three-loop beta-function and two-

loop anomalous dimension of Astat
0 in the SF renormalization scheme), the black HQET

data points in the center of figure 5 receive a downward shift of about 5% to finally coincide

with the polynomial extrapolation results of YX/CX, X = PS,V, in the static limit. This

finding clearly suggests that the quark mass dependence of the conversion function CPS,

which employs inputs from the perturbative matching between HQET and QCD only, is

then also only enough to reproduce the perturbative prediction for the matrix elements in

the static effective theory. However, it is not able to reproduce the non-perturbative result,

since it does not comprise the full non-perturbative mass dependence that is required for

a fully consistent matching between HQET and QCD.

Unfortunately, little is known about the real impact of renormalon ambiguities, es-

pecially in a combination of non-perturbative QCD and HQET data with perturbative

matching functions. Accordingly, we cannot exclude that the observed misbehaviour to-

wards the static result, mainly driven by the conversion function CPS at 1/z > 0, could

also be entirely due to strong renormalon ambiguities.

All in all we therefore conclude that with only perturbative knowledge of the conversion

functions one is not automatically guaranteed to extrapolate relativistic QCD data at finite

values of the (heavy) quark mass to the correct static limit of HQET as z → ∞ (resp.

M → ∞). In fact, CPS (and CV) at three-loop accuracy do not seem to be qualified

for use in conjunction with non-perturbative QCD results on the small-volume meson

decay constants to extrapolate their heavy quark mass dependence to the genuinely non-

4The particular choice of renormalization scheme for the running coupling and (heavy) quark mass, ḡ,m,

and the QCD Λ-parameter is not relevant here, but one may typically think of the MS-scheme.
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perturbative prediction of the effective theory. The distinct mismatch between the QCD

extrapolations and the expected HQET results in figure 5 clearly illustrates this. A possible

reason for the use of three-loop conversion functions such as CPS not to correctly recover

the expected static limit can be traced back to the not that well behaved perturbative

expansion of the underlying anomalous dimension γmatch in the aforementioned matching

scheme, which enters in CPS in addition to the well behaved perturbative series of the beta-

function and the quark mass anomalous dimension. Although the overall mass dependence

of, say, CPS in figure 10 of appendix B evaluated for different perturbative orders looks

quite innocent, a more careful estimation of the coefficients of γmatch for the different known

orders (up to three loops) still gives rise to worries about neglecting higher-order terms at

values of the renormalized coupling around the b-quark mass scale or even below [32].

Our observations on the small-volume decay constants should also be taken as a warn-

ing that the method of extracting, e.g., the B-meson decay constant via an interpolation

of large-volume lattice data in the charm region and HQET data in the static limit (as

sometimes adopted when applying lattice QCD to B-physics phenomenology) can easily

yield misleading results, as long as only perturbation theory is employed in the matching

step of relating the HQET numbers to the quark mass-dependent ones in QCD.

In general, of course, these statements on the influence of the conversion functions

on the validity of HQET as an effective theory of QCD may depend on the individual

observable in question and should rather be investigated on a case-by-case basis as we

do it in the present study. For instance, in the discussion of the meson masses and the

heavy-light current ratios above we have already seen that their asymptotic 1/z → 0

behaviour together with the perturbative conversion functions meets the corresponding

HQET predictions very well. Tests free of perturbative ambiguities will follow shortly in

subsection 3.3, when we come to consider observables in which perturbative factors such

as CPS, CV drop out completely.

Asymptotic behaviour of the spin splitting. As can be inferred from figure 6, our

spin splitting observable Rspin(z, θ0) shows the expected asymptotic behaviour towards the

1/z → 0 limit, where it has to vanish due to the heavy-quark spin symmetry. Opposed to

the case of the static axial current, data for the corresponding RGI matrix element, Xspin
RGI,

are not available for the two-flavour theory. Hence, we refrain from studying the static

limit of our data in the form of applying eq. (3.4) via (2.16) to Rspin/Cspin, as we did for

the axial and vector meson decay constants in the previous paragraph. Rather, we studied

different static extrapolations using a linear (n = 1, z ≥ 13), quadratic (n = 2, z ≥ 4) and

cubic (n = 3, z ≥ 3) fit ansatz for the static extrapolation. They are presented for better

visibility in the asymptotic region only (right panel of figure 6). The left panel shows the

n = 2 case with all available data points; the fit ansaetze are able to describe the data very

well, and its behaviour confirms the HQET expectation.

3.3 Results without perturbative conversion functions

We now turn our attention to quantities that do not depend on any conversion functions

and as such are free of any influence of perturbative uncertainties; they thus are expected
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Figure 6. Asymptotic behaviour of the spin splitting observable Rspin(z, θ0) together with a

quadratic unconstrained (and weighted) fit including data at 1/z ≤ 1/4. In the right panels we

compare the static extrapolation in the asymptotic scaling region for a linear (n = 1), quadratic

(n = 2) and cubic (n = 3) polynomial fit ansatz.

to exhibit an unambiguous static extrapolation compatible with their heavy quark mass

expansion. In most cases we find that a fit function such as

ΩQCD(L,M, 0) = υ0 + υ1z
−1 + υ2z

−2 (3.9)

models their z-dependence in the continuum limit very well over the whole region of avail-

able heavy quark mass values.

Ratios of currents. As prototype observables, we first consider and probe eq. (2.18c), viz.

YPS/PS(z, θ1, θ2) = Rstat
X (θ1, θ2) + O(1/z) ,

YV/V(z, θ1, θ2) = Rstat
X (θ1, θ2) + O(1/z) , (3.10)

where — again owing to the heavy-quark spin symmetry — the static extrapolation of

the ratio of effective vector current matrix elements computed at different kinematical

parameters, YV/V(z, θ1, θ2), is expected to agree in the limit 1/z → 0 with the associated

ratio in the pseudoscalar channel, YPS/PS(z, θ1, θ2), and to approach the common, non-

trivial leading-order HQET prediction Rstat
X (θ1, θ2), which denotes the corresponding ratio

of matrix elements computed by replacing the relativistic fields by the static ones.

Performing an unconstrained extrapolating fit of all data points (z ≥ 2), according

to the fit ansatz (3.9), gives an asymptotic behaviour as depicted in figure 7 for the three

available θ-combinations. The black circles (slightly moved to the left towards negative 1/z

for ease of presentation) represent the results for the ratio of static-order HQET matrix

elements, Rstat
X (θ1, θ2). As usual throughout this work, all data points were extrapolated

to the continuum limit first; in particular, the continuum extrapolation of Rstat
X (θ1, θ2) is
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Figure 7. Extrapolations of YPS/PS(z, θ1, θ2) and YV/V(z, θ1, θ2) to the static limit for all three

combinations of (θ1, θ2). The results are listed in table 2. The right panel shows a scaled excerpt of

the heavy quark mass region. Black data points indicate the continuum results of the corresponding

quantity at static order of HQET. Its continuum extrapolation is displayed in figure 2. For com-

parison, the lower panel displays an extrapolation with just a linear function in 1/z for 1/z ≤ 0.2

that leads to an equally well confirmation of the HQET expectation.

static limit in QCD static HQET static limit in QCD static HQET

(θ1, θ2) YPS/PS YV/V Rstat
X Rf Rk Rstat

f

(0,0.5) 1.0417(20) 1.0424(15) 1.0414(4) 1.222(11) 1.220(11) 1.2245(16)

(0.5,1) 1.0796(22) 1.0841(16) 1.0800(5) 1.760(21) 1.759(21) 1.7234(34)

(0.0,1) 1.1247(42) 1.1300(29) 1.1248(8) 2.143(46) 2.142(46) 2.1107(64)

Table 2. Results of static extrapolations of decay constant ratios in continuum QCD and its

corresponding non-perturbative continuum extrapolation results in the static effective theory. For

the numbers quoted all data points (1/z ≤ 0.5) have been taken into account, see figure 7 and 8.
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presented in the left panel of figure 2 and its numerical values can be read off together with

the results of the static extrapolations from table 2.

In contrast to the decay constant discussed in the previous subsection, the comparison

in figure 7 illustrates a very good agreement between the static extrapolations of the results

on YV/V, YPS/PS and the numbers for Rstat
X , computed to even much higher statistical

accuracy directly in the static approximation. Moreover, from the fits in the lower panel

of the figure one reads off an equally excellent agreement with the HQET expectation

from an extrapolation with just a linear function in 1/z for z ≥ 5 (1/z ≤ 0.2). These

findings demonstrate the correctness of the effective theory itself very well. However, to

make physical predictions at the end of the day one necessarily needs to match HQET to

QCD non-perturbatively in the spirit of [5]. In this way the matching functions can be

determined without any perturbative uncertainty.

Two additional observations worth to be mentioned are: a) the error for all three com-

binations of (θ1, θ2) grows with increasing θ2
2− θ2

1 in a similar way for all three observables;

b) also the 1/z-terms, i.e., the slope at 1/z = 0, grows with that difference. These features

also hold true for the quantities considered next and in principle can serve as further helpful

criteria for a sensible choice of matching observables.

Ratios of boundary-to-boundary matrix elements. At next, we look at the static

extrapolation of the quantities entering the prediction (2.18a). Compared to observables

studied before, the QCD data points obtained in the vector (Rk) and pseudoscalar channel

(Rf ) lie quite close to each other already at finite quark mass. From figure 8 (left panel)

one concludes that superficially the quadratic fit ansatz (3.9) very well represents the data

points, which approach a (due to spin symmetry) common HQET limit for the three θ-

combinations. Note that the static HQET results for Rk and Rf , independently computed

in the continuum limit from different simulations, have not been constrained to be equal,

but their agreement is just excellent though. However, only the extrapolation for the

combination (θ1, θ2) = (0, 0.5) leads to the correct result in the static limit, Rk = Rf ,

represented in the figure by the leftmost black data points. The results for this particular

static extrapolation and the corresponding HQET results are given in table 2.

This partial mismatch of the results from extrapolations of the QCD data over the

whole available z-range down to z = 2 (1/z = 0.5) with the HQET predictions should be

taken as a warning that the validity of the HQET-inspired 1/mh-expansion of heavy-light

QCD obeservables in the large-mass regime can not be tacitly trusted down to the charm

quark scale or below. In fact, if we restrict the fits to include data points for 1/z < 0.26

only, as done in the previous section, we obtain a static extrapolation as shown in the right

panel of figure 8, where the static numbers can be seen to be covered by the error of the

extrapolation results. An even further restriction of the fit interval to 1/z < 0.1 would

easily allow for a feasible linear interpolating fit including the HQET result as a constraint.

Here, extending those fits to the lower z’s that were excluded yields only mild deviations

of about 1σ between the fit functions and the data points, though, but this may also be

more pronounced for other observables. Turning the argument around, an interpolating

fit somewhat arbitrarily extended, at fixed polynomial degree, to include data below the
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Figure 8. Static extrapolations of Rf (z, θ1, θ2) and Rk(z, θ1, θ2) for all three combinations of

(θ1, θ2). In the left panel, all data points enter the static extrapolations, whereas in the right panel

only those with 1/z ≤ 1/4 contribute. The results are listed in table 2. Black data points indicate

the continuum results of the corresponding quantity at static order of HQET, cf. eq. (2.18).

charm region (z = 2), which appears to give a good description of the data, can lead to an

underestimation of the error of the static extrapolation and thereby pretend to miss the

HQET prediction.

Ratios of boundary-to-bulk matrix elements. Finally, we check the static extrap-

olation of eq. (2.18b). The HQET results for Rstat
PS (θ1, θ2) follow from the continuum

extrapolation presented in figure 2. Their values are given in table 3, together with the

results that stem from a static extrapolation of the (continuum) QCD observables RPS/PS,

RV/V and RP/P as defined in eq. (2.9). Once more, the data sets themselves are very well

represented by a quadratic polynomial fit ansatz over the whole range of available data

points, whereas the static HQET result (common to all three QCD observables, again due

to spin symmetry) is only met for the θ-combination (θ1, θ2) = (0, 0.5) as in the foregoing

case of ratios of boundary-to-boundary matrix elements. Accordingly, the same discussion

(and warning) carries over literally here, except for RP/P that very well extrapolates to the

HQET result for all θ-combinations studied. Since the errors on the data points for RP/P

stay roughly the same when going from the scale of the b-quark mass down to z = 2, the

slight mismatch in the other cases may likely be attributed partly to statistical effects.

4 Conclusions

We have studied the asymptotic large-mass behaviour of heavy-light meson observables in

lattice QCD with two massless dynamical sea quarks, in a small volume of linear extent

L1 ≈ 0.4 fm and for heavy quark mass values within a range from beyond the b- to below

the c-quark scale, in order to confront them with their HQET predictions.
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Figure 9. Static extrapolations of RPS/PS(z, θ1, θ2), RV/V(z, θ1, θ2) and RP/P(z, θ1, θ2) for all three

combinations of (θ1, θ2) in comparison to their HQET counterparts after taking the continuum limit

in the static effective theory (these data points are slightly shifted for better readability). The

results are listed in table 2. The right panel shows a scaled excerpt of the heavy quark mass region

individually for the three available (θ1, θ2)-combinations such that error bars of the HQET results

become visible.

static limit in QCD static HQET

(θ1, θ2) RPS/PS RV/V RP/P Rstat
PS

(0,0.5) 1.1532(52) 1.1545(49) 1.1502(40) 1.1523(9)

(0.5,1) 1.4309(76) 1.4399(65) 1.4219(47) 1.4180(18)

(0.0,1) 1.647(17) 1.660(15) 1.635(11) 1.6339(34)

Table 3. Results for static extrapolations of RPS/PS, RV/V and RP/P in continuum QCD as

displayed in figure 9 (1/z ≤ 0.5) and its corresponding non-perturbative continuum extrapolation

results in the static effective theory.

Having taken the continuum limit in all parts of our entirely non-perturbative calcu-

lations on both the QCD and the HQET side and subsequently performed unconstrained

static extrapolations along the limit z = L1Mh → ∞, in most cases we generically find

(within the numerical precision on our results with errors at the per cent level or below)

a very satisfactory — sometimes an even excellent — agreement between the large-mass

asymptotics of the QCD observables and their expected leading-order HQET limits.

Moreover, the overall quality of the polynomial fits in 1/z to the heavy quark mass

dependence of the (continuum) heavy-light QCD observables convincingly demonstrates

that the theory is very well described by simple 1/mh-corrections to the static limit of

the effective theory. In particular, for 1/z . 0.1 our extrapolating fits to the HQET

predictions can consistently be modeled by functions linear in 1/z. We are thus led to

conclude that the effective theory is very well tested and that the regime with 1/z . 0.1,
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which is a key ingredient to the finite-volume matching part of the ALPHA Collaboration’s

B-physics programme based on HQET non-perturbatively renormalized and matched to

QCD at O(1/mh) [5–12], lies very well within the applicability domain of HQET. This

is, for instance, also in line with the onset of the linear behaviour reported in the tree-

level study [13] of the 1/z-dependence of the HQET parameters contributing to the full

set of heavy-light flavour currents in HQET at O(1/mh). Alltogether, these findings are

very reassuring, since they imply that in the finite-volume setup of the aforementioned

non-perturbative matching strategy between HQET and QCD, higher-order corrections

beyond the O(1/mh) ones already included can be expected to be suppressed by a factor

of about 10.

A prominent exception to this favourable outcome of our tests of HQET consists in the

large-mass asymptotics of the small-volume heavy-light axial vector and vector meson decay

constants, which fails to meet the leading-order HQET prediction in the static limit. But,

as argued in section 3.2, rather than interpreting this as an inherent shortcoming of HQET

being not an appropriate and predictive effective theory of QCD, one should take this as

an advice that it is generally safer not to use conversion functions such as CPS, CV (which

inevitably enter in a consistent comparison of QCD and HQET decay constants) from

perturbation theory, even if they are determined at three-loop accuracy, i.e., with relative

errors of order ḡ6(m∗) at some intrinsic mass scale m∗; e.g., their perturbative convergence

appears to be relatively poor still at the b-quark scale. Otherwise, the combination of non-

perturbative QCD data with the mass dependence via perturbative matching functions

(encoding the running in HQET) to recover the correct HQET limit can easily lead to

inconsistencies between QCD and non-perturbatively computed matrix elements in the

effective theory. For the decay constant, we encounter a systematic effect of up to ∼ 5%

from relying on perturbative running in the effective theory. Therefore, we consider this

as a warning when, e.g., the physical (i.e., large-volume) B-meson decay constant is being

extracted involving interpolations between QCD data below the b-scale and the static limit,

and advocate to perform the matching entirely non-perturbatively.

As already noted earlier in [32], a more quantitative understanding of this deficiency

can be gained from the relative error that results from a truncation of the perturbative

matching expression at l-loop order, viz.

∆(CPS)

CPS
∝
[
ḡ2(m∗)

]l ∼
[

1

2b0 ln
(
m∗/Λ

)
]l

m∗�Λ� Λ

m∗
. (4.1)

I.e., since this perturbative uncertainty only decreases logarithmically as m∗ becomes large,

at some point it starts to dominate over the power correction that one needs to include

at next-to-leading order in the HQET expansion for precision physics at the b-quark mass

scale. This underlines once more that with an only perturbative conversion function,

a consistent next-to-leading order expansion with errors decreasing as 1/m2
h can not be

achieved.

Similarly, renormalon ambituities in power corrections can play an important or even

dominant role. In contrast to the previous argument they arise from large coefficients in
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the perturbative expansion of the conversion functions at each fixed loop order. Studying

these effects, if possible at all, is beyond the scope of this paper.

Another interesting aspect of our work is that the continuum extrapolations of the

HQET observables, such as those presented in figure 2 of section 3.1 for two discretizations

of the static quark, provide strong numerical evidence that an universal continuum limit of

the static effective theory exists and that the non-perturbative renormalizability of HQET

along the finite-volume matching strategy of ref. [5] can be established indeed.

Finally, let us emphasize that exploring the size of the higher-order corrections in our

QCD observables to test HQET non-perturbatively may also readily serve as a guide so sin-

gle out preferred choices among observables, suitable for a specific HQET-QCD matching

problem in question, that have only small O(1/m2
h) contributions. In addition to that, any

flexibility in having different matching equations made of different observables to determine

the same (set of) HQET parameters enables further useful checks in actual computations,

because the final results should be independent of any specific but sensible choice of match-

ing equations and kinematical parameters (such as T/L, x0 and the θ’s) entering them, up

to small O(1/m2
h) corrections.
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A Definitions

Here we provide the definitions of the observables of this study in terms of the traditional

notation for Schrödinger functional (SF) correlation functions. We do not repeat all details

here; for explicit expression for SF heavy-light meson correlators in lattice QCD as well as

in the static limit of lattice HQET, the reader may, e.g., consult [5, 13, 36, 37].

QCD observables. For the effective masses we use SF correlation functions fX with

bulk insertions of O(a) improved heavy-light currents (cf. section 2) in the pseudoscalar
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and vector channel and define

ΓPS = −∂̃0 ln f I
A(x0)

∣∣∣
x0=T

2

, ΓP = −∂̃0 ln fP(x0)
∣∣∣
x0=T

2

,

ΓV = −∂̃0 ln kI
V(x0)

∣∣∣
x0=T

2

. (A.1)

Effective decay constants associated with these correlators as well as suitable ratios thereof

require renormalization and are given by

YPS ≡ +ZA(1 +
1

2
bAamq,h)

f I
A(T/2)√
f1

, YV ≡ −ZV(1 +
1

2
bVamq,h)

kI
V(T/2)√
k1

,

(A.2)

RPS/P ≡ −
ZA(1 + 1

2bAamq,h)

ZP,RGI(1 + 1
2bPamq,h)

f I
A(T/2)

fP(T/2)
, RPS/V ≡ −

ZA(1 + 1
2bAamq,h)

ZV(1 + 1
2bVamq,h)

f I
A(T/2)

kI
V(T/2)

.

(A.3)

The renormalization constants ZX, X = A,V,P, are known non-perturbatively in two-

flavour QCD; as in our earlier work [19], ZA and ZV have been taken from [25], while ZP,RGI

is available through the scale dependent renormalization factor ZP computed in refs. [9, 38].

The improvement coefficients bX (multiplying the bare subtracted heavy quark mass) are

known to one-loop order of perturbation theory and can be found in [24].

The spin splitting observable, however, is constructed from a ratio of SF boundary-

to-boundary correlators with pseudoscalar and vector channel composite fields, free of any

improvement coefficient and renormalization factor:

Rspin ≡
3

4
ln [f1/k1] . (A.4)

As already explained in the main text, the foregoing finite-volume observables have

been computed for one fermionic phase angle out of θ0 ∈ {0, 0.5, 1}. To enlarge the variety

in probing QCD and HQET at different kinematics, it remains to specify the observables

that depend on two such angles. Here we build them from SF correlation functions with

different θ’s, i.e.,

RPS/PS(θ1, θ2) =
f I

A(x0, θ1)

f I
A(x0, θ2)

∣∣∣∣
x0=T/2

, Rf (θ1, θ2) =
f1(θ1)

f1(θ2)
,

RV/V(θ1, θ2) =
kI

V(x0, θ1)

kI
V(x0, θ2)

∣∣∣∣
x0=T/2

, Rk(θ1, θ2) =
k1(θ1)

k1(θ2)
,

RP/P(θ1, θ2) =
fP(x0, θ1)

fP(x0, θ2)

∣∣∣∣
x0=T/2

, (A.5)

where in practice we have chosen to extract them from our simulations for the non-trivial

combinations (θ1, θ2) ∈ {(0, 0.5), (0.5, 1), (0, 1)}. Again, renormalization factors drop out

in these ratios.
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HQET observables. Among the QCD observables defined above depending on a single

θ-angle, only the effective decay constants in eq. (A.2) possess a (common) non-trivial

static limit, which is given by

X(θ) =
f stat

A (x0, θ)√
f stat

1 (θ)

∣∣∣∣∣
x0=T/2

(A.6)

up to renormalization factors (cf. subsection 2.5) to be discussed in appendix C, while the

ratios in (A.3) approach 1 as a consequence of the heavy-quark spin symmetry that entails

pseudoscalar and vector channels to coincide. The ratios in eq. (2.9a) depending two θ-

angles, on the other hand, approach in the static limit one of the following observables at

static order of HQET:

Rstat
PS (θ1, θ2) =

f stat
A (x0, θ1)

f stat
A (x0, θ2)

∣∣∣∣
x0=T/2

, Rstat
f (θ1, θ2) =

f stat
1 (θ1)

f stat
1 (θ2)

, (A.7)

Rstat
X (θ1, θ2) =

X(θ1)

X(θ2)
. (A.8)

The corresponding static-light correlation functions f stat
A and f stat

1 entering in these ex-

pressions have first been defined in [37].

B Conversion functions

In this section we summarize the expressions of the perturbative conversion functions

CX, X ∈ {PS,V, spin,PS/P,PS/V,mass}, that have been employed to compare our non-

perturbatively renormalized observables in QCD to their counterparts in HQET. They are

computed and parameterized in the so-called matching scheme, which has been introduced

in [35] and specified in appendix B of [15] (see also [32] for another detailed discussion).

Our formulae for all relevant operators below refer to the two-flavour theory and are based

on their anomalous dimensions known up to three-loop order in continuum perturbation

theory [39–51], to be combined with the matching coefficients between QCD and the ef-

fective theory up to two loops [2, 43, 52–54], see appendix B of [15]. In order to judge

the impact of the order of the perturbative expansion on this comparison between QCD

and HQET, introduced by the conversion functions CX as far as they enter the observables

under study, we evaluate the CX including the two-loop and three-loop anomalous dimen-

sions (together with the respective matching coefficients in one- and two-loop accuracy)

separately. In both cases we use the four-loop beta-function for the coupling [55–60], while

the conversion function for effective masses involves the quark mass anomalous dimension

τ at four-loop [60–62].

Moreover, thanks to the three-loop calculation of the matching coefficients for the

heavy-light currents available from [34], the anomalous dimensions of ratios of currents

become effectively known to four-loop order in the matching scheme, because the unknown

four-loop anomalous dimensions of the currents themselves cancel out in the difference

of anomalous dimensions contributing to these ratios. As an example, we therefore also
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include the conversion function CPS/V of the ratio of axial vector (A0) to vector (Vk)

currents at four-loop accuracy in our study.

Since so far only CPS for the Nf = 2 theory was given earlier in [30], we here list the

parametrization of all conversion functions CX entering this study that were obtained along

the lines detailed in appendix B of [15]. They are expressed as smooth functions in terms

of the variable

x ≡ 1
/

ln
[
M/ΛMS

]
,

M

ΛMS

=
z

L1ΛMS

, (B.1)

with the product L1ΛMS = 0.629(36) in the two-flavour theory taken from [20] and M

denoting the renormalization group invariant (RGI) heavy quark mass as in the main text.

The functions decompose into a pre-factor which encodes the leading logarithmic asymp-

totics (if any) as x → 0, multiplied by a polynomial in x which reflects the perturbative

order of the underlying anomalous dimension in conjunction with the associated matching

coefficients.

CPS(x) =




xγ

PS
0 /(2b0)

{
1− 0.107x+ 0.093x2

}
: 2-loop γPS

xγ
PS
0 /(2b0)

{
1− 0.118x− 0.010x2 + 0.043x3

}
: 3-loop γPS

, (B.2)

CV(x) =




xγ

V
0 /(2b0)

{
1− 0.239x+ 0.153x2

}
: 2-loop γV

xγ
V
0 /(2b0)

{
1− 0.266x− 0.178x2 + 0.193x3

}
: 3-loop γV

, (B.3)

Cspin(x) =




xγ

spin
0 /(2b0)

{
1 + 0.043x+ 0.09x2

}
: 2-loop γspin

xγ
spin
0 /(2b0)

{
1 + 0.044x+ 0.179x2 − 0.099x3

}
: 3-loop γspin

, (B.4)

CPS/P(x) =





1− 0.266x+ 0.123x2 : 2-loop γPS,P

1− 0.293x− 0.304x2 + 0.284x3 : 3-loop γPS,P
, (B.5)

CPS/V(x) =





1 + 0.136x− 0.052x2 : 2-loop γPS,V

1 + 0.142x+ 0.250x2 − 0.148x3 : 3-loop γPS,V

1 + 0.135x+ 0.323x2 + 0.614x3 − 0.436x4 : 4-loop γPS,V

, (B.6)

Cmass(x) =




x d0/(2b0)

{
1 + 0.373x+ 0.176x2

}
: 2-loop τ

x d0/(2b0)
{

1 + 0.287x+ 0.752x2 + 0.011x3
}

: 3-loop τ
. (B.7)

The functional dependence of the CX on ΛMS/M is shown in figure 10. The solid

curves represent the matching functions to (in most cases) highest available perturbative

accuracy, i.e., corresponding to three-loop anomalous dimensions of the heavy-light currents

involved and the four-loop beta-function. The dashed curves are those obtained with two-

loop anomalous dimensions only. For illustration, we plot as vertical dotted lines the values

of z which have been fixed in order to non-perturbatively compute our test observables.

In the exemplary case of the ratio of pseudoscalar to vector currents, CPS/V, which we are

able to consider even up to the maximally available four-loop precision (dash-dotted curve

in the middle-right panel of figure 10), one observes an increase in the size of correction
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Figure 10. HQET-QCD conversion functions CX for heavy-light currents as described in the text.

The solid and dashed curves correspond to the three-loop and two-loop order anomalous dimensions

in the matching scheme, respectively. In the case of CPS/V (middle panel on the right), the four-loop

expression, which is known from [34], is also included as dash-dotted curve. Comparing the curves

for different loop orders suggests that perturbation theory converges rather slowly. Vertical dotted

lines indicate the fixed values of z = L1M used in our study.

when going from two- to three- and three- to four-loop order. This is in accordance with

the conclusion of the authors of [34] that the perturbative series for this ratio of currents

“converges very slowly at best”. We finally remark that, since the previous expressions

derive from continuum perturbation theory, the functions CX must be properly attached

as factors to the HQET-QCD test observables in question after the lattice results on them

have been extrapolated to the continuum limit, cf. section 2.5.

Short- and long-distance contributions. In general [63], hadronic matrix elements of

QCD operators ΦQCD, such as the heavy-light current YPS discussed in the main text, are

expanded in 1/m with the static-light current counterpart Φ ≡ Φstat in the static effective

theory, and power corrections including higher-dimensional operator insertions with the

appropriate quantum numbers,

ΦQCD(µ) = C(µ, µ′)Φ(µ′) +
1

2m

∑

i

Bi(µ, µ
′)〈Oi(µ′)〉+ O(1/m2) . (B.8)

The factorization on the r.h.s. separates short-distance contributions, the matching coeffi-

cients C and Bi, from long-distance contributions, the HQET matrix elements Φ and 〈Oi〉.
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In case of an anomalous QCD current the corresponding subtraction scale µ ∼ mb is typi-

cally chosen to be the b-quark mass which governs the expansion in powers of 1/m. Since

HQET is a low-energy effective theory of QCD, one can make accurate predictions when

Λ� µ′ � mb. In practice, eq. (B.8) is evaluated at some fixed order by choosing a conve-

nient renormalization scheme. If a massless scheme is used, such as MS, no strict separation

of large and small momenta exists, and one artificially introduces IR renormalon ambigu-

ities in matching coefficients and UV renormalon ambiguities in HQET matrix elements

of higher-dimensional operators such as 〈Oi〉, cf. [64, 65] and references therein. IR renor-

malon singularities lead to ambiguities ∼ (ΛMS/m)n≥1 in the matching coefficients and are

typically canceled by UV renormalon singularities which induce ∼ (ΛMS)n≥1 ambiguities

in operators at the next order in 1/m. Hence, to any fixed order in the 1/m-expansion an

IR renormalon ambiguity remains if a scheme such as MS is being used. In the present

work only the leading-order term is considered as we probe the predictions of the static

effective theory according to

ΦQCD(µ)/C(µ, µ′)
1/mh→0∼ Φ(µ′) + O(1/mh) , µ′ = 1/L , (B.9)

which in our matching scheme, i.e., after following the steps outlined in the previous para-

graph, corresponds to eq. (3.4). From this discussion it should become clear that the IR

renormalon ambiguity is introduced by the matching coefficients C, perturbatively defined

in the MS scheme, and results in ambiguous power corrections. Hence, the latter are being

absorbed in the parameters of our fit functions of power corrections to the static limit.

We note that eq. (B.8) can be established to order O(1/m) at the non-perturbative

level [6, 9] by a matching calculation of QCD and lattice HQET in a small physical volume.

This procedure is free of renormalon ambiguities due to the non-perturbative determination

of the matching coefficients.

C Further details and tables

Tree-level improvement. Even though our simulations are performed at rather fine

lattice spacings, one ultimately encounters mass-dependent cutoff effects, which essen-

tially grow with the heavy quark mass, i.e., to some power of z × a/L = aM in the

non-perturbatively O improved theory. To attenuate these effects, we also apply perturba-

tive improvement to some of our lattice observables under consideration. Here we restrict

ourselves to tree-level improvement (TLI), which for a generic test observable Ω amounts

to the replacement

Ω(ḡ2, a/L, z) → Ω(0)(ḡ2, a/L, z) =
Ω(ḡ2, a/L, z)

1 + δ
(0)
Ω (a/L, z)

,

δ
(0)
Ω (a/L, z) =

Ωtree(a/L, z)− Ωtree(0, z)

Ωtree(0, z)
, (C.1)

and thereby removes all the O
(
( aL)n

)
effects to produce classically perfect observables. For

additional details on the actual extraction of the improvement terms δ
(0)
Ω , see appendix D
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of [6]. Besides its obvious dependence on z and a/L, δ
(0)
Ω also depends on the kinematical

setup of the Schrödinger functional, inherited from the observable itself. These are the

choice of boundary gauge field, the ratio T/L and the fermionic periodicity angles involved

in the definition of Ω. Except for Ω ∈ {RPS/PS, RV/V, RP/P, R1, Rf , Rk}, where TLI has not

been accounted for, and observables such as Rspin, where it vanishes exactly, the presented

results always correspond to the tree-level improved quantities.

We furthermore remark that before any continuum limit in QCD and HQET is taken

numerically, we use the data from appendix B of [9] to correct for small deviations in our

observables from the renormalized (i.e., constant physics) trajectory at (L1ml, ḡ
2(L1)) =

(0, 4.484). The associated errors are propagated quadratically.

Special case: axial current renormalization. We add some remarks about the con-

tinuum extrapolation of the RGI static decay constant as defined in eq. (2.17), because we

need to fully specify the renormalization scheme applied.

The total renormalization factor to obtain the RGI matrix element of the static axial

current, XRGI, from the bare matrix element, Xbare, decomposes into

Zstat
A,RGI(g0, θ) ≡

[
Zstat

A,RGI

Zstat
A (µ)

· Zstat
A (g0, aµ)

](θ,ρ)

µ=L−1
1

=

[
Zstat

A,RGI

Zstat
A (µ)

X(0, aµ)

Xbare(g0, aµ)

](θ,ρ)

µ=L−1
1

. (C.2)

As indicated here, the universal part Zstat
A,RGI/Z

stat
A (µ), which links a renormalized matrix

element of the static axial current at a renormalization scale µ to the RGI one, is defined

within the massless SF scheme for vanishing boundary field and (θ, ρ = T/L) = (0.5, 1) non-

perturbatively and in the continuum limit. For the particular scale µ = L−1
1 corresponding

to the physical volume employed in the present work, Zstat
A,RGI/Z

stat
A (µ) has been re-computed

from the two-flavour data of ref. [30] to yield the estimate quoted in (2.17). (Note that

in [30], the universal ratio was denoted as ΦRGI/Φ(µ)). In the definition of the scale

dependent renormalization factor itself, Zstat
A (g0, aµ), the tree-level normalization factor

X(0, L/a) enters at the respective values of (θ, ρ) such that Zstat
A approaches one in the

limit g0 → 0, cf. [35]. In fact, as we always have ρ = T/L = 1 in the present work, too, we

can take the continuum limit according to

XRGI(θ0) = lim
L1/a→0

Zstat
A,RGI(g0, θ)Xbare(g0, L1/a, θ0)

≡ lim
L1/a→0

Zstat
A,RGI

Zstat
A (µ)

XR(µ) , (C.3)

with the particular values θ0 ∈ {0, 0.5, 1} and θ = 0.5.5 The second equality in (C.3) picks

up the notation of eq. (2.17), and the results are listed in table 1. Finally, let us point

out that its total error is dominated by the error of the universal continuum factor for the

non-perturbative running, Zstat
A,RGI

/
Zstat

A (µ) (as quoted in (2.17)), and that this part of the

error is only to be accounted for after XRGI has been extrapolated to the continuum limit.

5In case of θ0 = θ = 0.5, the bare matrix element in eq. (C.2) cancels exactly and only the tree-level

matrix element contributes in place of XR in the second line of (C.3).
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L1/a 20 24 32 40

z β 6.1569 6.2483 6.4574 6.6380

≈ 0 κl ≈ κcrit 0.1360536 0.1359104 0.1355210 0.1351923

2.0 κ(z, β) 0.1344153854 0.1345754522 0.1345486577 0.1344246956

2.7 κ(z, β) 0.1338267897 0.1340982540 0.1342031414 0.1341528164

3.0 κ(z, β) 0.1335718447 0.1338920152 0.1340541848 0.1340357592

3.3 κ(z, β) 0.1333152045 0.1336846995 0.1339046863 0.1339183724

ZP(L1, g
2
0) 0.5310(22) 0.5182(17) 0.5161(16) 0.5166(44)

Table 4. Bare parameters for the four additional ensembles (supplementing table 3 of [9]) used

to compute QCD observables in L1, including the heavy valence quark hopping parameters for

the respective z-values, as well as the pseudoscalar renormalization constant, ZP. The gauge field

ensembles have been produced with vanishing SF boundary fields and a kinematical setup specified

by (T/L, θsea) = (1, 0.5).

L1/a 6 8 10 12 16

β 5.2638 5.4689 5.6190 5.7580 5.9631

κcrit 0.135985 0.136700 0.136785 0.136623 0.136422

Table 5. Bare parameters for the five ensembles used to compute HQET observables in L1. The

gauge field ensembles have been produced with vanishing SF boundary fields and a kinematical

setup specified by (T/L, θsea) = (1, 0.5).

Tables. In table 4 we collect addition details concerning the measurements of heavy-light

QCD observables in the present publication, thereby extending the parameter set of table 3

in [9], also referred to as set “QCD[L1]”. Table 5 repeats the bare parameters relevant for

the measurements in the static theory, defining ensemble set “HQET[L1]”.

Tables 6–12 list the results at finite lattice spacing and the corresponding continuum

limits of some selected observables. Listing all results in full detail would be beyond the

scope of this paper,6 since the qualitative and quantitative behaviour can also be well

inferred from the plots shown in the main text. As an example for the θ-dependence of an

observable, we reproduce LΓPS for all values of z ∈ {2, 2.7, 3, 3.3, 4, 6, 7, 9, 11, 13, 15, 18, 21}
and θ = θ0 ∈ {0, 0.5, 1} in table 6. For all other observables we only list values for θ0 = 0.5

or the combination (θ1, θ2) = (0.5, 1). Note that values in squared brackets have not been

taken into account in the continuum extrapolations as detailed in section 3.1 and that the

phase angle θ ≡ θsea = 0.5 has been used for the doublet of sea quarks in the production

runs to generate the underlying two-flavour gauge field configuration ensembles.

6They may be obtained from the authors upon request.
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L/a 20 24 32 40 CL

z LΓ
(0)
PS(z, θ0 = 0.0)

2 1.934(12) 1.912(09) 1.949(11) 1.944(10) 1 .952 (10 )

2.7 2.508(12) 2.494(11) 2.533(13) 2.529(11) 2 .541 (12 )

3 2.746(13) 2.735(11) 2.774(14) 2.771(12) 2 .784 (13 )

3.3 2.980(13) 2.972(12) 3.010(14) 3.008(12) 3 .023 (14 )

4 3.476(14) 3.477(12) 3.522(15) 3.524(13) 3 .537 (15 )

6 4.879(15) 4.895(14) 4.946(18) 4.954(15) 4 .974 (17 )

7 5.547(15) 5.568(14) 5.622(18) 5.633(15) 5 .658 (18 )

9 6.835(15) 6.864(15) 6.924(19) 6.944(16) 6 .978 (18 )

11 8.081(15) 8.113(15) 8.179(19) 8.208(16) 8 .254 (18 )

13 [9.308(15)] 9.330(15) 9.400(19) 9.438(16) 9 .490 (19 )

15 [10.559(15)] 10.529(15) 10.596(19) 10.645(16) 10 .710 (25 )

18 — [12.341(14)] 12.359(19) 12.421(16) 12 .499 (38 )

21 — [14.688(14)] [14.108(19)] 14.171(16) 14 .274 (62 )

z LΓ
(0)
PS(z, θ0 = 0.5)

2 2.061(11) 2.053(11) 2.082(10) 2.088(11) 2 .098 (11 )

2.7 2.650(11) 2.653(12) 2.681(11) 2.689(13) 2 .703 (14 )

3 2.892(12) 2.899(12) 2.927(12) 2.935(13) 2 .951 (14 )

3.3 3.130(12) 3.139(13) 3.167(12) 3.175(13) 3 .193 (15 )

4 3.635(12) 3.653(13) 3.686(13) 3.698(14) 3 .714 (16 )

6 5.048(13) 5.081(15) 5.118(15) 5.135(15) 5 .158 (18 )

7 5.718(13) 5.756(15) 5.795(16) 5.815(15) 5 .841 (18 )

9 7.012(13) 7.056(15) 7.100(16) 7.127(16) 7 .159 (18 )

11 8.264(13) 8.309(15) 8.356(17) 8.392(16) 8 .433 (18 )

13 [9.498(13)] 9.529(15) 9.579(17) 9.625(16) 9 .669 (18 )

15 [10.759(12)] 10.733(15) 10.778(17) 10.832(16) 10 .887 (24 )

18 — [12.555(14)] 12.545(17) 12.611(16) 12 .673 (36 )

21 — [14.922(14)] [14.300(16)] 14.364(15) 14 .455 (56 )

z LΓ
(0)
PS(z, θ0 = 1.0)

2 2.573(18) 2.578(20) 2.578(22) 2.638(22) 2 .634 (21 )

2.7 3.201(18) 3.219(21) 3.217(22) 3.279(23) 3 .278 (23 )

3 3.454(18) 3.476(21) 3.473(22) 3.535(23) 3 .535 (24 )

3.3 3.699(18) 3.724(21) 3.721(22) 3.782(23) 3 .784 (24 )

4 4.226(18) 4.257(21) 4.256(22) 4.317(23) 4 .320 (25 )

6 5.652(17) 5.696(20) 5.697(21) 5.758(23) 5 .762 (25 )

7 6.325(16) 6.371(20) 6.374(20) 6.436(22) 6 .440 (24 )

9 7.623(16) 7.672(19) 7.678(20) 7.742(22) 7 .747 (23 )

11 8.882(15) 8.926(19) 8.934(19) 9.003(21) 9 .014 (22 )

13 [10.126(14)] 10.152(18) 10.158(19) 10.234(21) 10 .250 (22 )

15 [11.403(14)] 11.362(17) 11.359(19) 11.440(20) 11 .474 (29 )

18 — [13.201(16)] 13.132(18) 13.220(20) 13 .266 (44 )

21 — [15.606(15)] [14.895(17)] 14.975(19) 15 .084 (70 )

Table 6. Tree-level improved pseudoscalar effective mass LΓ
(0)
PS(x0 = T/2) as defined in eq. (2.5a)

for all available values of z, a/L and θ0, together with the continuum limit (CL) result obtained

according to eq. (3.1).
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L/a 20 24 32 40 CL

z LΓ
(0)
V (z, θ0)

2 2.907(20) 2.976(26) 3.026(26) 3.048(25) 3 .084 (25 )

2.7 3.354(19) 3.420(25) 3.470(25) 3.487(24) 3 .535 (26 )

3 3.546(19) 3.612(24) 3.662(25) 3.677(23) 3 .729 (26 )

3.3 3.740(19) 3.805(24) 3.854(25) 3.868(23) 3 .923 (26 )

4 4.164(18) 4.231(23) 4.283(24) 4.298(22) 4 .353 (26 )

6 5.425(17) 5.493(22) 5.545(23) 5.561(21) 5 .619 (25 )

7 6.047(17) 6.116(21) 6.169(22) 6.187(20) 6 .243 (24 )

9 7.274(16) 7.344(20) 7.400(21) 7.425(19) 7 .474 (22 )

11 8.482(15) 8.549(19) 8.608(21) 8.642(19) 8 .688 (21 )

13 [9.682(15)] 9.734(18) 9.797(20) 9.840(18) 9 .891 (21 )

15 [10.914(14)] 10.910(18) 10.969(19) 11.022(18) 11 .089 (27 )

18 — [12.699(17)] 12.705(19) 12.772(17) 12 .868 (42 )

21 — [15.032(15)] [14.436(18)] 14.503(17) 14 .662 (66 )

z LΓ
(0)
P (z, θ0)

2 2.939(18) 3.003(25) 3.043(25) 3.061(28) 3 .096 (25 )

2.7 3.359(18) 3.420(24) 3.460(24) 3.474(26) 3 .516 (25 )

3 3.543(18) 3.602(24) 3.642(24) 3.655(25) 3 .699 (25 )

3.3 3.729(17) 3.787(23) 3.826(23) 3.837(25) 3 .884 (25 )

4 4.156(17) 4.209(23) 4.247(23) 4.257(24) 4 .305 (25 )

6 5.434(16) 5.474(21) 5.500(21) 5.506(21) 5 .544 (25 )

7 6.085(16) 6.114(20) 6.131(21) 6.135(21) 6 .159 (24 )

9 7.411(15) 7.405(19) 7.393(20) 7.391(19) 7 .376 (22 )

11 8.792(15) 8.716(19) 8.655(19) 8.641(19) 8 .578 (21 )

13 [10.278(15) 10.065(18) 9.922(19) 9.886(18) 9 .760 (21 )

15 [11.990(14) 11.485(18) 11.203(19) 11.133(18) 10 .942 (28 )

18 — [13.893(17)] 13.181(18) 13.018(17) 12 .670 (42 )

21 — [17.646(17)] [15.283(18)] 14.945(17) 14 .413 (66 )

z Γ
(0)
PS(z, θ0)/Γ

(0)
V (z, θ0)

2 0.7089(35) 0.6900(36) 0.6881(34) 0.6850(33) 0 .6820 (28 )

2.7 0.7902(30) 0.7757(31) 0.7727(29) 0.7711(29) 0 .7664 (28 )

3 0.8156(28) 0.8025(28) 0.7994(27) 0.7981(27) 0 .7930 (27 )

3.3 0.8368(26) 0.8250(26) 0.8218(26) 0.8209(25) 0 .8155 (26 )

4 0.8728(22) 0.8634(22) 0.8606(22) 0.8605(21) 0 .8544 (24 )

6 0.9305(14) 0.9250(14) 0.9229(14) 0.9234(14) 0 .9181 (18 )

7 0.9456(11) 0.9411(12) 0.9393(11) 0.9399(11) 0 .9354 (15 )

9 0.96391(79) 0.96077(81) 0.95937(77) 0.95991(81) 0 .95720 (98 )

11 0.97435(58) 0.97191(60) 0.97072(57) 0.97114(60) 0 .96989 (65 )

13 0.98103(43) 0.97895(45) 0.97782(44) 0.97812(47) 0 .97736 (48 )

15 0.98576(32) 0.98375(35) 0.98262(35) 0.98280(38) 0 .98228 (56 )

18 — 0.98871(24) 0.98740(25) 0.98741(28) 0 .98621 (82 )

21 — 0.99269(15) 0.99056(19) 0.99041(22) 0 .9883 (12 )

Table 7. Tree-level improved vector and pseudoscalar effective masses LΓ
(0)
V (x0 = T/2) and

LΓ
(0)
P (x0 = T/2) and the ratio [Γ

(0)
PS(x0)/Γ

(0)
V (x0)]x0=T/2 for all available values of z and a/L with

θ0 = 0.5.
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L/a 20 24 32 40 CL

z Y
(0)
PS (z, θ0)

2 1.2653(58) 1.2519(65) 1.2514(61) 1.2417(65) 1 .2367 (74 )

2.7 1.3088(57) 1.2978(63) 1.2973(59) 1.2889(62) 1 .2850 (72 )

3 1.3253(57) 1.3153(62) 1.3149(59) 1.3069(62) 1 .3035 (71 )

3.3 1.3407(57) 1.3316(62) 1.3313(58) 1.3236(61) 1 .3209 (70 )

4 1.3696(57) 1.3630(61) 1.3640(58) 1.3573(60) 1 .3552 (69 )

6 1.4380(57) 1.4362(59) 1.4396(56) 1.4343(58) 1 .4359 (66 )

7 1.4641(57) 1.4642(59) 1.4688(56) 1.4639(57) 1 .4670 (65 )

9 1.5062(58) 1.5092(58) 1.5158(56) 1.5115(58) 1 .5170 (64 )

11 1.5396(59) 1.5443(59) 1.5524(57) 1.5484(58) 1 .5547 (69 )

13 [1.5682(59)] 1.5731(59) 1.5819(58) 1.5781(59) 1 .5841 (73 )

15 [1.5953(61)] 1.5979(60) 1.6067(59) 1.6028(60) 1 .6067 (93 )

18 — [1.6317(61)] 1.6376(61) 1.6331(61) 1 .633 (13 )

21 — [1.6782(63)] [1.6639(63)] 1.6580(63) 1 .650 (18 )

z Y
(0)
V (z, θ0)

2 1.539(10) 1.539(10) 1.542(10) 1.538(10) 1 .539 (11 )

2.7 1.551(10) 1.551(10) 1.555(10) 1.551(10) 1 .554 (11 )

3 1.555(10) 1.556(10) 1.560(10) 1.556(10) 1 .559 (11 )

3.3 1.559(10) 1.560(10) 1.565(10) 1.561(10) 1 .564 (10 )

4 1.565(10) 1.568(10) 1.573(10) 1.569(10) 1 .573 (10 )

6 1.583(10) 1.587(10) 1.595(10) 1.590(10) 1 .597 (10 )

7 1.590(10) 1.595(10) 1.604(10) 1.599(10) 1 .606 (11 )

9 1.605(10) 1.611(10) 1.620(10) 1.615(10) 1 .623 (11 )

11 1.619(10) 1.625(10) 1.634(10) 1.629(10) 1 .636 (11 )

13 [1.633(10)] 1.638(10) 1.647(10) 1.642(10) 1 .647 (12 )

15 [1.650(11)] 1.652(10) 1.659(11) 1.653(10) 1 .656 (14 )

18 — [1.673(11)] 1.676(11) 1.669(11) 1 .668 (19 )

21 — [1.711(11)] [1.693(11)] 1.683(11) 1 .673 (27 )

z Y
(0)
PS/V(z, θ0)

2 0.8220(61) 0.8136(63) 0.8115(61) 0.8072(62) 0 .8034 (72 )

2.7 0.8440(62) 0.8367(63) 0.8342(61) 0.8308(62) 0 .8270 (72 )

3 0.8523(63) 0.8455(63) 0.8429(62) 0.8398(62) 0 .8360 (72 )

3.3 0.8601(63) 0.8536(63) 0.8509(62) 0.8482(63) 0 .8444 (72 )

4 0.8751(64) 0.8695(64) 0.8670(63) 0.8649(63) 0 .8612 (72 )

6 0.9086(65) 0.9049(65) 0.9028(64) 0.9019(64) 0 .8991 (74 )

7 0.9206(66) 0.9177(66) 0.9159(65) 0.9154(64) 0 .9131 (75 )

9 0.9387(67) 0.9369(67) 0.9357(65) 0.9359(65) 0 .9347 (77 )

11 0.9512(68) 0.9504(67) 0.9499(66) 0.9505(66) 0 .9503 (83 )

13 [0.9603(68)] 0.9602(68) 0.9603(67) 0.9613(66) 0 .9616 (86 )

15 [0.9671(69)] 0.9675(68) 0.9682(67) 0.9696(67) 0 .970 (10 )

18 — [0.9753(68)] 0.9769(67) 0.9786(67) 0 .980 (14 )

21 — [0.9811(69)] [0.9829(68)] 0.9850(67) 0 .987 (19 )

Table 8. Tree-level improved effective decay constants YPS, YV and and their ratio YPS/V for all

available values of z, a/L at θ0 = 0.5. Continuum limit (CL) has been taken according to eq. (3.1).
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L/a 20 24 32 40 CL

z F
(0)
PS/V(z, θ0)

2 0.9763(74) 0.9794(72) 0.9784(71) 0.9753(73) 0 .9750 (83 )

2.7 0.9494(70) 0.9500(69) 0.9490(68) 0.9462(70) 0 .9463 (77 )

3 0.9438(69) 0.9438(69) 0.9427(67) 0.9400(69) 0 .9403 (75 )

3.3 0.9402(69) 0.9398(68) 0.9387(66) 0.9361(68) 0 .9364 (74 )

4 0.9369(68) 0.9359(67) 0.9347(66) 0.9324(67) 0 .9327 (71 )

6 0.9425(68) 0.9413(67) 0.9400(66) 0.9387(66) 0 .9386 (69 )

7 0.9476(68) 0.9465(67) 0.9453(66) 0.9444(66) 0 .9440 (69 )

9 0.9573(68) 0.9567(68) 0.9558(67) 0.9555(66) 0 .9548 (72 )

11 0.9654(69) 0.9652(68) 0.9647(67) 0.9649(67) 0 .9641 (76 )

13 0.9719(69) 0.9719(68) 0.9719(67) 0.9725(67) 0 .9719 (80 )

15 0.9771(69) 0.9773(69) 0.9777(68) 0.9786(67) 0 .9783 (86 )

18 — 0.9834(69) 0.9843(68) 0.9855(67) 0 .9862 (87 )

21 — 0.9883(69) 0.9891(68) 0.9907(68) 0 .993 (10 )

z R
(0)
PS/V(z, θ0)

2 0.8557(64) 0.8503(64) 0.8505(62) 0.8463(65) 0 .8447 (73 )

2.7 0.8748(64) 0.8704(64) 0.8702(63) 0.8668(65) 0 .8653 (72 )

3 0.8820(64) 0.8780(64) 0.8776(63) 0.8746(65) 0 .8731 (71 )

3.3 0.8887(65) 0.8850(65) 0.8846(63) 0.8818(65) 0 .8803 (71 )

4 0.9015(65) 0.8987(65) 0.8983(64) 0.8961(65) 0 .8947 (71 )

6 0.9301(67) 0.9288(66) 0.9287(65) 0.9276(66) 0 .9269 (71 )

7 0.9402(67) 0.9396(67) 0.9396(65) 0.9389(66) 0 .9386 (72 )

9 0.9551(68) 0.9555(67) 0.9561(66) 0.9560(66) 0 .9565 (73 )

11 0.9652(69) 0.9664(68) 0.9676(67) 0.9680(67) 0 .9692 (79 )

13 [0.9723(69)] 0.9741(68) 0.9759(67) 0.9767(67) 0 .9783 (82 )

15 [0.9772(69)] 0.9797(69) 0.9820(68) 0.9833(67) 0 .985 (10 )

18 — [0.9852(69)] 0.9886(68) 0.9903(68) 0 .992 (13 )

21 — [0.9885(69)] [0.9929(68)] 0.9951(68) 0 .997 (19 )

z Rspin(z, θ0)

2 0.0603(17) 0.0661(16) 0.0703(21) 0.0710(16) 0 .0750 (21 )

2.7 0.0538(15) 0.0592(15) 0.0632(19) 0.0636(14) 0 .0675 (19 )

3 0.0514(15) 0.0566(14) 0.0606(18) 0.0608(14) 0 .0647 (18 )

3.3 0.0492(14) 0.0542(14) 0.0581(18) 0.0583(13) 0 .0621 (18 )

4 0.0447(13) 0.0494(12) 0.0532(16) 0.0532(12) 0 .0568 (16 )

6 0.0351(10) 0.0391(10) 0.0424(13) 0.0421(10) 0 .0454 (13 )

7 0.0315(9) 0.0353(9) 0.0384(12) 0.0380(9) 0 .0411 (12 )

9 0.0260(8) 0.0294(7) 0.0322(10) 0.0318(9) 0 .0345 (10 )

11 0.0219(6) 0.0251(6) 0.0277(9) 0.0273(7) 0 .0295 (9 )

13 [0.0185(5)] 0.0216(5) 0.0241(8) 0.0238(6) 0 .0258 (8 )

15 [0.0156(5)] 0.0188(5) 0.0213(7) 0.0210(5) 0 .0225 (8 )

18 — [0.0151(4)] 0.0179(6) 0.0178(5) 0 .0191 (9 )

21 — [0.0112(3)] [0.01511(48)] 0.0153(4) 0 .0160 (9 )

Table 9. Tree-level improved ratios FPS/V and RPS/V together with the spin splitting Rspin for all

available values of z, a/L at θ0 = 0.5. Continuum limit (CL) has been taken according to eq. (3.1).
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L/a 20 24 32 40 CL

z RPS/PS(z, θ1, θ2)

2 1.941(16) 1.956(17) 1.912(24) 1.975(15) 1 .970 (16 )

2.7 1.849(14) 1.861(14) 1.825(20) 1.876(12) 1 .873 (14 )

3 1.818(13) 1.830(13) 1.796(19) 1.843(11) 1 .841 (13 )

3.3 1.791(12) 1.802(12) 1.771(17) 1.814(11) 1 .812 (13 )

4 1.741(11) 1.750(11) 1.723(15) 1.7609(93) 1 .759 (12 )

6 1.6466(82) 1.6545(81) 1.635(12) 1.6628(71) 1 .6611 (90 )

7 1.6164(75) 1.6239(74) 1.606(11) 1.6318(64) 1 .6301 (81 )

9 1.5730(65) 1.5804(65) 1.5660(96) 1.5882(56) 1 .5871 (68 )

11 1.5428(59) 1.5507(59) 1.5385(87) 1.5590(51) 1 .5594 (63 )

13 1.5199(55) 1.5288(54) 1.5185(81) 1.5380(47) 1 .5409 (62 )

15 1.5007(51) 1.5116(51) 1.5032(77) 1.5220(44) 1 .5281 (79 )

18 — 1.4907(48) 1.4856(73) 1.5040(42) 1 .513 (11 )

21 — 1.4696(45) 1.4721(69) 1.4906(40) 1 .508 (15 )

z RV/V(z, θ1, θ2)

2 1.769(12) 1.778(11) 1.748(17) 1.787(10) 1 .784 (12 )

2.7 1.714(10) 1.7227(99) 1.698(14) 1.7306(88) 1 .728 (10 )

3 1.6956(96) 1.7038(94) 1.680(14) 1.7112(83) 1 .709 (10 )

3.3 1.6791(92) 1.6870(90) 1.665(13) 1.6940(79) 1 .6920 (96 )

4 1.6478(84) 1.6553(82) 1.635(12) 1.6617(72) 1 .6598 (89 )

6 1.5870(69) 1.5937(67) 1.5779(98) 1.5993(59) 1 .5977 (74 )

7 1.5665(64) 1.5732(63) 1.5587(92) 1.5788(55) 1 .5773 (69 )

9 1.5363(58) 1.5430(57) 1.5306(83) 1.5490(49) 1 .5481 (59 )

11 1.5145(54) 1.5217(53) 1.5108(78) 1.5283(45) 1 .5288 (57 )

13 1.4975(51) 1.5055(50) 1.4961(74) 1.5130(43) 1 .5155 (57 )

15 1.4829(48) 1.4925(48) 1.4845(71) 1.5012(41) 1 .5060 (73 )

18 — 1.4764(45) 1.4710(68) 1.4876(39) 1 .4941 (97 )

21 — 1.4597(43) 1.4604(65) 1.4773(38) 1 .491 (14 )

z RP/P(z, θ1, θ2)

2 1.5534(57) 1.5571(56) 1.5430(83) 1.5628(48) 1 .5619 (56 )

2.7 1.5292(51) 1.5327(50) 1.5205(75) 1.5380(43) 1 .5372 (52 )

3 1.5211(50) 1.5246(48) 1.5129(73) 1.5297(41) 1 .5290 (51 )

3.3 1.5141(48) 1.5175(47) 1.5063(70) 1.5225(40) 1 .5218 (50 )

4 1.5009(46) 1.5044(44) 1.4940(67) 1.5092(38) 1 .5084 (47 )

6 1.4761(41) 1.4795(40) 1.4705(61) 1.4841(34) 1 .4833 (43 )

7 1.4677(40) 1.4712(39) 1.4626(59) 1.4759(33) 1 .4751 (42 )

9 1.4553(39) 1.4590(38) 1.4509(57) 1.4639(32) 1 .4636 (39 )

11 1.4462(38) 1.4502(37) 1.4426(56) 1.4554(31) 1 .4561 (41 )

13 1.4389(38) 1.4435(37) 1.4363(55) 1.4491(31) 1 .4508 (42 )

15 1.4327(38) 1.4380(36) 1.4313(55) 1.4442(30) 1 .4475 (54 )

18 — 1.4312(36) 1.4255(54) 1.4385(30) 1 .4426 (72 )

21 — 1.4242(36) 1.4209(54) 1.4342(30) 1 .443 (10 )

Table 10. Observables RPS/PS, RV/V and RP/P for all available values of z, a/L at (θ1, θ2) =

(0.5, 1). Continuum limit (CL) has been taken according to eq. (3.1). All three observables are

expected to approach the same static limit.
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L/a 20 24 32 40 CL

z R1(z, θ1, θ2)

2 0.777(11) 0.788(11) 0.762(16) 0.800(10) 0 .799 (12 )

2.7 0.747(10) 0.758(10) 0.735(14) 0.769(9) 0 .768 (11 )

3 0.736(10) 0.747(10) 0.725(14) 0.758(9) 0 .756 (11 )

3.3 0.726(10) 0.737(9) 0.716(13) 0.747(9) 0 .747 (10 )

4 0.708(9) 0.719(9) 0.699(13) 0.728(8) 0 .727 (10 )

6 0.669(8) 0.679(8) 0.664(11) 0.688(7) 0 .687 (9 )

7 0.655(8) 0.665(7) 0.651(10) 0.673(7) 0 .673 (8 )

9 0.632(7) 0.643(7) 0.630(10) 0.652(6) 0 .652 (7 )

11 0.616(7) 0.627(7) 0.615(9) 0.636(6) 0 .637 (7 )

13 0.602(6) 0.614(6) 0.604(9) 0.623(6) 0 .627 (7 )

15 0.590(6) 0.604(6) 0.595(9) 0.614(6) 0 .618 (9 )

18 — 0.590(6) 0.583(8) 0.602(5) 0 .607 (12 )

21 — 0.576(6) 0.575(8) 0.593(5) 0 .605 (17 )

z Rf (z, θ1, θ2)

2 2.209(23) 2.237(24) 2.181(34) 2.271(22) 2 .269 (25 )

2.7 2.139(21) 2.166(21) 2.118(30) 2.195(19) 2 .194 (23 )

3 2.115(20) 2.141(20) 2.096(29) 2.168(18) 2 .168 (22 )

3.3 2.093(19) 2.119(19) 2.076(27) 2.145(18) 2 .145 (21 )

4 2.051(18) 2.076(18) 2.038(25) 2.100(16) 2 .100 (20 )

6 1.967(15) 1.991(15) 1.960(21) 2.010(14) 2 .011 (17 )

7 1.938(14) 1.961(14) 1.933(20) 1.979(13) 1 .980 (16 )

9 1.893(13) 1.915(13) 1.891(18) 1.933(12) 1 .934 (14 )

11 1.859(12) 1.882(12) 1.861(17) 1.900(11) 1 .903 (13 )

13 1.833(11) 1.857(11) 1.838(16) 1.875(10) 1 .882 (13 )

15 1.810(11) 1.836(11) 1.820(16) 1.856(10) 1 .866 (17 )

18 — 1.810(10) 1.799(15) 1.834(10) 1 .844 (22 )

21 — 1.784(10) 1.782(14) 1.817(10) 1 .841 (32 )

z Rk(z, θ1, θ2)

2 2.163(24) 2.185(24) 2.129(34) 2.211(22) 2 .205 (25 )

2.7 2.100(22) 2.122(22) 2.074(30) 2.144(20) 2 .140 (23 )

3 2.079(21) 2.100(21) 2.054(29) 2.121(19) 2 .118 (22 )

3.3 2.059(20) 2.081(20) 2.037(28) 2.101(18) 2 .097 (22 )

4 2.022(18) 2.043(18) 2.004(25) 2.061(17) 2 .059 (20 )

6 1.946(15) 1.967(15) 1.935(21) 1.982(14) 1 .980 (17 )

7 1.920(14) 1.940(14) 1.911(20) 1.955(13) 1 .953 (16 )

9 1.879(13) 1.899(13) 1.874(18) 1.914(12) 1 .913 (14 )

11 1.848(12) 1.869(12) 1.847(17) 1.884(11) 1 .886 (14 )

13 1.824(12) 1.845(12) 1.826(16) 1.862(11) 1 .867 (13 )

15 1.802(11) 1.826(11) 1.809(16) 1.844(10) 1 .853 (17 )

18 — 1.803(10) 1.790(15) 1.824(10) 1 .833 (23 )

21 — 1.778(10) 1.774(14) 1.808(10) 1 .830 (32 )

Table 11. Observables R1, Rf and Rk for all available values of z, a/L at (θ1, θ2) = (0.5, 1).

Continuum limit (CL) has been taken according to eq. (3.1). Due to have quark spin symmetry

one expects lim1/z→0Rf (z, θ1, θ2) = lim1/z→0Rk(z, θ1, θ2).
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L/a 20 24 32 40 CL

z Y
(0)
PS/PS(z, θ1, θ2)

2 1.3059(41) 1.3080(42) 1.2943(63) 1.3108(36) 1 .3082 (38 )

2.7 1.2641(32) 1.2648(33) 1.2542(49) 1.2664(28) 1 .2645 (32 )

3 1.2501(29) 1.2504(30) 1.2407(45) 1.2517(25) 1 .2499 (30 )

3.3 1.2379(27) 1.2379(27) 1.2290(41) 1.2388(23) 1 .2371 (28 )

4 1.2150(22) 1.2145(23) 1.2071(34) 1.2151(19) 1 .2132 (24 )

6 1.1748(15) 1.1732(15) 1.1679(24) 1.1729(13) 1 .1708 (17 )

7 1.1626(13) 1.1606(14) 1.1559(21) 1.1601(12) 1 .1578 (15 )

9 1.1459(10) 1.1436(11) 1.1395(17) 1.1428(10) 1 .1403 (13 )

11 1.13522(9) 1.1326(10) 1.1289(15) 1.1317(9) 1 .1295 (12 )

13 1.12784(8) 1.1251(9) 1.1215(14) 1.1240(9) 1 .1221 (12 )

15 1.12241(8) 1.1195(9) 1.1161(13) 1.1183(9) 1 .1175 (15 )

18 — 1.1135(8) 1.1102(12) 1.1122(9) 1 .1123 (19 )

21 — 1.1086(8) 1.1060(12) 1.1078(9) 1 .1102 (25 )

z Y
(0)
V/V(z, θ1, θ2)

2 1.2027(14) 1.2027(13) 1.1984(20) 1.2021(13) 1 .2008 (15 )

2.7 1.1829(11) 1.1825(11) 1.1789(17) 1.1819(11) 1 .1809 (14 )

3 1.1761(10) 1.1756(11) 1.1722(16) 1.1749(11) 1 .1740 (13 )

3.3 1.1701(10) 1.1695(10) 1.1663(15) 1.1688(10) 1 .1680 (13 )

4 1.1562(9) 1.1562(9) 1.1541(14) 1.1567(10) 1 .1550 (12 )

6 1.1349(7) 1.1346(8) 1.1332(12) 1.1353(9) 1 .1341 (11 )

7 1.1280(7) 1.1277(8) 1.1264(11) 1.1285(9) 1 .1275 (10 )

9 1.1181(7) 1.1178(8) 1.1170(11) 1.1190(9) 1 .1185 (10 )

11 1.1112(6) 1.1111(8) 1.1106(10) 1.1127(9) 1 .1127 (11 )

13 1.1058(6) 1.1061(8) 1.1059(10) 1.1081(9) 1 .1084 (11 )

15 1.1011(6) 1.1020(8) 1.1023(10) 1.1046(9) 1 .1055 (13 )

18 — 1.0969(8) 1.0981(10) 1.1006(9) 1 .1023 (17 )

21 — 1.0914(7) 1.0947(10) 1.0976(9) 1 .1008 (22 )

Table 12. Observables YPS/PS and YV/V for all available values of z, a/L at (θ1, θ2) = (0.5, 1).

Continuum limit (CL) has been taken according to eq. (3.1). Both observables are expected to

agree in the static limit.
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