
Eur. Phys. J. C (2016) 76:686
DOI 10.1140/epjc/s10052-016-4505-y

Regular Article - Theoretical Physics

On the action of the complete Brans–Dicke theory

Georgios Kofinas1,a, Minas Tsoukalas2,3,b

1 Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering,
University of the Aegean, 83200 Karlovassi, Samos, Greece
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Abstract Recently the most general completion of Brans–
Dicke theory has appeared with energy exchanged between
the scalar field and ordinary matter, given that the equation
of motion for the scalar field keeps the simple wave form
of Brans–Dicke. This class of theories contain undetermined
functions, but there exist only three theories which are unam-
biguously determined from consistency. Here, for the first
such theory, the action of the vacuum theory is found, which
arises as the limit of the full matter theory. A symmetry trans-
formation of this vacuum action in the Jordan frame is found
which consists of a conformal transformation of the metric
together with a redefinition of the scalar field. Since the gen-
eral family of vacuum theories is parametrized by an arbitrary
function of the scalar field, the action of this family is also
found. As for the full theory with matter the action of the
system is only found when the matter Lagrangian vanishes
on-shell, as for example for pressureless dust. Due to the
interaction, the matter Lagrangian is non-minimally coupled
either in the Jordan or the Einstein frame.

1 Introduction

Scalar–tensor gravitational theories are studied extensively
as an alternative to General Relativity. Brans–Dicke theory
[1] is a simple such theory which was initially formulated
in terms of an action constructed from a metric gμν and a
scalar field φ, solely based on dimensional arguments, and
with the matter Lagrangian being minimally coupled. The
effective gravitational constant of the theory varies as the
inverse of the scalar field, G ∼ 1

φ
, and there is no dimen-

sionful parameter in the vacuum theory. The theory respects
Mach’s principle and the weak equivalence principle. In a
modern context Brans–Dicke theory appears naturally from

a e-mail: gkofinas@aegean.gr
b e-mail: minasts@central.ntua.gr

supergravity models, from string theories at low energies and
from dimensional reduction of Kaluza–Klein theories [2–7].
An alternative way to derive Brans–Dicke theory is to con-
struct directly the field equations of motion [8] respecting the
simple scalar field equation �φ = 4πλT , where T = T μ

μ

is the trace of the matter energy-momentum tensor T μ
ν and

λ is a dimensionless coupling. The demand for this deriva-
tion is that the energy-momentum tensor of the scalar field
is made out of terms each of which involves two derivatives
of one or two φ fields, and φ itself. The theory gives the
correct Newtonian weak-field limit and in order to avoid the
propagation of the fifth force, the coupling between matter
and the massless field φ should be suppressed, so λ should
be very small. Recently there has arisen an increasing inter-
est in cosmology in interacting models between dark mat-
ter and dark energy and such a mechanism can be useful
to solve the coincidence problem [9–17]. However, usually
such interactions are chosen ad hoc and do not arise by any
physical theory. In [18] it was actually argued that observa-
tional evidence supports an interaction between dark matter
and dark energy and a violation of the equivalence principle
between baryons and dark matter. In any case it would be
interesting to violate the standard conservation equation of
T μ

ν of Brans–Dicke theory. For example, in [19] an energy
exchange model with a modified wave equation for φ was
considered (for other approaches with modified equations
of motion see [20–24]). Useful pieces of information and
exhaustive analysis of Brans–Dicke gravity can be found in
[25–27]. We should note that if the interaction model is to be
worked out at the level of an action, then there are various
interactions of the matter Lagrangian with the scalar field,
all having as limit the Brans–Dicke action in the absence of
interactions. The number of such actions can increase in the
presence of Newton’s constant GN or a new mass scale. In
[28], analyzing exhaustively the Bianchi identities, the gen-
eral class of consistent theories generalizing Brans–Dicke
theory was found, when the exact energy conservation of the
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matter stress tensor was relaxed, while preserving the equa-
tion �φ = 4πλT . This class of theories is parametrized
by one or two free functions of the scalar field, but it was
found that there are only three theories, each with a specific
interaction term, which are unambiguously determined by
consistency. These unique and natural theories are certainly
the predominant completions of Brans–Dicke theory. In the
present paper we are going to focus on the first such theory
whose equations of motion appear in Sect. 2 and they contain
a new dimensionful parameter ν (which is actually an inte-
gration constant). In order for the equivalence principle not
to be violated at the ranges it has been tested, the parameters
λ, ν should be chosen appropriately, and mechanisms such as
Chameleon [29,30] or Vainshtein (self screening) [31,32], or
even the existence of distinct conservation laws for baryonic
and non-baryonic matter could contribute to this direction.
Here, we will find in Sect. 3 the action of the vacuum part
of this theory, study its symmetry transformation in Sect. 4,
and only partially answer the question of its total action in
Sect. 6. Moreover, in [28] the general family of the vacuum
Brans–Dicke type of theories were found which satisfy the
free wave equation for the scalar field, and this family is
parametrized by one free function of φ. Here, the action of
these vacuum theories will be also found in Sect. 5 and turns
out to be a particular sector of Horndeski family.

2 Complete Brans–Dicke equations

We start with the complete Brans–Dicke theory presented in
[28],

Gμ
ν = 8π

φ
(Tμ

ν + T μ
ν), (2.1)

Tμ
ν = φ

2λ(ν+8πφ2)2 {2[(1+λ)ν + 4π(2 − 3λ)φ2]φ;μφ;ν

−[(1+2λ)ν + 4π(2 − 3λ)φ2]δμ
νφ

;ρφ;ρ}
+ φ2

ν + 8πφ2 (φ
;μ
;ν − δμ

ν�φ), (2.2)

�φ = 4πλT (2.3)

T μ

ν;μ = ν

φ(ν + 8πφ2)
T μ

νφ;μ. (2.4)

The parameter ν is arbitrary and arises as an integration
constant from the integration procedure (its dimensions are
mass to the fourth). The parameter λ �= 0 is related to the
standard Brans–Dicke parameter ωBD = 2−3λ

2λ
and controls

the strength of the interaction in (2.3), while ν controls the
strength of the interaction in (2.4). This theory arises out
of consistency given that the scalar field equation of motion
is (2.3), and Tμ

ν is constructed from terms each of which
involves two derivatives of one or two φ fields and φ itself.
The right-hand side of Eq. (2.1) is consistent with the Bianchi
identities, i.e. it is covariantly conserved on-shell, and there-

fore, the system of equations (2.1)–(2.4) is well defined.
Moreover, it is the unique theory with an interaction term
of the form T μ

ν;μ ∼ T μ
νφ;μ. For ν = 0 it reduces to the

Brans–Dicke theory [1] (in units with c = 1),

Gμ
ν = 8π

φ
(Tμ

ν + T μ
ν), (2.5)

Tμ
ν = 2 − 3λ

16πλφ

(
φ;μφ;ν − 1

2
δμ

νφ
;ρφ;ρ

)

+ 1

8π
(φ

;μ
;ν − δμ

ν�φ), (2.6)

�φ = 4πλT (2.7)

T μ

ν;μ = 0. (2.8)

The role of the new parameter ν is manifest in (2.4) and
measures the deviation from the exact conservation of matter.
The Lagrangian of the Brans–Dicke theory is

SBD = 1

16π

∫
d4x

√−g

(
φR − ωBD

φ
gμνφ,μφ,ν

)

+
∫

d4x
√−g Lm, (2.9)

where Lm(gκλ,
) is the matter Lagrangian depending on
some extra fields 
.

3 The vacuum Lagrangian

We will find here the action of the vacuum theory above by
setting T μ

ν to zero. Mimicking the action (2.9), we consider
an action of the form

Sg = 1

16π

∫
d4x

√−g [ f (φ)R − h(φ)φ;μφ;μ], (3.1)

and we are looking to see if there are functions f, h such that
Eqs. (2.1)–(2.4) with T μ

ν = 0 arise under variation of (3.1).
The action (3.1) is a sector of the Horndeski Lagrangian [33–
35] which leads to the most general field equations with sec-
ond order derivatives. Hopefully, the Lagrangian (3.1) will
be sufficient for our purposes. Variation of (3.1) with respect
to the metric gives, up to boundary terms,

δgSg = − 1

16π

∫
d4x

√−g

[
f Gμν − ( f ′′ + h)φ;μφ;ν

+
(
f ′′+ 1

2
h

)
gμνφ;ρφ;ρ

− f ′(φ;μ;ν − gμν�φ)

]
δgμν, (3.2)

where a prime denotes differentiation with respect to φ and
a; stands for the covariant differentiation with respect to gμν .
Therefore, the gravitational field equation is
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Eμ
ν ≡ Gμ

ν − 1

f
( f ′′ + h)φ;μφ;ν + 1

f

(
f ′′+ 1

2
h

)
δμ

νφ
;ρφ;ρ

− f ′

f
(φ

;μ
;ν − δμ

ν�φ) = 0. (3.3)

The trace of Eqs. (3.3) gives

Eμ
μ = −R + 1

f
(3 f ′′ + h)φ;μφ;μ + 3

f ′

f
�φ = 0. (3.4)

In order for (3.3) to coincide with Eq. (2.1), the following
conditions on the functions f, h should be satisfied:

f ′

f
= 8πφ

ν + 8πφ2 (3.5)

f ′′

f
+ h

f
= 8π

λ(ν + 8πφ2)2

[
(1 + λ)ν + 4π(2 − 3λ)φ2],

(3.6)
f ′′

f
+ 1

2

h

f
= 4π

λ(ν + 8πφ2)2

[
(1 + 2λ)ν + 4π(2 − 3λ)φ2].

(3.7)

Although Eqs. (3.5)–(3.7) form a system of three conditions
for the two unknowns f, h, it is, however, consistent. Indeed,
differentiating (3.5) with respect to φ and combining with
(3.6) we get

h

f
= 8π

λ(ν + 8πφ2)2 [ν + 4π(2 − 3λ)φ2]. (3.8)

Also, subtracting Eqs. (3.6), (3.7) we obtain again (3.8).
Thus, we are left with the system of the two equations (3.5),
(3.8). The solution of this system is

f = c
√

|ν + 8πφ2|, (3.9)

h = c
8π

λ

ν + 4π(2 − 3λ)φ2

|ν + 8πφ2|3/2 , (3.10)

where c is an integration constant.
What remains is the satisfaction of Eq. (2.3), namely

�φ = 0. The variation of (3.1) with respect to the scalar
field gives, up to boundary terms,

δφSg = 1

16π

∫
d4x

√−g
(
f ′R + h′φ;μφ;μ + 2h�φ

)
δφ.

(3.11)

The scalar field equation is

Eφ ≡ f ′R + h′φ;μφ;μ + 2h�φ = 0. (3.12)

Using (3.4) to substitute R in (3.12) we obtain
(

3
f ′2

f
+ 2h

)
�φ +

[
f ′

(
3
f ′′

f
+ h

f

)
+ h′

]
φ;μφ;μ = 0.

(3.13)

Using Eqs. (3.6), (3.8) to get the quantity f ′′
f and also the

solution (3.9), (3.10), we find that the coefficient of φ;μφ;μ

in (3.13) vanishes. Therefore, the scalar field equation (3.13)
becomes

16πεc

λ
√|ν + 8πφ2|�φ = 0, (3.14)

where ε = sgn(ν +8πφ2), which means �φ = 0. When

ε > 0, it is either ν > 0 or ν < 0, |φ| >

√
|ν|
8π

. When ε < 0,

it is ν < 0, |φ| <

√
|ν|
8π

.

Finally, we choose the integration constant c = η√
8π

,

where η = sgn(φ), to normalize the action (3.1) to the Brans–
Dicke action (2.9) in the limit ν = 0. The result is that the
vacuum system (2.1)–(2.4) admits a Lagrangian and its action
is

Sg = η

2(8π)3/2

∫
d4x

√−g

[√
|ν + 8πφ2| R

− 8π

λ

ν + 4π(2 − 3λ)φ2

|ν + 8πφ2|3/2 gμνφ,μφ,ν

]
. (3.15)

4 Symmetry transformation of the vacuum action

In this section we will find a transformation of the fields
(gμν, φ) → (ĝμν, χ) such that the vacuum action (3.15)
remains form invariant, i.e. it is written as

Sg = η

2(8π)3/2

∫
d4x

√
−ĝ

[√
|ν + 8πχ2| R̂

− 8π

λ

ν + 4π(2 − 3λ)χ2

|ν + 8πχ2|3/2 ĝμνχ,μχ,ν

]
. (4.1)

This transformation will therefore be a symmetry of the vac-
uum action in the Jordan frame. To be precise, we consider a
conformal transformation of gμν together with a field redef-
inition for φ, namely

ĝμν = �̂2gμν, φ = A(χ). (4.2)

If R̂, �̂ correspond to ĝμν , we have the relation

R = ω̂−2

(
R̂ − 6

�̂ω̂

ω̂

)
, (4.3)

where ω̂ = �̂−1. Then, since �̂ω̂ = ω̂′′φ|μφ|μ + ω̂′ �̂φ, the
action Sg takes the form

Sg = 1

16π

∫
d4x

√
−ĝ f ω̂2

×
[
R̂ −

(
6
ω̂′′

ω̂
+ h

f

)
φ|μφ|μ − 6

ω̂′

ω̂
�̂φ

]
, (4.4)

where a | denotes covariant differentiation with respect to ĝμν

and a prime denotes as usual a differentiation with respect
to φ. After an integration by parts, Eq. (4.4) becomes, up to
boundary terms,
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Sg = 1

16π

∫
d4x

√
−ĝ f ω̂2

×
[
R̂ +

(
6
f ′ω̂′

f ω̂
+ 6

ω̂′2

ω̂2 − h

f

)
φ|μφ|μ

]
, (4.5)

and finally

Sg = 1

16π

∫
d4x

√
−ĝ f ω̂2

[
R̂ +

(
6
f ′ω̂′

f ω̂
+ 6

ω̂′2

ω̂2 − h

f

)

×
(

dA

dχ

)2

ĝμνχ,μχν

]
. (4.6)

The action (4.6) is also written as

Sg = 1

16π

∫
d4x

√
−ĝ f ω̂2

{
R̂ +

[
6
ω̂′

ω̂

( f ω̂2)′

f ω̂2

− 6
ω̂′2

ω̂2 − h

f

](
dA

dχ

)2

ĝμνχ,μχν

}
. (4.7)

In order for (4.7) to be identified with (4.1) we should have

f ω̂2 = f̂ (4.8)[
6
ω̂′

ω̂

(
f̂ ′

f̂
− ω̂′

ω̂

)
− h

f

] (
dA

dχ

)2

= − ĥ

f̂
, (4.9)

where

f̂ = η√
8π

√
|ν+8πχ2|, ĥ = η

√
8π

λ

ν + 4π(2 − 3λ)χ2

|ν + 8πχ2|3/2 .

(4.10)

Converting the φ-derivatives in (4.8) into χ -derivatives we
get

6

ω̂

dω̂

dχ

(
1

f̂

d f̂

dχ
− 1

ω̂

dω̂

dχ

)
− h

f

(
dA

dχ

)2

= − ĥ

f̂
. (4.11)

Since 2
ω̂

dω̂
dχ

= 1
ω̂2

d(ω̂2)
dχ

, we have from (4.8)

2

ω̂

dω̂

dχ
= 1

f̂

d f̂

dχ
− 1

f

d f

dφ

dA

dχ
. (4.12)

Substituting (4.12) into (4.11) we obtain

[(
1

f

d f

dφ

)2

+ 2h

3 f

] (
dA

dχ

)2

=
(

1

f̂

d f̂

dχ

)2

+ 2ĥ

3 f̂
, (4.13)

from which one furthermore gets a separable form,

dφ√|ν + 8πφ2| = ± dχ√|ν + 8πχ2| , (4.14)

where sgn(ν + 8πχ2) = ε.

For ε > 0, integration of (4.14) gives

φ = s

8π

(
θ
∣∣4πχ + √

2π

√
ν + 8πχ2

∣∣±1 − 2πν

θ

∣∣4πχ

+√
2π

√
ν + 8πχ2

∣∣∓1
)

, (4.15)

where θ > 0 is integration constant and s = sgn(4πφ +√
2π

√
ν + 8πφ2) = sgn(θ |4πχ + √

2π
√

ν + 8πχ2|±1 +
2πν
θ

|4πχ + √
2π

√
ν + 8πχ2|∓1), or inversely

χ = s′

8π

(
θ ′∣∣4πφ + √

2π
√

ν + 8πφ2
∣∣±1

− 2πν

θ ′
∣∣4πφ + √

2π
√

ν + 8πφ2
∣∣∓1

)
, (4.16)

where θ ′ = θ∓1 > 0 and s′ = sgn(4πχ +√
2π

√
ν + 8πχ2)

= sgn(θ ′|4πφ + √
2π

√
ν + 8πφ2|±1 + 2πν

θ ′ |4πφ

+ √
2π

√
ν + 8πφ2|∓1).

For ε < 0 it is

φ =
√ |ν|

8π
sin

[
c1 ± arcsin

(√
8π

|ν| χ

)]
, (4.17)

where c1 is an integration constant, or inversely

χ = ±
√ |ν|

8π
sin

[
arcsin

(√
8π

|ν| φ

)
− c1

]
. (4.18)

Finally, since φ(χ) or χ(φ) has been found, the conformal
transformation (4.2), which leaves the vacuum action Sg form
invariant, is

ĝμν =
√

|ν + 8πφ2|
|ν + 8πχ2| gμν. (4.19)

From (4.15), (4.19) we see that in the Brans–Dicke limit
ν = 0, we get χ ∝ φ−1, ĝμν ∝ φ2gμν , which leads to
a symmetry transformation of the Brans–Dicke action (2.9)
[26].

5 The Lagrangian of generalized vacuum Brans–Dicke
theories

Setting T μ
ν = 0 in the system (2.1)–(2.4) an extended vac-

uum Brans–Dicke theory arises, which for ν = 0 reduces
to the vacuum Brans–Dicke theory. However, it was shown
in [28] that this theory is not the most general vacuum the-
ory respecting the wave equation �φ = 0 and the standard
assumption for Tμ

ν being a sum of terms with two derivatives.
The most general such theory is
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Gμ
ν = 8π

φ
Tμ

ν, (5.1)

Tμ
ν = A(φ)φ;μφ;ν + B(φ)δμ

νφ
;ρφ;ρ + C(φ)φ

;μ
;ν, (5.2)

�φ = 0, (5.3)

where the coefficients A, B,C satisfy the differential equa-
tions

A′ + B ′ + 4π

φ
C(A − 2B) − 1

φ
(A + B) = 0, (5.4)

C ′ + 8π

φ
C2 − 1

φ
C + A + 2B = 0. (5.5)

The energy-momentum tensor Tμ
ν of Eq. (2.2) is easily seen

to satisfy the system (5.4), (5.5) and it defines probably the
most interesting vacuum theory. However, the solution of
Eqs. (5.4), (5.5) in principle contains one arbitrary function
of φ. Here, we will show that the general vacuum theory
defined by the system (5.4), (5.5) arises from an action and we
will find such an action in general. This contains an arbitrary
function and provides the field equations (5.1)–(5.3).

We start with the Horndeski theory which consists of the
most general Lagrangian [33], providing second order field
equations for both the metric and the scalar field. This theory
was recently rediscovered independently [34,35] and cast in
a simpler form, having the following structure:

S =
∫

d4x
√−g

(
L2 + L3 + L4 + L5

)
, (5.6)

where

L2 = G2, (5.7)

L3 = −G3�φ, (5.8)

L4 = G4R + G4X

[
(�φ)2 − φ;μ;νφ;μ;ν] , (5.9)

L5 = G5Gμνφ
;μ;ν − 1

6
G5X

[
(�φ)3 + 2φ;μ;νφ;κ;μφ

;ν
;κ

− 3φ;μ;νφ;μ;ν�φ
]
. (5.10)

The functions Gi (i = 2, 3, 4, 5) depend on the scalar field φ

and its kinetic energy X = − 1
2φ;μφ;μ, i.e. Gi = Gi (φ, X).

The field equations for the metric and the scalar field stem-
ming from the variation of (5.6) are, respectively, the follow-
ing [36]:

Eμν = −1

2
G2gμν + G2X Xμν

−
[
G3X Xμν�φ + 1

2
gμνG3κφκ − G3(μφν)

]

+G4Gμν + RG4X Xμν + G4κ
κgμν − G4μν

+
(
G4XX Xμν − 1

2
G4X gμν

)
[(�φ)2 − φ2

μν ]
+ 2G4Xφμν�φ − 2[G4Xφ;(μ�φ];ν) + (G4Xφκ�φ);κgμν

+ 2[G4Xφ(μφκ
ν)];κ − (G4Xφκφμν);κ − 2G4Xφνκφκ

μ

+Gκλφ
κλ

(
G5X Xμν − 1

2
G5gμν

)
+ 2G5φ

κ
(νGμ)κ

−[G5φ(μGν)κ ];κ + 1

2
(G5φκGμν)

;κ + 1

2
{RG5φμν

−G5φκ
κ Rμν + �(G5φμν) + (G5φκ

κ);ν;μ
− 2[G5φ(μ

κ ];ν);κ + [(G5φ
κλ);λ;κ − �(G5φκ

κ)]gμν}
− 1

6

(
G5XX Xμν − 1

2
G5X gμν

)
[(�φ)3 + 2φ3

κλ − 3φ2
κλ�φ]

− 1

2

{
G5X (�φ)2φμν − 2[G5X (�φ)2φ(μ];ν)

+ 1

2
[G5X (�φ)2φκ ];κgμν

}

−
{
G5Xφκμφνλφ

λκ − [G5Xφ(μφλ
ν)φλκ ];κ

+ 1

2
(G5Xφκφλμφλ

ν)
;κ

}

+ 1

2

{
G5X (φ2

κλφμν + 2φμκφκ
ν�φ) − [G5Xφκλφ

κλφ(μ];ν)

+ 1

2
(G5Xφκφλρφλρ);κgμν

− 2[G5Xφ(μφν)κ�φ];κ + (G5Xφκφμν�φ);κ
}

= 0,

(5.11)
Eφ = G2φ + (G2Xφμ);μ − [

G3μ
μ + (G3Xφμ�φ);μ

+G3φ�φ
] + RG4φ + G4Xφ[(�φ)2 − φ2

μν ]
+ {G4XXφκ [(�φ)2 − φ2

μν ]};κ
+ (RG4Xφμ);μ + 2�(G4X�φ) − 2(G4Xφμν)

;ν;μ

+G5φGμνφ
μν + Gμν

5 Gμν − 1

6
G5Xφ[(�φ)3

+ 2φ3
μν − 3φ2

μν�φ] + (G5XG
μνφμνφκ);κ

− 1

2
�[G5X (�φ)2]

− 1

6
{G5XXφκ [(�φ)3 + 2φ3

μν − 3φ2
μν�φ]};κ

− (G5Xφκ
μφκν)

;ν;μ + 1

2
�(G5Xφ2

μν)

+ (G5Xφμν�φ);ν;μ = 0. (5.12)

A subscript φ or X denotes a partial differentiation with
respect to φ or X , while Xμν = ∂X

∂gμν = − 1
2φ,μφ,ν . Paren-

theses around a couple of indices mean symmetrization with
the factor 1/2 included. Also, we denote fμ...ν = f;ν... ;μ for
a function f , while φ2

μν = φμνφ
μν and φ3

μν = φμνφ
νκφμ

κ .
Despite the fact of the appearance of higher derivatives in
(5.11), (5.12), the field equations can be reduced to second
order using appropriate identities.

Equations (5.11), (5.12) should coincide with equations
(5.1), (5.3). All terms in (5.11), (5.12) multiplied by a X
derivative of G5 contain more than two derivatives on φ.
However, combining suitable such terms and using the for-
mula connecting two successive derivatives with the Rie-
mann tensor, terms with lower number of derivatives arise,
which are multiplied by the Riemann tensor. Since there are
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no such structures in (5.1)–(5.3), all these terms should van-
ish. This requires that G5X = 0, i.e. G5 = G5(φ). Similarly,
various terms in (5.11), (5.12) multiplied by a X derivative
of G4 contain more than two derivatives on φ and therefore
G4X = 0, i.e.G4 = G4(φ). The existence of quantities of the
form G3μφν in (5.11) makes it necessary that G3X = 0, i.e.
G3 = G3(φ). Finally, the existence of the term (G2Xφμ);μ
in (5.12) leads to G2XX = 0, i.e. G2X = G2X (φ), which
means G2 = γ2(φ) + g2(φ)X . Thus, Eqs. (5.11) and (5.12)
take the form

Eμν = −1

2
G2gμν + G2X Xμν + G3(μφν) − 1

2
gμνG3κφκ

+G4Gμν + G4κ
κgμν − G4μν

− 1

2
G5Gκλφ

κλgμν + 2G5φ
κ
(νGμ)κ − [G5φ(μGν)κ ];κ

+ 1

2
(G5φκGμν)

;κ + 1

2
{RG5φμν − G5φκ

κ Rμν

+ �(G5φμν) + (G5φκ
κ);ν;μ − 2[G5φ(μ

κ ];ν);κ
+ [(G5φ

κλ);λ;κ − �(G5φκ
κ)]gμν} = 0, (5.13)

Eφ = G2φ + (G2Xφμ);μ − G3μ
μ − G3φ�φ

+ RG4φ + G5φGμνφ
μν + Gμν

5 Gμν = 0. (5.14)

Now, again there are terms in (5.13) multiplied by G5 which
contain more than two derivatives on φ, thus G5 = 0. Equa-
tions (5.13), (5.14) become

Eμν = −1

2
G2gμν + G2X Xμν + G3(μφν)

− 1

2
gμνG3κφκ + G4Gμν + G4κ

κgμν − G4μν = 0,

(5.15)

Eφ = G2φ + (G2Xφμ);μ − G3μ
μ − G3φ�φ + RG4φ = 0.

(5.16)

Equations (5.15), (5.16) are reexpressed as

Eμν = G4Gμν + (G2X − 2G3φ + 2G4φφ)Xμν

−
(

1

2
G2 − G3φX + 2G4φφX − G4φ�φ

)
gμν

−G4φφμν = 0, (5.17)

Eφ = G2φ + RG4φ + 2(G3φφ − G2Xφ)X

+ (G2X − 2G3φ)�φ = 0. (5.18)

Taking the trace of Eq. (5.17) we obtain the Ricci scalar as

G4R = (2G3φ − 6G4φφ − g2)X + 3G4φ�φ − 2γ2. (5.19)

Substituting this R into (5.18) we get

G4γ2φ − 2γ2G4φ + [2G4φG3φ − 6G4φG4φφ − (g2G4)φ

+ 2G4G3φφ]X + (g2G4 − 2G4G3φ + 3G2
4φ)�φ = 0.

(5.20)

In order for (5.20) to coincide with the wave equation�φ = 0
of (5.3) we should have equivalently

G4γ2φ − 2γ2G4φ = 0 (5.21)

2G4φG3φ − 6G4φG4φφ − (g2G4)φ + 2G4G3φφ = 0,

(5.22)

g2G4 − 2G4G3φ + 3G2
4φ �= 0. (5.23)

Equation (5.21) is immediately integrated to

γ2 = γ2oG
2
4, (5.24)

with γ2o an integration constant. Then Eq. (5.17) becomes

G4Gμν + (g2 − 2G3φ + 2G4φφ)Xμν

−
(

1

2
g2 − G3φ + 2G4φφ

)
Xgμν − G4φφμν

− 1

2
γ2gμν = 0. (5.25)

The gravitational equation (5.1) is written as

Gμν + 8π

φ
(2AXμν + 2BXgμν − Cφμν) = 0, (5.26)

where A, B,C satisfy (5.4), (5.5). In order for (5.25) to coin-
cide with (5.26) we should have

g2 − 2G3φ + 2G4φφ = 16π

φ
AG4 (5.27)

1

2
g2 − G3φ + 2G4φφ = −16π

φ
BG4 (5.28)

G4φ = 8π

φ
CG4, (5.29)

γ2 = 0. (5.30)

The action (5.6) that has resulted up to now is

S =
∫

d4x
√−g [g2(φ)X − G3(φ)�φ + G4(φ)R], (5.31)

where the coefficients g2,G3,G4 obey the system (5.22),
(5.23), (5.27)–(5.29). Since the term G3�φ can be converted
through an integration by parts to the term 2G3φX , the action
(5.31) reduces to the simpler form

S = 1

16π

∫
d4x

√−g [f(φ)R − h(φ)φ;μφ;μ], (5.32)

where f = 16πG4, h = 8π(g2 − 2G3φ). Since the system of
equations for g2,G3,G4 is pretty complicated, we will find
equivalently from the action (5.32) the system of equations
that the coefficients f,h should satisfy. From Eqs. (3.3), (3.13)
we obtain
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Gμ
ν − 1

f
(f ′′ + h)φ;μφ;ν + 1

f

(
f ′′ + 1

2
h
)

δμ
νφ

;ρφ;ρ

− f ′

f

(
φ

;μ
;ν − δμ

ν�φ
)

= 0, (5.33)
(

3
f ′2

f
+ 2h

)
�φ +

[
f ′

(
3
f ′′

f
+ h

f

)
+ h ′

]
φ;μφ;μ = 0.

(5.34)

For Eq. (5.34) to coincide with (5.3) one should have

f ′
(

3
f ′′

f
+ h

f

)
+ h ′ = 0 (5.35)

3
f ′2

f
+ 2h �= 0. (5.36)

Then for Eq. (5.33) to coincide with (5.1),

1

f
(f ′′ + h) = 8π

φ
A, (5.37)

1

f

(
f ′′ + 1

2
h
)

= −8π

φ
B, (5.38)

f ′

f
= 8π

φ
C . (5.39)

Substituting A, B,C from (5.37)–(5.39) into (5.4), (5.5), and
using (5.35), we see that (5.4), (5.5) are identically satisfied.
So, the action (5.32) is valid for the system (5.1)–(5.3) and
we are left with Eqs. (5.35) and (5.36). The solution of (5.35)
is

h(φ) = s − 3f ′2(φ)

2f(φ)
, (5.40)

where s is integration constant. Equation (5.36) is satisfied
for s �= 0. Finally, the action of the system (5.1)–(5.3) takes
the form

S = 1

16π

∫
d4x

√−g

[
f(φ)R − s − 3f ′2(φ)

2f(φ)
gμνφ,μφ,ν

]
.

(5.41)

The action (5.41), as well as the coefficients A, B,C of
(5.37)–(5.39), has been expressed in terms of one arbitrary
function f(φ). The action (3.15) is included in (5.41) if we
choose s = 2ε

λ
.

6 A total Lagrangian

Now we consider the total action S = Sg + Sm including the
matter action

Sm =
∫

d4x
√−g J (φ)Lm, (6.1)

where Lm(gκλ,
) is the matter Lagrangian. The symbol 


denotes a collection of extra matter fields and J (φ) is a func-
tion to be determined. The variation of Sm with respect to the
metric gives

δgSm = 1

2

∫
d4x

√−g J (φ)T μνδgμν, (6.2)

where the matter energy-momentum tensor is defined as

T μν = 2√−g

δ(
√−g Lm)

δgμν

(6.3)

in the Jordan frame we are working with, where Lm is mul-
tiplied by the non-trivial factor J (φ) in (6.1). The way T μν

arises from Sm is such that the gravitational equation (2.1)
can be obtained. The variation of the total action is

δgS = − 1

16π

∫
d4x

√−g f

(
Eμν − 8π

J

f
T μν

)
δgμν,

(6.4)

and therefore the total gravitational equation of motion is

Eμ
ν −8π

J

f
T μ

ν = 0. (6.5)

In order for (6.5) to coincide with Eq. (2.1), we should have
J = f

φ
, thus

J (φ) = 1√
8π

√|ν+8πφ2|
|φ| . (6.6)

Note that, for ν = 0, it becomes J = 1. Therefore, a candi-
date total action for the complete Brans–Dicke theory (2.1)–
(2.4) is

S = η

2(8π)3/2

∫
d4x

√−g

[√
|ν + 8πφ2| R

− 8π

λ

ν + 4π(2 − 3λ)φ2

|ν + 8πφ2|3/2 gμνφ,μφ,ν

+ 16π

√|ν + 8πφ2|
φ

Lm(gκλ,
)

]
. (6.7)

Notice that due to the interaction term in the conserva-
tion equation (2.4) with ν �= 0, the matter Lagrangian is
non-minimally coupled even in the Jordan frame. We have
not yet finished deriving Eq. (2.1), since we have not dis-
cussed the derivation of Eqs. (2.3) and (2.4). As for (2.4), if
(2.3) has been derived, then (2.4) is the consistency condi-
tion in order for the Bianchi identities to be satisfied which
have indeed been verified in [28]. Thus, it remains to see if
Eq. (2.3) is obtained under variation of (6.7) with respect
to φ. It is evident that a variation of Sm with respect to
φ will produce a factor Lm which cannot be canceled by
any other equation. More precisely, extending Eq. (3.11), we
obtain

δφS = 1

16π

∫
d4x

√−g

×( f ′R + h′φ;μφ;μ + 2h�φ + 16π J ′Lm)δφ. (6.8)
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The scalar field equation is thus

f ′R + h′φ;μφ;μ + 2h�φ + 16π J ′Lm = 0. (6.9)

The trace of Eq. (6.5) gives

R = 1

f
(3 f ′′ + h)φ;μφ;μ + 3

f ′

f
�φ − 8π

J

f
T . (6.10)

From (6.9), (6.10) we obtain(
3
f ′2

f
+ 2h

)
�φ +

[
f ′

(
3
f ′′

f
+ h

f

)
+ h′

]
φ;μφ;μ

− 8π
f ′

f
JT + 16π J ′Lm = 0. (6.11)

Simplifying this equation, we finally get

�φ = 4πλT + λν

φ2 Lm . (6.12)

Therefore, the field equation (2.3) is obtained only if on-shell
the numerical value of the matter Lagrangian Lm is zero. For
example, for a relativistic perfect fluid, an action functional
has been constructed [37] where the matter Lagrangian is
proportional to the pressure. Moreover, in [38] the on-shell
Lagrangian, i.e. the value of the Lagrangian when the equa-
tions of motion hold, is again the pressure, thus for pressure-
less dust this on-shell value vanishes. Of course, an energy-
momentum tensor is normally defined and enters the field
equations, because this is computed off-shell.

The result of this section is that, in the case of matter,
we have found an action functional of the form (6.7) for
the complete Brans–Dicke theory only for particular mat-
ter Lagrangians, those which vanish on-shell. This is still
meaningful, although of restricted applicability. This result,
however, does not mean that we have shown that an action
principle does not exist for arbitrary matter Lagrangians. It is
an option that actions of a different, more complicated form
than (6.7) could in principle exist and provide the full set of
field equations with any matter content.

A notice of caution should be added at this point. It is true
that if Eq. (2.4) had been derived, then Eq. (2.3) would arise
from the satisfaction of the Bianchi identities. Note first that
the conservation equation (2.4) is also written as(√|ν + 8πφ2|

φ
T μ

ν

)
;μ

= 0. (6.13)

Comparing this equation with the last term in the action (6.7),
the one containing Lm , one could be tempted to apply the
standard diffeomorphism invariance argument for this part
of the action and obtain immediately Eq. (6.13). However,
this is not correct because of the non-minimal coupling of
Lm with φ.

The action (6.7), whenever applied, can be cast into a
canonical form where the Einstein–Hilbert term is only min-
imally coupled. Of course, the following transformations are

also valid in the vacuum case. We perform a new conformal
transformation:

g̃μν = �̃2(φ)gμν, �̃ =
( |ν + 8πφ2|

8π

) 1
4

. (6.14)

If R̃, �̃ correspond to g̃μν and ω̃ = �̃−1, the total action S
defined from (3.1), (6.1), using (4.7), takes the form

S = 1

16π

∫
d4x

√−g̃ f ω̃2

×
{
R̃ +

[
6
ω̃′

ω̃

( f ω̃2)′

f ω̃2 − 6
ω̃′2

ω̃2 − h

f

]
g̃μνφ,μφ,ν

}

+
∫

d4x
√−g̃

f ω̃4

φ
Lm(ω̃2 g̃κλ,
). (6.15)

Using that f ω̃2 = η, ω̃′
ω̃

= 1
4

(ω̃4)′
ω̃4 = − 4πφ

ν+8πφ2 , we find an
action with the Einstein–Hilbert term without non-minimal
coupling, but with a non-standard kinetic term

S = η

16π

∫
d4x

√−g̃

[
R̃ − 8π

λ(ν + 8πφ2)
g̃μνφ,μφ,ν

+ 2(8π)
3
2

φ
√|ν + 8πφ2| Lm(ω̃2 g̃κλ,
)

]
. (6.16)

In order to make this kinetic term canonical, we introduce a
new scalar field σ(x), instead of φ(x), by

dφ

dσ
=

√ |λ|
16π

√
|ν + 8πφ2|. (6.17)

The kinetic term in (6.16) inside the brackets is reexpressed
as − 1

2εελg̃μνσ,μσ,ν , where ελ is the sign of λ. This is a
canonical kinetic term, so the field σ behaves as a usual scalar
field in the new conformal frame. If εελ > 0, then σ is a
normal field with positive energy. This is achieved even if the
kinetic term in (6.7) is positive. Although φ is “apparently”
a ghost in this case, since it has the wrong sign, however, σ

is not a ghost. On the opposite side, if εελ < 0, then σ is a
ghost.

For ε > 0, Eq. (6.17) is integrated to

σ − σ0 =
√

2

|λ| ln
∣∣∣4πφ + √

2π
√

ν + 8πφ2
∣∣∣, (6.18)

where σ0 is integration constant. Redefining σ0, we can
rewrite (6.18) in the form

σ =
√

2

|λ| ln

∣∣∣∣ 4πφ + √
2π

√
ν + 8πφ2

4πφ0 + √
2π

√
ν + 8πφ2

0

∣∣∣∣, (6.19)

where φ0 is integration constant. In the case that the scalar
field φ is constant with value φ = φ0, it will be σ = 0. In
this case there is no need for a conformal transformation and
we may then set �̃ = 1. Thus, φ2

0 = 1 − ν
8π

and the integra-
tion constant φ0 has been determined (for ν > 0 we should
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have ν < 8π ). We redefine σ by absorbing the translational
integration constant σ0 of (6.18) into σ . Equation (6.18) can
be inverted giving

φ = s

8π

(
e

√
|λ|
2 σ − 2πνe−

√
|λ|
2 σ

)
, (6.20)

where s = sgn(4πφ +√
2π

√
ν + 8πφ2) = sgn(e

√
|λ|
2 σ +

2πνe−
√

|λ|
2 σ

). The action (6.16) becomes

S = η

16π

∫
d4x

√−g̃

[
R̃ − 1

2
ελg̃

μνσ,μσ,ν

+ 2η(8π)3∣∣e√
2|λ| σ − 4π2ν2e−√

2|λ| σ ∣∣ Lm(ω̃2 g̃κλ,
)

]
,

(6.21)

where

ω̃2 = 8π∣∣∣e
√

|λ|
2 σ + 2πνe−

√
|λ|
2 σ

∣∣∣
. (6.22)

For the physically more interesting case with φ > 0, both
absolute values in (6.21), (6.22) disappear. The Lagrangian
(6.21) refers to the Einstein frame where the gravitational
coupling is a true constant. In order for σ not to be a ghost,
we should have λ > 0. In the Brans–Dicke limit ν = 0 the
coupling to Lm is a simple exponential function of σ .

For ε < 0, Eq. (6.17) is integrated to

σ − σ0 =
√

2

|λ| arcsin

(√
8π

|ν| φ

)
, (6.23)

where σ0 is integration constant. Redefining σ0, we can write
(6.23) in the form

σ =
√

2

|λ|

[
arcsin

(√
8π

|ν| φ

)
− arcsin

(√
8π

|ν| φ0

)]
,

(6.24)

where φ0 is integration constant. Again, for φ = φ0, σ = 0,
and setting �̃ = 1 we get the condition φ2

0 = |ν|
8π

− 1 (we
should have |ν| > 8π ). We redefine σ by absorbing the
translational integration constant σ0 of (6.23) into σ , and

then −π
2 <

√
|λ|
2 σ < π

2 . Equation (6.23) can be inverted
giving

φ =
√ |ν|

8π
sin

(√ |λ|
2

σ

)
. (6.25)

The action (6.16) becomes

S = η

16π

∫
d4x

√−g̃

[
R̃ + 1

2
ελg̃

μνσ,μσ,ν

+ 4(8π)2

|ν| sin
(√

2|λ| σ ) Lm(ω̃2 g̃κλ,
)

]
, (6.26)

where

ω̃2 =
√

8π

√|ν| cos
(√

|λ|
2 σ

) . (6.27)

In order for σ not to be a ghost, we should have λ < 0.

7 Conclusions

Relieving the standard exact conservation of matter, but still
preserving the simple wave equation of motion for the scalar
field sourced by the trace of the matter energy-momentum
tensor, it was one recently found the most general completion
of Brans–Dicke theory. This class of theories contains three
interaction terms in the non-conservation equation of matter
and is parametrized by arbitrary functions of the scalar field.
Keeping a single interaction term each time to express the
energy exchange between the scalar field and ordinary matter,
three uniquely defined theories arise from consistency, which
form the prominent and natural complete Brans–Dicke the-
ories. Here, for the first such theory, its vacuum part, which
arises as the zero-matter limit, is studied. The Lagrangian of
this vacuum theory is found in the so called Jordan frame,
where the scalar field plays the role of the inverse gravita-
tional parameter in the field equations. In this frame, a sym-
metry transformation of the vacuum action is also found,
which consists of a conformal transformation of the metric
together with a redefinition of the scalar field. Since the gen-
eral family of vacuum theories is not exhausted by the above
vacuum theory but contains a free function of the scalar field,
the action of this family is found which is also parametrized
by an arbitrary function and forms a subclass of the Horndeski
theories. As for the full theory with matter, we have not been
able to answer the question whether the complete Brans–
Dicke theory with a general matter energy-momentum ten-
sor arises or not from a Lagrangian. We have answered this
question only in the case that the matter Lagrangian vanishes
on-shell, as for example happens in the case of pressureless
dust. Due to the interaction term in the conservation equa-
tion, the matter Lagrangian is non-minimally coupled even in
the Jordan frame. In the Einstein frame where the Einstein–
Hilbert term is minimally coupled, two forms of this full
action have been found, one with a non-canonical kinetic
term and one with a canonical kinetic term, with the matter
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Lagrangian still being non-minimally coupled, while these
forms of the actions still make sense in the vacuum limit.
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