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Abstract Using double 2 + 2 and 3 + 1 nonholonomic
fibrations on Lorentz manifolds, we extend the concept of
W-entropy for gravitational fields in general relativity (GR).
Such F- and W-functionals were introduced in the Ricci
flow theory of three dimensional (3-d) Riemannian met-
rics by Perelman (the entropy formula for the Ricci flow
and its geometric applications. arXiv:math.DG/0211159).
Non-relativistic 3-d Ricci flows are characterized by asso-
ciated statistical thermodynamical values determined by W-
entropy. Generalizations for geometric flows of 4-d pseudo-
Riemannian metrics are considered for models with local
thermodynamical equilibrium and separation of dissipative
and non-dissipative processes in relativistic hydrodynam-
ics. The approach is elaborated in the framework of clas-
sical field theories (relativistic continuum and hydrody-
namic models) without an underlying kinetic description,
which will be elaborated in other work. The 3 + 1 split-
ting allows us to provide a general relativistic definition
of gravitational entropy in the Lyapunov–Perelman sense.
It increases monotonically as structure forms in the Uni-
verse. We can formulate a thermodynamic description of
exact solutions in GR depending, in general, on all space-
time coordinates. A corresponding 2 + 2 splitting with non-
holonomic deformation of linear connection and frame struc-
tures is necessary for generating in very general form var-
ious classes of exact solutions of the Einstein and gen-
eral relativistic geometric flow equations. Finally, we spec-
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ulate on physical macrostates and microstate interpreta-
tions of the W-entropy in GR, geometric flow theories and
possible connections to string theory (a second unsolved
problem also contained in Perelman’s work) in Polyakov’s
approach.
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1 Introduction

Perelman defined the W-entropy [1–3] as a functional with a
non-decreasing Lyapunov-type property from which Hamil-
ton’s equations [4–6] for Ricci flows can be derived follow-
ing the variational procedure. The approach was elaborated
upon for the geometric evolution of three dimensional (3-d)
Riemannian metrics. There were obtained a number of fun-

damental results in geometric analysis and topology. Such
directions in modern mathematics became famous after the
elaborated methods allowed one to prove the Poincaré and
Thorston conjectures. In this paper we show that using non-
holonomic double 3+1 and 2+2 splitting in general relativity
(GR) the geometric and statistical thermodynamics methods
considered in Perelman’s work can be developed for theories
of generalized relativistic geometric flows. We consider how
such constructions can be applied in modern cosmology and
astrophysics.

There are different ways for generalizing models of 3-
d Ricci flow evolution for 4-d spacetimes with pseudo-
Euclidean signature. For instance, there were formulated the-
ories of stochastic/diffusion and kinetic processes with local
anisotropy, fractional geometric evolution etc [7–9]. It is pos-
sible to construct thermo field models of Ricci flow evolu-
tion on imaginary time ς = −it(0 ≤ ς ≤ 1/κT, where κ

is Boltzmann’s constant and T is the temperature). In such a
case, the pseudo-Riemannian spacetime is transformed into a
Riemannian configuration space-like in thermal and/or finite
temperature quantum field theory (see [10,11] and the refer-
ences therein). Here we recall that Perelman treated τ = ς−1

as a temperature parameter and derived his W-entropy by
analogy to formulas for the entropy in statistical mechan-
ics.1 In his work, it was not specified what type of under-
lying microstates and their energy should be taken in order
to explain the geometric flows corresponding to certain ther-
modynamical and gravity models.

The (non-relativistic) Ricci flow evolution equations pos-
tulated heuristically by Hamilton can be written in the form

∂gı̀ j̀
∂τ

= −2 Rı̀ j̀ . (1)

In these formulas, τ is an evolution real parameter and the
local coordinates uı̀ with indices ı̀, j̀ = 1, 2, 3 are defined
on a real 3-d Riemannian manifold. We can consider that
Eq. (1) describe a nonlinear diffusion process for geometric
flow evolution of 3-d Riemannian metrics. For small defor-
mations of a 3-d Euclidean metric gı̀ j̀ ≈ δı̀ j̀+ hı̀ j̀ , with

δı̀ j̀ = diag[1, 1, 1] and hı̀ j̀ | � 1, the Ricci tensor approxi-

mates the Laplace operator � = ∂2

(∂u1)2
+ ∂2

(∂u2)2
+ ∂2

(∂u3)2
. We

obtain a linear diffusion equation, Rı̀ j̀ ∼ �hı̀ j̀ . In modified
and normalized form, equations of type (1) can be proven
following a corresponding variational calculation for Perel-
man’s W- and F-functionals. Using the W-entropy, analogous

1 Remark 5.3 is interesting in [1] (and the next paragraph, just before
Sect. 6 in that paper) which we reproduce here: “An entropy formula for
the Ricci flow in dimension two was found by Chow ...; there seems to
be no relation between his formula and ours. ... The interplay of statis-
tical physics and (pseudo)-riemannian geometry occurs in the subject
of Black Hole Thermodynamics, developed by Hawking et al. Unfor-
tunately, this subject is beyond my understanding at the moment.”
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statistical mechanics and thermodynamics was formulated.
The respective thermodynamic values (mean energy, entropy
and fluctuation dispersion) can be considered as certain phys-
ical characteristics of flow evolution of Riemannian metrics.
Summaries of the most important mathematical results and
methods can be found in [12–14].

Geometric flow evolution models of pseudo-Riemannian
metrics have not been formulated and studied in modern
physical mathematics. Such ideas have not been developed
and do not exist among gravitational and related relativis-
tic thermodynamics/diffusion/kinetic theories. In quantum
field theory some examples were considered in relativistic
form of low dimensional geometric flow equations of type
(1). That was even before mathematicians formulated in rig-
orous form respective directions in geometric analysis and
topology which are related to the Ricci flow theory. Friedan
published during 1980–1985 a series of works on nonlin-
ear sigma models, σ -models, in two + epsilon dimensions;
see [15–17]. Certain topological properties were studied of
the β function and solutions of the fixed-point equation (the
latter called the Ricci soliton equation) and further devel-
opments on renormalization of the O(N )-invariant nonlinear
σ -models in the low-temperature regime dominated by small
fluctuations around ordered states [18].

Generalized Perelman’s functionals were studied for var-
ious models of non-Riemannian geometries and (modi-
fied) gravity theories; see [19,21,22] and the references
therein. The corresponding generalized Ricci soliton equa-
tions describe modified Einstein equations for certain classes
of modified gravity theories, MGTs. Such models possess
an important decoupling property of the fundamental evo-
lution/dynamical equations and can be integrated in general
form. We can study new classes of exact solutions and search
for application in modern gravity and cosmology. Never-
theless, we cannot argue that certain analogs of general-
ized/modified Hamilton’s equations would describe in a self-
consistent manner certain evolution processes if additional
assumptions on geometric and physical properties of GR
flows are not considered. We cannot treat any formal relativis-
tic modification of Perelman’s functionals defined only in
terms of the Levi-Civita connection for pseudo-Riemannian
metrics as an entropy functional. For the geometric flow
evolution of 4-d metrics with Lorentz signature and non-
stationary solutions in GR, it is not possible to formulate a
statistical thermodynamic interpretation like in the case of
3-d Riemannian ones.

The main goal of this paper is to study how the concept
of W-entropy can be generalized in order to characterize 3-
d hypersurface gravitational thermodynamic configurations
and their GR evolution determined by exact solutions in Ein-
stein gravity. The approach involves two other less estab-
lished (general) relativistic theories: the relativistic statisti-
cal thermodynamics and the nonlinear diffusion theory on

curved spacetimes and in gravity. Historically, the first rel-
ativistic generalizations of thermodynamics due to Planck
[23] and Einstein [24] were subject to certain criticisms and
modifications more than half century later [25–31]. Vari-
ous ideas and constructions exclude each other and various
debates continue even today [32–38]. For such models, dif-
ferent covariant relativistic thermodynamical and/or statisti-
cal thermodynamical values were postulated, with respective
transformation laws under local Lorentz transforms. There is
an explicit dependence on the fourth time-like coordinate and
the main issue is how to define the concept of temperature and
provide a physical interpretation. We plan to elaborate on a
general thermodynamic treatment of relativistic Ricci flows
using methods of relativistic kinetics and nonlinear diffu-
sion theory in our further work. In this paper, we consider
a generalization of Perelman’s W-thermodynamic model to
flows of entropy and effective energy in the framework of
“most simple” relativistic fluids theory and hydrodynamics
with stability and causality.

The relativistic 4-d geometric flows depend, in general,
on a time-like coordinate being described also by evolution
on a temperature-like parameter. We argue that an appro-
priate redefinition of effective thermodynamic variables for
the Ricci flow theory allows us to compute the entropy of
gravitational fields and elaborate upon an effective statistical
mechanics and thermodynamical formalism both for cosmol-
ogy and black holes. We shall use the 3 + 1 decomposition
formalism (see [39] and the references therein) and specify
the conditions when a 3-d geometric evolution is “driven”
in relativistic form by solutions of the Einstein equations in
GR. Vacuum stationary solutions with Killing symmetries
and horizons consist of a special class of gravitational con-
figurations when the thermodynamic models are constructed
for the entropy determined by the horizon gravity for a cor-
responding 2 + 1 + 1 splitting.

We compare our relativistic geometric flow approach to a
recently proposed thermodynamical theory of gravitational
fields with a measure of gravitational entropy was proposed
in Ref. [40] (the so-called CET model). Those constructions
are based on the square-root of the Bel–Robinson tensor
when the measure is non-negative in contrast to other pro-
posals. There were analyzed some examples, for instance,
for the Schwarzschild black hole and Friedmann–Lemaître–
Robertson–Worker, FLRW, cosmology. The black hole ther-
modynamics was derived as a particular case for stationary
spacetimes. We study how the CET model can be obtained
by corresponding nonholonomic parameterizations from the
statistical mechanics and thermodynamic models based on
the concept of W-entropy (see further developments in [19–
22] and the references therein). There is not a unique way to
generalize standard black hole thermodynamical construc-
tions in order to include cosmological solutions. A geomet-
ric self-consistent variant is to address such problems using
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relativistic models with generalized W-entropy. In this work,
we prove that there are such nonholonomic double 3 + 1 and
2+2 splitting when a relativistic generalization of statistical
thermodynamics of geometric flows is possible for general
classes of cosmological and other type solutions.

A definition of gravitational entropy which would be com-
patible with time depending and structure formation cosmo-
logical processes needs to be valid for very general classes
of solutions with non-stationary and/or non-vacuum space-
times. In order to prove that our approach really provides
such a possibility, we shall apply the so-called anholonomic
frame deformation method, AFDM (see a recent review in
[41] and the references therein) for constructing generic off-
diagonal exact solutions in various models of gravity theories
and geometric flows with commutative and noncommutative
variables [19,21,42]. This method involves 2 + 2 nonholo-
nomic fibrations and a geometric techniques which allows us
to integrate systems of partial differential equations (PDEs)
with functional and parametric dependencies on generating
and integration functions and constants depending, in gen-
eral, on all spacetime coordinates and with various types of
Killing and non-Killing symmetries.

The article is organized as follows: in Sect. 2, we provide
an introduction into the geometry of double nonholonomic
3 + 1 and 2 + 2 fibrations of Lorentz manifolds. The main
geometric and physical objects and the Einstein equations
are written in nonholonomic variables adapted to a general
double splitting.

Section 3 is devoted to the theory of relativistic Ricci
flows with nonholonomic constraints for 3 + 1 splitting and
auxiliary connections completely defined by the metric and
nonlinear connection structures. The geometric evolution of
the Levi-Civita configurations (with zero nonholonomically
induced torsion) is considered as a special case defined by
nonholonomic constraints. There are considered generaliza-
tions of Perelman’s functionals on Lorentz manifolds and
derived the equations for the geometric relativistic evolution.

Section 4 is a summary of the anholonomic frame defor-
mation method (AFDM) of constructing generic off-diagonal
solutions in GR. Examples are considered of inhomogeneous
and locally anisotropic cosmological solutions and black
hole/ellipsoid solutions with self-consistent off-diagonal
deformations and solitonic interactions.

In Sect. 5, a model of statistical thermodynamics is elab-
orated for gravitational 3-d hypersurface configurations and
with relativistic evolution on (associated) Einstein manifolds.
We show how to compute Perelman’s thermodynamical val-
ues for explicit examples of generic off-diagonal solutions
in GR. It is analyzed how the relativistic W-entropy thermo-
dynamics can be parameterized in order to model the CET
thermodynamics and standard black hole physics. A gen-
eral relativistic thermodynamic model for geometric flows
of exact solutions in GR is elaborated following ideas and

methods of relativistic hydrodynamics. Final remarks and
conclusions are presented in Sect. 6.

2 Double 2 + 2 and 3 + 1 nonholonomic fibrations in GR

We provide an introduction into the geometry double 2 + 2
and 3 + 1 fibrations of Lorentz spacetime manifolds defined
as follows in this section. The 2 + 2 splitting with nonholo-
nomic deformations of the local frame and linear connec-
tion structures allowed one to decouple the Einstein equa-
tions in general form and to construct exact solutions with
generic off-diagonal metrics depending on all space coordi-
nates. Such nonholonomic 2 + 2 methods were applied for
deformation and A-brane quantization of theories of gravity
[19,41,42]. The 3 + 1 decomposition was introduced in GR
with the aim to elaborate canonical approaches, for instance,
to perturbative quantum gravity, relativistic thermodynamics
etc. (for review of results see [39]). Working with nonholo-
nomic distributions adapted to a conventional double 3 + 1
and 2 + 2 splitting, we can formulate an unified geometric
approach to general relativistic Ricci flow and thermodynam-
ical theories and apply the geometric methods for generating
exact solutions of fundamental evolution and/or gravitational
and matter fields equations.

2.1 Nonholonomic 2 + 2 splitting and nonlinear
connections in GR

We consider a spacetime 3
1V in GR as a 4-d real smooth,

i.e. C∞, Lorentz manifold (V, g) determined by a pseudo-
Riemannian metric g of signature (+,+,+,−).2 It is
assumed that it is possible to divide continuously over V
each light cone of the metric g into past and future paths.
This means that 3

1V is time orientable. The tangent bundle
of V 3

1 is defined as the union of all tangent spaces Tu( 3
1V ) is

considered for all pointsu ∈ 3
1V, i.e.T ( 3

1V ) := ⋃
u Tu(

3
1V ).

The typical fibers of T ( 3
1V ) are Minkowski spaces with

pseudo-Euclidean signature. The dual bundle (equivalently,
the cotangent bundle) of T ( 3

1V ) is denoted T ∗( 3
1V ).We shall

write T V for the space of smooth vector fields and, respec-
tively, T ∗V for the space of 1-forms on a real 4-d spacetime
manifold V , omitting left labels on signature if that will not
result in ambiguities. In rigorous mathematical form, we can
use the axiomatic approach to GR beginning in 1996 due
to Ehlers et al. (the so-called EPS axioms) [43]; see further
developments in [44–46]. In order to formulate in standard
form the gravitational field equations in GR, the Einstein
equations, it is used the unique metric compatible and tor-

2 The left labels 3 and 1 for V will be used always when it is important
to state that a 3+1 splitting is considered with three space-like and one
time-like local coordinates.
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sionless Levi-Civita (LC) connection ∇. The theory of GR
was reformulated in various type of tetradic, spinor etc. vari-
ables and corresponding connection structures introduced
with various purposes, for instance, to study solutions of
the Einstein–Yang–Mills–Higgs–Dirac (EYMHD) systems
[47,48]. In so-called nonholonomic variables with an aux-
iliary canonical distinguished connection structure D̂ (see
below the definition given in Eq. (9)), the EYMHD equa-
tions can be decoupled and integrated in very general forms
with solutions depending, in general, on all spacetime coor-
dinates. Fortunately, the EPS axiomatic can be generalized
for spacetimes enabled with nonholonomic distributions and
fibrations (for GR and various MGTs, see [49–51]). This
provides a rigorous mathematical background for elaborat-
ing theories of general relativistic geometric evolution with
nonholonomic variables on Lorentz manifolds, which is the
main subject for study in this work.

A nonholonomic 2 + 2 splitting of 3
1V is determined by a

nonholonomic distribution into local 2-d horizontal, h, and
2-d vertical, 2, subspaces (the local subspaces are of dif-
ferent signature). This defines a nonlinear connection (N-
connection) structure,

N : TV = hV ⊕ vV, (2)

where ⊕ is the Whitney sum and hV and vV are conventional
horizontal, h, and vertical, v, subspaces. In our approach,
boldface symbols are used in order to emphasize that certain
spaces and/or geometric objects are for spaces endowed with
N-connection structure. For simplicity, we shall write V =
( 3

1V,N) for a Lorentz manifold with a h–v-decomposition
(2). This is an example of a nonholonomic manifold con-
sisting, in our case, from a pseudo-Riemannian manifold
and a nonholonomic (equivalently, anholonomic, or non-
integrable) distribution N.3 In local form, a N-connection is
stated by a set of coefficients Na

i (u) when N = Na
i dxi ⊗ ∂a,

where ∂a = ∂/∂ya .
There are structures of N-adapted local bases, eν =

(ei , ea), and co-bases, eμ = (ei , ea), when

ei = ∂/∂xi − Na
i (u)∂/∂y

a, ea = ∂a, (3)

3 In this work, we use the following conventions: local coordinates
for a 2 + 2 splitting are denoted uμ = (xi , ya), (in brief, we shall
write u = (x, y)), where indices run, respectively, over values of type
i, j, . . . = 1, 2 and a, b, . . . = 3, 4. The small Greek indices run over
values α, β, . . . = 1, 2, 3, 4 considering that u4 = y4 = t is a time-like
coordinate. An arbitrary local basis will be denoted by eα = (ei , ea)
and the corresponding dual one, the co-basis, is eβ = (e j , eb). There
are always nontrivial frame transforms to corresponding coordinate
bases, ∂α′ = (∂i ′ , ∂a′ ) [for instance, ∂i ′ = ∂/∂xi

′ ], and co-basis

duα
′ = (dxi

′
, dya

′
), when eβ = A β ′

β ∂β ′ and eα = Aα
α′ (u)duα

′
are

arbitrary frame (vierbein) transforms. We shall use also various types of
primed, underlined indices etc. The Einstein summation rule on repeat-
ing upper–lower indices will be applied if the contrary will be not stated.

ei = dxi , ea = dya + Na
i (u)dx

i . (4)

In general, N-adapted frames are nonholonomic because a
frame basis eν = (ei , ea) satisfies the relations

[eα, eβ ] = eαeβ − eβeα = W γ
αβeγ , (5)

with nontrivial anholonomy coefficients Wb
ia = ∂aNb

i ,

Wa
ji = 
a

i j = e j
(
Na
i

)−ei (Na
j ).We obtain holonomic (inte-

grable) configurations if and only if W γ
αβ = 0.4

On any nonholonomic spacetime V, we can consider
covariant derivatives determined by affine (linear) connec-
tions which are adapted to the N-connection splitting. A
distinguished connection, d-connection, is a linear connec-
tion D = (hD, vD) which preserves under parallel transport
the splitting (2). In general, a linear connection D is not
adapted to a prescribed h–v-decomposition, i.e. it is not a
d-connection (we do not use a boldface symbol for non-N-
adapted connections).

For any d-connection D and using any d-vectors X,Y ∈
TV, we can define and compute in standard form the tensors
of the d-torsion, T, the nonmetricity, Q, and the d-curvature,
R,

T(X,Y) := DXY − DYX − [X,Y],Q(X) := DXg,

R(X,Y) := DXDY − DYDX − D[X,Y].

Any d-connection D acts as an operator of covariant deriva-
tive, DXY, for a d-vector Y in the direction of a d-vector X.
We omit boldface symbols and consider similar formulas for
a linear connection which is not a N-connection.

We can compute in N-adapted form (with respect to (3)
and (4)) the coefficients of any d-connection D = {�γ

αβ =
(Li

jk, L
a
bk,C

i
jc,C

a
bc)}. The N-adapted coefficients of tor-

sion, nonmetricity, and curvature d-tensors are, respectively,
labeled using h- and v-indices,

T = {Tγ
αβ = (T i

jk, T
i
ja, T

a
ji , T

a
bi , T

a
bc)}, Q = {Qγ

αβ},
R = {Rα

βγ δ = (Ri
hjk,R

a
bjk,R

i
hja,R

c
bja, R

i
hba, R

c
bea)}.

(6)

The coefficient formulas for such values can be obtained
using�

γ
αβ e determined for theh–v-components of Deαeβ :=

Dαeβ using X = eα and Y = eβ.

4 We can elaborate a N-adapted covariant and/or local differential and
integral calculus and a corresponding variational formalism in GR using
the N-elongated operators (3) and (4). The geometric constructions
are performed for distinguished objects, in brief, d-objects with coeffi-
cients determined with respect to N-adapted (co) frames and their ten-
sor products. A vector Y (u) ∈ TV can be parameterized as a d-vector,
Y = Yαeα = Yiei + Yaea, or Y = (hY, vY ), with hY = {Yi } and
vY = {Ya}. Similarly, we can determine and compute the coefficients
of d-tensors, N-adapted differential forms, d-connections, d-spinors etc.
All fundamental geometric and physical equations can be re-written
equivalently in N-adapted frames; for details see [41].
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Any metric tensor g on V can be written as a d-tensor
(d-metric), g = (hg, vg), i.e.

g = gα(u)eα ⊗ eβ = gi (x)dx
i ⊗ dxi + ga(x, y)ea ⊗ ea,

(7)

for a N-adapted eμ = (ei , ea) (4). With respect to a dual local
coordinate basis duα, the same metric field is expressed

g = g
αβ

duα ⊗ duβ,

where g
αβ

=
[
gi j + Na

i N
b
j gab Ne

j gae
Ne
i gbe gab

]

. (8)

Using frame transforms (in general, not N-adapted), we can
transform any metric into a d-metric (7) or in an off-diagonal
form with N-coefficients.

For any metric field g on a V = ( 3
1V,N), there are two

‘preferred’ linear connection structures. The first one is the
well-known Levi-Civita connection, ∇, and the canonical d-
connection, D̂. Such geometric objects are defined following
the respective geometric conditions:

g →
{ ∇ : ∇g = 0; ∇T = 0, the Levi-Civita connection;

D̂ : D̂ g = 0; hT̂ = 0, vT̂ = 0, the canonical d-connection.
(9)

In these formulas, hT̂ and vT̂ are the respective tor-
sions on conventional h- and v-subspaces. We note that
there are non-zero torsion components, hvT̂ , with non-zero
mixed indices with respect to a N-adapted basis (3) and/or
(4). Nevertheless, this torsion field T̂ is completely defined
by the metric field following the parameterization (8) with
(hg, vg; N).

All geometric constructions on V, can be performed
equivalently using ∇ and/or D̂ and are related via the canon-
ical distorting relation

D̂[g,N] = ∇[g] + Ẑ[T̂ (g,N)]. (10)

By squared brackets [...], we state a functional dependence
when both linear connections ∇ and D̂ and the distorting
tensor Ẑ are uniquely determined by the data (g,N) and
an algebraic combination of the coefficients of the torsion
T̂ (g,N).

The Ricci tensors of D̂ and ∇ are defined and com-
puted in the standard way and denoted, respectively, by
R̂ic = {R̂ βγ := R̂γ

αβγ } and Ric = {R βγ := Rγ
αβγ }.

The N-adapted coefficients for D̂ and the corresponding tor-
sion, T̂γ

αβ,Ricci d-tensor, R̂ βγ , and Einstein d-tensor, Ê βγ ,

are computed in [41,42]. Any (pseudo) Riemannian geom-
etry can be equivalently described by both geometric data

(g,∇) and (g,N,D̂), when the canonical distortion relations
R̂ = ∇R+ ∇Z and R̂ic = Ric+ Ẑic, with respective dis-
tortion d-tensors ∇Z and Ẑic, are computed for the canon-
ical distortion relations D̂ = ∇ + Ẑ.

By the unique distortion relations (computed by introduc-
ing (10) into (6) and re-grouping the terms with ∇ and D̂),
we can relate, for instance, R̂ βγ to R βγ ,

R̂ βγ [g,N] = R βγ [g,N] + Ẑ βγ [g,N].

We note that the Ricci d-tensor R̂ic is not symmetric, R̂αβ �=
R̂βα, being characterized by four subsets of h-v N-adapted
coefficients,

R̂αβ = {R̂i j := R̂k
i jk, R̂ia := −R̂k

ika,

R̂ai := R̂b
aib, R̂ab := R̂c

abc}. (11)

It is possible to compute the scalar of canonical d-curvature,
R̂ := gαβR̂αβ = gi j R̂i j + gab R̂ab. This geometric object is
different from the LC-scalar curvature, R := gαβ Rαβ.

The Einstein equations in GR are written in standard form,

Rαβ − 1

2
gαβR = � mTαβ, (12)

using the Ricci tensor Rαβ and the scalar R; they are taken
for the Levi-Civita connection ∇ of gαβ. In these formulas,
mTαβ is the energy-momentum tensor of matter fields Aϕ

determined by a general Lagrangian mL(g,∇, Aϕ) and � is
the gravitational coupling constant for GR.5 The gravitational
field equations in GR can be rewritten equivalently using the
canonical d-connection [41,42],

R̂αβ = ϒ̂αβ, (13)

T̂γ
αβ = 0. (14)

In these formulas, the effective matter fields source ϒμν is
constructed via a N-adapted variational calculus with respect
to (4) for mL(g,D̂, Aϕ) in such a form that

ϒ̂μν = �

(
mT̂μν − 1

2
gμν mT̂

)

→�

(
mTμν − 1

2
gμν mT

)

for [coefficients of D̂] → [coefficients of ∇] even, in general,
D̂ �= ∇. In these formulas, mT̂ = gμν mT̂μν for

mT̂αβ := − 2
√|gμν |

δ
(√|gμν | mL

)

δgαβ
. (15)

The canonical d-connection D̂ has a very important role
to play in our approach. With respect to N-adapted frames of

5 We use abstract left labels A and m in order to distinguish the values
from similar notations, for instance, T̂γ

αβ .
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reference, it allows one to decouple in general form the gravi-
tational and matter field equations in the form (13) with (15).6

We can integrate nonholonomic deformations of the Einstein
equations in very general form and construct exact solutions
parameterized by generic off-diagonal metrics depending on
all spacetime coordinates via the respective classes of gener-
ating functions and integration functions and constants. Hav-
ing constructed certain general classes of solutions, we can
impose at the end the LC-conditions (14) and extract LC-
configurations D̂|T̂ =0 = ∇. This allows one, for instance,
to construct new classes of generic off-diagonal solutions of
(12) in GR and various MGTs. We note that to find non-
trivial off-diagonal solutions is important to impose the LC-
conditions (14) after a class of solutions of (13) for D̂ are
constructed in general form. If we work only with ∇, we
are not able to decouple the Einstein equations in general
form.

2.2 3 + 1 Decompositions adapted to nonholonomic 2 + 2
splitting

We foliate a 4-d Lorentzian nonholonomic manifold V =
( 3

1V,N) enabled with a pseudo-Riemannian metric g =
{gαβ} of signature (+++−) into a family of non-intersecting
space-like 3-d hypersurfaces �t parameterized by a scalar
field, i.e. the “time function”, t (uα), as described as fol-
lows. Such a 3+1 spacetime decomposition is necessary for
elaborating various thermodynamic and flow models when
a conventional splitting into time- and space-like coordi-
nates is important for definition of physical important values
(like entropy, effective energy etc.) and fundamental geo-
metric evolution equations. We have to generalize the well-
known geometric 3 + 1 formalism [39] to the case of space-
times enabled with the nontrivial N-connection structure
[41,42].

A hypersurface � ⊂ V is considered as an one-to-one
image of a 3-d manifold ��. This image is given by an
embedding � = ζ( ��) constructed as an homeomorphism
with both continuous maps ζ and ζ−1. This guarantees that
� does not intersect itself. We shall use a left “up” or “low”
label by a vertical bar “ � ” in order to emphasize that a man-
ifold is 3-d, or certain geometric objects refer to 3-d mani-
folds/hypersurfaces. Locally, a hypersurface is considered as
the set of points for which a scalar field t on V is constant, for
instance, i.e. t (p) = 0,∀ p ∈ �. We assume that t spans R

and� is a connected submanifold of V with topology R
3.The

local coordinates for a 3+1 splitting are labeled uα = (x ı̀ , t),
where the indices α, β, . . . = 1, 2, 3, 4 and ı̀, j̀, . . . =
1, 2, 3. In brief, we shall write u = (ŭ, t). The mapping
ζ “carries along” curves/vectors in �� to curves/vectors in

6 Such a decoupling is possible with various types of geometric flow
equations; see Sects. 4 and 5.

V, for ζ : (x ı̀ ) −→ (x ı̀ , 0). This defines respective local
bases ∂ı̀ := ∂/∂x ı̀ ∈ T ( ��) and ∂α := ∂/∂uα ∈ TV. Cor-
respondingly, the coefficients of 3-vectors and 4-vectors are
expressed �a = aı̀∂ı̀ and a = aα∂α (for convenience, we
shall use also capital letters, for instance, �A = Aı̀∂ı̀ and
A = Aα∂α). For dual forms to vectors, 1-forms, we use the
respective dual bases dx ı̀ ∈ T ∗( ��) and duα ∈ T ∗V. We
shall write for 1-forms �Ã = Aı̀dx ı̀ and Ã = Aαduα and
omit the left/up label by a tilde ∼ (writing �A and A) if that
will not result in ambiguities.

Using the push-forward mapping,

ζ∗ : Tu �� −→ TpV; �v = (v ı̀ ) −→ ζ∗ �v = (v ı̀ , 0),

we can transport geometric objects from �� to �, and
inversely. In dual form, the pull-back mapping acts as

ζ ∗ : T ∗
p V −→ T ∗

u ��,

�Ã −→ ζ ∗
�Ã : Tu �� −→ R; �A −→ 〈 �Ã, ζ∗ �A〉,

for 〈· · · 〉 denoting the scalar product and T ∗
p V � Ã =

(Aı̀ , A4) −→ ζ ∗Ã = (Ai ) ∈ T ∗
u ��. In this work, we iden-

tify �� and� = ζ( ��) and write simply a d-vector v instead
of ζ∗( �v). For holonomic configurations, the same maps and
objects are labeled in non-boldface form.

2.2.1 Induced N-adapted 3-d hypersurface metrics

We define the first fundamental form (the induced 3-metric)
on � :

q := ζ ∗ g, i.e. qı̀ j̀ := gı̀ j̀
∀( 1a, 2a) ∈ Tu � × Tu �, 1a· 2a = g( 1a, 2a) = q( 1a, 2a).

The 4-d metric g is constrained to be a solution of the Ein-
stein equations (13) written in nonholonomic variables. The
hypersurfaces are classified following the types of induced 3-
metric (for a nontrivial N-connection, this can be represented
as an induced d-metric):

⎧
⎨

⎩

space-like �, q is positive definite with signature (+,+,+);
time-like �, q is Lorentzian with signature (+,+,−);
null �, q is degenerate with signature (+,+, 0).

In this article, we shall work with continuous sets of space-
like hypersurfaces �t , t ∈ R, covering some finite, or infi-
nite, regions on V. For simplicity, we use only space-like
hypersurfaces � (which can be closed and compact if nec-
essary) endowed with Riemannian 3-metric q if other condi-
tions will be not stated.

We introduce the concept of a unit normal d-vector, n,
to a � which is constructed following such a procedure.
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Such d-vectors can be used for various models of geomet-
ric flow evolution and thermodynamic models. Let us con-
sider a scalar field t (uα) on an open region U ⊂ V such
as the level surface is identified to �. We construct in N-
adapted form the gradient 1-form dt and its dual d-vector−→e t = {eμt = gμνeν t = gμν(dt)ν}; see the operators (3)
and (4). For any d-vector v which is tangent to �, the con-
ditions 〈dt, v〉 = 0 and −→e t allow one to define the unique
direction normal to a not null�.Normalizing such a d-vector,
we define

n := ±−→e t/
√

|−→e t |,

where

{
n·n = −1, for space-like �;
n·n = 1, for time-like �.

(16)

The unit normal vector to supersurfaces, nα ∝ ∂αt, when
∂α := ∂/∂uα, can be constructed for a future-directed time-
like vector field. We can use t as a parameter for a congruence
of curves χ(t) ⊂ 3

1V intersecting �t , when the vector tα :=
duα/dt is tangent to the curves and tα∂αt = 1. For any
system of coordinates uα = uα(x ı̀ , t), there are defined the
vector tα := (∂uα/∂t)xı̀ and the (tangent) vectors eαı̀ :=
(∂uα/∂x ı̀ ); and the Lie derivative along tα results in £t eαı̀ =
0.

Any 2+2 splitting N : TV = hV ⊕ vV, (2) induces a
N-connection structure on �, �N : T �� = h �� ⊕ v ��.

As a result, any induced 3-metric tensor q can be written in
N-adapted frames as a d-tensor (d-metric) in the form

q = (hq, vq)

= qı̀ (u)e
ı̀ ⊗ eı̀

= qi (x
k)dxi ⊗ dxi + q3(x

k, y3) �e3 ⊗ �e3, (17)

�e3 = du3 + �N
3
i (u)dx

i , (18)

where �N 3
i (u) can be identified with N 3

i (u) choosing com-
mon frame and coordinate systems for � ⊂ V. We can
naturally embed such a metric into a d-metric (7) reparam-
eterized in a form adapted both to the 2 + 2 and the 3 + 1
nonholonomic splitting,

g = (hg, vg) = ğı̀ j̀e
ı̀ ⊗ e j̀ + g4e4 ⊗ e4

= qı̀ (u)e
ı̀ ⊗ eı̀ − N̆ 2e4 ⊗ e4,

e3 = �e3 = du3 + �N
3
i (u)dx

i ,

e4 = δt = dt + N 4
i (u)dx

i .

(19)

Let us explain this construction. The lapse function N̆ (u) >
0 is defined as a positive scalar field which ensues from the
fact that the unit d-vector n is a unit one; see (16). We use an
“inverse hat” in order to distinguish such a symbol N is used
traditionally in the literature on GR [39] but, in another turn,
the symbol Na

i is used traditionally for the N-connection. We

write

n := −N̆−→e t and/or n := −N̆dt,

with N̆ := 1/
√

|−→e t · −→e t | = 1/
√

| < dt · −→e t > |. For geo-
metric constructions, it is convenient to use also the normal
evolution d-vector

m := N̆n (20)

subject to the condition m · m = −N̆ 2. This is justified
by the property of the Lie N-adapted derivative that Lma ∈
(h� ⊕ v�)t ,∀a ∈ T�t . For a 3 + 1 spacetime splitting,
we consider also the shift functions (a 3-vector N̆ ı̀ (u), or
a d-vector N̆ı̀ (u)). It is useful to define the unit normal n̆α

to the hypersurfaces when n̆α = −N̆∂αt and n̆αeαı̆ = 0.
In N-adapted form, we can consider that n̆α is a normalized
version of n used in (20). This allows us to consider the
decompositions

tα = N̆ ı̀ eαı̀ + N̆ n̆α

and

duα = eαı̀ dx
ı̀ + tαdt = (dx ı̀ + N̆ ı̀dt)eαı̀ + (N̆dt)n̆α.

Using the quadratic line element ds2 = gαβduαduβ of a
metric tensor g, we can choose such frame transforms when
ğı̀ j̀ = qı̀ j̀ = gαβeαı̀ e

β

j̀
is the induced metric on �t . For

the determinants of 4-d and 3-d metrics parameterized in
the above-mentioned form, we compute

√|g| = N̆
√|ğ| =

N̆
√|q|.Using the coordinates (xı̀ , t), the time partial deriva-

tives are £t q = ∂t q = q∗ and the spatial derivatives are
q,ı̀ := eαı̀ q,α.

2.2.2 Induced 3-d hypersurface ‘preferred’ linear
connections

There are two induced linear connections completely deter-
mined by an induced 3-d hypersurface metric q,

q →
{

�∇ : �∇q = 0; ∇
�
T = 0, LC-connection

�D̂ : �D̂ q = 0; h �T̂ = 0, v �T̂ = 0. canonical d-connection.

(21)

Such formulas are induced from the 4-d similar ones; see
(9). Both linear connections, �∇ and �D̂, are involved in a
distortion relation,

�D̂[q, �N] = �∇[q] + �Ẑ[ �T̂ (q, �N)], (22)

induced by (10).
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There are two classes of trivial or nontrivial intrinsic
torsions, nonmetricity and curvature fields for any data
(�,q, �N), defined by corresponding hypersurface linear
connections when for any a,b ∈ T�

�T (a,b) := �∇aY − �∇Ya − [a,Y] = 0, �Q(a) := �∇aq = 0,

�R(a,b) := �∇a �∇b − �∇b �∇a − �∇[a,b],

and

�T̂(a,b) := �Dab − �DYa − [a,b] = 0,

�Q(a) := �Daq = 0,

�R̂(a,b) := �D̂a �D̂b − �D̂b �D̂a − �D̂[a,b].

We can compute the N-adapted coefficient formulas for
nonholonomically induced torsion structure �T̂ = { �T̂ı̀

j̀ k̀
},

determined by �D, and for the Riemannian tensors �R =
{�Rı̀

j̀ k̀l̀
} and �R̂ = { �R̂ı̀

j̀ k̀l̀
}, determined respectively, by

�∇ and �D. Using 3-d variants of coefficient formulas, we
can compute the N-adapted coefficients of the Ricci d-
tensor, �R̂ j̀ k̀, and the Einstein d-tensor, �Ê j̀ k̀ . Contracting

indices, we obtain the Gaussian curvature, �R = q j̀ k̀
�R j̀k̀ ,

and the Gaussian canonical curvature, s
�
R = q j̀ k̀

�R̂ j̀ k̀, of
(�,q, �N).Such geometric objects do not depend on the type
of embedding of the nonholonomic manifold (�,q, �N) in
(V, g,N).

There are other types of curvatures which describe the
(non) holonomic bending of�, i.e. dependent on the embed-
ding. Such geometric entities are considered for any type of
3 + 1 splitting and constructed using N-adapted Weingarten
maps (shape operator). In our approach, these are N-adapted
endomorphisms,

χ : Tu� → Tu�; and χ̂ : T �� → T �� = h �� ⊕ v ��

a → �∇an; a → �D̂an = h �D̂an ⊕ v �D̂an.

Such maps are self-adjoint with respect to the induced 3-
metric q, i.e. for any a,b ∈ Tp� × Tp�,

a·χ(b) = χ(a)·b and a·χ̂ (b) =χ̂ (a)·b,

where a dot means the scalar product with respect to q. This
property allows one to define two second fundamental forms
(i.e. corresponding extrinsic curvature d-tensors) of hyper-
surface �

�K : Tp� × Tp� −→ R LC-configurations,
(a, b) −→ −a·χ(b);

�K̂ : (h �� ⊕ v ��) × (h �� ⊕ v ��) −→ R ⊕ R canonical configurations,
(a, b) −→ −a·χ̂(b).

In explicit operator form, �K (a,b) = −a · �∇bn and

�K̂(a,b) = −a · �D̂bn,which allows us to compute in coeffi-
cient form �Kı̀, j̀ and �K̂ı̀, j̀ .Any pseudo-Riemannian geome-

try can be written equivalently in terms of (q, �K̂), or (q, �K ),

for any data (�,q, �N,N̆ ı̀ , N̆ ). Intuitively, we can work on
3-d space-like hypersurfaces as in Riemannian geometry.
Unfortunately, such 3 + 1 splitting nonholonomic variables
are not convenient for decoupling the gravitational field equa-
tions in general form.

2.3 Important formulas on space-like N-adapted
hypersurfaces

Let us consider 3-surfaces �t enabled with Riemannian d-
metrics when the normal d-vector n is time-like. We follow a
4-d point of view treating d-tensor fields defined on any � as
they are defined for (V, g,N). This avoids the obligation to
introduce special frame/coordinate systems and complicated
notations depending on double fibration parameterizations
etc.

We consider Vect(n) as the 1-d subspace of TpV generated
by the d-vector n using n = {nα} for its dual 1-form. In a
point p ∈ �, the spaces of all spacetime vectors can be
decomposed as TpV =Tp� ⊕ Vect(n). For n·n = −1 and
any v ∈ Tp�, we have −→q (n) = 0 and −→q (v) = v. We
construct the orthogonal projector onto � as the operator −→q
following the rule

−→q : TpV → Tp�; v → v + (n·v)n.

Similarly, we can consider a mapping −→q ∗
V : T ∗

p� → T ∗
p V

setting for any linear form z ∈ T ∗
p�

−→q ∗
V : TpV → R; v → z(−→q (v)).

The maps can be extended to bilinear forms. Taking the
induced 3-metric q on �, we can consider

q := −→q ∗
Vg, i.e. q = g+n ⊗ n,

qαβ = δαβ + nαnβ and qαβ = gαβ + nαnβ.
(23)

We get the same results as for the d-metric q if the two argu-
ments of q(·, ·) are tangent d-vectors to �. Such an operator
gives zero if a d-vector is orthogonal to �, i.e. parallel to n.

The nonholonomicmatter energy density is defined

m Ê := mT̂(n,n), i.e. m Ê = mT̂αβnαnβ.

Such values are written “without hat” ( m Ê → mE and
mT̂αβ → mTαβ ), if D̂ → ∇ in mT̂; see (15).

Similarly, the nonholonomic matter momentum density
is

p̂ := − mT̂(n,−→q (...)), i.e. 〈̂p, a〉 = − mT̂(n,−→q (a)),

or p̂α = − mT̂μνnμqνα, for any a ∈ (h� ⊕ v�).
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The nonholonomic stress d-tensor is the bilinear form

Ŝ := −→q ∗ mT̂ and in N-adapted components

Ŝαβ = mT̂μνq
μ
αq

ν
β .

We can consider also the trace of this field, Ŝ := qı̀ j̀ Ŝı̀ j̀ =
gαβ Ŝαβ.

Both p̂ and Ŝ are d-tensor fields tangent to �t . The data
(Ê, p̂, Ŝ) allow one to reconstruct

mT̂ = Ŝ + n ⊗ p̂ + p̂ ⊗ n + mEn ⊗ n,

when T̂ = Ŝ − Ê .

2.3.1 Einstein equations in nonholonomic variables for
double 2 + 2 and 3 + 1 splitting

Summarizing the above formulas, the nonholonomic version
of Einstein equations (13) with matter sources of type (15)
can be written in the form

4-d indices

3-d indices

LmK̂αβ := − �D̂α �D̂βN + N { �R̂αβ + � K̂ K̂αβ − 2K̂αμK̂μ
β + 4π [(Ŝ − Ê)qαβ − 2̂Sαβ ]},

LmK̂ı̀ j̀ := − �D̂ı̀ �D̂ j̀ N + N { �R̂ı̀ j̀ + � K̂ K̂ı̀ j̀ − 2K̂ı̀ k̀K̂k̀
j̀
+ 4π [(Ŝ − Ê)qı̀ j̀ − 2̂Sı̀ j̀ ]};

Hamilt. constr. � R̂ + ( � K̂ )2 − �K̂ı̀ j̀ �K̂ı̀ j̀ = 16π Ê,

momentum constr. �D̂ j̀ �K̂
j̀
ı̀ − �D̂ı̀ � K̂ = 8π p̂ı̀ .

(24)

Such systems of nonlinear partial differential equations
(PDEs) are useful for stating the Cauchy problem, defining
energy and momentum type values and elaborating methods
of canonical and/or loop quantization. To decouple and solve
such systems of equations in general analytic forms is a very
difficult technical task even if such constructions are used in
numeric analysis. Nevertheless, we can compute all values in
(24) using any class of solutions found for (13); see Sect. 4.

2.3.2 Weyl’s tensor 3 + 1 projections adapted to
nonholonomic 2 + 2 splitting

Taking any time-like unit vector vα , we can define a projec-
tion tensor, hαβ = gαβ +vαvβ. A general d-vector vα is nec-
essary for studying relativistic thermodynamic and hydrody-
namic models; see Refs. [7,9,25,31,33–35,37,39]. For con-
structions in this work, we can consider vα = nα and use a
3-d hypersurface metric qαβ = gαβ + nαnβ.

A (3 + 1)+ (2 + 2) covariant description of gravitational
field is possible by splitting, respectively, into irreducible
parts such that

D̂βvα = −vβvγ D̂γ vα + 1

3
�̂hαβ + σ̂αβ + ω̂αβ,

where vγ D̂γ vα is the acceleration vector, �̂ := hαβD̂βvα
is the expansion scalar, σ̂αβ = [hγ(αh δ

β) − 1
3 hαβhγ δ]D̂γ vδ

is the shear tensor and ω̂αβ = hγ[αh δ
β]D̂γ vδ is the vorticity

tensor (in the last two formulas (...) and [...] mean, respec-
tively, symmetrization and anti-symmetrization of indices).
We shall use the following decompositions of the Weyl ten-
sor:

Ĉτ γ
αβ := R̂τ γ

αβ + 2R̂ [τ
[α δ

γ ]
β] + 1

3
R̂δγ[αδ

τ
β] (25)

into, respectively, electric and magnetic like parts (similar to
the Maxwell theory),

Êαβ = Ĉαβγ δvγ vδ and Ĥαβ = 1

2
ηαγ δĈ

γ δ
αβvγ vε. (26)

In these formulas, ηαβγ = ηαβγ δvδ are for the spatial
alternating tensor ηαβγ δ = η[αβγ δ] with η1234 = √|gαβ |.
For any space-like unit vectors xα, yα, zα that together with

vα form an orthonormal basis, we can introduce null tetrads,
thus:

mα := 1√
2
(xα − iyα), lα :

= 1√
2
(vα − zα) and kα := 1√

2
(vα + zα),

for i2 = −1, and we express the metric gαβ = 2m(αmβ) −
2k(αlβ). We can transform a double fibration, for instance,
into a 3 + 1 fibration if we substitute D̂ → ∇, omit hats, and
change boldface symbols into similar non-boldface ones and
work with arbitrary bases instead of N-adapted ones.

Equations (25) and (26) are important for constructing the
thermodynamical values for gravitational fields following the
CET model [40].

3 Geometric evolution of Einstein gravitational fields

Nonholonomic Ricci flows for theories with distinguished
connections were considered in [20,21]. To study general
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relativistic geometric flows and elaborate on thermodynam-
ical models we use a N-adapted 3 + 1 decomposition for
the canonical d-connection, D̂ = ( �D̂, t D̂) and d-metric
g := (q,N̆ ) of a 4-d spacetime V. In this section we formu-
late the general relativistic geometric flow theory in nonholo-
nomic variables with double splitting. The fundamental func-
tionals and Ricci flow evolution equations are constructed on
4-d Lorentz manifolds determined by exact solutions in GR.

3.1 Distortion relations on induced linear connections

On closed 3-d space-like hypersurfaces, geometric flow and
gravitational field theories can be formulated in two equiva-
lent forms using the connections �∇ and/or �D̂.The evolution
of such connections and N-adapted frames is determined by
the evolution of the hypersurface metric q. In N-adapted vari-
ables, we can introduce the canonical Laplacian d-operator,

��̂ := �D̂ �D̂ and define the canonical distortion tensor �Ẑ.
The distortions of the Ricci d-tensor and the corresponding
Ricci scalar are computed by introducing �∇ = �D̂− �Ẑ (22)
in

��̂ = �D̂α �D̂α = �� + Z
�
�̂.

We obtain

�� = �∇ı̀ �∇ ı̀ = �∇α �∇α,

Z
�
�̂ = �Ẑı̀ �Ẑı̀ − [ �D̂ı̀ ( �Ẑı̀ ) + �Ẑı̀ ( �D̂ı̀ )]

= �Ẑα �Ẑα − [ �D̂α( �Ẑα) + �Ẑα( �D̂α)];
�R̂ı̀ j̀ = �Rı̀ j̀ − �Ẑicı̀ j̀ , �R̂ βγ = �R βγ − �Ẑicβγ ,

� R̂ = �R − gβγ �Ẑicβγ = �R − qı̀ j̀
�Ẑicı̀ j̀ = �R − �Ẑ,

�Ẑ = gβγ �Ẑicβγ = qı̀ j̀
�Ẑicı̀ j̀

= h Ẑ + v Ẑ , h Ẑ = gi j Ẑici j , v Ẑ = hab Ẑicab;
R = h R + vR, h R := gi j Ri j , vR = hab Rab. (27)

Such values can be computed in explicit form for any class
of exact solutions of the nonholonomic Einstein equations
(13), when a double 2 + 2 and 3 + 1 splitting is prescribed
and the LC-conditions (14) can be imposed additionally.

3.2 Nonholonomc Perelman’s functionals on 3-d
hypersurfaces

For standard Ricci flows on a normalized 3-d space-like
closed hypersurface c�̂ ⊂ V, the normalized Hamilton
equations written in a coordinate basis are

∂τqı̀ j̀ = −2 �Rı̀ j̀ + 2r̀

5
qı̀ j̀ , (28)

qı̀ j̀ |τ=0 = q[0]
ı̀ j̀

[x ı̀ ].

We use the left label “c” for the conditions “compact and
closed” and do not emphasize the dependence on space coor-
dinates (writing in brief qı̀ j̀ (x

ı̀ , τ ) = qı̀ j̀ (τ )) if this does not
result in ambiguities. In the above formulas, �Rı̀ j̀ is computed
for the Levi-Civita connection �∇ of qı̀ j̀ (τ ) parameterized by
a real variable τ, 0 ≤ τ < τ0, for a differentiable function
τ(t). The boundary conditions are stated for τ = 0 and the
normalizing factor

r̀ =
∫

c�̂
�R

√
|qı̀ j̀ |dx̀3

/ ∫

c�̂

√
|qı̀ j̀ |dx̀3

is introduced in a form so as to preserve the volume of c�̂,

i.e.
∫

c�

√
|qı̀ j̀ |dx̀3. For simplicity, we can find solutions of

(1) with r̀ = 0.
In order to find explicit solutions of (28) for qı̀ j̀ ⊂ gαβ

with gαβ defined also as a solution of a 4-d Einstein equa-
tions (12), we have to consider a nontrivial r̀ . We can re-
write (1) in any nonholonomic basis using the geomet-

ric evolution of frame fields, ∂χe
ı̀
ı̀ = qı̀ j̀ �R j̀k̀e

k̀
ı̀ , when

qı̀ j̀ (τ ) = qı̀ j̀ (τ )e
ı̀
ı̀ (τ )e

j̀

j̀
(τ ) for eı̀ (τ ) = e

ı̀
ı̀ (τ )∂ı̀ and

e j (τ ) = e j
j̀
(τ )dx j̀ . There is a unique solution for such sys-

tems of linear ODEs for any τ ∈ [0, τ0).

In nonholonomic variables and for the linear d-connection

�D̂, the Perelman functionals parameterized in N-adapted
form are written

�F̂ =
∫

�̂t

e− f
√

|qı̀ j̀ |dx̀3( � R̂ + | �D̂ f |2), (29)

and

�Ŵ =
∫

�̂t

M
√

|qı̀ j̀ |dx̀3[τ( � R̂ + | h
�
D̂ f |

+| v
�
D̂ f |)2 + f − 6], (30)

where the scaling function f satisfies
∫
�̂t

M
√

|qı̀ j̀ |dx̀3 = 1

for M = (4πτ)−3e− f . The functionals �F̂ and �Ŵ trans-
form into standard Perelman functionals on �̂t if �D̂ → �∇.

The W-entropy �Ŵ is a Lyapunov type non-decreasing func-
tional.

3.3 Nonholonomic Ricci flow evolution equations for 3-d
hypersurface metrics

Considering the dependencies of Eqs. (29) and (30) on a
smooth parameter χ(τ) for which ∂χ/∂τ = −1 (when, for
simplicity, the normalization terms are not included) one can
prove the geometric evolution equations for any induced 3-
d metric q and canonical d-connection �D̂. A subclass of
geometric flow models with general relativistic extension
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from 3-d to 4-d can be elaborated if one of the parameters
χ or τ is taken to be proportional to the time-like fourth
coordinate, t .

Applying the variational procedure to �F̂ (29) in N-
adapted form (see for details [20,21] and the references
therein and for a double nonholonomic splitting), we obtain

∂χqı̀ j̀ = −2(�R̂ı̀ j̀ + �Ẑicı̀ j̀ ), (31)

�R̂i à = − �Ẑicià,

∂χ f = −( ��̂ − Z
�
�̂) f + |( �D̂ − �Ẑ) f |2 − � R̂ − �Ẑ.

(32)

The distortions in such nonholonomic evolution equations
are completely determined by qı̀ j̀ following Eq. (27). There
is also another important property:

∂χ �F̂(q, �D̂, f ) = 2
∫

c�̂t

e− f
√

|qı̀ j̀ |dx̀3

[| �R̂ı̀ j̀ + �Ẑicı̀ j̀ + ( �D̂ı̀ − �Ẑı̀ )( �D̂ j̀ − �Ẑ j̀ ) f |2],

when
∫

c�̂t
e− f

√
|qı̀ j̀ |dx̀3 is constant for a fixed τ and

f (χ(τ)) = f (τ ).
The system of equations (31) and (32) is equivalent to

(28) up to a certain redefinition of nonholonomic frames
and variables. We have to consider (32) as additional con-
straints because in nonholonomic variables the Ricci d-tensor
is (in general) nonsymmetric. If we do not impose such con-
straints, the geometric evolution goes with nonsymmetric
metrics.

3.4 Geometric evolution to 4-d Lorentz configurations as
exact solutions in GR

The geometric evolution of metrics of type (19), when
q(τ )→g(τ ) := (q(τ ),N̆ (τ )), is described by respective gen-
eralizations of the functionals (29) and (30). Considering N-
connection adapted foliations �̂t parameterized by a space-
time coordinate t, we introduce such 4-d functionals,

F̂(q, �D̂, f ) =
∫ t2

t1
dt N̆ (τ ) �F̂(q, �D̂, f ), (33)

and

Ŵ(q, �D̂, f ) =
∫ t2

t1
dt N̆ (τ ) �Ŵ(q, �D̂, f (t)). (34)

For arbitrary frame transforms on 4-d nonholonomic Lorentz
manifolds, such values can be redefined, respectively, in
terms of the data (g(τ ), D̂(τ )). We obtain

F̂ =
∫ t2

t1

∫

�̂t

e− f̂
√|gαβ |d4u(R̂ + |D̂ f̂ |2), (35)

and

Ŵ =
∫ t2

t1

∫

�̂t

M̂
√|gαβ |d4u[τ(R̂ + | h D̂ f̂ |

+| v D̂ f̂ |)2 + f̂ − 8], (36)

where the scaling function f̂ satisfies
∫ t2
t1

∫
�̂t

M̂
√|gαβ |d4u =

1 for M̂ = (4πτ)−3e− f̂ .

We emphasize that the functionals F̂ and Ŵ for 4-d
pseudo-Riemannian metrics are not of entropy type like in
the 3-d Riemannian case. Nevertheless, they describe nonlin-
ear general relativistic diffusion-type processes if q ⊂ g and

�D̂ ⊂ D̂ are determined by certain lapse and shift functions
as certain solutions of the 4-d gravitational equations. This is
motivation to construct such functionals using nonholonomic
variables.

Equations (31) and (32) can be considered for 4-d con-
figurations with the coefficients determined by the Ricci d-
tensors and the distortions will keep the left label “�”. Using
the formulas qαβ = gαβ + nαnβ (see (23)), we get

∂τgαβ = −2( �R̂αβ + �Ẑicαβ) − ∂τ (nαnβ),

�R̂ia = − �Ẑicia, for �R̂αβ with α �= β. (37)

The term ∂τ (nαnβ) can be computed in explicit form using
the formulas for the geometric evolution of N-adapted
frames; see below Eq. (39). The formulas for ∂τ f, ∂τ (�F̂)

and ∂τŴ can be re-written for values with 4-d indices (we
omit such formulas in this work).

For 4-d configurations with a corresponding redefinition
of the scaling function, f → f̂ , and for necessary type
N-adapted distributions, we can construct models of the geo-
metric evolution with h- and v-splitting for D̂,

∂τ gi j = −2R̂i j , ∂τ gab = −2R̂ab,

∂τ f̂ = −�̂ f̂ + ∣
∣D̂ f̂

∣
∣2 − h R̂ − v R̂. (38)

These formulas can be derived from the functional (33), fol-
lowing a similar calculation to that presented in the proof of
Proposition 1.5.3 of [12] but in N-adapted form as in Refs.
[20,21]. We have to impose the conditions R̂ia = 0 and
R̂ai = 0 if we want to keep the total metric symmetric under
Ricci flow evolution. The general relativistic character of the
4-d geometric flow evolution is encoded in operators like
�̂ = D̂αD̂α, d-tensor components R̂i j and R̂ab, their scalars
h R̂ = gi j R̂i j and v R̂ = gab R̂ab with the data (gi j , gab, D̂α)

constrained by the condition to define solutions of certain 4-d
Einstein equations.

The evolution with the parameter χ ∈ [0, χ0) of N-
adapted frames in a 4-d nonholonomic Lorentz manifold can
be computed as

eα(χ) = e α
α (χ, u)∂α.
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Up to frame/coordinate transforms the frame coefficients are

e α
α (χ, u) =

[
e
i
i (χ, u) − Nb

i (χ, u) e
a
b (τ, u)

0 e
a
a (χ, u)

]

,

eαα(χ, u) =
[
eii = δii e

b
i = Nb

k (χ, u) δki
eia = 0 eaa = δaa

]

,

with g̃i j (χ) = e
i
i (χ, u) e

j
j (χ, u)ηi j and g̃ab(χ) =

e
a
a (χ, u) e

b
b (χ, u)ηab. For ηi j = diag[+,+] and ηab =

diag[1,−1] corresponding to the chosen signature of g̃[0]
αβ (u),

we have the evolution equations

∂

∂χ
eαα = gαβ R̂βγ eγα. (39)

Such equations are prescribed for models with geometric
evolution determined by the canonical d-connection D̂.Equa-
tion (39) can be written in terms of the Levi-Civita connection
if distortions of type (27) are considered for the 4-d values
determined by exact solutions in GR.

4 Generation of off-diagonal solutions

Let us summarize the anholonomic frame deformation
method, AFDM, of constructing generic off-diagonal exact
solutions in GR with possible dependencies on all spacetime
coordinates (see details and various examples in [42,47,50,
51] and the references therein). Using N-adapted 2+2 frame
and coordinate transforms,

gαβ(xi , t) = eα
′
α(x

i , ya)eβ
′
β(x

i , ya )̂gα′β ′(xi , ya) and

ϒαβ(x
i , t) = eα

′
α(x

i , ya)eβ
′
β(x

i , ya)ϒ̂α′β ′(xi , ya),

for a time-like coordinate y4 = t (i ′, i, k, k′, . . . = 1, 2, and
a, a′, b, b′, . . . = 3, 4), we can parameterize the metric and
effective source in certain adapted forms. We consider

g = gα′β ′eα
′ ⊗ eβ

′ = gi (x
k)dxi ⊗ dx j

+ω2(xk, y3, t)ha(x
k, t)ea ⊗ ea

= qi (x)dx
i ⊗ dxi + q3(x, y)e3 ⊗ e3

−N̆ 2(xk, y3, t)e4 ⊗ e4, (40)

e3 = dy3 + ni (x
k, t)dxi , e4 = dt + wi (x

k, t)dxi .

This ansatz is a general one for the 4-d metric which can be
written in the form (19) with

N̆ 2(u) = −ω2h4 = −g4. (41)

It allows for a straightforward extension of 3-d ansatz to
4-d configurations by introducing the values N̆ 2(xk, t) and
wi (xk, t) in order to generate exact solutions of the Einstein

equations. The nontrivial respective N-connection, d-metric,
and matter source coefficients are denoted

N 3
i = �N

3
i = ni (x

k, t); N 4
i = wi (x

k, t);
{gi ′ j ′ } = diag[gi ], g1 = g2 = q1 = q2 = eψ(x

k );
{ga′b′ } = diag[ω2ha], ha = ha(x

k, t), q3 = ω2h3;
and ϒαβ = diag[ϒi ;ϒa],
for ϒ1 = ϒ2 = ϒ̃(xk), ϒ3 = ϒ4 = ϒ(xk, t).

(42)

The ansatz (40) determines d-metrics of type (7) and (19) as
4-d generalizations of the 3-d hypersurface metric (17) for
a nontrivial lapse function (41). The N-adapted coefficients
(42) can be very general ones but for the assumption that
there are N-adapted frames with respect to which the exact
solutions for ω = 1 have the Killing symmetry on ∂/∂y3.
For such configurations, there are N-adapted bases when the
geometric and physical values do not depend on the coordi-
nate y3. For simplicity, we shall consider solutions with one
Killing symmetry.7

4.1 Decoupling of Einstein equations for nonholonomic
2 + 2 splitting

Let us introduce the values αi = h∗
3∂i�,β = h∗

3 � ∗, γ =
(ln |h3|3/2/|h4|)∗ determined by the generating function

� := ln |h∗
3/

√|h3h4||,
we shall also use the value � := e� . (43)

We shall use brief notations for the partial derivatives: a• =
∂1a, b′ = ∂2b, h∗ = ∂4h = ∂t h.

For ansatz (40) written in terms of the data for the gener-
ating function (43) and the above coefficients, the nonholo-
nomic Einstein equations (13) transform into a system of
nonlinear PDEs with decoupling property,8

ψ•• + ψ ′′ = 2 ϒ̃, � ∗h∗
3 = 2h3h4ϒ,

n∗∗
i + γ n∗

i = 0, βwi − αi = 0. (44)

The unknown functions for this system are ψ(xi ), ha(xk, t),
wi (xk, t) and ni (xk, t).

We can simplify the system (43) and (44) using an impor-
tant property which allows us to re-define the generating
function, � = exp� ←→ �̃ = exp �̃ , and the effec-
tive source, ϒ ←→ � = const,� �= 0. Such nonlinear
transforms are given by the formulas

7 We note that it is possible to construct very general classes of generic
off-diagonal solutions depending on all spacetime variables; see details
and examples in Refs. [42,47,50,51] for “non-Killing” configurations.
8 See the details of such a computation in [42,47,50,51].
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�(�2)∗ = |ϒ |(�̃2)∗ and

��2 = �̃2|ϒ | +
∫

dt�̃2|ϒ |∗. (45)

For generating off-diagonal inhomogeneous and locally
anisotropic cosmological solutions depending on t, we have
to consider generating functions for which �∗ �= 0. We
obtain a system of nonlinear PDEs with effective cosmo-
logical constant �,

ψ•• + ψ ′ = 2 ϒ̃, (46)

�̃ ∗h∗
3 = 2h3h4�, (47)

n∗∗
i + γ n∗

i = 0, (48)

� ∗ wi − ∂i� = 0 (49)

∂kω + nk∂3ω + wkω
∗ = ekω = 0. (50)

This system can be solved in very general forms by prescrib-
ing ϒ̃, � and �, or �̃, by integrating the equations “step
by step”. We obtain

gi = gi [ψ, ϒ̃] � eψ(x
k )

as a solution of 2-d Poisson/Laplace equations (46);
ha = ha[�̃,�] = ha[�,ϒ],

where h3 = �̃2

4�
and h4 = (�̃∗)2

�
;

nk = 1nk + 2nk

∫

dt h4/
(√|h3|

)3

= 1nk + 2ñk

∫

dt (�̃∗)2/�̃3�;
wi = ∂i�/� ∗ = ∂i�/�

∗ = ∂i (�)2/(�2)∗

= ∂i�/�∗;
ω = ω[�̃,�] = ω[�,ϒ]

is any solution of first order system (50). (51)

By ha[�,ϒ], we denote the fact that the coefficients ha
depend functionally on two functions, [�,ϒ].

The solutions (51) contain also integration functions
0h3(xk), 1nk(xi ) and 2nk(xi ),or 2ñk(xi )=8 2nk(xi )|�|3/2,

and the generating source

� =
∫

dt ϒ(�̃2)∗. (52)

We can satisfy the conditions for ω in the second line in
(49) if we keep, for simplicity, the Killing symmetry on ∂i
and take, for example, ω2 = |h4|−1. Such solutions are con-
structed in explicit form by solving Eqs. (44) and/or (46)–(50)
for certain prescribed values of � and ϒ and following cer-
tain assumptions on initial/boundary/asymptotic conditions,
physical arguments on symmetries of solutions, compatibil-
ity with observational data etc. It should be emphasized that
redefinitions of the generating functions of type (45) allow

one to construct exact solutions for general sources ϒ using
certain classes of solutions with nontrivial cosmological con-
stant �.

4.2 The Levi-Civita conditions

The solutions (51) are defined for the canonical d-connection
D̂ and with respect to N-adapted frames. There are nontriv-
ial coefficients of the nonholonomically induced torsion. We
have to subject the d-metric and N-connection coefficients to
additional nonholonomic constraints (14) in order to satisfy
the torsionless conditions and extract Levi-Civita configura-
tions. For the ansatz (40), such conditions can be written (for
details see [42,47,50,51])

w∗
i = (∂i − wi∂4) ln

√|h4|, (∂i − wi∂4) ln
√|h3| = 0,

∂iw j = ∂ jwi , n
∗
i = 0, ∂i n j = ∂ j ni . (53)

We must consider additional constraints on the data (�,ϒ),

or (�̃, �), and non-zero integration functions 1n j (xk) but

2nk(xi ) = 0.
To generate explicit solutions, we can consider any func-

tional dependence H = �̃[�], for which

ei H = (∂i − wi∂4)H = ∂H

∂�
(∂i − wi∂4)� ≡ 0;

see (49). For instance, H = �̃ = ln
√| h3| results in

ei ln
√| h3| = 0. If we work with classes of generating func-

tions � = �̌ for which

(∂i �̌)∗ = ∂i (�̌
∗), (54)

we obtain w∗
i = ei ln |�̌∗|. For a given functional depen-

dence h4[�,ϒ], we can express

ei ln
√| h4| = ei [ln |�̌∗| − ln

√| ϒ |]

(we used the property ei �̌ = 0). As a result,

w∗
i = ei ln

√| h4|

if ei ln
√| ϒ | = 0.This is possible for anyϒ = const, or any

effective source expressed as a functional ϒ(xi , t) = ϒ[�̌].
The conditions ∂iw j = ∂ jwi can be solved by any func-

tion Ǎ = Ǎ(xk, t) for which

wi = w̌i = ∂i �̌/�̌∗ = ∂i Ǎ. (55)

This is a system of first order PDEs which allows one to
find a function Ǎ[�̌] if a functional �̌ is prescribed. For the
second set of N-coefficients, we choose 1n j (xk) = ∂ j n(xk)
for a function n(xk).
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Finally, we conclude that we can generate off-diagonal
torsionless solutions of the Einstein equations (12) by choos-
ing certain subclasses of generating functions and effective
sources in (51), when

ϒ̌ = ϒ(xi , t) = ϒ[�̌], wi = ∂i Ǎ[�̌], ni = ∂i n, (56)

and the generating function � = �̌ and “associated” Ǎ are
subjected to the conditions (54) and (55).

4.3 General solutions for (non) holonomic Einstein
manifolds

Summarizing the results obtained in previous subsections,
we can construct the quadratic linear elements for generic
off-diagonal metrics defining 4-d Einstein spaces with an
effective cosmological constant � and nonholonomic defor-
mations to general sources of type (42).

4.3.1 Solutions with nonholonomically induced torsion

The quadratic line elements determined by coefficients (51),
with label torsRs, are written

ds2
torsRs = gαβ(x

k, t)duαduβ = eψ [(dx1)2 + (dx2)2]

+ω2 �̃
2

4�

[

dy3 +
(

1nk +2 ñk

∫

dt
(�̃∗)2

�̃3 �

)

dxk
]2

+ω2 (�̃
∗)2

�

[

dt + ∂i�

�∗ dxi
]2

. (57)

Fixing in (57) an effective cosmological constant � �= 0,
an “associated” generating function �̃(xk, t), for which
�̃∗ �= 0, and a generating source �(xk, t), for which
�∗ �= 0, we generate exact solutions of the nonholonomic
Einstein equations (13). Using Eq. (52), we compute the
effective source ϒ = �∗/(�̃2)∗. Such effective values and
Eq. (45) determine a generating function � := e� (43)
computed from �2 = �−1(�̃2|ϒ | + ∫

dt�̃2|ϒ |∗). We can
express equivalently the N-adapted coefficients ha, ni andwi

as functionals of (�,ϒ) following Eq. (51). The h-metric eψ

is any solution of the 2-d Poisson equation (46) with source
ϒ̃. The vertical conformal factor ω(xi , y3, t) can be deter-
mined as a solution of (50). The subclass of solutions (57)
with Killing symmetry on ∂3 can be extracted for ω2 = 1.

It should be noted that the effective source ϒ deter-
mines an effective source (52) up to a class of frame trans-
forms eα

′
α(x

i , ya). Such coefficients must be defined from a
system of quadratic algebraic equations for any prescribed
ϒα
β = [ ϒ̃δij , ϒδab ]. The coefficients eα

′
α and the integration

functions 1nk(xi ) and 2ñk(xi ) can be defined in explicit form
if we choose the respective boundary/asymptotic conditions,
or solve (for another type of solutions) the Cauchy problem.

The solutions (57) can be parameterized in certain
forms generating nonholonomically deformed black ellip-
soid, black hole, wormhole, solitonic, and inhomogeneous
solutions in various MGTs and in GR; see the discussion and
examples in [41,42,47,48].

4.3.2 LC-varieties for effective Einstein manifolds

If the generating/effective functions and sources are sub-
jected to the LC-conditions (54)–(56), we obtain the quadratic
linear elements

ds2
LCRs = gαβ(x

k, t)duαduβ = eψ [(dx1)2 + (dx2)2]

+ω2[�̌] (�̃[�̌])2
4�

[dy3 + (∂kn) dxk]2

+ω2[�̌] (�̃
∗[�̌])2
�[�̌] [dt + (∂i Ǎ[�̌])dxi ]2. (58)

The coefficients of these generic off-diagonal metrics also
generate exact solutions of (12) with effective source (52)
but with zero torsion. Such solutions can be modeled equiv-
alently in GR using the LC-connection ∇.

There are such generating functions and sources when, for
instance, black ellipsoid/hole de Sitter configurations can be
extracted from (58) in the limit of certain small off-diagonal
deformations; for details see [41]. We note that the metrics
are generic off-diagonal if the anholonomic coefficients W γ

αβ

(5) are not zero.

4.4 Off-diagonal deformations of physically important
solutions in GR

In this section, we present four classes of exact solutions gen-
erated by the AFDM. The are constructed explicit examples
of generic off-diagonal metrics (58) with parameterizations
of the generating and integration functions and constants,
and corresponding sources, when certain “prime” metrics
in GR are transformed into “target” metrics with modified
physical constants (running type, or effective polarizations)
and/or deformed horizons and/or self-consistent interactions,
for instance, with gravitational solitonic waves.

4.4.1 Ellipsoid Kerr–de Sitter configurations

Let us consider a parameterization of 4-coordinated like in
the Kerr geometry (we cite [39], for a review of physically
important solutions, and [42], for nonholonomic deforma-
tions of such solutions). The coordinates xk

′ = xk
′
(r, ϑ),

y3 = t, y4 = ϕ, when uα = (xi
′
, t, ϕ). The prime metric is

taken to be the Kerr solution written in the so-called Boyer–
Linquist coordinates (r, ϑ, ϕ, t), for r = m0(1 + px̂1), x̂2 =
cosϑ. The parameters p, q are related to the total black hole
mass, m0 and the total angular momentum, am0, for the
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asymptotically flat, stationary, and axisymmetric Kerr space-
time. The formulas m0 = Mp−1 and a = Mqp−1 when
p2 + q2 = 1 imply m2

0 − a2 = M2. In such variables, the
vacuum Kerr solution can be written

ds2[0] = (dx1′
)2 + (dx2′

)2 + A(e3′
)2 + (C − B

2
/A)(e4′

)2,

e3′ = dt + dϕB/A = dy3′ − ∂i ′(ŷ
3′ + ϕB/A)dxi

′
,

e4′ = dy4′ = dϕ. (59)

We can consider any coordinate functions

x1′
(r, ϑ), x2′

(r, ϑ), y3′ = t + ŷ3′
(r, ϑ, ϕ) + ϕB/A, y4′

= ϕ, ∂ϕ ŷ
3′ = −B/A,

for which (dx1′
)2 + (dx2′

)2 = �(�−1dr2 + dϑ2), and the
coefficients are

A = −�
−1
(� − a2 sin2 ϑ),

B = �
−1

a sin2 ϑ[� − (r2 + a2)],
C = �

−1
sin2 ϑ[(r2 + a2)2 − �a2 sin2 ϑ], and

� = r2 − 2m0 + a2, � = r2 + a2 cos2 ϑ.

The quadratic linear element (59) with prime data

g̊1 = 1, g̊2 = 1, h̊3 = −ρ2Y−1, h̊4 = Y, N̊ a
i = ∂i ŷ

a,

(or g̊1′ = 1, g̊2′ = 1, h̊3′ = A, h̊4′ = C − B
2
/A,

N̊ 3
i ′ = n̊i ′ = −∂i ′(ŷ

3′ + ϕB/A), N̊ 4
i ′ = ẘi ′ = 0)

define solutions of the vacuum Einstein equations parame-
terized in the form (13) and (14) with zero sources.

We construct a subclass of solutions with rotoid con-
figurations for generating functions �̃ = e� [ �̃/2 μ�̃ +
ζ sin(ω0ϕ + ϕ0)], for �̃ = e� ,

ds2 = eψ(x
k′ )(1 + εχ(xk

′
))[(dx1′

)2 + (dx2′
)2]

− e2�

4|�| A[1 + 2εζ sin(ω0ϕ + ϕ0)]

×[dy3′ +
(

∂k′ ηn(xi
′
) − ∂k′(ŷ3′ + ϕ

B

A
)

)

dxk
′ ]2

+ (� ∗)2

�

(

C − B
2

A

)

×
[

1 + ε

(
�

λ̃
∂ϕ�

+2∂4�ζ sin(ω0ϕ + ϕ0) + 2ω0 ζ cos(ω0ϕ + ϕ0)

)]

×[dϕ + (∂i ′ Ã + ε∂i ′
1 Ǎ)dxi

′ ]2. (60)

Such metrics have a Killing symmetry on ∂/∂t and are
completely defined by a generating function �(xk

′
, ϕ) and

the source and �. They describe ε-deformations of Kerr–de
Sitter black holes into ellipsoid configurations with effective
(polarized) cosmological constants determined by possible

geometric flows and generic off-diagonal interactions. If the
zero torsion conditions are satisfied (like in (58)), such met-
rics can be modeled in GR.

4.4.2 Nonholonomically deformed wormhole
configurations

Let us consider a different class of stationary configurations
which define a wormhole solutions and their off-diagonal
deformations. We begin with a diagonal prime wormhole
metric,

g̊ = g̊i (x
k)dxi ⊗ dxi + h̊a(x

k)dya ⊗ dya

= [1 − b(r)/r ]−1dr ⊗ dr + r2dθ ⊗ dθ

− e2B(r)dt ⊗ dt + r2 sin2 θdϕ ⊗ dϕ,

where B(r) and b(r) are called, respectively, the red-shift
and form functions. On holonomic wormhole solutions, we
refer the reader to [52–55]. There the local coordinates uα =
(r, θ, t, ϕ) are used. The radial coordinate has the range r0 ≤
r < a. The minimum value r0 is for the wormhole throat.
The constant a is the distance at which the interior spacetime
joins to an exterior vacuum solution (a → ∞ for specific
asymptotically flat wormhole geometries). The coefficients
of the diagonal stress-energy tensor

T̊μ
ν = diag[ r p = τ(r), θ p= p(r), ϕ p = p(r), t p = ρ(r)]

are subjected to certain conditions in order to generate worm-
hole solutions of the Einstein equations in GR.

Wormhole metrics are constructed to possess conformal
symmetry determined by a vector X = {Xα(u)}, when con-
sidering the Lie derivative,

Xα∂α g̊μν + g̊αν∂μX
α + g̊αμ∂νX

α = σ g̊μν,

where σ = σ(u) is the conformal factor. A class of such
solutions is parameterized by

B(r) = 1

2
ln(C2r2) − κ

×
∫

r−1(1 − b(r)/r)−1/2dr, b(r) = r [1 − σ 2(r)],

τ (r) = 1

κ2r2 (3σ
2 − 2κσ − 1), p(r)

= 1

κ2r2 (σ
2 − 2κσ + κ2 + 2rσσ •),

ρ(r) = 1

κ2r2 (1 − σ 2 − 2rσσ •).

These data generate “diagonal” wormhole configurations
determined by “exotic” matter because the null energy condi-
tion (NEC), T̊μνkμkν ≥ 0 (kν is any null vector), is violated.

In this section, we analyze wormhole configurations
which match the interior geometries to an exterior de Sitter

123



Eur. Phys. J. C   (2017) 77:184 Page 17 of 27  184 

one which (in general) can be also determined by an off-
diagonal metric. The exotic matter and effective matter con-
figurations are considered to be restricted to spatial distribu-
tions in the throat neighborhood which limit the dimension
of locally isotropic and/or anisotropic wormhole to be not
arbitrarily large. The Schwarzschild–de Sitter (SdS) metric,

ds2 = q−1(r)(dr2 + r2 dθ2) + r2 sin2 θ dϕ2 − q(r) dt2,

can be re-parameterized for any (x1(r, θ), x2(r, θ), y3 =
ϕ, y4 = t) in order to express q−1(r)(dr2 + r2 dθ2) =
eψ̊(x

k )[(dx1)2+(dx2)2]. Such a metric defines two real static
solutions of the Einstein equations with cosmological con-
stant � if M < 1/3

√|�|, for q(r) = 1 − 2M(r)/r,M(r) =
M + �r3/6, where M is a constant mass parameter. For
diagonal configurations, we can identify�with the effective
cosmological constant.

The next step is to consider conformal, ellipsoid, and/or
solitonic/toroidal deformations related in certain limits to the
SdS metric written in the form

�g = dξ ⊗ dξ + r2(ξ) dθ ⊗ dθ + r2(ξ) sin2 θ dϕ

⊗ dϕ − q(ξ) dt ⊗ dt.

Local coordinates x1 = ξ = ∫
dr/

√|q(r)|, x2 = ϑ, y3 =
ϕ, y4 = t, are used for a system of h-coordinates when
(r, θ) → (ξ, ϑ) with ξ and ϑ of length dimension. The data
for this primary metric are written

g̊i = g̊i (x
k) = eψ̊(x

k ), h̊3 = r2(xk) sin2 θ(xk),

h̊4 = −q(r(xk)), ẘi = 0, n̊i = 0.

Off-diagonal deformations on a small parameter ε of the
wormhole metrics are described by quadratic elements of
type (58), when the generating and integration functions are
chosen

ds2 = eψ̃ (̃ξ ,θ)(d̃ξ2 + dϑ2) − e2�̃

4�
[1 + εχ3(̃ξ , ϕ)]e2B(̃ξ )

×[dt + ∂̃ξ (
ηn + εn) d̃ξ + ∂ϑ(

ηn + εn) dϑ]2

+ [∂ϕ�̃ ]2

�

(

1 + ε
∂ϕ[χ3�̃ ]
∂ϕ�̃

)
0h4

×[dϕ + ∂̃ξ (
η Ã + εA)d̃ξ + ∂ϑ(

η Ã + εA)dϑ]2.

(61)

We prescribe such generating functions �̃ and effective
source � so that the effective polarization functions can
be approximated η̃a � 1 and η Ã and ηn are “almost con-
stant”, with respect to certain systems of radial coordinates.
For such conditions, the metric (61) mimics small rotoid
wormhole like configurations with off-diagonal terms and
possible geometric flow modifications of the diagonal coef-
ficients; see [56] for further details. It is possible to choose

such integration functions and constants so that this class of
stationary solutions define wormhole-like metrics depending
generically on three space coordinates with self-consistent
“embedding” in an off-diagonal GR background, for 0h3 =
r2(̃ξ ) sin2 θ (̃ξ , ϑ), where ξ̃ = ∫

dr/
√|1 − b(r)/r | and

B(̃ξ ) are determined by a wormhole metric.

4.4.3 Solitonic waves for inhomogeneous cosmological
solutions

For simplicity, we can consider solutions of type (58) gener-
ated by a nonlinear radial (solitonic, with left s-label) gen-
erating function �̃ = s�̃(r, t) = 4 arctan eqσ(r−vt)+q0 and
construct a metric

ds2 = eψ(r,θ)(dr2 + dθ2) +
s�̃2

4 ϒ
h̊3(r, θ)dϕ

2

− (∂t
s�̃)2

ϒ s�̃2
h̊4(r, t)[dt + (∂r Ã)dr ]2. (62)

In this metric, for simplicity, we fixed n(r, θ) = 0 and con-
sider Ã(r, t) to be defined as a solution of s�̃•/ s�̃∗ = ∂r Ã
and h̊a are given by homogeneous cosmology model data.
The generating function is just a 1-soliton solution of the
sine-Gordon equation s�̃∗∗ − s�̃•• + sin s�̃ = 0. For
any class of small polarizations with ηa ∼ 1), we can con-
sider the source ( mϒ + αϒ) to be polarized by s�̃−2 when
h3 ∼ h̊3 and h4 ∼ h̊4(

s�̃∗)2/ s�̃4 with an off-diagonal
term ∂r Ã resulting in a stationary solitonic Universe. If
we consider that (∂R̂ f̂ )−1 = s�̃−2, we can model f̂ -
interactions via off-diagonal interactions and “gravitational
polarizations”.

In the absence of matter, the off-diagonal cosmology is
completely determined by ϒ related to an effective cosmo-
logical constant induced by geometric flows. Such config-
urations can be determined alternatively using distribution
of matter fields when contributions from massive gravity
are with small anisotropic polarization; for details see [57–
60].

4.4.4 Off-diagonal deformations of FLRW metrics and
gravitational solitonic waves

Using a redefined time-like coordinate t̂, when t = t (xi , t̂),√|h4|∂t/∂ t̂ , for a scale factor â(xi , t̂), the d-metric (62) can
be represented in the form

ds2 = â2(xi , t̂)[ηi (xk, t̂)(dxi )2 + ĥ3(x
k, t̂)(e3)2 − (̂e4)2],

(63)

where ηi = â−2eψ, â2ĥ3 = h3, e3 = dy3 + ∂kn dxk, ê4 =
d̂t+√|h4|(∂i t+wi ). This is a non-stationary solution defin-
ing inhomogeneous cosmological spacetimes.
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We can model small off-diagonal deformations of the
Friedmann–Lemaître–Roberstson–Walker (FLRW) metric
parameterized by a small parameter ε, with 0 ≤ ε < 1,
when

ηi � 1 + εχi (x
k, t̂), ∂kn � εn̂i (x

k),
√|h4|(∂i t + wi ) � εŵi (x

k, t̂).

It is possible to choose such generating functions and sources
when â(xi , t̂) → â(t), ĥ3(xi , t̂) → ĥ3(̂t) etc. This results
in new classes of solutions even in the diagonal limits
because of the generic nonlinear and the nonholonomic
character of off-diagonal systems in GR and geometric
flow evolution theories. For ε → 0 and â(xi , t̂) → â(t),
we obtain scaling factors which are very different from
those in FLRW cosmology. They mimic such cosmologi-
cal models with redefined interaction parameters and pos-
sible small off-diagonal deformations of the cosmological
evolution both in GR, MGTs, and Ricci flow evolution; see
[59,60].

A metric (62) defines solitonic waves along the coordinate
x1 if we take

�̌ = s�(x1, t) = 4 arctan eq1q2(x1−ξ t)+q0 ,

for certain constants q0, q1 and q2 = 1/
√|1 − ξ2|, and

put, for simplicity, n = 0. The function Ã is a solution of
s�∗ Ã• = s�•. For such conditions, the generating func-
tion induces 1-soliton waves as a solution of the sine-Gordon
equation,

s�∗∗ − s�•• + sin( s�) = 0,

in the v-subspace together with self-consistent off-diagonal
propagation of such waves via wi = Ã•. More general 3-d
solitonic gravitational waves are possible which can propa-
gate self-consistently in Minkowski spacetime or in a FLRW
background. To generate such solutions we need to take a
generating function s�(x1, x2, t) which is a solution of the
Kadomtsev–Petviashvili (KdP) equation [61–63].

If we consider that in the ansatz of type (58) y3 = t
(time-like coordinate) and y4 = ϕ (an angular space coor-
dinate), we construct stationary solutions with Killing sym-
metry on ∂3; see the details in [41,42]. Such solutions in GR
and geometric flow theory include as particular cases black
ellipsoid configurations, Taub NUT configurations, and other
types of Coulomb-like gravitational fields. In particular, for
small ε-deformations they include black hole and black ellip-
soid solutions in GR and certain classes of modified theories.
Such gravitational configurations are characterized by differ-
ent thermodynamic values in a W-thermodynamic model of
geometric flows and their stationary Ricci soliton configura-
tions.

5 Nonholonomic thermodynamics of gravitational fields

There is a standard theory of the thermodynamics of the black
hole (BH) solutions originally elaborated by Bekenstein–
Hawking constructions for stationary solutions in gravity
theories (for a review, see [39] and the references therein).
Following the formalism of double fibrations, the BH ther-
modynamics can be derived for a very special example of
Lyapunov-type functionals on 3-d hypersurfaces with further
2+1 splitting (or 2+1+1 holonomic fibrations with horizon
configurations and corresponding asymptotic conditions). In
general, we cannot apply the BH thermodynamics to study
general gravitational configurations, for instance, models of
inhomogeneous cosmology and/or other spacetime config-
urations in GR and MGTs. Certain ideas were proposed to
formulate more general thermodynamic descriptions of grav-
itational fields; see [40] (for the so-called CET model) and
the references therein.

In this section, we develop a W-functional thermodynamic
model on a 3-d closed space-like hypersurface in GR, follow-
ing the standard theory of Ricci flows. In general, such an
approach is very different from that considered in standard
BH thermodynamics. As a matter of principle, it is possible
to establish certain equivalence conditions (with very special
holonomic vacuum gravity configurations or diagonal de Sit-
ter BH solutions) when the W-functional approach will give
the same result as in Bekenstein–Hawking BH thermody-
namics. The goal of this section is to elaborate on models on
nonholonomic thermodynamics of gravitational fields using
4-d generalizations of Perelman’s W-functionals. We shall
also speculate how such constructions can be related to the
CET approach if certain additional conditions are imposed.
In this work, we restrict our approach to general relativistic
flows of the 3-d to the 4-d configuration to a special class of
models when the effective temperature β−1(t) depends, in
general, on the time-like coordinate t.

5.1 General relativistic models of W-entropy and geometric
flow evolution

We emphasize that Perelman’s functional �W (30) is in a
sense analogous to minus the entropy. Similar values can
be considered for various metric compatible nonholonomic
Ricci flows and (non) commutative, fractional derivative and
other type modifications [8,9,20,21]. This allows us to asso-
ciate certain analogous thermodynamical values characteriz-
ing a (non) holonomic modified Ricci flow evolution of the
metrics with a local Euclidean structure and generalized con-
nections. Using �W for (q, �D̂) and its 4-d generalization Ŵ
in the form (34), or (36) for ( g, D̂), we can construct rela-
tivistic geometric evolution models with generalized Hamil-
ton equations of type (38).
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For 4-d general relativistic configurations, we cannot pro-
vide a standard statistical thermodynamic interpretation. We
shall have to elaborate on relativistic hydrodynamical type
generalizations (see Sect. 5.3). Here we emphasize that we
can always characterize the geometric flows by analogous
thermodynamic systems on corresponding families of 3-d
closed hypersurfaces �̂t using a nonholonomically deformed
entropy �Ŵ. Let us consider the standard partition function,

Z̆ = exp

{∫

�̂t

M
√

|qı̀ j̀ |dx̀3[− f̆ + n]
}

,

for the conditions stated for definition of (29) and (30).
This allows us to compute the main thermodynamical val-
ues for the Levi-Civita connection �∇ [1,12] and n = 3. A
statistical model can be elaborated for any prescribed par-
tition function Z = ∫

exp(−βE)dω(E) for a correspond-
ing canonical ensemble at temperature β−1, being defined
by the measure taken to be the density of states ω(E).
The standard thermodynamical values are computed for the
average energy, E = 〈E〉 := −∂ log Z/∂β, the entropy
S := β〈E〉 + log Z , and the fluctuation σ := 〈(E − 〈E〉)2〉
= ∂2 log Z/∂β2.

To elaborate the constructions in N-adapted form we con-
sider a family of qı̀ j̀ (τ (χ)), with ∂τ/∂χ = −1 being a real
re-parametrization of χ. For 4-d, it can be considered as a
time-like parameter, χ ∼ t). We change �∇ → �D̂ as it is
determined by the distortions (27); see similar constructions
in [20]. By a corresponding re-scaling f̆ → f̃ and τ → τ̃ (t)
(such a re-scaling is useful if we want to compare thermo-
dynamical values for different linear connections in GR), we
compute

�Ê = −τ̃ 2
∫

�̂t

M
√

|qı̀ j̀ |dx̀3
(

� R̂ + | �D̂ f̃ |2 − 3

τ̃

)

,

� Ŝ = −
∫

�̂t

M
√

|qı̀ j̀ |dx̀3[τ̃ ( � R̂ + | �D̂ f̃ |2) + f̃ − 6],

�σ̂ = 2 τ̃ 4
∫

�̂t

M
√

|qı̀ j̀ |dx̀3
[

| �R̂ı̀ j̀ + �D̂ı̀ �D̂ j̀ f̃ − 1

2τ̃
qı̀ j̀ |2

]

.

(64)

Such formulas can be considered for 4-d configurations con-
sidering the lapse function N̆ = 1 for N-adapted Gaussian
coordinates but in such cases it will be more difficult to com-
pute in explicit form using standard forms of solutions of 4-d
physically important equations.

Using the thermodynamical equation (64), we can com-
pute the corresponding average energy, entropy, and fluctua-
tions for the evolution both on redefined parameter τ and on
a time-like parameter t of any family of closed hypersurfaces
all determined by �D̂,

Ê(τ ) =
∫ t2

t1
dt N̆ (τ ) �Ê(τ ), Ŝ(τ )

=
∫ t2

t1
dt N̆ (τ ) � Ŝ(τ ), �̂(τ ) =

∫ t2

t1
dt N̆ (τ ) �σ̂ (τ ).

(65)

These formulas are related by distortion equations (27) with
corresponding values determined by �∇,

∇E(τ ) =
∫ t2

t1
dt N̆ (τ ) ∇

�
E(τ ), ∇S(τ )

=
∫ t2

t1
dt N̆ (τ ) ∇

�
S(τ ), ∇�(τ)

=
∫ t2

t1
dt N̆ (τ ) ∇

�
σ(τ).

Such values with a “hat” or left label ∇ are different; we
have �D̂ → ∇ for certain topologically nontrivial configura-
tions.

5.2 W-thermodynamic values for exact solutions in GR

For nonholonomic 4-d Lorentz–Ricci solitonic equations
defined by systems of type (57), or (58), the generating func-
tion�(xk, t) (or �̃(xk, t), or �̌(xk, t) for torsionless config-
urations) and the effective source ϒ(xk, t) can be prescribed
in some forms not depending one on another. The vertical
conformal factorω can be an arbitrary function on (xk, y3, t)
subjected to the conditions (50). Such values should be sub-
jected to an additional constraint if we consider that the 4-d
solutions for a d-metric g encode also 3-d d-metrics q. The
3-d metric is parameterized in the form (40) with a Ricci
flow evolution determined by the Hamilton equations (28)
on a relativistic parameter. To construct explicit solutions,
we consider the parameter χ = t for 3-d evolution equations
written with respect to N-adapted frames.

5.2.1 Modified 3-d Ricci flows with induced nonholonomic
torsion

On a 4-d Lorentz–Ricci solitonic space determined by a
quadratic line element (57), the 3-d Ricci flow evolution
equation (28) is written

q∗
ı̀ j̀

= −2 �R̂ı̀ j̀ + 2r̀

5
qı̀ j̀ ,

for q∗
ı̀ j̀

= ∂tqı̀ j̀ , where �R̂ı̀ j̀ = {R̂1
1qi j , R̂3

3q3}. In non-

explicit form, ∂t is related to the partial derivation on tem-
perature β−1(t), which in this work can be related to the
time-like variable. For components with i, j, k . . . = 1, 2, in
a 3+1 nonholonomic distribution, these evolution equations,
with q∗

i j = 0 and q∗
3 �= 0, decouple in the form
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�R̂i
j = δij

r̀

5
= δij ϒ̃(xk),

∂t ln |ω2h3| = −2R̂3
3 + 2r̀

5
, (66)

for R̂3
3 = ϒ(xk, t). The h-source ϒ̃(xk) can be considered

as a normalizing factor for the 3-d Ricci flows when r̀ = ϒ̃.

Taking h3 = �̃2

4� and introducing the first equation in (66)
into the second one, we obtain

∂t ln |�̃| = ϒ̃ − ϒ − ∂t ln |ω|. (67)

We conclude that 4-d solitons of the Einstein equations
describe also 3-d solutions of the normalized N-adapted
Hamilton equations if the associated generating function �̃,

the effective sources ϒ̃ − ϒ and v-conformal factor ω are
subject to the conditions (67). We can use this for definition
of a self-consistent parametrization of the effective source,
ϒ = ϒ̃ − (ln |ω�̃|)∗. Introducing this value in (45), we can
find this nonlinear symmetry for re-defining generating func-
tions:

�2 = �−1
[

�̃2|ϒ̃ − (ln |ω�̃|)∗|

+
∫

dt�̃2|ϒ̃ − (ln |ω�̃|)∗|∗
]

.

As particular cases, we can consider ϒ̃ = const andω = 1 in
order to generate a self-consistent 3-d Ricci flow evolution on
a 4-d effective Einstein spaces. In such cases, all geometric
and physical objects have the Killing symmetry on ∂3.

By definition of the generating effective source (52),�∗ =
ϒ(�̃2)∗. We can write Eq. (67) using values (ω, �̃, ϒ̃,�∗),

�∗ = (�̃2)∗
[

ϒ̃ − ω∗

ω

]

− (�̃∗)2.

We conclude that we can model Ricci flows of 3-d metrics
qı̀ j̀ in N-adapted form on effective 4-d Einstein configura-
tions by imposing additional constraints on the generating
functions, effective sources, or effective generating sources.
Such geometric evolutions are characterized by nontrivial
nonholonomic torsion completely defined by g.

5.2.2 Modified 3-d Ricci flows of LC-configurations

Torsionless 4-d Einstein configurations (58) are determined
by generating functions �̃[�̌] and sources ϒ̌ = ϒ(xi , t) =
ϒ[�̌] subject to the conditions (54)–(56). The 3-d Ricci flow
evolution in N-adapted form is described by (67) redefined
for generating functions and sources subjected to the condi-
tion

∂t ln |�̃[�̌]| = ϒ̃ − ϒ̌ − ∂t ln |ω|.

The LC-geometric flow configurations are characterized by
the effective source ϒ̌ = ϒ̃−(ln |ω�̃[�̌]|)∗ and an effective
generating source �̌∗ = ϒ̌(�̃2[�̌])∗.

5.2.3 N-adapted 3-d Ricci flows on exact solutions in GR

Exact solutions of 3-d Hamilton-like equations (66) are con-
sidered for 4-d solutions (58). The evolution equation (67) is
modified,

∂t ln |�̃| = ϒ̃ − ϒ − ∂t ln |ω|.

The generalization for additional geometric flow effective
source and effective generating source is given, respectively,
by

ϒ = ϒ̃ − (ln |ω�̃|)∗ and �∗ = ϒ(�̃2)∗.

The generic off-diagonal contributions to non-Riemannian
evolution models have nontrivial nonholonomic torsion. LC-
configurations can be extracted by respective functional
dependencies �̃2[�̌] and effective sources and effective gen-
erating sources, respectively, ϒ̌ = ϒ̃ − (ln |ω�̃[�̌]|)∗ and
�̌∗ = ϒ̌(�̃2[�̌])∗. One of the fundamental consequences
of such nonholonomic evolution theories is that various mas-
sive, modified, and GR effects can be modeled by nonholo-
nomic constraints even any value of effective sources ϒ can
be zero for certain configurations on a 3-d hypersurface �0.

5.2.4 Relativistic thermodynamic values for N-adapted 3-d
modified Ricci flows

One of motivations to find 3-d Ricci flow solutions of Hamil-
ton equations (66) embedded in 4-d spacetimes in GR is that
such solutions are characterized by analogous thermodynam-
ical models which can be generalized for associated 4-d mod-
ified Lorentz-Ricci solitons, i.e. effective Einstein spaces. We
note that the lapse function N (u) = −ω2h4 = −g4 (41) is
contained in explicit form in the integration measure for Eq.
(64) if we do not work in N-adapted Gaussian coordinates.
For 3-d thermodynamical values, we obtain

�Ê = τ̃ 2
∫

�̂t

M̃ω2h4
√|q1q2q3|dx̀3

(

� R̂ + | �D̂ f̃ |2 − 3

τ̃

)

,

� Ŝ =
∫

�̂t

M̃ω2h4
√|q1q2q3|dx̀3[τ̃ (� R̂ + | �D̂ f̃ |2)+ f̃ −6],

�σ̂ = −2 τ̃ 4
∫

�̂t

M̃ω2h4
√|q1q2q3|dx̀3

×
[

| �R̂ı̀ j̀ + �D̂ı̀ �D̂ j̀ f̃ − 1

2τ̃
qı̀ j̀ |2

]

, (68)

up to any parametric function τ̃ (t) in M̃ = (4πτ̃ )−3e− f̃ with
any τ̃ (t) for ∂τ̃/∂t = −1 and χ > 0 Taking the respective
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3-d coefficients of a solution (57), or (58) [or any solution of
type (60), (61), (62), (63)], and prescribing a closed �̂0 we
can compute such values for any closed �̂t .We have to fix an
explicit N-adapted system of reference and scaling function
f̃ in order to find certain explicit values for corresponding
average energy, entropy, and fluctuations for evolution on
a time-like parameter t of any family of closed hypersur-
faces. We can decide if certain solutions with an effective
Lorentz–Ricci soliton source and/or with contributions from
additional MGT sources may be more convenient thermody-
namically than other configurations.

Let us compute the values (68) for systems (46)–(50) with
solutions (57) with q1 = q2 = eψ, q3 = �̃2/4�, h4 =
(�̃∗)2/ F�. Using the nonlinear symmetry (45) with effec-
tive�, for �R̂ı̀ j̀ = �qı̀ j̀ and � R̂ = 3�; taking, for simplicity,

f̃ = 0, and re-defining 3
2(4π)3

ω2 → ω2, we compute

�Ê = τ̃ 2(t)
∫

�̂t

�̃(�̃∗)2

�τ̃ 3(t)
eψω2dx̀3

[
√|�| − 1

τ̃ (t)
√|�|

]

,

� Ŝ = 1

2

∫

�̂t

�̃(�̃∗)2

�τ̃ 3(t)
eψω2dx̀3

[

τ̃ (t)
√|�| − 2√|�|

]

,

�σ̂ = − τ̃ 4(t)
∫

�̂t

�̃(�̃∗)2

�τ̃ 3(t)
eψω2dx̀3

×
[
√|�| − 1

2τ̃ (t)
√|�|

]2

, (69)

where � = ∫
dt ϒ(�̃2)∗.

It is possible to define and compute thermodynamic like
values (69) for generic off-diagonal solutions in GR as we
explained for solutions (58) and corresponding functionals
�̃[�̌],�[�̌] and ω[�̌]. We emphasize that in both cases
with zero, or non-zero nonholonomic torsion, the above for-
mulas for thermodynamical values are defined for a non-zero
effective �̃ and non-zero source ϒ. For (effective) vacuum
configurations, such formulas have to be computed using
corresponding classes of off-diagonal solutions.

The entities (68) and/or (69) can be computed for 4-d con-
figurations determined by modified Lorentz–Riemann soli-
tons, Ê = ∫ t2

t1
dt �Ê, Ŝ = ∫ t2

t1
dt � Ŝ, �̂ = ∫ t2

t1
dt �σ̂ determined

by �D̂. In a similar form, we can use the distortion formulas
(27) and compute ∇E = ∫ t2

t1
dt ∇

�
E, ∇S = ∫ t2

t1
dt ∇

�
S, ∇� =

∫ t2
t1

dt ∇
�
σ for �∇. Such values are positively different for

�D̂ → �∇ for certain topologically nontrivial configurations.
As a result, we can analyze if a nonholonomic configuration
with N-adapted �D̂ may be more, or less, convenient thermo-
dynamically than a similar holonomic one as determined by

�∇.

Finally, we note that geometric thermodynamics values
(68) are defined both for (modified) black hole solutions and
inhomogeneous cosmological solutions. The physical mean-
ing of such a thermodynamical approach is very different

from that of standard black hole thermodynamics in GR.
Nevertheless, certain criteria for equivalent modeling can be
analyzed in various MGTs; see [42,56–60,62].

5.3 General relativistic hydrodynamics and
thermodynamics for geometric flows of gravitational
fields

The thermodynamic quantities (64) and (65) are formulated
in terms of variables with coefficients computed with respect
to N-adapted frame of reference which allows extensions of
3-d thermodynamic values to 4-d ones. This is a hidden aspect
of models of non-relativistic hydrodynamics and an appar-
ent property of relativistic theories; see modern approaches in
[32–37]. In this section, we speculate on a model of geomet-
ric flows with local thermodynamic equilibrium for which
there exists a single distinguished velocity field vα (if it is
convenient, we can take vα = nα), and a corresponding N-
adapted rest frame, where all flow evolutions of the related
physical quantities are described by simple formulas.

For a fluid model with particle production, we characterize
general relativistic Ricci flows by the particle number density
d-vector N̂ α, the entropy density d-vector Ŝα , and the effec-
tive energy-momentum density tensor T̂ αβ. Using the LC-
connection ∇,we postulate covariant forms for conservation
of the particle number and the effective energy momentum,

∇αN̂ α(uγ ) = 0 and ∇α T̂ αβ(uγ ) = 0. (70)

Using the distortion relations D̂ = ∇ + Ẑ (10), we can
compute nonholonomic deformations of such values when
Ẑ determines the respective sources induced by nonholo-
nomic torsion. This is typical for models of nonholonomic
continuous mechanics and generalized hydrodynamic/fluid
models. We note that the effective entropy is not conserved.
It is supposed that the (general) relativistic effective entropy
is zero only in thermodynamic equilibrium:

∇αŜα(uγ ) ≥ 0.

With the help of the N-adapted velocity field vα(uγ ) and
velocity orthogonal projection operator παβ = δαβ − vαvβ,
we introduce necessary values for an effective hydrodynam-
ical model:

n̂ := N̂ αvα is the particle number density;
ĵα := παβN̂β is the diffusion current;
Ŝ := Ŝαvα is the entropy density;
Ĵ α := παβ Ŝβ is the entropy current;
Ê := vα T̂ αβvβ is the energy density;
p̂α := πα

γ T̂ γβvβ is the momentum density
(i.e. the energy current);

P̂αβ := πα
α′π

β

β ′ T̂ α′β ′
is the pressure tensor.
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Hats are used in order to emphasize that necessary coeffi-
cients are defined in N-adapted form. As a matter of prin-
ciple, all constructions can be redefined in arbitrary frames
of reference (when symbols “lose” their hats). In addition to
these local N-adapted rest frame quantities, we consider such
values:

the effective energy-momentum vector Êα := vβ T̂ αβ;
the energy-momentum current density B̂αβ := πα

γ T̂ γβ;
momentum density p̂α := πα

γ Êγ ;
the energy current p̂α := vβ B̂αβ.

Using the above formulas, we compute the local rest N-
adapted frame densities determined by general relativistic
Ricci flows as

N̂ α = n̂vα + ĵα,

Ŝα = Ŝvα + Ĵ α,

T̂ αβ = Êαvβ + B̂αβ = Êvαvβ + p̂αvβ + vα p̂β + P̂αβ.

(71)

These formulas conveniently express the particle number
density for the 4-d d-vector and the energy-momentum den-
sity d-tensor with the help of local rest frame quantities rela-
tive to a velocity field. Such formulas can be related to a 3-d
hypersurface Perelman thermodynamic model (64) if Ŝ = � Ŝ
and Ê = �Ê . For vβ = nβ determined by an exact solution in
GR, the densities (71) can be normalized to respective values
in (65).

Using the canonical d-connection D̂ and the above formu-
las, the balance equations (70) can be written in the form

(D̂α − Ẑα)N̂ α = vα(D̂α − Ẑα)̂n

+ n̂(D̂α − Ẑα)vα + (D̂α − Ẑα) ĵ
α

and

(D̂β − Ẑβ)T̂ αβ = vγ (D̂γ − Ẑγ )Êα

+Êα(D̂γ − Ẑγ )vγ + (D̂β − Ẑβ)B̂αβ

= vαvγ (D̂γ − Ẑγ )Ê + Êvα(D̂γ − Ẑγ )vγ

+ vγ (D̂γ − Ẑγ ) p̂
α + p̂α(D̂γ − Ẑγ )vγ

+ Êvγ (D̂γ − Ẑγ )vα + vα(D̂γ − Ẑγ ) p̂
γ

+ p̂γ (D̂γ − Ẑγ )vα + (D̂β − Ẑβ)P̂αβ.

These formulas are written in N-adapted form. In general,
they contain non-dissipative and dissipative components of
general relativistic Ricci flows. In terms of the LC-connection
∇ = D̂ − Ẑ, we can eliminate certain sources of nonholo-
nomic torsion dissipation but in LC-variables the formulas
cannot be decoupled in general form.

Let us discuss the fact and the conditions when the particle
number density d-vector and the energy-momentum d-tensor
split into a non-dissipative and a dissipative part. Such parts

are easily distinguished in a local rest N-adapted frame when
the non-dissipative particle number density d-vector N̂ α

0 is
parallel to the d-velocity and the non-dissipative energy-
momentum d-tensor T̂ γβ is diagonal. We have a particular
case of balance equations (71) when

N̂ α
0 = n̂0vα and T̂ αβ

0 = Ê0vαvβ − p0π
αβ,

with an effective static (scalar) pressure determined by the
state equation of state of the effective fluid. Such approx-
imations are possible for gravitational configurations with-
out singularities. For instance, black holes may have a non-
zero entropy (even determined in a different form from an
approach with W -entropy) together with a non-zero particle
production. In such a case, we must introduce a term like
Ŝα

0 = Ŝ0vα + Ĵ α
0 with an entropy current Ĵ α

0 determined by
geometric flows and Ŝ0 identified with the standard black hole
entropy. Therefore the diffusion current density ĵα consists
of the dissipative part of the particle number (and the momen-
tum density/energy) currents. This defines the difference of
the total and the equilibrium pressure #αβ = P̂αβ + p0π

αβ.

The effective viscous pressure determines the dissipative
parts of the energy momentum.

It should be mentioned that a splitting into some dissipa-
tive and non-dissipative parts of certain physical quantities
is related to and depends on the local rest frame (how it
is chosen and N-adapted). Additionally to the velocity field
of the geometric flow continuum, this requires a particular
thermostatics to determine the static pressure. However, the
dissipation of thermodynamical systems (in our approach,
by general relativistic Ricci flows) is principally defined by
the entropy production. This is implicitly related to the back-
ground thermostatics, which is a concept for systems in local
equilibrium. On the other hand, the rest frame is not deter-
mined in the case of dissipation, neither by any special form
of the physical quantities. For geometric flows related to 4-
d exact solutions in GR, one may consider to extend the
Perelman thermodynamic approach by additional construc-
tion with the velocity field. We have to address nonholonomic
kinetic theory and possible Finsler-like modifications of GR,
relativistic thermodynamics, and diffusion as in Refs. [7–9].
Such models are planned to be elaborated in our further work.

The general relativistic Ricci flow evolution is related to
problems of stability and causality, similar to those in rela-
tivistic hydrodynamics. This involves a detailed analysis of
the Second Law as in Refs. [35–37]. We can assume the possi-
bility of acceleration independent entropy production when
the local rest frame entropy density is a function of type
Ŝ(Ê, n̂) = Ŝ(

√
Êα Êα, n̂) for the quantities defined above.

Then it is possible to write a Gibbs-like relation,

dÊ + Ê−1 p̂γ d p̂γ = β−1dŜ + μ̂dn̂,
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for an effective temperature β and effective particle produc-
tion potential μ̂. Such an approach to relativistic thermody-
namics of Ricci flows eliminates the generic instability which
exists in the original Eckart theory and the stability conditions
are independent of any flow frames; see [28,29]. Such con-
ditions are the non-negativity of the geometric flow transport
coefficients and the effective thermodynamic stability and
the concavity of the entropy density. This is in contrast to
the former variants of Eckart theory (which is unstable), or
to Israel–Stewart theory. In the latter case, there are several
complicated conditions; for details see [33,35,36].

Finally, the main conclusion is that we can characterize
the gravitational field equations by Perelman’s W-entropy on
any closed 3-d hypersurface. In such a case, a natural statis-
tical thermodynamic model can be associated. To extend the
approach in a 4-d general relativistic form it is necessary to
elaborate on modified relativistic thermodynamic and hydro-
dynamic theories, which is the main purpose of this work. The
constructions can be performed in explicit form and related
to general classes of exact solutions in GR if we formulate
all gravitational field, geometric evolution, and effective rel-
ativistic thermodynamic theories in certain N-adapted non-
holonomic variables. In the next section, we show how this
can be connected to exact solutions.

5.4 Parameterizations for the CET model

A thermodynamic model is relativistic if it is derived for the
energy momentum conservation equations

D̂β(vαTαβ) = D̂β(vα)Tαβ − vα Ĵα, (72)

considering the heat flow vα Ĵα into an effective fluid with
Ĵα = −D̂βTαβ.9 For perfect (pressureless) matter, Tαβ =
pgαβ + (ρ + p)vαvβ, where vαvα = −1 , ρ, and p are,
respectively, the density and pressure. The 4-velocity of the
fluid can be taken as vα = (0, 0, 0, 1) in a certain co-moving
N-adapted frames when Tα

β = diag[0, 0, 0,−ρ]. We can
consider also fluids with nontrivial momentum density qα

and anisotropic (tracefree) pressure παβ, when

Tαβ = phαβ + ρvαvβ + qαvβ + vαqβ + παβ. (73)

9 Such formulas are similar to those for ∇ if we consider the distorting
relations D̂ = ∇ + Ẑ to be uniquely determined by the data (g,N) and
when D̂|T̂=0 → ∇.

Defining �̂ := (vγ D̂γ v)/v for a spatial domain υ with
volume V = ∫

υ
v, the entropy is given by S = ∫

υ
ϑ, when

(72) and (73) lead to

T̂ vγ D̂γ ϑ := vβD̂β(ρv) + pvγ D̂γ v

= v(vα Ĵα − D̂βqβ − qαvγ D̂γ vα − σαβπαβ).

The variables ϑ and T̂ , represent the point-wise entropy
and temperature. If we define T̂ independently, we get
S = ∫

υ
ϑ.10

We are seeking to construct a Ricci flow and the gravita-
tional analog of the fundamental laws of the thermodynamics
in the form

gT d gS = d gU + g pdV, (74)

where gT , gS, gU and g p are, respectively, the effective
temperature, entropy, internal energy, isotropic pressure; V
is the spatial volume. For the vacuum gravitational fields, we
consider the quantities

Ŵ = 1

4
(Ê β

α Êα
β + Ĥ β

α Ĥα
β),

Ĵα = 1

2
[Ê, Ĥ]α, vγ D̂γ Ŵ + D̂α Ĵα � 0,

where Ŵ is the ‘super-energy density’ and the ’super-
Poynting vector’ Ĵα = −h δ

α T̂δβγ τvβvγ vτ is determined by
the Bel–Robinson tensor (for holonomic configurations; for
details see [40,64–66]),

T̂αβγ τ := 1

4
(ĈεαβϕĈε ϕ

γ τ + ∗Ĉεαβϕ
∗Ĉε ϕ

γ τ ),

when the dual Weyl tensor is ∗Ĉαβϕτ := 1
2ηαβεδĈ

εδ
ϕτ . There

is a two-index ‘square-root’ [67], tαβ, constructed as a solu-
tion of

T̂αβγ τ = t(αβ tγ τ) − 1

2
tε(αt

ε
β gγ τ)

+ 1

24

[

tεμt
εμ + 1

2
(t εβ )

2
]

g(αβgγ τ).

The solutions of these equations depend on the algebraic type
(following Petrov’s classification) of spacetime and related
classes of solutions of the Einstein equations; for details see
[40,68]. There are variants such as

tαβ =
⎧
⎨

⎩

3ε|�̂2|(m(αm̄β) + lαkβ), Petrov type N, similar to pure radiation;
ε|�̂4|kαkβ, Petrov type D, Coulomb-like gravitational configurations;
various forms, other Petrov types, factorized as D or N, or more complicated,

10 For the temperature, we use the symbol T instead of T, or t, in order
to avoid possible ambiguities with similar notations, respectively, for
the tangent space, T V, the time-like coordinate, t , etc.
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where ε = ±1, �̂2 = Ĉεαβϕkεmαm̄β lϕ and �̂4 =
Ĉεαβϕm̄εlαm̄β lϕ. The first two cases above contain very
interesting examples corresponding to stationary black hole
solutions and the cases of scalar perturbations of FLRW
geometries and their off-diagonal deformations [41].

Using the respective tαβ and |�̂2| =
√

2Ŵ/3,we can con-
struct a thermodynamic model (74) for Coulomb-like grav-
itational fields with effective energy-momentum tensor of
type (73),

tαβ � � gTαβ = α̂

√

2Ŵ/3[xαxβ+yαyβ+2(vαvβ−zαzβ)],

for a constant α̂ to be determined from certain experimen-
tal data and/or other theoretic considerations. The corre-
sponding effective energy density and pressure are � gρ =
2α̂

√
2Ŵ/3 ≥ 0 and g p = 0. We can take gqα = 0 and

write the effective fundamental thermodynamic equation for
gS = ∫

υ
gϑ in the presence of perfect matter field in the

form

gT vγ D̂γ (
gϑ) = vγ D̂γ (

gρv)

= −vσαβ [παβ + �(ρ + p)Êαβ/2α̂
√

6Ŵ].
For wave-like gravitational fields |�4| = 2

√
Ŵ. Working

with plane wave geometries in Kundt’s class of solutions (for
holonomic configurations; for details see [40]), the effective
thermodynamic quantities

� gρ = 2β̂
√

Ŵ, g p = gρ/3, � gqα = 2β̂
√

Ŵzα,

6� gπαβ = −2β̂
√

Ŵ(xαxβ + yαyβ − 2zαzβ)

can be taken as

tαβ � � gTαβ = 2β̂
√

Ŵkαkβ

with a constant β̂ (in general, β̂ �= α̂). In the presence of a per-
fect fluid, the resulting fundamental thermodynamic equation
for gS = ∫

υ
gϑ is

gT vγ D̂γ (
gϑ) = vγ D̂γ (

gρv) + g pvγ D̂γ v

= −v[σαβ gπαβ + gαβD̂β(
gqα) + gqαvγ D̂γ vα]

− �(ρ + p)vσαβ Êαβ/4β̂
√

Ŵ.

There are alternative definitions of the gravitational tem-
perature which depend on the type of solutions considered,
for instance, in a black hole or cosmological model. Usually,
one postulates the expression

gT = 8|kγ lβD̂γ vβ |/� = 4|zβvγ D̂γ vβ + Ĥ +σαβzαzβ |/�,
(75)

where Ĥ = �̂/3 is the isotropic Hubble rate. Such a formula
reproduces in appropriate limits the formulas from quantum

field theory in curved spacetimes, black hole thermodynam-
ics, de Sitter spaces, or Unruh temperature etc. It can be
defined in MGTs with effective modeling by off-diagonal
deformations of Einstein spaces.

The smooth function f on a 3-dimensional closed hyper-
surface can be considered as a function determining the natu-
ral log of partition function Z = ∫

e−βEdω(E),with density
of states measure ω(E),

log Z =
∫

�t

[− f + 3/2](4πτ)−3/2e− f dv̌. (76)

To find thermodynamic values in explicit form we consider
the log of the partition function log Z (76) on a closed 3-d
hypersurface �t of volume V = ∫

υ
v, when the entropy is

given by S = ∫
υ
ϑ and the constant τ = β−1 is treated as

an effective temperature. In order to reproduce relativistic
Ricci flows effective thermodynamics models for gravita-
tional fields with temperature (75), the corresponding Perel-
man type entropy

S =
(

1 − β
∂

∂β

)

log Z = −
∫

υ

[τ(R̆ + |D̆ f |2) + f − 3]dv̌
(77)

can be considered as a functional gS(S) when

gT d gS = τdS. (78)

In this way, we transform the thermodynamical variables for
gU ( gS, V ) = U (S, V ) and the fundamental law of thermo-
dynamics (74) is re-written in the form

dU = τdS − g pdV,

where p = g p and the relation ∂S/∂τ = σ 2/τ 3 follows
from the definition of the W-entropy.

In explicit form, the effective entropy of the gravitational
fields and thermodynamic transforms should be defined dif-
ferently, for instance, for the Coulomb and/or wave-like grav-
itational fields, when the respective constants α̂ and β̂ are
chosen so as to obtain equivalent models for gS and/or S.
Prescribing any values for independent data gS and gT ,
we can construct S and log Z using, respectively, Eqs. (77)
and (78). We denote the solution of the last equation in the
form log g Z . Inverting Eq. (76), we can find a correspond-
ing function f = g f describing the geometric evolution of a
configuration of gravitational fields characterized by certain
relativistic thermodynamics data ( gS, gT ).

In [1], the W-entropy was defined by analogy to statistical
thermodynamics but a microscopic description was not con-
sidered. In statistical mechanics, the partition function Z =
∑

i e
−βEi for a thermodynamic system is &[ϕi , Ei , β] in a
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canonical ensemble with the Ei being the energies associated
with corresponding “microstates” ϕi at inverse temperature
β (we consider summation on all available “microstates”).
For non-discrete microstates, one considers integrals over
the spaces of microstates 
, Z = ∫

υ
e−βE(ω)dω, with asso-

ciated energy functions E : 
 → R and dω being the
density of states measure on 
. The entropy S (77) of &
was computed for equilibrium states at temperature τ. In
the relativistic case, we can consider such constructions for
an effective theory for the evolution of certain 3-d metrics
embedded into 4-d spacetime for which a local gravitational
equilibrium exists for a time-like variable t. As a thermo-
dynamic system, the analogous & is characterized by a full
set of “macrostates” describing its large-scale properties and
equivalently modeled by the data gS and gT .

It should be noted that Perelman called f the dilaton
field and used also an F-functional, F = −τ log Z , with
a “first variation” formula which “can be found in the lit-
erature on string theory, where it describes the low energy
effective action; . . .” see the end of Sect. 1 in [1]. Recently,
the analogy with string theory in the Polyakov formulation
[69] was exploited in Ref. [22], where a general scheme of
defining partition functions associated to relevant geomet-
ric flows was proposed. The Lin approach is based on the
functional determinant of differential operators and has well-
defined microstates as members of a functional space. For
each microstate, it associates the “Dirichlet energy” which
in turn is associated to the underlying operator. Using double,
3 + 1, and 2 + 2 fibrations, the corresponding assumptions
and data (on analogous macroscopic thermodynamical val-
ues associated to solutions of the Einstein equations, addi-
tional smooth functions etc.) we can determine the operator
for energy determination or macrostates.

6 Final remarks and conclusions

Perelman’s proof of the Poincaré conjecture provided a fun-
damental result on the topological structure of the Universe.
He elaborated a general schematic procedure in geometric
analysis and speculated on a number of perspectives for
applications in modern physics. A statistical and thermody-
namic analogy was developed for geometric evolution sce-
narios using Lyapunov-type functionals. The approach was
based on the concept of W-entropy. It was supposed from
the very beginning [1] that geometric flows may have cer-
tain implications for black hole physics and string theory but
the original theory of Ricci evolution flows was formulated
in a non-relativistic form. So, Perelman’s ideas could not be
developed in a framework of theories with geometric flow
evolution of 3-d Riemannian metrics.

This article has a very exact goal: to understand the W-
entropy in a wide range of general relativistic geometric flows

and analyze possible connections to other formulations of
gravitational thermodynamics describing general nonhomo-
geneous cosmological solutions and black hole configura-
tions. To this end, we need to provide a satisfactory relativis-
tic account of analogous statistical thermodynamical models
associated to geometric flows of exact solutions in GR result-
ing in effective polarizaton (running) of the fundamental con-
stant and generic off-diagonal effects. This will remain a chal-
lenge with many interesting directions in MGTs and modern
accelerating cosmology emerging from the work presented
here. An interesting problem is that, for instance, certain sce-
narios in modern cosmology can be modeled equivalently by
generic off-diagonal interactions in GR and/or by analogous
solutions in a MGT. Nevertheless, such gravitational field
configurations have very different properties in a framework
of geometric flow theory, considering its self-similar con-
figurations as (relativistic) Ricci solitons. The corresponding
analogous thermodynamics is determined, in general, by dif-
ferent types of physical values. This motivates our approach
to study general relativistic models of Ricci flow evolution
of exact solutions in gravity theories.

In this paper, we have shown in explicit form how the
W-entropy can be generalized for relativistic geometric evo-
lution of solutions of the Einstein equations. This allows
for a statistical thermodynamic description of gravitational
interactions, their (fractional) diffusion and kinetic processes
[7–9]. The marriage of the analogous Perelman’s thermody-
namics and GR is an issue of very active debates on phys-
ical meaning of such constructions and new mathematics.
A temperature-like evolution parameter can be considered
also for relativistic generalizations but we cannot address the
problem as a specific type heat propagation in the context
of relativistic dynamics of a non-perfect fluid like in various
approaches to relativistic thermodynamics, nonlinear diffu-
sion and relativistic kinetic theory [32–37]. In theories with
geometric flows, we consider the evolution of metrics and
fundamental geometric objects (in general, these can be cer-
tain generalized connections, curvatures, and torsions). Sim-
ilar to heat fluxes, we can consider non-relativistic gradient
flows and consider an unbounded speed of effective thermal
disturbances (fluctuations of tensor fields). This is due to the
parabolic nature of PDEs describing the heat transport. In
the relativistic cases, we get not only an inconvenience but
indeed a fundamental problem. Various issues were studied
related to this problem in relativistic hydrodynamical and
dissipative theories [25–29,31] (for a review, see [38]).

Such constructions, in a macroscopic relativistic thermo-
dynamic formulation [40], seem to be important for the struc-
ture formation of Universes, black hole thermodynamics, and
the characterization of nonlinear waves, locally anisotropic
and/inhomogeneous gravitational configurations. It is pos-
sible to formulate an underlying operator formalism and
microscopic approach in the spirit of Polyakov’s approach to

123



 184 Page 26 of 27 Eur. Phys. J. C   (2017) 77:184 

string theory. This scheme requires a method of constructing
generic off-diagonal solutions depending on all spacetime
variables [41,42] which drive in nonlinear parametric form
the relativistic Ricci flows evolution of the 3-d hypersurface
metrics in a 4-d spacetime.

We conclude that the anholonomic frame deformation
method involved in our constructions can be applied to a
wide range in GR and MGTs [59,60,70–74] and generalized
geometric evolution models [19–21]. Such constructions are
more general and different from those elaborated in [75,76]
where Ricci flows were studied in connection with the stan-
dard black hole thermodynamics and possible extensions to
quantum diffusion and informational entropy.
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