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Abstract Little is known on soil organic carbon (SOC)

stocks in karst areas worldwide, although many of them have

seen long-term application of agroforestry systems with a

potential for carbon sequestration. Therefore, our study

aimed to assess landscape-level SOC concentration and

stock in the Silica Plateau, a part of the Slovak Karst Bio-

sphere Reserve located in the Western Carpathians (Slova-

kia) with a centuries-long agroforestry record. The most

represented local soil units are Chromi-Rendzic Leptosols

and Chromic Cambisols with clayey loam texture, C/N ratio

9–12, and pHH2O 6.6–6.2 in their organo-mineral surface

horizons. Mull surface humus form prevails under mixed

forest stands dominated by hornbeam (Carpinus betulus L.),

oak (Quercus petraea L.), and beech (Fagus sylvatica L.). A

total of 2,700 soil samples were collected from 150 soil pits.

Both SOC concentrations and stocks were determined for the

0–60 cm mineral soil layer. Soil stoniness was accounted for

by means of electrical resistivity tomography. According to

the analysis of covariance, cropland SOC concentration

(0.026 g g-1) is significantly lower compared to forestland

(0.040 g g-1) and pastureland (0.041 g g-1) (P \ 0.01).

During the period of 130 years after forest clearing, cropland

SOC stock has been reduced at an exponential decay rate of

ca 0.002 year-1, while the SOC stock in pastureland has

increased following land use change from cropland by

approximately 30% during the same period of time. Irre-

spective of land use history, overall SOC stock is high

reaching on average 207.4 Mg ha-1, out of which 66% are

stored within 0–30 cm and 34% within 30–60 cm soil layers.

Keywords Calcareous soils � Soil organic carbon � Soil

stoniness � Land use � Electrical resistivity tomography

Introduction

Soil organic carbon (SOC) is essential in determining the

physical and chemical properties of soils, as well as in the

sustenance of primary production in terrestrial ecosystems

and the process of trapping atmospheric CO2 (Santore et al.

1995; Post and Kwon 2000). Global soil organic matter

exceeds the sum of the atmospheric and biotic pools

(Bouwman and Leemans 1995; Schlesinger 1997; Lal

2004). Carbon stock in soils depends on geological sub-

strate, precipitation and temperature (Turrión et al. 2009;

Luo and Zhou 2006; Davidson and Janssens 2006), terrain

topography and microtopography (Bergstrom et al. 2001a;

Stoeckel and Miller-Goodman 2001; Eglin et al. 2008),
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land use and soil tillage (Baker et al. 2007), and other

factors, such as soil depth under consideration (Jobbágy

and Jackson 2000). The relative importance of these factors

is scale dependent (e.g. Bergstrom et al. 2001b; Corstanje

et al. 2007). Although carbon bound in the biomass may

exceed the amount of SOC stored within surface humus

and topsoil (0–50 cm) of European forest, the overall SOC

content is still very significant, ranging from ca 60 to

230 Mg ha-1 (Bauer et al. 2000).

The carbon balance results from C fluxes driven by

photosynthesis and respiration, the latter process being

dominated by root and microbial soil respiration (Valentini

2003). Generally, soil organic matter (SOM) mean resi-

dence time depends on SOM quality and the level of its

physical and chemical protection (e.g. Jenkinson and

Rayner 1977; Stevenson 1994; Sollins et al. 1996; Zaccone

et al. 2011). Consequently, ca 1,500 Pg of organic carbon

in the upper meter of mineral soils (Jobbágy and Jackson

2000) consists of several pools with characteristic turnover

times (Parton et al. 1987). Thus, approx. 200–300 Pg C in

SOM exist in forms that recycle during a century or less

(Schimel 1995; Potter and Klooster 1997), while the

remainder is stable on time scales of centuries to millennia

(Trumbore 2000). Harrison et al. (2000) reported SOM

mean resident times ranging from decades to several

100 years in European beech and spruce forests. Impor-

tantly, significant proportion of SOC found bellow 10 cm

was locked up in stable forms, illustrating the importance

of forest soils for the terrestrial carbon cycling in Europe in

comparison with the more vulnerable organic carbon stored

in agricultural soils and drained peats. The annual SOC loss

caused by changes in land use can be considerable,

although large variation exists in different parts of the

world (Bouwman and Leemans 1995). For example, while

forest management has little effect on SOC (Johnson and

Curtis 2001), soils of the world’s agroecosystems are often

depleted of their SOC pool by 25–75% depending on cli-

mate, soil type, and historic management (Lal 2011). On

the other hand, Montagnini and Nair (2004) estimated

average carbon storage by agroforestry practices at

63 Mg ha-1 in temperate regions, suggesting that agro-

forestry systems with perennial crops may be important

carbon sinks. Also, agroforestry systems involve trees or

shrubs, agricultural crop, and possibly pasture as their main

components (Mosquera-Losada et al. 2009), thus preserv-

ing their attractiveness from ecological and socio-eco-

nomic points of view (Franco et al. 2001).

However, few landscape-level SOC stock data sets are

available for agroforestry systems in karst areas, despite their

high representation in Europe and worldwide (e.g. Rivera

et al. 2000; Wang et al. 2004; Vidrih et al. 2009). In karst

areas, SOC stock calculations heavily depend on visual

stoniness assessment in the field, which may be uncertain.

For example, Wirth et al. (2004) established that soil stoni-

ness was overestimated by 40%, which would imply an

underestimation of SOC stock. Therefore, our study aimed to

quantitatively assess SOC stock and variability within a

temperate zone agroforestry system, as well as to estimate

the impact of past and present land use on SOC concentration

in a karst landscape, using electrical resistivity tomography

as a non-destructive auxiliary approach.

Materials and methods

Description of study area

Silica Plateau is located within the Slovak Karst Biosphere

Reserve in the Western Carpathians, Slovakia. Our experi-

ment was conducted within the area extending between

48�33051.2200 and 48�36026.6300N and 20�29033.8100 and

20�33003.3000E. The plateau is composed of impermeable

Lower Triassic sediments overlain by the Middle Triassic

limestone-dolomite complex that contain ca 2% of insoluble

remains, mainly illite, montmorillonite, feldspars, quartz,

and mica (Šály 1978; Mello et al. 1996). Area’s mean altitude

is approximately 600 m a. s. l. Silica Plateau falls to the

warm, moderately humid region with cold winter (Lapin

et al. 2002) with the mean annual air temperature 5.7–8.5�C

and annual average precipitation 630–990 mm (400–

595 mm during the vegetation period). Local soils are mostly

represented by Rendzic Leptosols, Chromi-Rendzic Lepto-

sols, and Chromic Cambisols (acc. to WRB; FAO 2006), the

latter being bound to accumulation positions. Both Rendzic

and Chromi-Rendzic Leptosols have pHH2O ffi 6:6 within 0–

40 cm. In Chromic Cambisols, pHH2O ffi 6:2. The C/N ratio

in soils ranges 9–12. Average cation exchange capacity in the

humus-rich topsoil reaches ca 450–500 mval kg-1 and it

decreases with depth. Concerned soil units fall into the

clayey loam textural class. The dominant clay mineral phase

in the clay fraction of the Silica soil is illitic material. Soils

depth ranges from 20 to 40 cm on ridges to more than 1 m in

accumulation positions (Kobza 1994; Šály 1994; Miko et al.

2003).

According to field survey, current forestland is covered

by mixed stands of common hornbeam (Carpinus betulus

L., 50%), sessile oak (Quercus petraea L., 30%), and

European beech (Fagus sylvatica L., 20%) that fall into

several alliances and sub-alliances, mainly Carici pilosae-

Carpinenion betuli, Quercion pubescentis-petraea, and

Cephalantero-Fagenion. Tree litter of the respective

broadleaved mixture has a comparatively low C/N ratio of

ca 44 due to the dominance of hornbeam tree litter (C/N

ratio % 34) (Bublinec 1994; Hättenschwiler and Gasser

2005). Occurrence of conifers (Picea abies K.; tree litter
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C:/N ratio % 50) is very limited (1–2%) and confined to

sink holes in the northern part of the plateau. The shrubland

vegetation belongs to several alliances, mainly the xero-

phytic Prunion fruticosae, represented by Prunus spp.,

mainly Prunus fruticosa with tree litter C/N ratio % 78

(Lorenz et al. 2004). Prunus spp. are accompanied by other

shrubs, notably Rosa galica L., Crataegus monogyna L.,

and Berberis vulgaris L. Pastureland is covered by peren-

nial grasses from the alliance Cynosurion cristati Tüxen

1947, for example, Festuca rupicola Heuff., Briza media

L., Lolium perenne L., and a smaller portion of legumes

(Trifolium repens L.). Avg. C/N ratio of the grassland

vegetation litter (approx. 45) is an estimate adopted from

Hegyhátsál (Hungary), botanically related and geographi-

cally close locality (Tomelleri 2007; Janišová et al. 2007).

The pastureland provides sustenance for roaming herds of

cattle and sheep. Their fresh feces and urine have C/N ratio

about 23 and 1, respectively (Kirchmann 1985). Cropland

has been used to produce cereal grains, mainly rye (Secale

cereale L.) and common oat (Avena sativa L.), whose C/N

ratio in the crop residues ranges 75–100 (Axmann et al.

1990), as well as alfalfa (Medicago sativa L.) with a much

lower crop residues C/N ratio % 13 (Troeh and Thompson

1993). Average annual addition of mineral N through fer-

tilization has been ca 20–100 kg ha-1 year-1 since 1967

(Rozložnı́k and Karasová 1994).

Land use history

The land cover mosaic has been changing during past

centuries, as documented by map surveys carried out in

1780, 1850, and 1880, as well as modern-time aerial pho-

tography data (1950) and current CORINE Land Cover

data (2010). The spatio-temporal changes reflect several

turning points, starting with the Great Turkish War that

played out mainly during the seventeenth century’s 2nd

half. The war caused significant decline in the population

density and land abandonment on the concerned territory

(Wessely 1973). As a result, large tracts of land survived as

forests or they were re-claimed by forests (Fig. 1a). By the

eighteenth century’s 2nd half, new clearings appeared

amidst continuous forests covering Silica Plateau owing to

population recovery and the return of refugees to the for-

mer war zone. Larger clearings were turned into cropland

and pastureland. During the 1st half of the nineteenth

century, the woodland cover was further reduced and

Fig. 1 Maps reproducing land

cover changes on the Silica

Plateau between 1780 and 2010
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converted into pastureland. By and throughout the nine-

teenth century’s 2nd half, less profitable soil tillage in the

more remote parts of Silica plateau gave way to the process

of secondary succession and forest restoration, and large

portion of cropland and forestland were converted to pas-

tureland. As a result, the area of pastureland and shrubland

had increased by 1950. Area-wise land cover developments

are captured by Table 1. For the purpose of further anal-

ysis, we included strongly fragmented shrubland into for-

estland because of uncertainties inherent to historical map

surveys and the tree species demography across the inva-

sion front. This front can extend ca 200 m from forest

boundary toward pastureland (Dovčiak et al. 2008).

Soil survey and sampling scheme

One hundred and fifty sampling points were obtained using

random numbers generator (Mathematica 8.1; Wolfram

Research, Inc., Champaign, IL) and projected on a rect-

angle area 3 km wide and 5 km long, designated within the

Silica Plateau. At each point, soil depth and stoniness were

surveyed by electrical resistivity (ER) tomography (ARES,

GF system, Brno, Czech Republic) and subsequent imaging

of soil/bedrock interface. ER (X-m) was acquired by an

arrangement of 32 electrodes with a spacing of 0.8 m

according to Rey et al. (2006). The processing and recon-

struction of 2-D resitivity profiles was implemented in

RES2DINV program (Geotomo Software, Gelugor,

Malaysia). Coarse fragments content (hereinafter also

referred to as stoniness), needed for the establishment of

the corresponding calibration relationship with ER, was

determined on six soil profiles, which were prepared by a

specially designed sledge-hammer-driven spade. The pro-

files were photographed and the photographs were cor-

rected for geometric distortion. Area occupied by rocks

was determined by image analysis, that is, color-based

segmentation using the minimum average pixel classifica-

tion error (Kittler and Illingworth 1986) according to the

routine in Mathematica Digital Image Processing 1.1

(Wolfram Research, Inc., Champaign, IL). Stoniness

within concerned soil depth (0–60 cm) was determined as

the sum of: (1) the relative volume of stones (20–200 mm)

and boulders ([200 mm), which is proportional to their

relative area on the profile wall in soil pits (Folk 1951;

Alexander 1982), previously established by the image

analysis; (2) the volume of gravel (2–20 mm). It was

measured in undisturbed soil samples (200 cm3), also

collected for the determination of fine earth bulk density.

They were taken from fifteen profiles representing all land

covers (cropland, pastureland, and forestland) at 6 depths

(10, 20, …, 60 cm). Mineral soil samples for SOC deter-

mination were taken from profiles exposed by pick, spade

and shovel on all 150 points. Samples were carved out from

six layers (0–10, 10–20, …, 50–60 cm) by means of knife

with triple replication along vertical lines, 20 cm apart.

Samples weighing ca 500 g were collected in plastic bags.

A total of 2,700 samples were collected.

Soil analyses

Soil samples were air-dried, ground, and passed through a

2-mm mesh sieve. Visible plant residues, gravel, and stones

were removed manually with a pair of tweezers, while the

small root fragments were removed by electrostatically

charged stick (Kuzyakov et al. 2001). The C and N con-

tents in the fine earth (\2 mm) were determined by Vario

MACRO Elemental Analyzer (CNS version, Elementar

GmbH, Hanau, Germany), which employs the dry com-

bustion (DC) method. Because elemental analyzer provides

total carbon contents, inorganic C content was measured

separately for each sample by a volumetric device (Fiala

et al. 1999) and subtracted from the total carbon in order to

obtain SOC mass concentration [M M-1]. The commen-

surability of our SOC concentration analysis with a dif-

ferent method under site-specific conditions was assessed

by comparing our preliminary forestland SOC concentra-

tion values, determined by DC method (SOCCDC,

n1 = 12), with the full set (n2 = 12) of forestland SOC

concentrations (SOCCWO), previously obtained in the area

of interest and available in Šály (1994). SOCCWO were

determined by a wet oxidation (WO) titrimetrical method

according to Tyurin (1931; also see Kononova 1966). To

assess the difference between the two sample means (avg.

SOCCDC = 0.40, SD: 0.02; avg. SOCCWO = 0.36, SD:

0.02), the t test (Sokal and Rohlf 1995) was applied to both

data sets with and without the application of general con-

version coefficient between DC and WO methods compiled

by Jankauskas et al. (2006). Based on the test results,

alternative hypothesis about significant difference between

sample means was rejected (P = 0.83–0.57).

Because we knew bulk density and volume of the soil

(i.e., fine earth plus soil pores, without coarse fragments

with diameter [ 2 mm), SOC stock was computed by

summing up the C content in all six 10 cm layers at each

sampling point according to

Table 1 Land use changes in the Silica Plateau according to his-

torical, recent, and current surveys

Land cover Area according to land use (%)

1780 1850 1880 1950 2010

Forestland 64.0 68.0 30.0 19.3 54.0

Shrubland 3.3 0.7 0.0 16.7 12.0

Pastureland 6.0 20.7 59.3 56.7 26.0

Cropland 26.7 10.7 10.7 7.3 8.0
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SOCS ¼
X6

i¼1

BDi � SOCCi � di � ð1� cfiÞ; ð1Þ

where SOCS, BDi, SOCCi, di, and cfi, are, respectively,

SOC stock [M L-2], soil bulk density [M L-3], SOC

concentration [M M-1] in layer i, ith layer thickness [L],

volumetric fraction of coarse fragments in layer i [L3 L-3].

Similar relationships were used by Rodrı́guez-Murillo

(2001), Stevens and van Wesemael (2008) and others.

Data evaluation

Differences among average soil bulk densities according to

land cover were assessed by ANOVA, including Tukey-

HSD post hoc comparison test. The analysis of covariance

(ANCOVA) (Sokal and Rohlf 1995) was used to evaluate

the effect of historical and current land covers on SOC

concentration, in that land cover and stoniness entered the

analysis as categorical (predictor) and continuous (con-

founding) variables, respectively. Average SOC stock

(Mg ha-1) was calculated for the whole area of interest

based on all sampling points and whole soil profiles

(0–60 cm). All analyses were performed within Statistica 9

(StaSoft, Inc., Tulsa, USA). Furthermore, we used the

method of chronosequences by calculating the rates of

SOC stock depletion or recovery following two land use

changes (LUC) (1) from forestland to cropland and (2)

from cropland to pastureland for points featuring similar

soil depths and stoniness. Because two military surveys

(1850 and 1880) were separated by just 30 years, we

omitted the 1850 map and data, as capturing transition

rather than at least temporary steady state in further

analyses.

Results and discussion

Soil depth, stoniness, and bulk density

Soils depth and stoniness were instrumental to our study.

Both variables were surveyed using the relationship

between ER and stoniness. The relationship was fitted by a

decadic logarithm function (Fig. 2) with corresponding

root-mean-square error. Our calibration corresponds well

to data provided by Marescot (2006), who gave ER about

1,000 X-m and above for limestone materials. Examples of

soil profiles featuring near-zero and high skeleton contents

are given in Fig. 3.

Leaning on the calibration, our ER tomography survey

revealed coarse fragments content across the entire area

(Fig. 4). Such an irregular distribution is typical of karstic

surfaces that include both erosive and accumulation

positions such as rocky slopes and ridges, grike fields,

dolines, sinkholes, and other characteristic features. The

comparison between Figs. 1a–e and 4 illustrates a corre-

spondence between extensively (forestland and pasture-

land) or intensively (cropland) managed land covers on one

hand, and stony or finely grained soil patches on the other

hand. Such overlap patterns are common to land use and

forest cover histories in Europe (Pichler et al. 2011).

Obviously, the non-destructive survey provided a sound

and less labor and time-consuming alternative to quanti-

tative soil pits method, which could not be applied due to

the large volume of stones and boulders.

Soil bulk density for distinct land covers is given in

Table 2. The bulk density increases with soil depth and

from forestland to cropland due to higher SOC concen-

tration in the topsoil and in forest soils. Also, coarse

fragments below the soil surface, abundantly present in

forestland and, to a lesser degree, in pastureland, support

the existing soil structure and reduce soil compactibility

(Poesen and Lavee 1994).

SOC stock and variability

Our SOC stock calculation was based on a calibrated

stoniness–ER relationship. The stock within the 15 km2

area of interest averaged 207.4, 136.8, and 70.7 Mg ha-1

in 0–60, 0–30, and 30–60 cm soil layers, respectively. This

high amount of organic carbon (e.g., 103.3 Mg ha-1 within

0–20 cm layer) fell slightly above the 75% CI for the mean

SOC stock calculated for Rendzic Leptosols (also within

0–20 cm), but well below the maximum value

126.3 Mg ha-1 (Baritz et al. 2010). This is probably due to

the role of Ca2? in the cation bridging of organic colloids,

condensation and stabilization of organic matter (Oades

Fig. 2 Coarse fragments content (CFC) versus electrical resistivity

(ER) fitted by a decadic logarithm function (CFC = -0.99 ? 0.49

log10 ER; root mean square error: 1.9 9 10-2)
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1988), formation of thin carbonate coatings on particulate

organic matter (Duchaufour 1976), and SOM physical

protection from decomposition through cementation of soil

aggregates by CaCO3 (Oyonarte et al. 1994). Average SOC

concentration in Silica soils was 0.039 g g-1 (range:

0.015–0.077 g g-1), 0.049 g g-1 (range: 0.019–0.105 g g-1),

and 0.027 g g-1 (range: 0.006–0.070 g g-1) for 0–60, 0–30,

and 30–60 cm, respectively. These are comparatively high

values, but lower than 0.050–0.150 g g-1 as found in tropical

semiarid calcareous soils of northwestern Yucatán, Mexico

(Shang and Tiessen 2003). However, the latter work provides

certain analogy to our results, in that higher SOC concen-

trations were found in shallow black lithosols surrounding

rock outcrops, while lower SOC concentration was usually

established in deeper red rendzinas at slightly lower relief.

Also, despite increasing soil respiration rates, greater bio-

logical activity in limed soils leads to plant C inputs being

processed and incorporated into resistant soil organo-mineral

pools (Fornara et al. 2011). However, the variation of SOC

stock within the relatively small study area was considerable

with a SD of 85.7 Mg ha-1. This formidable variability,

resulting from highly variable SOC concentration, rock

fragments content, bulk density, and land cover could explain

the rareness of SOC stock estimates from karstic soils.

Fig. 4 Soil stoniness distribution on the Silica Plateau produced by

the modified Shepard’s method (Franke and Nielson 1980) from all

150 points

Table 2 Average soil bulk densities (BD) and corresponding stan-

dard deviations calculated from 5 undisturbed samples (200 cm3) for

each land cover

Soil depth (cm) Forestland Pastureland Cropland

BD SD BD SD BD SD

(Mg m-3) (Mg m-3) (Mg m-3)

0–10 1.21a 0.03 1.38a,b 0.05 1.58b 0.14

10–20 1.27a 0.03 1.39b 0.03 1.60c 0.02

20–30 1.33a 0.05 1.41a 0.02 1.62b 0.09

30–40 1.39a 0.04 1.42a 0.02 1.64b 0.09

40–50 1.44a 0.03 1.43a 0.04 1.66b 0.10

50–60 1.51a 0.07 1.44a 0.11 1.69b 0.10

Distinct superscript letters associated with BDs for the same depth

indicate significant differences (P \ 0.05) among BD means, as

established by ANOVA and Tukey-HSD post hoc comparison test

Fig. 3 Laterally homogeneous,

low-electrical resistivity (ER)

profile taken in a karst ‘‘polje’’

position (profile 1) and

heterogeneous, high-ER profile

taken in ridge position (profile

2)
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SOC concentration in the fine earth according to land

cover

To assess SOC dependence on land cover, we preferred to

analyze SOC concentration instead of SOC stock, because

calculation of the latter variable involves strongly fluctu-

ating stoniness and, to a lesser degree, soil bulk density.

Intrinsic connection between SOC concentration and

stoniness is implicitly assumed by various authors, but it

was directly suggested only by few, for example, Schaetzl

(1991) and Tate et al. (2005). In addition, stoniness and

land use were linked through the process of land allocation

for specific uses. In fact, dispersion of SOC concentration

in cropland was limited because soil tillage was confined to

the least stony soils. This is obvious from Fig. 5, which

reproduces the location and distribution of SOC concen-

tration according to land cover. Existing collinearity

among SOC concentration, land cover, and stoniness

(Figs. 5, 6) was controlled for and handled by ANCOVA,

in which land cover, stoniness, and SOC concentration

represented categorical variable (fixed factor), continuous

(confounding) variable, and dependent variable, respec-

tively. The results of ANCOVA, as performed for land

cover mosaics representative of four different periods of

time, are given in Table 3.

The analysis of covariance suggests that SOC concen-

tration imprint of current (2010) land cover is significant in

that SOC concentration in cropland (0.026 g g-1) is lower

compared to forestland (0.040 g g-1) and pastureland

(0.041 g g-1) (P \ 0.01 according to ANCOVA, including

the Tukey-HSD post hoc test). Šamonil (2007) reported

similar SOC concentrations (ca 0.04 g g-1) in Rendzic

Leptosols under forest fragments covering parts of the

Bohemian Karst. In our study, the effect of the most recent

land cover was also detected in the subsoil (30–60 cm)

(P \ 0.05). Although similar effect of the previously

recorded land cover (1950) probably still persists

(P \ 0.13), the probability fell sharply for older periods of

time (P \ 0.24, 0.47) owing mainly to more frequent land

use swaps between cropland on the one hand and forestland

or pastureland on the other hand. Thus, expectedly, the

supposed effects of land use on SOC concentrations, for

example, due to soil tillage in the NW part of the area of

interest back in 1780 (Fig. 1a), have become intractable

due to SOC recovery following secondary forest succession

or grazing. Because SOC concentrations under forestland

and pastureland have been almost identical in the Silica

soil, our investigation confirms that the general assumption

about the capacity of both forestland and pastureland to

retain more SOC compared with cropped land use (e.g.

Martens et al. 2003) is also valid for karstic soils. Stark

contrast between cropland and the two remaining land

covers also shows in the vertical distribution of SOC

concentration (Fig. 7), which was satisfactorily fitted by an

Fig. 5 Histogram of depth-averaged soil organic carbon concentra-

tions in the fine earth according to land cover

Fig. 6 Linear relationship (solid line) between soil organic carbon

concentration in the fine earth (SOCC) and soil coarse fragments

content (CFC); dashed lines show 95% CI

Table 3 Analysis of covariance of the soil organic carbon concen-

tration in the fine earth according to land cover (fixed factor) and

stoniness (confounding variable); df—degrees of freedom, g2—partial

eta-squared

Period of time Factor df F-ratio P g2

1780 Land cover 2 0.76 0.47 0.01

Stoniness 1 36.99 0.00 0.20

1870 Land cover 2 1.45 0.24 0.02

Stoniness 1 37.04 0.00 0.20

1950 Land cover 2 2.11 0.13 0.03

Stoniness 1 34.10 0.00 0.19

2010 Land cover 2 5.12 0.01 0.07

Stoniness 1 33.14 0.00 0.18

g2 = SStreatment/(SStreatment ? SSerror); SS—sum of squares
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exponential function, usually applied in similar studies

(e.g. Bernoux et al. 1998).

Soil organic carbon stock depletion, recovery,

and reallocation

To achieve a more reliable and conservative comparison

between SOC stocks under certain land cover histories, we

only considered SOC stocks within 0–60 cm for points

with stoniness ? 0. Respective SOC stocks under these

constraints are given in Table 4.

The data provide an opportunity to assess the rate of

SOC stock depletion or recovery due to forestland ?
cropland and cropland ? pastureland LUCs, respectively,

during the last 130 years. Since the LUC (1880), the

respective Silica cropland soil has lost ca 25% of its initial

SOC stock, which is less than an average of 32% after only

23 years, based on several studies evaluated by Poeplau

et al. (2011). This was probably owing to the high initial

SOC stock, and its effective clay and silt protection in the

Silica soil, but also because available studies were mostly

concerned only with to the topsoil (approx. 0–30 cm),

where the relative loss was probably more pronounced and

faster. Although statistical significance could not be

established due to small number of observations, we can

use exponential decay model (Olson 1963) to assess the

rate of SOC stock depletion between land use histories 1

and 2 (Table 4):

dSOCSt

dt
¼ kSOCSt ð2Þ

SOCSt ¼ SOCS0ekt ð3Þ

tk ¼ ln
SOCSt

SOCS0

� �
ð4Þ

In (2–4), SOCSt represents SOC stock at a time t counted

from forestland ? cropland LUC in 1880, k is the expo-

nential rate of decay, and SOCS0 is the initial SOC stock

(land use history No. 1 acc. to Table 4). From Table 4 and

(4), we obtain k = 0.002 year-1, which is at the bottom of

the range compiled by Tiessen et al. (1982). The reasons for

tillage-induced SOC depletion include reduced litter inputs,

increased soil aeration, and the loss of silt and clay protected

C (Six et al. 2002). Also, the input of nutrients from crop

residues and fertilization affected the soil biogeochemical

cycle. Average C/N ratio in cropland soil (10) was signifi-

cantly lower (P \ 0.05) than in forestland and pastureland

soils (12). Although the inputs of the organic C and N

strongly contributed to this difference, the particular role of

N in SOC dynamics depends on N input rate, initial SOC

content, and lignin input to soils. Under low to moderate N

input, for example, 40–100 kg N ha-1 year-1, SOC con-

centration slightly increased or remained constant during

several years of fertilization (e.g. Nyborg et al. 1995; Dijk-

stra et al. 2004; Šimon 2008). As opposed to that, fertilization

rates beyond crop N requirements promotes SOC decline

(Khan et al. 2007). Given relatively low to moderate amounts

of mineral N added to the Silica Plateau cropland soils

(20–100 kg ha-1 year-1), we speculate that fertilization did

not play dominant role in their SOC dynamics.

Table 4 also demonstrates SOC stock recovery after LUC

from cropland to pastureland. The observed, moderate rise

in SOC stock was probably sustained and affected by mul-

tiple factors. First, above- and below-ground litter, as well

livestock feces may provide sufficient amount of C to

maintain SOC stock in pastureland on levels similar to

forestland (Takahashi et al. 2007). Besides, grazing nor-

mally leads to greater root allocation of C in the perennial

plants (e.g. Briske et al. 1996; Stewart and Metherell 1999).

Finally, SOC accumulation in pastureland may be supported

by comparatively high resistance of humic acids from per-

manent meadows soils to microbial degradation reported by

Filip and Tesařová (2005). On the other hand, SOC stock

rise in pastureland was slow: it increased by only ca 30%

during 130 years. It means that the corresponding rate of

recovery was only about one-fourth of the average rate

reported by Poeplau et al. (2011). Although SOC stock in

pastureland has eventually reached forestland levels, it is

Fig. 7 Exponential function fitted on soil organic concentration in

the fine earth according to land cover and soil depth

Table 4 Soil organic carbon stock in the fine earth within 0–60 cm at

points with similar soil depth (±60 cm) and stoniness (0.0–0.1 m3 m-3)

Land use

history

no.

Chronosequence 1780, 1880,

1950, 2010 (F-forestland,

C-cropland, P-pastureland)

Number

of points

SOC stock

(Mg ha-1)

1 F1780, F1880, F1950, F2010 5 307.4

2 F1780, C1880, C1950, C2010 3 230.7

3 C1780, C1880, C1950, C2010 6 239.7

4 C1780, P1880, P1950, P2010 6 313.5
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also possible that its slower-than-expected rise and the low

rate of SOC depletion in cropland have been mutually

related through erosive losses and subsequent accumulation.

Erosion was reported to play important role in local SOC

depletion (e.g.Voroney et al. 1981; Kimble et al. 2001;

Schwanghart and Jarmer 2011). In our case, a portion of the

C-rich topsoil material from grazed patches in the ridge and

slope positions was likely transported to terrain depressions,

mainly sinkholes and dolines. Thus, erosive losses and

accumulation within the Silica Plateau affect not only soil

depth (Miko et al. 2003), but most likely also contribute to

the observed spatio-temporal variability of SOC stock.

Conclusions

The application of electrical resistivity tomography, lean-

ing on the electrical resistivity—stoniness calibration,

allowed us to acquire a detailed overview of the coarse

fragments distribution over a 15 km2 area located on the

top of the Silica Plateau in the Slovak Karst Biosphere

Reserve. Combined with SOC concentration data obtained

from 150 sampling points, it was possible to assess land-

scape-level SOC stock contained in the mosaic of local

Rendzic Leptosols, Chromi-Rendzic Leptosols, and Chro-

mic Cambisols. Our estimates confirm that calcareous soils

have the capacity to maintain high SOC stocks even under

centuries-long agroforestry management that has resulted

in a temporally very dynamic mixture of forestland, pas-

tureland, and cropland. When averaged over the entire

area, SOC stock reached ca 200 Mg ha-1 within 0–60 cm

layer, but its spatial variability was at the same time also

exceptionally high with 43% coefficient of variation.

Therefore, it would have hardly been possible to achieve

the study goals by the quantitative pits method or similar.

Despite the variability of stoniness, ANCOVA revealed the

effect of land use on the SOC concentration. While for-

estland and pastureland featured practically identical SOC

concentrations of about 0.040 g g-1, the concentration in

cropland was 0.026 g g-1. The chronosequence analysis

indicates that the crop production has been reducing SOC

stock at a comparatively low rate of ca 0.002 year-1 and

that the grazing regime has restored SOC stock back to the

forestland level. It appears that favorable SOC retention

properties of the calcareous soils provide a broad maneu-

vering space for land managers in order to use temperate

zone agroforestry approaches for offsetting SOC depletion

or even achieving SOC accumulation.
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regions. In: Miklós L, Maráky R, Klinda J (eds) Landscape atlas

of the Slovak Republic. Ministry of Environment of the Slovak

Republic Bratislava, Slovakia

Lorenz K, Preston CM, Krumrei S, Feger KH (2004) Decomposition

of needle/leaf litter from Scots pine, black cherry, common oak

and European beech at a conurbation forest site. Eur J For Res

123:177–188. doi:10.1007/s10342-004-0025-7

Luo Y, Zhou X (2006) Soil respiration and the environment.

Academic Press/Elsevier, London/San Diego
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logical map of the Slovak Karst]. Geological Service of the

Slovak Republic, Bratislava
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