
ORIGINAL RESEARCH

Solving a bi-objective mathematical model for location-routing
problem with time windows in multi-echelon reverse logistics
using metaheuristic procedure

V. R. Ghezavati1 • M. Beigi1

Received: 7 November 2015 / Accepted: 7 June 2016 / Published online: 25 June 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract During the last decade, the stringent pressures

from environmental and social requirements have spurred

an interest in designing a reverse logistics (RL) network.

The success of a logistics system may depend on the

decisions of the facilities locations and vehicle routings.

The location-routing problem (LRP) simultaneously

locates the facilities and designs the travel routes for

vehicles among established facilities and existing demand

points. In this paper, the location-routing problem with

time window (LRPTW) and homogeneous fleet type and

designing a multi-echelon, and capacitated reverse logistics

network, are considered which may arise in many real-life

situations in logistics management. Our proposed RL net-

work consists of hybrid collection/inspection centers,

recovery centers and disposal centers. Here, we present a

new bi-objective mathematical programming (BOMP) for

LRPTW in reverse logistic. Since this type of problem is

NP-hard, the non-dominated sorting genetic algorithm II

(NSGA-II) is proposed to obtain the Pareto frontier for the

given problem. Several numerical examples are presented

to illustrate the effectiveness of the proposed model and

algorithm. Also, the present work is an effort to effectively

implement the e-constraint method in GAMS software for

producing the Pareto-optimal solutions in a BOMP. The

results of the proposed algorithm have been compared with

the e-constraint method. The computational results show

that the e-constraint method is able to solve small-size

instances to optimality within reasonable computing times,

and for medium-to-large-sized problems, the proposed

NSGA-II works better than the e-constraint.

Keywords Reverse logistics network � Location-routing
problem � Time window � Bi-objective model � e-Constraint
method � NSGA-II

Introduction

During the last decade, growing attention has been paid to

reverse logistics network design (RLND), which focuses on

the backward network. RLN is utilized to pick up or col-

lection, transportation and recycling of used products or

end-of-life (EOL) goods by the consumers, such as elec-

tronic goods recycling (Hyunsoo et al. 2009), hazardous

waste products recycling (Samanlioglu 2013), empty and

aluminum soft-drink bottles recycling (Privé et al. 2006),

paper recycling (Patia et al. 2008).

RLND generally refers to activities such as collection,

inspection/separation, recovery, repair, recycling, reman-

ufacturing or re-processing, disposal and re-distribution of

the used products. Various researchers classified the

reverse logistic process differently. Many logistic net-

works aim to decide on issues such as (1) locations for

depots (2) allocation of customers to each established

facilities, and (3) transportation networks connecting

customers to facilities by vehicle routing. (4) Inventory

management of goods on facilities. Nowadays, the com-

bined two or more problem has been considered. The

problem, which deals with combines the facility location

problem (FLP) and the vehicle routing problem (VRP)

decisions, is known in operations research context as the

location-routing problem (LRP). According to Vidović

et al. (2016) and Prodhon and Prins (2014), the LRPs can

& V. R. Ghezavati

v_ghezavati@azad.ac.ir

1 School of Industrial Engineering, Islamic Azad University,

South Tehran Branch, Tehran, Iran

123

J Ind Eng Int (2016) 12:469–483

DOI 10.1007/s40092-016-0154-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81713111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-016-0154-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-016-0154-x&amp;domain=pdf


be classified based on the different aspects, such as single

or multiple echelons, hierarchical structure, number of

facilities, number and types of vehicles, homo-/heteroge-

neous fleet, (un) limited/(un)capacitated fleet, facility

capacity, type of input data, nature of demand, planning

horizon, time windows, number of objective functions,

route structure, solution space, and solution method. In

this paper, we have utilized a bi-objective capacitated

location-routing problem with soft time window

(LRPTW) and with four layers (e.g., collection and

inspection centers, recycling centers, disposal centers and

customers) in reverse logistics and heterogeneous vehicle

fleet with capacity. Also, the turn of the customer is

considered that it has not been seen, previously, in the

literature. A predefined percent of demand from each

customer is assumed as returned products, and a prede-

fined value is determined as an average scrap fraction.

The model determines which depots should be opened (or

established) in all echelons and identifies the collection

routes from the collection centers to the customers with

considering the turn of customer in first echelon.

LRP deals with determining the location of facilities and

the routes of the vehicles for serving the customers under

some constraints, such as facility and vehicle capacities,

route time, to minimize total cost including transportation

costs, vehicle fixed costs, facility location fixed costs,

recycling centers operating costs and penalty cost and to

satisfy demands of all customers by minimizing total time

as second objective function. Notably, these two objective

functions are in conflict with each other. This means that an

increase in one objective leads to a decrease in another one;

therefore, optimizing the network involves a trade-off

between these two objectives. Furthermore, a complete

sensitivity analysis is presented to investigate this model

from different perspectives.

So, the main contributions of this paper that differentiate

our efforts from those already published on this issue can

be summarized as follows: (1) We introduce a new for-

mulation of the CLRPTW, in which vehicle routing is

considered in first echelon and facilities location is con-

sidered for collection and inspection centers, recycling

centers. (2) We support both collection and inspection

processes in one facility for reducing cost. (3) Allow to

trade off between two important objectives in this area, i.e.,

the total costs and the total network responsiveness by

reducing maximum traveling time to offer different com-

promise efficient solutions to the decision makers. (4) We

consider turn of the customer, the soft time window with

penalty cost and the load of vehicles after leaving every

node of customer in our LRP. (5) We propose exact solu-

tion in GAMS for solving small-size instances and meta-

heuristic solution methods, non-dominated sorting genetic

algorithm II (NSGA-II), based on the new formulation,

providing the means to solve large-size instances, and to

compute tight gaps for small instances.

The remainder of this paper is organized as follows. The

brief surveys’ literature on the CLRP and related problems

are defined in ‘‘Literature review’’. The problem definition

and proposed bi-objective mathematical formulation are

elaborated in ‘‘Problem description and mathematical for-

mulation’’, and the proposed algorithm is explained in

‘‘Multi-objective optimization’’. Computational experi-

ments are presented and analyzed in ‘‘Comparative meth-

ods’’, and finally, the summary of conclusions is explained

in ‘‘Computational experiments’’.

Literature review

The first article where location and routing decisions were

simultaneously studied dates back to 1968 and early 1980s.

One of the first author group to analyze a LRP was Karp

et al. (1972); few surveys on location-routing problems

have been presented in the literature.

A good recent review on it can be found in Prodhon and

Prins (2014), but several efforts have been published by

Lopes et al. (2016), Laporte (1988), Gao et al. (2016),

Zhalechian et al. (2016), Min et al. (1998). For detailed

information about classification for the LRP; Laporte

(1988) is the first researcher who classifies the LRP mod-

els. Min et al. (1998) proposed a classification for the LRP

based on the solution methods, and the problem perspec-

tive, such as the number of depots, the presence of

capacity, the form of the objective function, etc. Nagy and

Salhi (Vidović et al. 2016), is based on the LRP models,

solution approaches and application areas.

In this paper, we consider LRP with time window

(LRPTW) in multi-echelon reverse logistic network which

is a general case of the LRP by considering time window

for vehicles while picking up demands of each customer.

Some recent articles of LRPTW are Fazel Zarandi et al.

(2013), Govindan et al. (2014). The terms multi-echelon or

NE-echelon VRP/LRP are, in fact, first used in (Gonzalez

Feliu et al. 2008). There are only a few papers on systems

with more than two echelons in LRP/CLRP. Lee et al.

(2010) study a three-echelon LRP with routing decisions on

the first and third echelon. They consider capacitated

facilities on levels 1–3 and fixed costs for opening facilities

on levels 1 and 2. Two MIP models are developed. They

consider the routing problems on echelons 1 and 3. A

heuristic algorithm is presented by them. Contardo et al.

(2012) introduced two algorithms to address the two-ech-

elon CLRP (2E-CLRP). They proposed a branch-and-cut

algorithm based on the new formulation, and a new

adaptive large-neighborhood search (ALNS) meta-heuristic

with the objective of finding good-quality solutions
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quickly. But there are many papers with two or more than

two echelons in RLN. Krikke et al. (1999) designed a

MILP model for a two-stage reverse logistics network of a

copier manufacturer. In this model, the processing costs of

returned products and inventory costs are considered in the

objective function.

Travakkoli-Moghaddam et al. (2013) considered a sin-

gle-sourcing network design problem for a three-level

supply chain. Their model considered risk-pooling, the

inventory existence at distribution centers (DCs) under

demand uncertainty. Yousefikhoshbakht and Khorram

(2012) presented a hybrid two-phase algorithm called

sweep algorithm (SW) and ant colony system (ACS) for

the classical VRP. At the first stage, the VRP is solved by

the SW, and at the second stage, the ACS and 3-opt local

search are used for improving the solutions.

Reverse logistics network design includes determining

numbers, locations, and capacities of collection, recovery,

and disposal centers, and the quantity of flow between

them. Reverse logistics networks have special character-

istics such as important role of collection/inspection cen-

ters that we consider in our LRP. Since return products

have different qualities, they have different potentials for

recovery activities, too. After testing in collection/inspec-

tion centers, return products are divided into recoverable

and scrapped products to prevent excessive transportation

and to ship the return products directly to proper facilities.

Aras et al. (2008) develop a nonlinear model for deter-

mining the locations of collection centers in a simple

reverse logistics network. The important point regarding

their article is the capability of the presented model in

determining the optimal buying price of used products with

the objective of maximizing the total profit. They devel-

oped a heuristic approach based on tabu search to solve the

model. Patia et al. (2008) proposed a mixed integer goal

programming (MIGP) model to assist in proper design of a

multi-product paper recycling logistics network. The model

studies the interrelationship between multiple objectives of

a recycled paper distribution network. The considered

objectives are reduction in reverse logistics cost; product

quality improvement through increased segregation at the

source.

Within the literature reviewed, some works that con-

sidered a multiple objective approach for the LRP were

found. Caballero et al. (2007) studied a capacitated LRP to

locate a given number of incineration plants for solid ani-

mal waste in different cities. Five objectives must be

minimized: (1) the total cost of the routes, (2) the total

opening cost of selected plants, (3) a social rejection

measure based on the number of inhabitants in the cities

traversed by the routes, (4) an equity criterion (the maxi-

mum social rejection over the set of cities), and (5) another

social rejection measure taking the distances between

incineration plants and cities into account. They used an

adaptative memory procedure (MOAMP) for the resolution

of multi-objective combinatorial problems (MOCO).

Lately, Hua-Li et al. (2012) presented a bi-level linear

programming model for a bi-objective CLRP with a time

window to rescue each customer, raised by emergency

situations at the city level. Two objectives are considered.

The first one is minimiztion of total cost and the second one

is maximizing service level. A genetic algorithm is pro-

posed to solve the problem.

Samanlioglu (2013) proposed a mathematical model for

a three-objective (one economic and two social criteria)

two-stage LRP, for an industrial hazardous waste man-

agement system in a region of Turkey. They considered

recycling and disposal centers in their network. They used

a lexicographic weighted formulation to obtain 16 different

representative Pareto-optimal solutions.

Applications and numerous solution methods varying

from exact to heuristic and metaheuristic approaches have

been proposed to solve the LRP. Among many solution

procedures, only a few of them are presented here, as

follows. Berger et al. (2007) consider the uncapacitated

LRP with route length constraints in their study, and they

propose a branch-and-price algorithm to solve the problem.

The heuristic proposed by Barreto et al. (2007) begins by

clustering customers according to the capacity of the

vehicles. Then, for each cluster, a TSP is solved—opti-

mally for small clusters and heuristically, using the savings

method and 3-opt, for large clusters. Finally, depot loca-

tions are found by treating each tour as a single customer.

They considered integration of several hierarchical and

non-hierarchical clustering methods in addition to several

proximity measures to solve the General deterministic

LRP. They compared the results of running their procedure

on standard LRP datasets, and results were analyzed. Dif-

ferent metaheuristic approaches have also been proposed in

the literature to solve larger LRPs. Prins et al. (2006)

proposed a memetic algorithm with population manage-

ment (MA|PM) to solve the LRP with capacitated routes

and depots. MA|PM is a very recent form of memetic

algorithm in which the diversity of a small population of

solutions is controlled by accepting a new solution if its

distance to the population exceeds a given threshold. Yu

et al. (2010) implement a simulated annealing heuristic

(SA) for the CLRP. Each solution is encoded as a list

containing one sublist per depot. Each sublist begins with

the index of the depot, followed by its routes separated by

dummy zeros. The random moves performed are: reloca-

tions of a node, exchanges of two nodes, and 2-opt moves.

The nodes involved can be customers, dummy zeros and, in

relocations and exchanges, depot nodes. These nodes may

belong to the same route, to two routes rooted at the same

depot, or to routes from distinct depots. The 2-opt moves
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are restricted to nodes visited from the same depot. An

iterative local search (ILS) by embedding it in a genetic

algorithm (GA) is described by Derbel et al. (2012) to solve

LRPs. The result GA-ILS is a kind of memetic algorithm in

which the local search procedure is replaced by ILS. In

another attempt to solve LRPs with metaheuristics, Rath

and Gutjahr (2011) consider a three-objective warehouse

location-routing problem (WLRP) to establish a supply

system after a disaster. This WLRP is a kind of two-ech-

elon LRP with plants, warehouses to be located, and cus-

tomers. The aim is to minimize the strategic cost (total

opening cost of warehouses), to minimize an operative cost

(transportation costs from plants to depots and warehousing

costs proportional to the throughput of each open ware-

house) and to maximize a service measure (total demand

satisfied). A metaheuristic based on the epsilon-constraint

method is used to compute the Pareto frontier. Each single-

objective problem is solved by a metaheuristic based on a

mixed integer formulation. Constraints are generated on

demand by a variable neighborhood search algorithm and

stored in a constraint pool. Results are compared to those

obtained by a direct resolution of the mixed integer pro-

gram (on small instances) or by the classical NSGA-II

metaheuristic (on larger instances). They indicate that the

proposed solution method gives very good solutions.

Problem description and mathematical
formulation

The reverse logistics network discussed in this paper is a

multistage logistics network including customers, collec-

tion/inspection, recycling, and disposal centers with limited

capacities. As shown in Fig. 1, returned products are col-

lected from customer zones into collection/inspection

centers and after inspection; they are divided into recov-

erable products and scrapped products. The recoverable

products are carried to the recycling centers, and scrapped

products are sent to the disposal centers. The authors

implement a CLRPTW in a multi-echelon reverse logistics

network. The location-routing problem (LRP) can be

defined in this paper as follows. An applicative set of

potential collection/inspection, and recycling centers loca-

tions and amount of return product of each customer is

given. The LRP is to determine the location of facilities

and the vehicle routes from facilities to customers to satisfy

the objectives of the given problem. The objective of this

location-routing problem in RLN is to choose the location

and to determine the number of collection/inspection and

recycling centers and to determine the quantity of flow

between the network facilities.

Problem assumption

• All of the returned products from clients must be col-

lected at the collection centers.

• Each vehicle starts at a depot, visits a set of customers

on a route, and returns to the same depot.

• Each customer is served by one vehicle in exactly one

turn and should be assigned to only one open collec-

tion/inspection centers.

• Locations of customers and disposal centers are fixed

and predefined.

• The total returned products of clients on each route is

less than or equal to the capacity of the vehicle assigned

to that route.

• The sum of the returned products of the customers

assigned to each collection/inspection center must not

exceed its corresponding capacity.

• Recycling centers have limited capacity.

• A single type of product is considered.

• Soft time windows are considered.

• Fleets of all vehicles are heterogeneous.

• Routing problem is considered only for first echelon.

• First echelon trip must begin/end at the same open

collection/inspection centers.

• A predefined percent of demand from each customer is

assumed as returned products from the corresponding

customer.

• A predefined value is determined as an average scrap

fraction.

Model parameters

The following notation is used in the formulation of the

capacitated location-routing problem with time window in

reverse logistic network design (CLRPTW-RLND) model.

Sets

I Set of the candidate points for hybrid collection/

inspection centers, Vi 2 I

E Set of the candidate points for recovery centers,

Ve 2 E

S Fixed set of points for disposal centers Vs 2 S

J Fixed set of points for customer centers, Vj, k 2 JFig. 1 Pareto diagram
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V Set of vehicle routes, Vv 2 V

N Set of turn of customer Vn 2 N

Parameters

dj Demand of customer zone j

raj Rate of return percentage from customer zone j

h Average scrap fraction

casv Capacity of vehicle of type v

cafi Maximum capacity of hybrid collection/inspection

center i

cate Maximum capacity of recycling center e

gi Fixed cost of establishing hybrid collection/

inspection center i

fe Fixed cost of establishing recovery center e

hv Fixed cost of using each vehicle that is operated in

1st-echelon for vehicles of type of v

/e Recycling cost per unit of product at recycling

center e

ctij Transportation cost per unit of returned products

from customer zone j to collection/inspection center

i

crie Transportation cost per unit of recoverable products

from hybrid collection/inspection center i to

recovery center s

cdis Transportation cost per unit of scrapped products

from hybrid collection/inspection center i to

disposal center s

tijv Travel time between node i and j with vehicle v

aj Earliest arrival time to customer j of the soft time

window

bj Latest arrival time to customer j of the soft time

window

uej Lower bound of the soft time window for customer j

ulj Upper bound of the soft time window for customer j

pe Earliest penalty cost for hybrid collection/inspection

center (penalty cost of one unit earliest)

pl Lateness penalty cost for hybrid collection/

inspection center (penalty cost of one unit lateness)

Note: In this paper, we consider one of the time

variants where the time constraint is ‘soft’, that is, it can

be violated because of the model constraints; in other

words, the classical vehicle routing problem with time

windows (VRPTW) is an extension of the VRP where the

service at each customer must take place within a given

time interval (hard time window). The latter is often

relaxed in practice (leading to soft time window) which

enables early and late servicing with some penalty costs.

A soft time window with non-negative boundaries (aj, bj)

is then defined for each node j. The time window at the

depot (uej, ulj) can be thought of as the scheduling

horizon of the problem.

Decision variable

qijv Quantity of returned products shipped from

beginning of route from hybrid collection/

inspection center i to node j in vehicle route v

(load remaining in vehicle v after leaving node

j when Starting from collection/inspection

center i)

qi1v Quantity of load of the vehicle v after leaving

hybrid collection/inspection center i

piev Quantity of recoverable products shipped from

hybrid collection/inspection center i to recovery

centers by vehicle v

oisv Quantity of scrapped products shipped from

hybrid collection/inspection center i to disposal

centers by vehicle v

qTi Total amount of return product collected to the

hybrid collection/inspection center i

pTe Total amount of recoverable products shipped to

the recovery center e

ots Total amount of scrapped products shipped to

the disposal center s

TCmax Maximum time for completion of the collecting

return products

TFv Time for completion of the collection by vehicle

v

wjv Starting time of the service to customer j by

vehicle v

wjv
e The amount of earliest time of the starting

service to customer j by vehicle v

wjv
l The amount of Latest time of the starting service

to customer j by vehicle v

zij Binary variable which is 1 if customer j is

allocated to hybrid collection/inspection centers

i and zero otherwise

Yi Binary variable which is1 if hybrid collection/

inspection center is opened at location i and zero

otherwise

Ye Binary variable which is 1if recovery center is

opened at location e and zero otherwise

xijnv Binary variable which is 1 if vehicle v goes from

hybrid collection/inspection center i to customer

j on turn of n and zero otherwise

Rjkv Binary variable which is 1if customer

k immediately precedes customer j by vehicle

v and zero otherwise

c1v, c2v Binary variable which is1 if vehicle v is used in

first and second level and zero otherwise

asiv Binary variable which is1if vehicle v is allocated

to hybrid collection/inspection center i and zero

otherwise
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asiev
0

Binary variable which is1if goes from hybrid

collection/inspection center i to recovery center

e by vehicle v and zero otherwise

asisv
00

Binary variable which is1if goes from hybrid

collection/inspection center i to disposal center

s by vehicle v and zero otherwise

In terms of the above notations, the capacitated location-

routing problemwith timewindow in reverse logistic network

design (CLRPTW-RLND) can be formulated as follows:

Mathematical model

minf 1ðxÞ ¼
X

i2I
giYi þ

X

e2E
f eYe þ

X

v2V
hvðc1v þ c2vÞ

þ
X

i2I

X

j2J

X

v2V
ctijqijv þ

X

i2I

X

e2E

X

v2V
ðcrie þ ueÞpiev

þ
X

i2I

X

s2S

X

v2V
cdisoisv þ

X

j2J

X

v2V
ðpe� wejv þ pl� wljvÞ

ð1Þ
minf 2ðxÞ ¼ TCmax s:t: ð2Þ
X

i2I
zij ¼ 1 8j 2 J ð3Þ

X

j2J
zij �M:Yi 8i 2 I ð4Þ

X

n2N

X

v2V
xijnv ¼ zij 8i 2 I; j 2 J ð5Þ

X

j2J
xijnv � 1 8i 2 I; n 2 N; v 2 V ð6Þ

X

j2J
xijnv �

X

j2J
xijn�1v 8i 2 I; n 2 N; v 2 V ð7Þ

Rjkv ¼
X

i2I

X

n2N
xijnvxiknþ1v 8j; k 2 J; v 2 V ð8Þ

qikv � qijv þ rakdk �Mð1� RjkvÞ
8i 2 I; j; k 2 J; v 2 V

ð9Þ

qikv � casv 8i 2 I; k 2 J; v 2 V ð10Þ
qi1v ¼ 0 8i 2 I; v 2 V ð11Þ

qti ¼
X

j2J

X

n2N

X

v2V
rajdj�xijnv 8i 2 I ð12Þ

qti ¼
X

e2E

X

v2V
piev þ

X

s2S

X

v2V
oisv 8i 2 I ð13Þ

ðhÞqTi ¼
X

e2E

X

v2V
piev 8i 2 I ð14Þ

pTe ¼
X

i2I

X

v2V
piev 8e 2 E ð15Þ

OTs ¼
X

i2I

X

v2V
oisv 8s 2 S ð16Þ

qti � caf iYi 8i 2 I ð17Þ
PTe � cateYe 8e 2 E ð18Þ
X

i2I
asiv � cv 8v 2 V ð19Þ

X

j2J

X

n2N
xijnv �BM� asiv 8i 2 I; v 2 V ð20Þ

X

e2E
as0isv þ

X

s2S
as

00

isv � asiv 8i 2 I; v 2 V ð21Þ

casv � as
00

isv � oisv 8i 2 I; s 2 S; v 2 V ð22Þ

casv � ca0iev � piev 8i 2 I; e 2 E; v 2 V ð23Þ

TCmax �TFv 8v 2 V ð24Þ

TFv ¼
X

i2I

X

j2J

X

n2N
tijv � xijn¼1v þ

X

j;k2J
Rjkv � t1jkv 8v 2 V

ð25Þ

wjv � uej
X

i2I

X

n2N
xijnv 8j 2 J; v 2 V ð26Þ

wjv � ulj
X

i2I

X

n2N
xijnv 8j 2 J; v 2 V ð27Þ

we
jv � aj � wjv �M 1�

X

i2I

X

n2N
xijnv

 !
8j 2 J; v 2 V

ð28Þ

wl
jv �wjv � bj �M 1�

X

i2I

X

n2N
xijnv

 !
8j 2 J; v 2 V

ð29Þ
wkv �wjv þ t1jkv �Mð1� RjkvÞ 8j; k 2 J; v 2 V ð30Þ

Li;j;k;n;v ¼ xijnv � xiknþ1v 8i 2 I; j; k 2 J; n 2 N; v 2 V

ð31Þ

Li;j;k;n;v � xijnv 8i 2 I; j; k 2 J; n 2 N; v 2 V
ð32Þ

Li;j;k;n;v � xtiknþ1v 8ti 2 I; tj; k 2 tJ; n 2 N; v 2 V

ð33Þ

Li;j;k;n;v�xijnvþ xiknþ1v�1 8i2 I; j; k2 J; n2N; v2V

ð34Þ

zij; Ye; Yi; xijnv; Rjkv; cv; asiv 2 f0; 1g 8i 2 I;

j; k 2 J; e 2 E; n 2 N; v 2 V ð35Þ
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qijv; piev; oisv; qti; pte; ots; tcmax;TFv; Wjv; w
l
jv; w

e
jv;

Lijknv � 0 8i 2 I; j; k 2 J; e 2 E; n 2 N; v 2 V

ð36Þ

Objective function (1) minimizes the total cost consist-

ing of the sum of the fixed hybrid collection/inspection

center location costs, the fixed recovery center location

costs, the fixed costs of employing vehicles, variable

transportation and processing costs and penalty cost, when

arrival time for a node is not in the determined time win-

dow, in first echelon. Objective function (2) minimizes the

maximum time of completion of the collecting return

products. Constraint (3) ensures that each customer must be

assigned to a collection/inspection center. Constraint (4)

ensures that the customer can be assigned to hybrid col-

lection/inspection center if and only if it is open. Con-

straints (5)–(8) are related to turn of the customer for

collecting their return products. Constraint (9) calculates

the vehicle load of each vehicle after finishing the service

to each customer. Constraints (10) require that the capacity

of each vehicle should be respected. Constraint (11) shows

the initial load of each vehicle that is equal to zero. Con-

straint (12) ensures that the returned products of all cus-

tomers are collected. Constraints (13)–(16) assure the flow

balance at hybrid collection/inspection, recovery and dis-

posal centers. Equations (17) and (18) are capacity con-

straints on hybrid collection/inspection and recovery

centers, respectively. Constraint (19) ensures that each

vehicle is allocated to one hybrid collection/inspection.

Constraint (20) and (21) ensure that vehicle v is used in first

and second level if it is allocated to hybrid collection/in-

spection center. Constraint (22) and (23) are related to

capacity of vehicles in first and second level. Constraint

(24) is related to total collected time. Constraint (25) cal-

culates the collected time for each vehicle along a route.

Equations (26)–(30) are related to time window Con-

straints. Constraints (31)–(34) are a set of constraints

introduced to convert Constraints (8) to a linear form.

The Constraints (8) is in a nonlinear form; therefore,

another binary variable along with a set of constraints is

introduced to convert it to a linear form. The transformation

equation (Eqs. 31–34) is added to the original constraints. The

above equation means that the new variable (Li,j,k,n,v) is also a

binary one. Finally, Constraints (35) and (36) enforce the

binary and non-negativity restrictions on decision variables.

Multi-objective optimization

Many real-world problems involve simultaneous optimiza-

tion of several objective functions. Generally, optimization in

terms of the number of objective functions and optimization

criteria is divided into two categories of single-objective

optimization problems and multi-objective optimization

problems. A single-objective optimization algorithm is ter-

minated upon obtaining an optimal or near-optimal solution.

The purpose of solving a single-objective problem is to

improve the unique performance index that should be the

minimum or maximum. But in some cases, the problem may

have more than one objective that is called multi-objective

optimization problems. And because of the conflict between

the objectives, usually by improving the value of one of the

objectives, the other one becomes worse. So, it is natural to

find a set of solutions depending on the non-dominance cri-

terion, because it is difficult to find a single solution for a

multi-objective problem. Solutions which dominate the oth-

ers but do not dominate themselves, are called non-dominated

solutions. When we have a globally optimal solution that is

not dominated by any other solution in the feasible space, it is

called Pareto optimal. The set of all Pareto-optimal solutions

is also termed the Pareto-optimal set or efficient set. Their

corresponding images in the objective space are called the

Pareto-optimal frontier. There exists various algorithms such

as heuristic and metaheuristic, for optimizing the multi-ob-

jective optimization problems.

Comparative methods

In this section, we have designed two solution methods, one

of them is metaheuristic procedure based on the non-domi-

nated sorting genetic algorithm II (NSGA-II) for small and

large test problem, and the other is exact procedure based on

the e-Constraint Method.We try to evaluate the efficiency of

the suggested a famous multi-objective evolutionary algo-

rithms (EAs), namely NSGA-II with e-Constraint Method.

NSGA-II is coded using MATLAB software and run on a

personal computer with 2.4 GHZ CPU Intel Core i7 Duo

processor and 2.00-GB of RAM memory and e-Constraint
method is coded using GAMS software.

Procedure based on e-constraint method

We solve the presented bi-objective model by the e-con-
straint method in the GAMS software using Baron solver for

the given small test problem. There is a conflict between two

objectives. It means that the units of our two objectives are

minimizing cost and time, respectively. Logically, if we

incur more cost, we have less time and vice versa.

This method is based on optimizing one of the most

preferred objective functions, and considering the other

objectives as constraints. The authors provide some basic

definitions to better understand the e-Constraint Method.

Without loss of generality, let us assume the following

multi-objective minimization problem (MOMP) with m

Objectives (Mavrotas 2009):

J Ind Eng Int (2016) 12:469–483 475

123



min ðf 1ðxÞ; f 2ðxÞ; . . .; f mðxÞÞ
s:t:

gðxÞ� 0; hðxÞ ¼ 0

x 2 s;

ð37Þ

where x is the vector of decision variables and S is the

feasible region. As we said, in this method, we optimize

one of the objective functions using the other objective

functions as constraints, as shown below:

minf 1ðxÞ
s:t:

f 2ðxÞ� e2;

f 3ðxÞ� e3; . . .

f nðxÞ� en;

gðxÞ� 0; hðEÞ ¼ 0;

x 2 s:

ð38Þ

By parametrical variation in the rRight hand side (RHS)

of the constrained objective functions (en), we can obtain

the efficient solutions of the problem and draw Pareto

diagram (Fig. 1). One of the advantages of the e-constraint
in each run is to produce a different efficient solution, thus

obtaining a more rich representation of the efficient set.

Procedure based on non-dominated sorting genetic

algorithm II (NSGA-II)

NSGA-II is one of the most well-known multi-objective

optimization evolutionary algorithms. It is basically a

genetic algorithm with special characteristics in the

selection phase. NSGA, for the first time, was introduced

by Deb and Srinivas (1995), but because of some of the

disadvantages, such as computational complexity, time-

consuming and inadequacy of this edition, the second

edition abbreviated NSGA-II was developed by Deb

et al. (2002). The main features of this algorithm are:

fast non-dominated sorting approach, fast crowded dis-

tance estimation procedure, simple crowded comparison

operator and binary tournament selection operator

(Tavakkoli-Moghaddam et al. 2012). Generally, the

principal components of the NSGA-II procedure are

summarized below.

Population initialization

An initial parent population p0 of size number of popula-

tion (npop) is generated randomly based on the problem

range and constraint. A series of genes that arrange

sequentially is called chromosome. The number of genes in

a chromosome is equal to the number of decision variables.

Chromosome description is one of the most significant

parts of the algorithm that is taken into account as the code

form. In this paper, there-position is used for chromosome.

The first position shows the allocation of customers to the

hybrid collection/inspection centers and allocation of first

level’s vehicles that is formed with a matrix dimensions

I*(J ? V) (the number of rows = number of hybrid col-

lection/inspection center and the number of

columns = number of customers ? number of vehicle).

The second part shows the allocation of recycling center to

the hybrid collection/inspection centers and allocation of

second level’s vehicles that is formed with a matrix

vj
432154321

0.470.340.290.120.380.370.640.070.941
I 0.530.620.210.250.450.110.140.520.782

0.510.300.450.680.150.370.140.910.493

ve
432121

0.860.210.700.390.220.771
I 0.610.630.210.530.380.462

0.410.470.430.500.680.503

vs
43211

0.520.270.430.740.601
I 0.880.590.700.600.832

0.290.200.330.270.583

Position 2

Position 3

Position 1

Fig. 2 Structure of a chromosome for algorithm NSGA-II
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dimensions I*(E ? V). Finally, the third part shows the

allocation of disposal centers to the hybrid collection/in-

spection centers and allocation of second level’s vehicles

that is formed with a matrix dimensions I*(S ? V).

Moreover, Element of the matrix or each gene value (al-

lele) of the chromosome is generated randomly of real

values in the range (0, 1). Figure 2 depicts the structure of a

chromosome.

Chromosome structure consists of three sections. Since

most of the constraints and variables are related to each

other sequentially, the following procedures are applied for

constraint handling.

There are three types of variables: location, routing and

allocation, and some continuous variables. Location variables

are first stage. In other words, location decisions are selected

randomly earlier according to capacity constraints. In this

way, solutions will be generated feasibly. Also, allocation and

routing decisions are made based on the previous location

decisions. Therefore, nodes are assigned to previous stage

nodes according to capacities and then, a random routing

solution is selected. By this way, this part of solution is fea-

sible. Finally, continuous variables are computed sequen-

tially. In this way, if a variable such as time window be

infeasible, then the objective function will be penalized.

Non-dominated sorting

Before selection is performed, every individual (chromo-

some) in the population is ranked based on the non-domi-

nation sorting procedure to create Pareto fronts. All non-

dominated individuals are classified into one category in

such a way that each individual of the population under

evaluation obtains a rank equal to its non-domination level (1

is the best level, 2 is the next-best level, and so on), where the

Front one consists of all solutions with the smallest rank, that

are not dominated by any other solutions. The second front is

made by all solutions that only dominated by solutions in

front number one. A multi-objective model has n objective

functions, solution x and y are placed in same front when do

not dominate each other, a solution x dominate y when the

following conditions are successful:

– For all the objective functions, solution x is not worse

than another solution y.

– For at least one of the n objective functions, x is strictly

better than y.

Crowding distance

Crowding distance proposes an estimate of the density of

solutions surrounding a particular solution. The individuals

in population at the first time are selected based on rank

and the member with the lower rank is chosen, but if two

solutions have the same rank, the remainder of the popu-

lation is selected based on crowding distance between

members. So, the member with the larger crowding dis-

tance is selected if they share an equal rank. The crowding

distance used in the NSGA-II is computed by the following

equation,

d
j
i ¼

Xn

i¼1

f iþ1
j � f i�1

j

fmax
j � fmin

j

; ð39Þ

where fj
min and fj

max are, respectively, the minimum and

maximum values of the objective function j in the popu-

lation, fj
i?1 is the value of the objective function j of the

(i ? 1)-th solution and fj
i-1 is the value of the objective

function j of the (i - 1)-th solution.

Crossover

Crossover operator combines characteristics of parent

chromosomes and generates new solutions called offspring

(children) by changing some part of parent chromosomes.

The idea behind crossover is that the new chromosome

may be better than both of the parents if it takes the best

characteristics from each of the parents with crossover rate

pc that is usually consider 0.5\ pc\ 1. There are several

ways for crossover operator, including: one point cross-

over, partially mapped crossover (PMX), ordered crossover

(OX), Cycle crossover (CX), and Arithmetic crossover.

Generally, it chooses two parent chromosomes from a

population based on the crowding selection operator

described, with a crossover chance, crossover this parents

to form new offspring through mating pairs of chromo-

somes. Next, a new population of offspring with a size of

n is created. We can use the selection, the crossover, and

the mutation operators to create a population consisting of

the current and the new population of the size of

(npop ? n). Proper crossover operator called arithmetic

crossover is utilized in this paper, arithmetic crossover

operator linearly combines two parent chromosome vectors

to produce two new offspring according to the equations:

(a is a random weighing factor chosen before each cross-

over operation). Figure 3 depicts the graphical represen-

tation of arithmetic crossover with a = 0.5.

y2i ¼ aix2i þ ð1� aiÞx1i
y1i ¼ aix1i þ ð1� aiÞx2i

ð40Þ

Mutation

Unary variation operator in genetic algorithm is named

mutations. After generating the children from the crossover
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operator, mutations takes place. Mutations operator as well

as the crossover operator creates a new space for searching

in the algorithm. To enhance the diversity of a newly

generated population, a mutation operator comes to the

picture at the time of movement from the current popula-

tion to the new population to explore new solution spaces.

Using a mutation operator, a few genes of a candidate

chromosome are randomly selected to change their values

based on a predetermined mutation probability of pm.

Mutation helps to prevent the population from stagnating at

any local optima. Based on a permutation encoding, there

are different mutation operators such as random resetting

mutation, scramble mutation, flip bit, and uniform, inver-

sion mutation, and mutation for decimal number, shift, and

swap that can generate neighborhoods of a current solution.

In this paper, we employ the mutation operator for decimal

number in solution algorithm. In this case, in which the

value of each gene replaced with one of the values in the

range of Li (lower bound) to Ui (upper bound) randomly.

The mutation, in Eq. (35) is shown.

\x1; . . .; xn [ ! \x
0

1; . . .; x
0

n [ ; xi; x
0

i 2 ½Li;Ui�
ð41Þ

Recombination and selection

In steps of the NSGA-II algorithm, there are two steps that

the algorithm should do selection. First selection of indi-

viduals is carried out using a binary tournament selection

operator. The binary tournament selection strategy repeat-

edly selects one parent regarding n from each pair of two

randomly selected individuals until all npop parents have

been selected. These parent individuals are then paired

randomly. As we said with crossover probability pc, each

pair is recombined by the crossover operator to create two

Offspring 1Parent 1

0.60.50.50.40.40.30.30.20.20.90.80.70.60.50.40.30.20.1

Offspring 2Parent 2

0.60.50.50.4040.30.30.20.20.30.20.30.20.30.20.30.20.3

Fig. 3 shows a graphical

representation of Arithmetic

crossover with a = 0.5

Table 1 Uniform distribution for different parameters in each test problem

j

Value and

distribution

5 22 U * (0.2, 0.4) U * (50, 200) U * (0.7,

0.8)

U * (100,

500)

U * (100,

500)

U * (1, 5)

8 25

10 30 U * (3000,

20000)

U * (3000,

20000)

U * (10, 30) U * (100,

400)

U * (30, 90) U * (30,

90)

12 40

18 50

20 U * (1, 5) U * (10, 12) a(j) 9 0.8 b(j) 9 1.2 U * (10, 30) U * (10,

30)

Table 2 Factors and their

levels in the NSGA-II algorithm

for small (S) and large (L) sizes

Factors Level

S L

pop_size 50 150

Pc 0.4 0.35

pm 0.7 0.8

Maxit 100 200

Table 3 Default value for different parameters in each test problem

Parameters Default values

Number of hybrid collection/

inspection center

2, 3, 4, 5, 7, 8, 10, 12, 15

Number of recycling center 1, 2, 3, 4, 5, 7, 9, 10

Number of disposal centers 1, 2, 3, 4, 5, 6

Number of customers 5, 7, 8, 10, 12, 15, 17, 18, 20, 22,

25, 30, 40, 50

Number of vehicle 2, 3, 4, 5, 8, 10, 12, 15, 18, 20

Number of turn of customer 5, 7, 8, 10, 12, 15, 17, 18, 20, 22,

25, 30, 40, 50
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child individuals that is enter the offspring population;

Otherwise the two parents undergoes a mutation by the

mutation operator with mutation probability pm and then

enter the offspring population so we have new generated

solutions. Afterward, the current population and new gen-

erated solutions are combined together. Then sorting is

performed using the value of the non-dominance and using

the crowding distance. If two populations are from differ-

ent fronts, the lowest front number is selected and if they

are belong to the same front, the solution with the highest

crowding distance is selected to form a mating pool.

Finally, a population of an exact size of npop is obtained

using the sorting procedure. The new population is used to

generate the next new offspring by repeating the above

steps in order. This process is repeated until the stopping

condition is met. The stopping criterion considered is a

fixed number of iterations.

Computational experiments

This section presents a fair comparison between the two

solution methods, to compare the numerical results gen-

erated by the proposed NSGA-II and e-Constraint proposed
here. For this target, 2 problem groups, plans one in small

sizes, and other in medium and great sizes. First smaller

sample problem solved by NSGA-II and resulted solutions

compare by e-constraint method with resulted solutions

from model solving.

Parameter values

Parameters in these test problems have different values, but

in a defined tolerance. Table 1 shows uniform distribution

for parameters.

Parameter tuning

To evaluate the performance of the algorithm, we set the

assigned value of the algorithm parameters. Parameter

values have a very significant effect on the efficiency of the

algorithm. If these values are not set truly, getting the

proper result will become difficult. To tune the parameters

of algorithms, we consider two different sets of problems,

namely small sizes (i.e., problem numbers 1–10) and large

sizes (i.e., problem number 10–20). To determine the val-

ues of parameters, we use the Taguchi methodology. In this

section, each algorithm is run for different combinations of

parameters and their levels. In the Taguchy methodology,

we need an index to compare different combinations of

parameters. The aim of this method for designing param-

eters was reaching a mean value of the objective function

and reduces variation in the response variable. Table 2 T
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shows the parameters and their levels for small and large

sizes in the NSGA-II algorithm.

Parameters are selected by trial and error and then best

ones are selected.

Table 3 shows the default value for different parameters

in each test problem. According to Table 3, different test

problems are carried out in Tables 4 and 6.

Comparison results of metaheuristic and exact

solution methods

Ten samples were solved by NSGA-II and e-Constraint in
small sizes and were compared in the Table 4. In Table 4,

first column represents problem number, second and third

columns are customer index and hybrid collection/inspec-

tion centers index, respectively. And columns fourth and

fifth show recovery centers and disposal centers indexes,

respectively. And column sixth and seventh ones show

vehicles index and turn of customer index, respectively.

Columns eighth–thirteenth show the value of objective

function 1 and objective function 2 with runtime which is

resulted from running by e-Constraint and NSGA-II.

Finally, last columns show the amount of error or Gap

(Eq. 36) between two methods.

Figure 4 shows that the exact time solution increases

exponentially. Comparing the exact time and the time of

solving meta-heuristic algorithm from Fig. 4 and Table 4,

it can be seen that metaheuristic algorithm has reached

optimal solution. This result makes the applicability of the

algorithm clear.

The payoff Table 5 and Pareto Fig. 5 which obtains

from running Gams software are given for Example 5.

Pareto chart shows that with increasing time, total cost is

decreasing and vice versa, so they are in conflict with each

other. Also, amount of e for Pareto chart is calculated by

Eq. (42).

e ¼ 30055:120þ ð49538:743� 30055:120Þ
5

� counter

ð42Þ

Figure 6 shows the optimization processes and solving

time. From this figure, it can be said that time chart slope is

decreasing. This leads us to the conclusion that meta-

heuristic algorithm is very applicable.

10 instances or samples of large problems have been

solved by NSGA-II algorithm and such as Table 4; the

results are shown in Table 6.

Figure 7 shows the Pareto front chart of sample 15

which is obtained from running Matlab software. Pareto

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900

0 1 2 3 4 5 6 7 8 9 10 11
T
im

e

Sample

ε Constraint run time 

 NSGA-II run time

Fig. 4 Comparison of two

methods to evaluate solutions

based on time and sample

Table 5 Payoff table of problem 5

The objective function Z1 Z2

Z1 30055.120 21.2089

Z2 49538.743 18.4977
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Fig. 5 The Pareto front chart of sample 5 in GAMS Software
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Fig. 6 The descending trend of

the relative optimality and

runtime ratios

Table 6 Objective function and runtime of the NSGA-II algorithm for large instances

Problem

number

Indices NSGA-II

Customers Hybrid collection/

inspection centers

Recovery

centers

Disposal

centers

Vehicles Turn of

customer

Objective

function 1

Objective

function 2

Runtime

11 12 5 4 3 5 12 120511 19 479.4693

12 15 7 4 3 8 15 134135 19 548.8661

13 17 8 5 4 10 17 185473 17 627.1582

14 18 10 7 5 12 18 195446 27 689.5648

15 20 10 9 5 15 20 250450 24 899.1653

16 22 12 9 5 15 22 226345 23 983.3567

17 25 12 9 5 18 25 331672 35 1105.934

18 30 15 10 6 18 30 574537 62 1318.657

19 40 15 10 6 20 40 955241 86 1637.176

20 50 15 10 6 20 50 1356581 106 2584.628

Fig. 7 The Pareto chart of

sample 15 in MATLAB

software
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chart shows that with increasing time, total cost is

decreasing and vice versa, so they are in conflict with

each other.

Conclusions

This paper has presented a new bi-objective location-

routing problem (LRP) with attributes such as multi–level

in a reverse logistics network, multiple depots, capacitated

and heterogeneous fleets of vehicles, soft time windows,

and penalty cost. Warning and threat on environment have

forced the researchers to notice to the transportation and

reverse logistics activities as collecting of expired products

can have great effect on the environment seriously and

think to application solutions.

The proposed RL network model included hybrid col-

lection/inspection centers, recovery centers and disposal

centers. We presented a new bi-objective mathematical

programming (BOMP) for LRPTW in reverse logistic.

Since this type of the problem was NP-hard, the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) was

proposed to reach the Pareto frontier for the proposed

problem in large sized problems.

At first, we solved problem with e-Constraint method

by GAMS software, but due to the complexity of the

problem and available processing facilities, when the size

of the instances increased for problems and for dimen-

sions bigger than ten customers, metaheuristic method

must, therefore, be applied. A number of test problems

have been generated to evaluate the performance of the

proposed algorithm (non-dominated sorting genetic algo-

rithm II (NSGA-II)) in comparison with e-Constraint. The
result indicated that NSGA-II worked more efficiently

than the e-Constraint.
For further researches, we can suggest the following

notes:

• Authors may focus on handling uncertainties in trav-

eling times and on exploring LRP in a closed-loop

supply chain system.

• The multi-periods LRP can be considered.

• Robust optimization technique may be applied to

develop model.

• Inventory optimization can be considered through

mathematical modeling.
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