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Abstract
In this paper, we consider the differential equation f ′′ + h(z)eP(z)f ′ + Q(z)f = 0, where
h(z) and Q(z) �≡ 0 are meromorphic functions, P(z) is a non-constant polynomial.
Assume that Q(z) has an infinite deficient value and finitely many Borel directions. We
give some conditions on P(z) which guarantee that every solution f �≡ 0 of the
equation has infinite order.
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1 Introduction andmain results
In this paper, we shall involve the deficient value and the Borel direction in investigating
the growth of solutions of the second-order linear differential equation

f ′′ + h(z)eP(z)f ′ +Q(z)f = , ()

where h(z) and Q(z) �≡  are meromorphic functions, P(z) is a non-constant polynomial.
We assume that the reader is familiar with the Nevanlinna theory of meromorphic func-
tions and the basic notions such as N(r, f ), m(r, f ), T(r, f ) and δ(r, f ). For the details, see
[] or [].
The order σ and the hyper-order σ are defined as follows:

σ (f ) = lim sup
r−→∞

log+T(r, f )
log r

, σ(f ) = lim sup
r−→∞

log+ log+T(r, f )
log r

.

It is well known that if A(z) = h(z)eP(z) and B(z) = Q(z) are transcendental entire func-
tions in equation () and f, f are two linearly independent solutions of equation (), then
at least one of f, f must have infinite order. Hence, ‘most’ solutions of equation () will
have infinite order. On the other hand, there are some equations of the form () that pos-
sess a solution f �≡  which has finite order; for example, f (z) = ez satisfies the equation
f ′′ + e–zf ′ – (e–z + )f = . Thus the main problem is what condition on A(z) and B(z) can
guarantee that every solution f �≡  of equation () has infinite order?There has beenmuch
work on this subject. For example, it follows from the work by Gunderson [], Hellerstein
et al. [] that if A(z) and B(z) are entire functions with σ (A) < σ (B) or A(z) is a polynomial
and B(z) is transcendental; or if σ (B) < σ (A) ≤ 

 , then every solution f �≡  of equation
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() has infinite order. Furthermore, if A is an entire function with finite order having a fi-
nite deficient value and B(z) is a transcendental entire function with μ(B) < 

 , then every
solution f �≡  of equation () has infinite order []. More results can be found in [–].
However, it seems that there is little work done on equation () whose coefficient func-

tions are meromorphic functions. Recently, Wu et al. discussed the problem correlating
with this in []. Now we still consider equation () with transcendental meromorphic co-
efficients and discuss the growth of its meromorphic solutions. We shall also involve the
deficient value and the Borel direction in the studies of the oscillation of the second-order
complex differential equation.We hope that the relations between the orders of coefficient
functions will not be restricted. In general, it would not hold that every solution f �≡  of
equation () has infinite order; for example, f (z) = ez

z satisfies

f ′′ +
ez

z – z
f ′ –

ez – z + 
z

f = 

and σ (f ) =  < ∞.
To state our theorem, we give some remarks first. Let P(z) = (α + iβ)zn + · · · (α,β ∈ R)

be a non-constant polynomial. Denote δ(P, θ ) = α cosnθ –β sinnθ , let degP be the degree
of P(z), �(θ , ε, r) = {z : θ – ε < arg z < θ + ε, |z| < r}. In the following, we give the definition
of the Borel direction of a meromorphic function f (z).

Definition . [] Let f (z) be ameromorphic function in the complex planewith σ (f ) = σ

( < σ ≤ ∞). A ray arg z = θ ( ≤ θ < π ) starting from the origin is called a Borel direction
of order σ of f (z) if the following equality:

lim sup
r−→∞

logn(�(θ , ε, r), f = a)
log r

= σ

holds for any real number ε >  and every complex number a ∈C∪ {∞} with at most two
exceptions.

The main results in this article are stated as follows.

Theorem . Let P(z) be a non-constant polynomial with degP = n, let h(z) be a mero-
morphic function with σ (h) < n. Suppose that Q(z) is a finite-order meromorphic function
having an infinite deficient value,Q(z) has only finitely many Borel directions: Bj : arg z = θj

(j = , , . . . ,q).Denote that �j = {z : θj < arg z < θj+}, j = , , . . . ,q . Suppose that there exists
ϕj (θj < ϕj < θj+) such that δ(P,ϕj) <  for each angular domain�j.Then everymeromorphic
solution f �≡  of equation () has infinite order and σ(f ) ≥ σ (Q).

Remark . We apply the theorem to some particular equations. For example, when
Q(z) = g(z)ebz , where g(z) is a non-constant polynomial and b �= –. Chen proved [] that
every meromorphic solution f �≡  of the equation

f ′′ + e–zf ′ +Q(z)f =  ()

has infinite order with σ(f ) = . Except the case of argb = ,π , by the theorem, we can get
the part of the results above. But this theorem includes more general forms.
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From the structure of E = {ϕ : δ(P,ϕ) < } and E = {ϕ : δ(P,ϕ) > } in [, π ), we can
easily get the following conclusion.

Corollary . Let P(z) be a non-constant polynomial with degP = n, let h(z) be a mero-
morphic function with σ (h) < n. Let Q(z) be a transcendental meromorphic function with
finite order. If Q(z) has a deficient value ∞ and has only q Borel directions Bj : arg z = θj

(j = , , . . . ,q) that satisfy θ < θ < · · · < θq < θq+ (θq+ = θ + π ) and

ω = min
≤j≤p

{θj+ – θj} > π

n
, ()

then every meromorphic solution f �≡  of equation () has infinite order and σ(f ) ≥ σ (Q).

By using the corollary, we see that if σ (h) < n < degP, then every meromorphic solution
f �≡  of the equation

f ′′ + h(z)eP(z)f ′ + ez
n
f = 

has infinite order with σ(f ) ≥ n.

2 Some lemmas
To prove our theorem, we need the following lemmas.

Lemma . [] Let (f ,�) denote a pair that consists of a transcendental meromorphic
function f (z) and a finite set

� =
{
(k, j), (k, j), . . . , (kq, jq)

}

of distinct pairs of integers that satisfy ki > ji ≥  for i = , , . . . ,q. Let α >  and ε >  be
given real constants. Then the following three statements hold.

(i) There exists a set E ⊂ [, π ) that has linear measure zero, and there exists a
constant c >  that depends only on α and � such that if ϕ ∈ [, π ) – E, then there
is a constant R = R(ϕ) >  such that for all z satisfying arg z = ϕ and |z| = r ≥ R,
and for all (k, j) ∈ �, we have

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ c
(
T(αr, f )

r
logα r logT(αr, f )

)k–j

. ()

In particular, if f (z) has finite order σ (f ), then () is replaced by ().

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k–j)(σ (f )–+ε). ()

(ii) There exists a set E ⊂ (,∞) that has finite logarithmic measure, and there exists a
constant c >  that depends only on α and � such that for all z satisfying
|z| = r /∈ E ∪ [, ] and for all (k, j) ∈ �, the inequality () holds.
In particular, if f (z) has finite order σ (f ), then the inequality () holds.

http://www.advancesindifferenceequations.com/content/2013/1/188
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(iii) There exists a set E ⊂ [,∞) that has finite linear measure, and there exists a
constant c >  that depends only on α and � such that for all z satisfying |z| = r /∈ E

and for all (k, j) ∈ �, we have

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ c
(
T(αr, f )rε logT(αr, f )

)k–j. ()

In particular, if f (z) has finite order σ (f ), then () is replaced by ()

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k–j)(σ (f )+ε). ()

Lemma . [] Suppose that g(z) = h(z)eP(z), where P(z) is a non-constant polynomial
with degP = n, and h(z) is a meromorphic function with σ (h) < n. There exists a set E ⊂
[, π ) that has linear measure zero such that for all ϕ ∈ [, π )\E, we have

(i) If δ(P,ϕ) < , then there is a constant R = R(ϕ) >  such that the inequality

∣∣g(reiϕ)∣∣ < exp

{


δ(P,ϕ)rn

}
()

holds for r > R.
(ii) If δ(P,ϕ) > , then there is a constant R′

 = R′
(ϕ) >  such that the inequality

∣∣g(reiϕ)∣∣ > exp

{


δ(P,ϕ)rn

}
()

holds for r > R′
.

Lemma . [] Let f (z) be a transcendental meromorphic function with finite order σ ,
then there exists a function λ(r) with the following properties:

(i) λ(r) is a non-negative and continuous function for r ≥  with limr−→∞ λ(r) = σ .
(ii) λ(r) is a differentiable function for all r in (,∞) with at most countable exceptions

and limr−→∞ λ′(r) log r =  .
(iii) The inequality rλ(r) ≥ T(r, f ) holds for all sufficiently large r, and there exists a

sequence rn with rn → ∞ satisfying rλ(rn)n = T(rn, f ).
We shall call the function λ(r) the proximate order of f (z), and the function U(r) = rλ(r)

the type function of f (z).

Lemma . [] Let f (z) be a transcendental meromorphic function with order σ ( < σ <
∞). B : arg z = ϕ and B : arg z = ϕ (≤ ϕ < ϕ ≤ π +ϕ) are two half rays starting from
the origin, and f has no Borel direction in the angular domain ϕ < arg z < ϕ. Suppose that
there exists a sequence rn with rn → ∞ (n → ∞) and a complex number a (a ∈ C∪ ∞)
such that the following inequality:

{
log 

|f (rneiϕ )–a| > rσ–ε
n , a �= ∞,

log |f (rneiϕ)| > rσ–ε
n , a = ∞,

()

holds for any given constant ε >  and all sufficiently large n in some rays arg z = ϕ, where
ϕ < ϕ < ϕ. We denote the arc An = {rneiϕ : ϕ < ϕ < ϕ} and the angular set En′ such that

http://www.advancesindifferenceequations.com/content/2013/1/188
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any ϕ ∈ En′ satisfies the inequality (). If there exists a constant K >  (not dependent on
ε) such thatmeasEn′ > K, then we can get a list of curve segment Ln satisfying the following
two conditions for any given K (K > ) and sufficiently small α > :

(i) Ln lies in the area of ϕ + α ≤ arg z ≤ ϕ – α, rn– ≤ |z| ≤ rn, whose end points
respectively for rne

i(ϕ+ϕ′
j ) and rne

i(ϕ–ϕ′
j ) (α ≤ ϕ′

j ≤ α), and we have the following
inequality:

meas
{
ϕ : rneiϕ ∈ An – Ln

}
< K. ()

(ii) For any positive number η > , the inequality

{
log 

|f (z)–a| > rσ–η
n , a �= ∞,

log |f (z)| > rσ–η
n , a = ∞,

()

holds for sufficiently large n and z ∈ Ln.

Lemma . Let f (z) be a transcendental meromorphic function with order σ having an
infinite deficient value. If f (z) has q Borel directions, Bj : arg z = θj (j = , , . . . ,q), and these
half-rays divide the whole complex plane into q angular domains, �j = {z : θj < arg z < θj+},
j = , , . . . ,q, θq+ = θ + π , then for any given constant η >  and ξ > , there exists an an-
gular domain�j at least and a sequence Rn with Rn → ∞ (n→ ∞) such that the following
inequality:

meas(En,j ) ≥ θj+ – θj – ξ ()

holds for all sufficiently large n, where

En,j =
{
ϕ ∈ (θj , θj+) : log

∣∣f (Rneiϕ
)∣∣ > Rσ–η

n
}
.

Proof Let λ(r) be a proximate order of f (z) with a type function U(r) = rλ(r). According
to the properties of λ(r) of Lemma ., there exists a sequence rn with rn → ∞ satisfying
limrn−→∞ T(rn ,f )

U(rn) = . Let bν (ν = , , . . . ,n (rn, f = ∞)) be all the poles of f (z) in |z| ≤ rn.
For every rn, by the Boutroux-Cartan theorem [], we have

n(rn ,f =∞)∏
ν=

|z – bν | > (hrn)n(rn ,f =∞), ()

except for a set of points that can be enclosed in a finite number of disks (γn) with the sum
of total radius not exceeding ehrn. Set h = 

e . Then, for every integer n, we can choose
Rn ∈ [rn, rn] satisfying {z : |z| = Rn}∩ (γn) = ∅. By the Poisson-Jensen formula and (), for
any z satisfying |z| = Rn, we have

log
∣∣f (z)∣∣ ≤ rn + rn

rn – rn
m(rn, f ) +

n(rn ,f =∞)∑
ν=

log

∣∣∣∣ (rn) – bνz
rn(z – bν)

∣∣∣∣
≤ m(rn, f ) +

n(rn ,f =∞)∑
ν=

log

∣∣∣∣ rn
rn(z – bν)

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2013/1/188
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≤ m(rn, f ) + n(rn, f = ∞) logrn – log
n(rn ,f =∞)∏

ν=

|z – bν |

≤ m(rn, f ) + n(rn, f = ∞)
(
logrn + log


hrn

)

= m(rn, f ) + n(rn, f = ∞) loge

≤ m(rn, f ) +
loge
log 


N(rn, f )

≤ KT(rn, f ),

where K =  + loge
log 


.

We denote

En =: E
{
ϕ :  ≤ ϕ < π , log+

∣∣f (Rneiϕ
)∣∣ > 


m(Rn, f )

}
.

And then, we have

m(Rn, f ) =

π

∫ π


log+

∣∣f (Rneiϕ
)∣∣dϕ

=

π

∫
En
log+

∣∣f (Rneiϕ
)∣∣dϕ +


π

∫
[,π )\En

log+
∣∣f (Rneiϕ

)∣∣dϕ

≤ K
π

T(rn, f )measEn +


m(Rn, f ).

Hence

m(Rn, f ) ≤ K
π
T(rn, f )measEn. ()

In addition, since δ = δ(∞, f ) > , there exists a constant N >  such that the inequality

m(Rn, f ) >
δ


T(Rn, f ) ≥ δ


T(rn, f ) ≥ δ


U(rn) ()

holds for all n >N.
According to the properties of U(r), we have

T(rn, f ) < U(rn) < σ+U(rn). ()

From ()-(), we get

measEn ≥ δπ

Kσ+ .

Since the whole complex plane is divided into q angular domains and there is no Borel
direction in them, the circle |z| = Rn is also divided into q arcs: Anj : {Rneiϕ : θj < ϕ < θj+}
(j = , , . . . ,q).

http://www.advancesindifferenceequations.com/content/2013/1/188
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Obviously, we have

measEn =
q∑
j=

measEnj,

where Enj = {ϕ : θj < ϕ < θj+, log |f (Rn)eiϕ | > 
m(Rn, f )}. Hence, by () and the properties

of U(rn), for any given ε > , there exist j ∈ {, , . . . ,q} and a sequence Rn with Rn → ∞
(n → ∞) (otherwise, we use the subsequence Rn instead of Rn) such that the following
inequality:

meas
{
ϕ : θj < ϕ < θj+, log

∣∣f (Rneiϕ
)∣∣ > Rσ–ε

n
} ≥ δπ

qKσ+

holds for all sufficiently large n.
We choose K = δπ

qKσ+ , K = ξ . By Lemma ., for all sufficiently large n, there exists a
curve Ln,j such that () and () hold. So, for any given η > , we have

meas
{
ϕ : θj < ϕ < θj+, log

∣∣f (Rneiϕ
)∣∣ > Rσ–η

n
}

≥ meas
{
ϕ : Rneiϕ ∈ An,j ∩ Ln,j

}
=meas

{
ϕ : Rneiϕ ∈ An,j

}
–meas

{
ϕ : Rneiϕ ∈ An,j – Ln,j

}
≥ θj+ – θj – ξ .

The proof of Lemma . is completed. �

3 Proof of Theorem 1.1

Proof Suppose that f �≡  is a meromorphic solution of equation () with σ (f ) < ∞. We
shall seek for a contradiction. From equation (), we have the following inequality:

∣∣Q(z)∣∣ ≤
∣∣∣∣ f ′′(z)
f (z)

∣∣∣∣ +
∣∣∣∣ f ′(z)
f (z)

∣∣∣∣∣∣h(z)eP(z)∣∣. ()

By Lemma .(i), there exists a set E ⊂ [, π ) of measure zero and R >  such that the
following inequality:

∣∣∣∣ f (j)(z)f (z)

∣∣∣∣ ≤ |z|σ (f ), j = , , ()

holds for all z = |z|eiϕ with ϕ /∈ E and |z| > R.
Suppose that P(z) = azn + · · · , where a = |a|eiθ . We have E = {ϕ : δ(P,ϕ) < } =⋃n
i=(

(i–)π–θ
n , (i–)π–θn ) by calculation. By Lemma ., there exists a set E ⊂ [, π )

of measure zero and R′
 >  such that the following inequality:

∣∣h(z)eP(z)∣∣ < exp

{


δ(P,ϕ)rn

}
()

holds for all z = reiϕ satisfying r > R′
 and ϕ ∈ E\E.

http://www.advancesindifferenceequations.com/content/2013/1/188
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Denote that �j = {z : θj < arg z < θj+}, j = , , . . . ,q. Applying Lemma . toQ(z), then for
any given constants η >  and ξ > , there exists an angular domain �j and a sequence rm
with rm → ∞ (m → ∞) such that () holds for all sufficiently largem.
On the other hand, since there exists ϕj in �j such that δ(P,ϕj ) <  by the supposition

of the theorem, we can get an interval [θ ′
, θ ′

] ⊂ �j such that () holds for all z = reiϕ

satisfying r > R′
 and ϕ ∈ [θ ′

, θ ′
]\E. Now, let ξ = θ ′

–θ ′


 . For each sufficiently large m, we
can choose ϕm ∈ [θ ′

, θ ′
]\(E ∪ E) such that (), () and the inequality

log
∣∣Q(zm)∣∣ > rσ (Q)–η

m ()

hold for zm = rmeiϕn . Let η = σ (Q)
 . Hence, from ()-(), we get

exp rηm ≤ rσ (f )m

(
 + exp

{


δ(P,ϕm)rnm

})
. ()

Obviously, whenm is sufficiently large, this is a contradiction.
Next, we will prove σ(f ) ≥ σ (Q).
By using Lemma ., there exist a set E ⊂ [, π ) of measure zero and two constants

B >  and R′′
 >  such that for all z satisfying |z| = r > R′′

 and arg z /∈ E, the following
inequality holds:

∣∣∣∣ f (j)(z)f (z)

∣∣∣∣ ≤ BT(r, f ). ()

Hence, for each sufficiently large m, we can choose ϕ′
m ∈ [θ ′

, θ ′
]\(E ∪ E) such that (),

() and () hold for zm = rmeiϕ
′
m . From (), (), () and (), we get

exp rσ (Q)–η
m ≤ BT(r, f )

(
 + exp

{


δ
(
P,ϕ′

m
)
rmm

})
. ()

Thus

lim sup
m→+∞

log+ log+T(r, f )
log r

≥ σ (Q) – η.

As η can be arbitrary small, we have σ(f ) ≥ σ (Q).
The proof of the theorem is completed. �
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