
Int J Parallel Prog (2009) 37:508–535
DOI 10.1007/s10766-009-0111-z

Speculative Parallelization of Sequential Loops
on Multicores

Chen Tian · Min Feng · Vijay Nagarajan ·
Rajiv Gupta

Received: 12 January 2009 / Accepted: 31 May 2009 / Published online: 19 June 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The advent of multicores presents a promising opportunity for speeding
up the execution of sequential programs through their parallelization. In this paper we
present a novel solution for efficiently supporting software-based speculative parallel-
ization of sequential loops on multicore processors. The execution model we employ
is based upon state separation, an approach for separately maintaining the speculative
state of parallel threads and non-speculative state of the computation. If speculation
is successful, the results produced by parallel threads in speculative state are commit-
ted by copying them into the computation’s non-speculative state. If misspeculation
is detected, no costly state recovery mechanisms are needed as the speculative state
can be simply discarded. Techniques are proposed to reduce the cost of data copying
between non-speculative and speculative state and efficiently carrying out misspecula-
tion detection. We apply the above approach to speculative parallelization of loops in
several sequential programs which results in significant speedups on a Dell PowerEdge
1900 server with two Intel Xeon quad-core processors.

Keywords Multicores · Speculative parallelization · Profile-guided parallelization ·
State separation

C. Tian (B) · M. Feng · V. Nagarajan · R. Gupta
Department of Computer Science and Engineering, University of California at Riverside,
Riverside, CA, USA
e-mail: tianc@cs.ucr.edu

M. Feng
e-mail: mfeng@cs.ucr.edu

V. Nagarajan
e-mail: vijay@cs.ucr.edu

R. Gupta
e-mail: gupta@cs.ucr.edu

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81712914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Int J Parallel Prog (2009) 37:508–535 509

1 Introduction

The advent of multicores presents a promising opportunity for speeding up sequential
programs via profile-based speculative parallelization of these programs. The success
of speculative parallelization is dependent upon the following factors: the efficiency
with which success or failure of speculation can be ascertained; following the deter-
mination of success or failure of speculative execution, the efficiency with which the
state of the program can be updated or restored; and finally, the effectiveness of the
speculative parallelization technique, which is determined by its ability to exploit par-
allelism in a wide range of sequential programs and the frequency with which at which
speculation is successful.

In this paper we present a novel approach for effectively addressing the aforemen-
tioned issues. This approach employs an execution model for speculative execution
in which a parallelized application consists of the main thread that maintains the
non-speculative state of the computation and multiple parallel threads that execute
parts of the computation using speculatively-read operand values from non-specula-
tive state, thereby producing the speculative state of the computation. A key feature of
this model is state separation according to which the non-speculative state (i.e., state
of the main thread) is maintained separately from the speculative state (i.e., state of
the parallel threads). After a parallel thread has completed a speculative computation,
the main thread uses the Copy or Discard (CorD) mechanism to handle these results.
In particular, if speculation is successful, the results of the speculative computation
are committed by copying them into the non-speculative state. If misspeculation is
detected, no costly state recovery mechanisms are needed as the speculative state can
be simply discarded. The main thread commits the speculative state generated by
parallel threads in order; i.e., a parallel thread that is assigned an earlier portion of
a computation from a sequential program must commit its results before a parallel
thread that is assigned a later portion of a computation from the sequential program.

We present an algorithm for profile-based speculative parallelization that is effec-
tive in extracting parallelism from loops in sequential programs. In particular, a loop
iteration is partitioned into three sections—the prologue, the speculative body, and
the epilogue. While the prologue and epilogue contain statements that are dependent
on statements in corresponding sections of the preceding iteration, the body contains
statements that are extremely unlikely to be dependent on the statements in the body of
the preceding iteration. Thus, speedups can be obtained by speculatively executing the
body sections from different loop iterations in parallel on different cores. Our experi-
ments show that speculative parallelization of loops in several sequential applications
achieves significant speedups (up to a factor of 7.8) on a Dell PowerEdge 1900 server
with eight cores in form of two 3.00 GHz Intel Xeon quad-core processors and 16 GB
of RAM.

The remainder of the paper is organized as follows. In Sect. 2 our approach to
speculative execution is described. In Sect. 3 we present the details of how loops in a
sequential application are transformed for speculative parallel execution. The results
of our experiments are presented in Sect. 4. The related work is discussed in Sect. 5.
Section 6 summarizes our conclusions.

123

510 Int J Parallel Prog (2009) 37:508–535

2 Speculative Parallel Execution Model

In this section we describe the key aspects of our approach to speculative execution
and identify the compiler and runtime support needed to realize the model. Consider a
pair of subcomputations C and C ′ in a sequential program P such that the execution of
C precedes the execution of C ′, i.e. C → C ′ during sequential execution (e.g., C and
C ′ may represent consecutive iterations of a loop). Thus, the results computed during
the execution of C are available during the execution of C ′. The goal of speculative
execution is to relax the strict ordering imposed on the execution of C and C ′ by spec-
ulatively executing C ′ while C is still executing. During the speculative execution of
C ′, if a data value is read prematurely (i.e., it is read before it has been computed by C),
then misspeculation occurs and thus the results computed during speculative execution
of C ′ must be discarded and C ′ must be executed again. On the other hand, if misspe-
culation does not occur, the execution time of the program is potentially reduced due
to parallel execution of C and C ′. Of course, speculative execution is only beneficial if
the misspeculation occurs infrequently. Opportunities for speculative execution arise
because the dependences from C to C ′ may arise from infrequently executed code or
even if they do arise, they may be deemed harmless (e.g., dependences may arise due to
silent stores). The above approach naturally extends to multiple levels of speculation.
Given a series of dependent computations C1 → C2 → · · · Cn , while C1 executes
non-speculatively, we can speculatively execute C2 through Cn in parallel with C1 on
additional cores.

We propose an execution model, that supports speculative execution as illustrated
above, with three key characteristics that make its realization amenable via compiler
and runtime support. In the remainder of this section we describe these characteristics.

2.1 State Separation

The first key characteristic of our execution model is state separation according to
which the non-speculative state of the program is maintained separately from the
speculative state of the computation. A parallelized application consists of the main
thread that maintains the non-speculative state of the computation and multiple par-
allel threads that execute parts of the computation using speculatively-read operand
values from non-speculative state, thereby producing parts of the speculative state
of the computation. State separation guarantees thread isolation, i.e. the execution of
each thread, main or parallel, is isolated from execution of all other threads. Thus,
if execution of one thread results in misspeculation, it does not necessarily force the
reexecution of other threads.

To implement state separation, the compiler and runtime must implement a specu-
lative computation such that it is allocated separate memory and all manipulations of
data performed by the speculative computation is performed in this separate memory.
Therefore, shared data that is manipulated by a speculative computation is copied from
non-speculative state to speculative state and then manipulated by the speculative com-
putation in the speculative state. Finally, if misspeculation does not occur, the updated
speculative state is copied to the non-speculative state; else, the speculative state is

123

Int J Parallel Prog (2009) 37:508–535 511

Fig. 1 Maintaining memory state

simply discarded. We refer to this approach for handling the results of a speculative
computation as Copy or Discard (CorD). This approach extends to multiple levels of
speculation. Given a series of dependent computations C1 → C2 → · · · Cn such that,
while C1 executes non-speculatively, if we speculatively execute C2 through Cn in
parallel with C1, then the results of C2 through Cn must be copied to the non-spec-
ulative state in-order. This will ensure that if any dependences arise between Ci and
C j (for all i < j), they are correctly enforced.

The shared memory space is divided into three disjoint partitions <D, P, C> such
that each partition contains a distinct type of program state (see Fig. 1).

(Non-speculative State)—D memory is the part of the address space that reflects
the non-speculative state of the computation. Only the main computation thread Mt
performs updates of D. If the program is executed sequentially, the main thread Mt
performs the entire computation using D. If parallel threads are used, then the main
thread Mt is responsible for updating D according to the results produced by the parallel
threads.

(Parallel or Speculative State)—P memory is the part of the address space that
reflects the parallel computation state, i.e. the state of the parallel threads Ts created by
the main thread Mt to boost performance. Since parallel threads perform speculative
computations, speculative state that exists is at all times contained in P memory. The
results produced by the parallel threads are communicated to the main thread Mt that
then performs updates of D.

(Coordinating State)—C is the part of the address space that contains the coordi-
nating state of the computation. Since the execution of Mt is isolated from the execution
of parallel threads Ts, mechanisms are needed via which the threads can coordinate
their actions. The coordinating state provides memory where all state needed for coor-
dinating actions is maintained. The coordinating state is maintained for three purposes:
to synchronize the actions of the main thread and the parallel threads; to track the ver-
sion numbers of speculatively-read values so that misspeculation can be detected; and

123

512 Int J Parallel Prog (2009) 37:508–535

to buffer speculative results computed by a parallel thread before they can be sent to
the main thread to be committed.

When a parallel thread is created, both C state and P state memory is allocated for
its execution. The speculatively-read operand values are copied from non-speculative
D state to P state memory allocated to the thread. The thread executes, speculatively
computing results into the P state memory. These results are communicated to the
main thread for committing to the D state memory. Thus, during the execution of a
parallel thread the state of the main thread in D state is isolated from the actions of
the parallel thread. The C state memory allocated to the thread is used, among other
things, by the main and parallel threads to signal each other when various actions can
be performed.

2.2 Misspeculation: Detection & Recovery

The second key characteristic of our execution model is the manner in which misspe-
culation can occur. Given dependent computations C → C ′, when we start speculative
execution of C ′ in parallel with C , we are essentially speculating that no dependenc-
es exist from C to C ′. In other words, we are speculating that the values that are
copied from non-speculative state to speculative state of C ′ will not be modified by
C . Therefore misspeculation detection must perform the following task. At the end
of the execution of C ′, we must check to see if C modified any of the values that
were speculatively read by C ′. If this is indeed the case, misspeculation occurs and
recovery is performed by reexecuting C ′. Otherwise speculation is successful and the
results computed by C ′ are copied back to non-speculative state. In order to perform
misspeculation checking, the following coordinating state is maintained in C state
memory:

(Version Numbers for Variables in D State Memory—C state of the main
thread) For each variable in D state memory that is potentially read and written by
parallel threads, the main thread maintains a version number. This version number is
incremented every time the value of the variable in D state memory is modified during
the committing of results produced by parallel threads. For each variable in D state
memory, an associated memory location is allocated in the C state memory where the
current version number for the variable is maintained.

(Mapping Table for Variables in P State Memory—C state of a parallel
thread) Each parallel thread maintains a mapping table where each entry in the map-
ping table contains the following information for a variable whose value is specula-
tively copied from the D state memory to P state memory so that it can be used during
the execution of the parallel thread computation. The mapping table is also maintained
in the C state memory. As shown below, an entry in the mapping table contains five
fields.

The D_Addr and P_Addr fields provide the corresponding addresses of a variable
in the D state and P state memory while Size is the size of the variable. Version is
the version number of the variable when the value is copied from D state to P state

123

Int J Parallel Prog (2009) 37:508–535 513

memory. The Write_Flag is initialized to false when the value is initially copied from
D state to P state memory. However, if the parallel thread modifies the value contained
in P_Addr, the Write_Flag is set to true by the parallel thread.

When the parallel thread informs the main thread that it has completed the execu-
tion of a speculative body, the main thread consults the mapping table and accordingly
takes the following actions. First, the main thread compares the current version num-
bers of variables with the version numbers of the variables in the mapping table. If
some version number does not match, then the main thread concludes that misspe-
culation has occurred and it �discards the results. If all version numbers match, then
speculation is successful. Thus, the main thread commits the results by copying the
values of variables for which the Write_flag is true from P state memory to D state
memory. Note that if the Write_flag is not true, then there is no need to copy back the
result as the variable’s value is unchanged.

2.3 Optimizing Copying Operations

Since state separation presents a clear and simple model for interaction between the
non-speculative and speculative computation state, it is amenable for implementation
through compiler and runtime support. However, this simplicity comes at the cost of
copying overhead. Therefore, to achieve high efficiency, the combination of compiler
and runtime support must be developed. The compiler can play an important role in
minimizing copying overhead. Through compile time analysis we will identify the
subset of non-speculative state that must be copied to the speculative state. In partic-
ular, if the compiler identifies data items that are not referenced by the speculative
computation, then they need not be copied. Moreover, shared data that is only read
by the speculative computation, need not be copied as it can be directly read from the
non-speculative state.

In the above discussion, we assumed that all data locations that may be accessed by
a parallel thread have been identified and thus code can be generated to copy the values
of these variables from (to) D state to (from) P state at the start (end) of parallel thread
speculative body execution. Let us refer to this set as the Copy Set. In this section we
discuss how the Copy Set is determined. One approach is to use compile-time anal-
ysis to conservatively overestimate the Copy Set. While this approach will guarantee
that any variable ever needed by the parallel thread would have been allocated and
appropriately initialized via copying, this may introduce excessive overhead due to
wasteful copying. The main causes of Copy Set overestimation is that even when the
accesses to global and local variables can be precisely disambiguated at compile-time,
it is possible that these variables may not be accessed as the instructions that access
them may not be executed.

(Reducing Wasteful Copying) To avoid wasteful copying, we use a profile-guided
approach which identifies data that is highly likely to be accessed by the parallel
thread and thus potentially underestimates the Copy Set. The code for the parallel
thread is generated such that accesses to data items are guarded by checks that deter-
mine whether or not the data item’s value is available in the P state memory. If the
data item’s value is not available in P state memory, a Communication Exception

123

514 Int J Parallel Prog (2009) 37:508–535

mechanism is invoked that causes the parallel thread to interact with the main thread
to transfer the desired value from D state memory to P state memory. Specifically, a
one-bit tag will be used for each variable to indicate if the variable has been initialized
or not. Note that uninitialized variables, unlike initialized ones, do not have entries in
the mapping table. The accesses (reads and writes) to these variables must be modified
as follows. Upon a read, we check the variable’s tag and if the tag is not initialized,
then the parallel thread performs actions associated with what we call Communication
Exception.

A request is sent to the main thread for the variable’s value. Upon receiving the
response, which also includes the version number, the variable in P state memory is
initialized using the received value, and the variable’s entry in the mapping table is
updated. Upon a write, the Write_flag in the mapping table is set and if there is no
entry for the variable in the mapping table, an entry is first created.

(Optimizing Communication Exception Checks) Even for the variables which
are created in P state memory at the start of a parallel thread’s execution, some of
the actions can be optimized. First, not all of these variables require copying in and
copying out from D state memory to P state memory. Second, all the actions associ-
ated with loads and stores of these global and local variables during the execution of
a parallel thread may not be required for all of the variables, i.e. some of the actions
can be optimized away. As shown in Table 1, the variables are classified according to
their observed dynamic behavior which allows the corresponding optimizations.

A Copy In variable is one that is observed to be only read by the parallel thread
during profiling. Therefore its value is definitely copied in and no actions are per-
formed at loads. However, actions are performed at stores to update the Write_flag
in the mapping table so that the value can be copied out if a store is executed. A
Copy Out variable is one that is observed to be written during its first access by the
parallel thread while profiling, and thus it is not copied in but requires copying out.
However, actions are needed at loads to cause a communication exception if the value
is read by the parallel thread before it has been written by it. Thread Local variables
are ones that definitely do not require either copy in or copy out, and Copy In and Out

Table 1 Variable types
in parallel threads

Type of variable Copying needed Actions needed

Copy In Copy In = YES; Put actions at

Copy out = MAYBE stores

Copy Out Copy In = MAYBE; Put actions at

Copy Out = YES loads

Thread Local Copy In = NO; No actions

Copy Out = NO

Copy In and Out Copy In = YES; No actions

Copy Out = YES

Unknown Copy In = MAYBE; All actions

Copy Out = MAYBE

123

Int J Parallel Prog (2009) 37:508–535 515

are variables that are always copied in and copied out. Thus, no checks are required
for variables of these types. Finally, all other variables that are observed not to be
accessed during profiling are classified as Unknown. If these are accessed at runtime
by a parallel thread, the accesses are handled via communication exceptions and thus
no optimizations are possible for these variables.

3 Speculative Parallelization of Loops

As we have seen, a parallelized application consists of the main thread that maintains
the non-speculative state of the computation and multiple parallel threads that execute
parts of the computation using speculatively-read operand values from non-specula-
tive state, thereby producing the speculative state of the computation. In this section
we show how this approach can be applied to speculative parallelization of loops.

Figure 2 shows how threads are created to extract and exploit parallelism from a
loop. We divide the loop iteration into three sections: the prologue, the speculative
body, and the epilogue. While the prologue and epilogue contain statements that are
dependent on statements in corresponding sections of the preceding iteration, the body
contains statements that are extremely unlikely to be dependent on the statements in
the corresponding section of the preceding iteration. Thus, parallelization is performed
such that the main thread (Mt) non-speculatively executes the prologues and epilogues,
while the parallel threads (T1 and T2 in Fig. 2) are created to speculatively execute the
bodies of the iterations on separate cores. Speculative execution entails optimistically
reading operand values from non-speculative state and using them in the execution of
speculative bodies.

Once a parallel thread has completed the execution of an iteration assigned to it,
the speculatively computed results are returned to the main thread. The main thread is

Fig. 2 Thread execution model

123

516 Int J Parallel Prog (2009) 37:508–535

responsible for committing these results to the non-speculative state. The main thread
commits the speculative state generated by parallel threads in-order; that is, a paral-
lel thread that is assigned the speculative body of an earlier iteration must commit
its results to the non-speculative state before a parallel thread that is assigned a later
iteration commits its results.

Before committing speculatively-computed results to non-speculative state, the
main thread confirms that the speculatively-read values are consistent with the sequen-
tial semantics of the program. The main thread maintains version numbers for variable
values to make this determination. In particular, if the version number of a specula-
tively-read operand value used during loop iteration i has not changed from the time it
was read until the time at which the results of iteration i are committed, then the specula-
tion is successful. However, if the version has been changed by an earlier loop iteration
being executed in parallel on another core, then we conclude that misspeculation has
occurred and the results must be recomputed by reexecuting the loop iteration involved.

3.1 Algorithm for Partitioning a Loop Iteration

A loop iteration must be partitioned into the prologue, speculative body, and the epi-
logue. The algorithm for performing the partitioning first constructs the prologue, then
the epilogue, and finally everything that is not included in the prologue or the epilogue
is placed in the speculative body. Below we describe the construction of the prologue
and the epilogue:

(Prologue) The prologue is constructed such that it contains all the input state-
ments that read from files [e.g., fgets()]. This is because such input statements should
not be executed speculatively. In addition, an input statement within a loop is typi-
cally dependent only upon its execution in the previous iteration—this loop carried
dependence is needed to preserve the order in which the inputs are read from a file.
Therefore input statements for multiple consecutive loop iterations can be executed by
the main thread before the speculative bodies of these iterations are assigned to parallel
threads for execution. Loop index update statements (e.g., i++) are also included into
the prologue, as the index variables can be considered as the input of each iteration
and hence should be executed non-speculatively.

(Epilogue) The epilogue is made up of two types of statements. First, the output
statements are included in the epilogue because output statements cannot be executed
speculatively. If an output statement is encountered in the middle of the loop iteration
or it is executed multiple times, then the code is transformed so that the results are
stored in a memory buffer and the output statements that write the buffer contents to
files are placed in the epilogue which is later executed non-speculatively by the main
thread. Second, a statement that may depend upon another statement in the preceding
iteration is placed in the epilogue if the probability of this dependence manifesting
itself is above a threshold. Any statements that are control or data dependent upon
statements already in the epilogue via an intra-iteration dependence are also placed in
the epilogue.

Figure 3 illustrates the partitioning of a loop body. In the for loop shown on the
left, the first statement is a typical input statement as it reads some data from a file

123

Int J Parallel Prog (2009) 37:508–535 517

Fig. 3 Partitioning a loop into prologue, speculative body, and epilogue

and stores it into a buffer. Hence, we place it into the prologue. Then we construct the
epilogue of this loop. First, all output statements (lines 5 and 12) are included. Since
the profiling information can tell us that a loop dependence at line 10 is exercised very
often, we also put this statement into the epilogue. If we do not do this, all speculative
executions of iterations will fail because of this dependence. Thus, the epilogue of this
loop has three statements, as shown by the code segment to the right in Fig. 3. Note
that in this example, all three statements appear in the middle of the loop. Thus, we use
a buffer to store the information of epilogue statements such as the PC of statements
and values of the arguments. When the epilogue is executed by the main thread, the
information stored in this buffer is referenced.

After the prologue and epilogue of a loop are identified, the rest of the code is con-
sidered as the speculative body as shown in Fig. 3. Note that line 4 may introduce loop
dependence because of the accesses to variable set, but this dependence seldom man-
ifests itself. So we actually speculate on this variable. It is worth noting that placing
line 4 into the epilogue does not help the parallelism of the loop, because the variable
set is used by function process in every iteration. If this variable is changed, whether
by parallel threads or the main thread, all subsequent iterations being executed will
have to redo their work.

3.2 Transforming Partitioned Loop

Next we show the detailed form of the main thread and the parallel thread created by
our speculative parallelization transformation. We first discuss how the threads inter-
act with each other and then we present the details of the work carried out by each of
the threads.

(Thread Interaction) Before we present the detailed transformed code, let us see
how the main thread and parallel threads interact. The main thread and a parallel thread

123

518 Int J Parallel Prog (2009) 37:508–535

need to communicate with each other to appropriately respond to certain events. This
communication is achieved via messages. Four types of messages exist. When the
main thread assigns an iteration to a parallel thread, it sends a Start message to indi-
cate to the parallel thread that it should start execution. When a parallel thread finishes
its assigned work, it sends a Finish message to the main thread. When a parallel thread
tries to use a variable that does not exist in the P space, a communication exception
occurs which causes the parallel thread to send an Exception message to the main
thread. The main thread services this exception by sending a Reply message.

The main thread allocates a message buffer for each parallel thread it creates. This
message buffer is used to pass messages back and forth between the main thread and
the parallel thread. When a parallel thread is free, it waits for a Start message to be
deposited in its message buffer. After sending an Exception message, a parallel thread
waits for the main thread to deposit a Reply message in its message buffer. After send-
ing Start messages to the parallel threads, the main thread waits for a message to be
deposited in any message buffer by its parallel thread (i.e., for a Finish or Exception
message). Whenever the main thread encounters an Exception message in a buffer, it
processes the message and responds to it with a Reply message. If a message present
in the message buffer of some parallel thread is a Finish message, then the main thread
may or may not process this message right away. This is because the results of the
parallel threads must be committed in order. If the Finish message is from a parallel
thread that is next in line to have its results committed, then the Finish message is
processed by the main thread; otherwise the processing of this message is postponed
until a later time. When the main thread processes a Finish message, it first checks
for misspeculation. If misspeculation has not occurred, the results are committed and
new work is assigned to the parallel thread, and a Start message is sent to it. However,
if misspeculation is detected, the main thread prepares the parallel thread for reexecu-
tion of the assigned work and sends a Start message to the parallel thread. The above
interactions continue as long as the parallel threads continue to speculatively execute
iterations.

(Main Thread) The code corresponding to the main thread is shown in Fig. 4a. In
addition to executing the prologue and epilogue code, the main thread performs the
following actions. It calls init_version_table() [see Fig. 4b] to initialize the
version table that it must maintain. Next it creates parallel threads one at a time and
initializes them by calling init_thread [see Fig. 4c]. During the first call to the
initialization routine corresponding to a parallel thread, the main thread allocates the
C space for the mapping table and initializes the mapping table. In subsequent calls
to the initialization routine for the same thread, the mapping table is only initialized
since it has already been allocated. Copy operations are also performed by the main
thread for the variables that are marked as Copy In and Copy In and Out. Note
that the P space into which values are copied is allocated when a parallel thread is
created. For unknown variables, we do not setup any record in the mapping table.
Instead, we just initialize these variables’ one-bit tags to false. The main thread also
gets a new iteration by executing prologue code and then assigns it to the newly cre-
ated thread. After the initialization work, the main thread enters a main loop where it
first calls waits for messages from parallel threads and responds accordingly. It pro-
cesses Exception requests from all parallel threads until finally a Finish message is

123

Int J Parallel Prog (2009) 37:508–535 519

... in
it

_v
er

si
o

n
_t

ab
le

()
;

fo
r(

i=
0;

 i<
N

um
_P

ro
c;

 i+
+

)
{

 p
ro

lo
gu

e
co

de
;

 c
re

at
e

th
re

ad
 i;

 in
it

_t
h

re
ad

(i
);

 } i=
0;

 /
/th

re
ad

 id
fo

r
(.

..;
...

;..
.)

 {

 /
/ s

pe
c.

 p
ar

al
le

liz
ed

 lo
op

 w

hi
le

 (
1)

 {

 u
se

 “
se

le
ct

”
ca

ll
to

 m
on

ito
r

ev
er

y
m

as
sa

ge
 b

uf
fe

r;

 if

 a
ny

 m
es

sa
ge

 m
 is

 r
ec

ei
ve

d
in

 m
sg

_b
uf

fe
r[

 j
] {

 if

 (
 m

.ty
pe

 =
=

 "
E

xc
ep

tio
n"

)
{

 p
la

ce
 th

e
re

qu
es

te
d

va
lu

e
an

d
ve

rs
io

n

 n
um

be
r

in
to

 a
 r

ep
ly

 m
es

sa
ge

;
se

nd
_r

ep
ly

_m
sg

(m
sg

_b
uf

fe
r[

j])
;

 }

 if

 (
m

.ty
pe

 =
=

 "
F

in
is

h"
 a

nd
 i

=
=

 j)
 {

 r

es
ul

t =
fi

n
is

h
_t

h
re

ad
(i

);

 i
f (

re
su

lt
=

=
 S

U
C

C
E

S
S

)
 {

 b

re
ak

;

}

 e
ls

e
{ up

da
te

 C
 s

pa
ce

 fo
r

th
re

ad
 i;

se
nd

_s
ta

rt
_m

sg
(m

sg
_b

uf
fe

r[
i])

;

 }

 }

 }

 }

 //
 e

nd
 w

hi
le

 e
pi

lo
gu

e
co

de
;

 p
ro

lo
gu

e
co

de
;

 //
as

si
gn

in
g

ne
w

 w
or

k
in

it
_t

h
re

ad
(i

);
 s

en
d_

st
ar

t_
m

sg
(m

sg
_b

uf
fe

r[
i])

;
 i

 =
 (

i +
 1

)
%

 N
um

_P
ro

c;
 } w

ai
t f

or
 e

ve
ry

 th
re

ad
 c

om
pl

et
in

g
its

 w
or

k,
 c

he
ck

th

e
sp

ec
ul

at
io

n
an

d
ex

ec
ut

e
ep

ilo
gu

e
co

de
;

…

vo
id

 in
it_

ve
rs

io
n_

ta
bl

e(
)

 {

 in
t p

os
=

 0
;

 V
er

si
on

 T
ab

le
 v

t =
 m

al
lo

c(
);

 fo
r

ev
er

y
va

ria
bl

e
va

r
th

at
 is

 p
ot

en
tia

lly

re
ad

 o
r

w
rit

te
n

by
 p

ar
al

le
l t

hr
ea

ds
 {

 v

t[p
os

].
D

_a
dd

r
=

 v
ar

's
 D

 a
dd

re
ss

;

 v
t[p

os
].

V
er

 =
0;

 p

os
+

+
;

 } } vo
id

 in
it_

th
re

ad
(in

t i
)

 {

 if
 (

 th
re

ad
 i'

s
m

ap
pt

in
g

ta
bl

e

 d
oe

s
n

o
t

ex
is

t)
 {

M

ap
pi

ng
 T

ab
le

 m
t[i

] =
 m

al
lo

c(
);

 } e
ls

e
{

M

ap
pi

ng
 T

ab
le

 m
t[i

] =
 th

re
ad

 i'
s

m

ap
pi

ng
 ta

bl
e;

 } in
t p

os
=

 0
;

 fo
r

ev
er

y
va

ria
bl

e
va

r
th

at
 r

eq
ui

re
s

co

py
-in

 o
pe

ra
tio

ns
 {

 m

em
cp

y
(v

ar
's

 P
 a

dd
re

ss
, v

ar
's

 D

ad
dr

es
s,

 v
ar

's
 s

iz
e)

;

 m
t[i

][p
os

].D
_a

dd
r

=
 v

ar
's

 D
 a

dd
re

ss
;

 m

t[i
][p

os
].P

_a
dd

r
=

 v
ar

’s
P

 a
dd

re
ss

;

 m
t[i

][p
os

].S
iz

e
=

 v
ar

’s
si

ze
;

 m

t[i
][p

os
].V

er
si

on
 =

 v
ar

’s
cu

rr
en

t

ve
rs

io
n

in
 th

e
V

er
si

on
 T

ab
le

;

 m
t[i

][p
os

].W
rit

e_
F

la
g

=
 0

;

 p
os

+
+

;
 } }

B
oo

l f
in

is
h_

th
re

ad
(i)

 {

 in

t p
os

1,
 p

os
2;

 in

t f
la

g
=

 T
ru

e;

 V
er

si
on

 T
ab

le
 v

t =
 th

e
m

ai
n

th
re

ad
’s

 v
er

si
on

 ta
bl

e

 M
ap

pi
ng

 T
ab

le
 m

t[i
]

=
 th

re
ad

 i'
s

m
ap

pi
ng

 ta
bl

e;

 //

ch
ec

k
sp

ec
ul

at
io

n

 fo
r

(p
os

1=
0;

 m
t[i

][p
os

1]
 !=

 N
U

LL
; p

os
1+

+
)

{
po

s2
 =

 th
e

po
si

tio
n

of
 th

e
en

tr
y

in
 v

t,
w

he
re

en
tr

y.
D

_a
dd

r
m

at
ch

es
m

t[i
][p

os
].D

_a
dd

r;

if
(m

t[i
][p

os
1]

.v
er

si
on

 !=
 v

t[p
os

2]
.V

er
)

{
fla

g
=

 F
al

se
;

br
ea

k;
}

 }

 i

f (
fla

g
=

=
 F

al
se

)
{

re
tu

rn
 F

A
IL

;

 }

 e

ls
e

{

 f
or

 (
po

s1
=

0;
 m

t[i
][p

os
1]

; p
os

1+
+

)
{

 i
f (

m
t[i

][p
os

1]
.W

rit
e_

F
la

g)
 {

 /
/p

er
fo

rm
 c

op
y-

ou
t o

pe
ra

tio
ns

 m
em

cp
y(

m
t[i

][p
os

1]
.D

_a
dd

r,

 m
t[i

][p
os

1]
.P

_a
dd

r,
 m

t[i
][p

os
1]

.S
iz

e)
;

//u
pd

at
e

ve
rs

io
n

ta
bl

e

po

s2
 =

 th
e

po
si

tio
n

of
 th

e
en

tr
y

in
 v

t,
w

he
re

en
tr

y.
D

_a
dd

 m
at

ch
es

m
t[i

][p
os

].D
_a

dd
r;

vt
[p

os
2]

.v
er

 +
+

;

}

 } r
et

ur
n

S
U

C
C

E
S

S
;

 }

}

vo
id

 *
th

re
ad

_w
ra

pp
er

(i)

{
w

hi
le

(1
)

{

w
ai

t_
st

ar
t_

m
sg

(m
sg

_b
uf

fe
[i]

);

sp

ec
ul

at
iv

e
bo

dy
 c

od
e

w
ith

ac

ce
ss

 c
h

ec
ks

;

se

nd
_f

in
i_

m
sg

(m
sg

_b
uf

fe
r[

i])
;

 } } F
or

 e
ac

h
va

ria
bl

e
va

r’
s

ac
ce

ss
:

if
(v

ar
ha

s
n

o
t

be
en

 c
op

ie
d

in
to

P
 s

pa
ce

)
{

pu
t t

he
 D

 a
dd

re
ss

, s
iz

e
in

to
 a

 m
es

sa
ge

 m
;

 m

.ty
pe

 =
 “

E
xc

ep
tio

n”
;

 s

en
d_

m
sg

(m
sg

_b
uf

fe
r[

i],
 m

);

 /

/g
et

 th
e

va
lu

e
fr

om
 m

es
sa

ge

 v
al

 =
 r

ea
d(

m
sg

_b
uf

[i]
);

 s

to
re

 v
al

 in
to

 v
ar

's
 P

 a
dd

re
ss

;

 /

/u
pd

at
e

th
e

m
ap

pi
ng

 ta
bl

e

 i
nt

 v
er

 =
 r

ea
d(

m
sg

_b
uf

[i]
);

 i

nt
 p

os
 =

 e
m

pt
y

po
si

tio
n

in
 th

e

 th
re

ad
 i'

s
m

ap
pi

ng
 ta

bl
e

m
t[i

];

 m

t[i
][p

os
].D

_a
dd

r
=

 v
ar

's
 D

 a
dd

re
ss

;

 m
t[i

][p
os

].P
_a

dd
r

=
 v

ar
’s

P
 a

dd
re

ss
;

 m

t[i
][p

os
].S

iz
e

=
 v

ar
’s

si
ze

;

 m
t[i

][p
os

].V
er

si
on

 =
 v

er
;

 m

t[i
][p

os
].W

rit
e_

F
la

g
=

 0
;

}
(a

)
M

ai
n

T
hr

ea
d

(b
)

In
iti

al
iz

in
g

V
er

si
on

 T
ab

le

(c
)

In
iti

al
iz

in
g

Pa
ra

lle
l T

hr
ea

ds
(d

)
Fi

ni
sh

in
g

Pa
ra

lle
l T

hr
ea

ds

(e
)

Pa
ra

lle
l T

hr
ea

ds

(f
)

A
cc

es
s

C
he

ck
s

F
ig

.4
C

od
e

tr
an

sf
or

m
at

io
n

123

520 Int J Parallel Prog (2009) 37:508–535

received from the parallel thread that executed the earliest speculative iteration cur-
rently assigned to the parallel threads (this is thread i in the code). Upon receiving this
message, it calls finish_thread routine [see Fig. 4d]. This routine first performs
checks to detect misspeculation by examining the version numbers. If speculation is
successful, it commits the results and returns SUCCESS. Otherwise it returns FAIL
and as a result the main thread prepares the parallel thread for reexecuting the assigned
iteration. Committing result is essentially implemented by performing copy-out oper-
ations by consulting the mapping table. Once the results have been committed, the
epilogue code is executed. Next, the main thread executes the prologue code for the
next available iteration and prepares the idle parallel thread to execute this iteration.
Finally, the value of i is updated to identify the next parallel thread whose results will
be committed by the main thread.

(Parallel Thread) After its creation, each parallel thread executes function
thread_wrapper shown in Fig. 4e. After entering the while loop, a parallel
thread i waits for the start message from the main thread. Upon receiving this
message, it will execute the speculative body code and then send the Finish message
to the main thread. Note that the speculative body code is also obtained by transform-
ing its corresponding sequential code in couple of ways. First, code is introduced to
perform updates of the write_flag in the mapping table. The above code is put
immediately following every store access to variable p_varwhich can be of any type
but thread local. This information is used by the main thread when the copy-out
operations are performed. Second, code for access checks must be introduced. When
a unknown variable is read, we need to check the if its one-bit tag is true. If not, that
means this variable has not been copied into the current thread’s P space, so we copy
it on the fly. Note that the above code is inserted immediately before every read access
to variable p_var. Although copying on-the-fly seems to be complex and may poten-
tially slow down the execution due to the use of message passing, it does not cause
much overhead at runtime because of two reasons. First, these unknown variables
are not accessed in the profiling run and hence, are very unlikely to be accessed in the
normal run. Therefore, the likelihood of executing the corresponding access checks is
very small. Second, the copy operation for each unknown variable only needs to be
performed once. For the subsequence accesses, we do not have to send any request to
the main thread as the value has been copied into the P space of the current thread.

(Other Issues) Another important issue is the number of parallel threads that
should be created. One approach is to dedicate one core to the execution of the main
thread and create one parallel thread for each additional core available. However, we
observe that while the parallel threads are executing, the main thread only needs to
execute when a parallel thread sends a message to it. In addition, the parallel thread
sending the message must wait for the main thread to respond before it can continue
execution. Thus, we do not need to dedicate a core for the main thread. Instead we
can create as many parallel threads as there are cores available and the main thread
can execute on the same core as the parallel thread with which it is currently interact-
ing through messages. This strategy can be implemented in POSIX as follows. The
main thread executes the select call which allows it to wait on multiple buffers
corresponding to the multiple parallel threads. The call causes the main thread to be
descheduled and later woken up when a message is written into any of the message

123

Int J Parallel Prog (2009) 37:508–535 521

buffers being monitored. Unlike the main thread, a parallel thread simply needs to
wait for the main thread. Therefore, a parallel thread can execute the read call which
allows the parallel thread to monitor a single message buffer which is its own message
buffer. Upon executing aread, the parallel thread is descheduled until the main thread
performs a write to the monitored buffer.

3.3 Runtime Memory Layout

The previous section described how to transform the code from sequential version to
the parallel version. In this section, we show the execution difference between these
two versions via the comparison of the virtual memory layout under the 32-bit linux
OS. Figure 5a shows an example of the sequential code with variables needing differ-
ent types of treatment under our copying scheme. In particular, g1 and g2 are global
variables. The main function calls func which has p1 and p2 as its parameters.
Before the main loop while, there are two local variables loc1 and loc2 declared
in the func. The while loop has already been partitioned into three parts. Note that
in the body code, loc2 is classified as a thread local variable as it is always
defined before use. An unlikely taken branch is introduced in which g1 and loc1
carry out a loop dependency respectively. In other words, we can speculate on these
two variables since the two increment statements are unlikely to be executed.

//global variables

int g1 = 1;

int g2 = 2;

…

int main (int argc, char *argv[]) {

…

func();

…

}

void func (int p1, int p2, …) { //parameters

//local variables

int loc1 = 10;

int loc2;

…

while (…) {

prologue_code;

… //body_code_start

loc2 = result of some computations;

if (loc2 == 0) { //unlikely taken branch

//dependence on the global variable g1

g1 = g1+ 1;

//dependence on the local variable loc1

loc1 = loc1 + 1;

}

… //body_code_end

epilogue_code;

(a) Sequential Code

}

}

Kernel Space
0xc0000000

(3G)
0xc0000000

(3G)Environment
strings

Command-line
arguments

Dynamic linker’s
tables

envp[], argv[], argc

Return address

….

stack frame
for main()

stack frame
for main()

p2

p1

Return address

…

loc1 = 10

loc2

stack frame
for func()

stack frame
for func()

Top of Stack

ParametersParameters

Local
variables

Text segment

0x080480000x08048000

…

g1= 1

g2= 2

…

…

g1= 1

g2= 2

…

Data and BSS
segment

0x00000000 0x00000000

…

Heap data

…

0xffffffff
(4G)

0xffffffff
(4G)

p2

Return address

…

0xA: loc1 = 10

loc2

Main thread’s
stack frame

for func()

Main thread’s
stack frame

for func()

ParametersParameters

Local
variables

…

p1

…

Top of StackTop of Stack

…P1’s stack
frame

P1’s stack
frame

Thread local
variables

Thread local
variables

Return address

Thread ID

loc2

Parameter

…

0xC: p_loc1 = 10

Copied and
unknown variables

Top of StackTop of Stack

P1’s mapping
table

P1’s mapping
table

Entry1: D_addr, P_addr,
Version, write_flag

Entry1: D_addr, version

Variable g1

Other parallel threads’
stack frame

…

…

Entry n : 0xA, 0xC, 1, 0

…

Other parallel threads’
Mapping table

…

…

Main thread’s
version table

…

Entry n: 0xD, 1

…

…

Variable g1

Stack

Heap

0xB: p_g1 = 1

Entry n-1: 0xA, 1 Variable loc1

Entry n-1: 0xD, 0xB, 1, 0 Variable loc1

0xD: g1 = 1

…

…

(b) Stack Sequential Executior (c) Stack of Parallel Executior

Fig. 5 Runtime memory layout for sequential version and parallel version

123

522 Int J Parallel Prog (2009) 37:508–535

Figure 5b shows the virtual memory layout when the func is being sequentially
executed. As we can see, The text segment start from the bottom (0x8048000). Then
data and BSS segment where g1 and g2 are allocated, are next to it. Above these
two segments, heap starts growing towards higher virtual addresses. On the other side,
we can see that the address that can be used as the stack is from 0xc0000000 (3G) to
lower addresses. All local variables, parameters and the return address of thefunc are
stored on the stack. In particular, right after the stack frame for main, the parameters
of func (e.g., p1 and p2) are stored. All local variables of func (e.g., loc1 and
loc2) are stored after the return address location. As the execution continues,
the stack will grow and shrink accordingly.

Figure 5c shows the virtual memory layout when the func is being executed under
the CorD execution model. First, the stack frame for func now is split into sev-
eral frames, one for each thread. The very top frame is for the main thread which is
identical to the sequential version. The one next to it is the frame of the first parallel
threadP1. This frame contains one parameter (ThreadID), the return address, thread
local variables (e.g., loc2), copied variables (e.g., p_g1 which corresponds to g1,
p_loc1 which correspond to loc1) and unknown variables. Note that the copied
variables have correct values at the start of the parallel thread’s execution because of
the copy-in operations performed by the main thread. Other threads also have a similar
stack frame, which essentially is the P space in the CorD.

The C space in the CorD, on the other hand, is implemented through the malloc
function call. In other words, the mapping table for each parallel thread and the ver-
sion table for the main thread are allocated in the heap. From the figure, we can see
that each entry contains an address and its current version in the version table. For
example, the global variable g1’s current version is 1. As we can see, the mapping
table (P1’s mapping table is shown in the figure) contains the mapping information of
each copied variable. For instance, the address 0xD (corresponding to g1) is mapped
to the address 0xB (corresponding to p_g1 in P1’s stack).

Note that although message buffers are implemented through the pipe function
call, and thus allocated by OS in the kernel space (not shown in the figure), they still
conceptually belong to the C space in our execution model.

3.4 Loop Parallelization Variants

The loop parallelization algorithm developed in this section assigns individual iter-
ations of the loop to separate cores. Once an iteration is completed, its results are
committed to non-speculative state. However, there are situations in which it is more
appropriate to commit results of executing multiple iterations or results of execut-
ing a part of a single iteration to non-speculative state. We discuss these variants of
speculative loop parallelization in this section.

(Committing Results of Multiple Iterations) The performance of the parallel ver-
sion may be hindered by thread idling. If a parallel thread that is assigned work earlier,
finishes its work before some later threads are assigned work by the main thread, it
has to wait for the main thread to check its result. However, it may take a long time
for the main thread to finish assigning the later iterations to other threads. So during

123

Int J Parallel Prog (2009) 37:508–535 523

this period, this parallel thread cannot do any other work but simply idle. This will
cause substantial performance loss. This situation arises when relative to the number
of cores being used, the work being assigned to a single core in one step is quite small.
Thus, to avoid thread idling, we can increase the work assigned to each parallel thread
in a single step, i.e. the main thread can assign two or more iterations of work to a
parallel thread in a single step. In this way, we ensure every parallel thread stays busy
while the main thread is still assigning the later iterations to other parallel threads.

(Committing Results of a Part of an Iteration) During the partitioning of the
loop body our algorithm constructed the speculative body in such a manner that it
did not contain any statements that are involved in frequently occurring (or definitely
occurring) loop dependencies. This was done because frequent dependences will give
rise to frequent misspeculations; hence making the performance of the parallel exe-
cution no better than the sequential execution. Currently statements involving these
dependences must be included in the prologue of the epilogue. However, we observed
that in some programs the inclusion of statements involved in frequent or definite
dependences into the prologue or epilogue yielded a very small speculative body. In
other words most of the statements are part of the prologue or epilogue and relatively
few statements are actually contained in the speculative body. Thus, we cannot expect
significant performance enhancement in such situations.

We observe that to address the above problem, and effectively exploit the parallelism
available in loops, we must partition a loop iteration into multiple distinct speculative
code segments. These speculative code segments are interrupted by statements involv-
ing frequent or definite dependences and thus their execution across parallel threads
must be serialized. This modified approach yields a parallelized loop in which misspe-
culations are once again an infrequent occurrence. Another consequence of allowing
multiple speculative code segments is that after one such segment is executed its result
must be committed before the execution of a parallel thread can proceed further. In
other words, misspeculation checks followed by commit or re-execute must be per-
formed multiple times for different speculative segments of the loop body.

Figure 6 shows a loop requiring the partitioning of the loop body such that it con-
tains two distinct speculative code segments. On the left, a while loop contains typical
input and output statements which can be put into the prologue and epilogue respec-
tively. However, we cannot put the rest of the statements into a single speculative
body because of statement 4, which introduces a dependences across all loop itera-
tions. Therefore, we divided statements 2–6 into three parts as shown on the right:
the first speculative code segment; the serialized segment; and the second speculative
code segment. During execution, when each speculative code segment is started, the
main thread performs copy-in operations; and when each speculative code segment is
finished, the main thread performs the misspeculation checks. If speculation succeeds,
copy-out operations are performed; otherwise, only the failed part is re-executed. The
execution of statement 4 that intervenes the execution of two speculative code seg-
ments never causes misspeculation as its execution is serialized. We further observe
that the executions of statement 4 by different loop iterations being executed in parallel
can be carried out in any order, i.e. they are commutative [1,2]. Thus, the updates to
variable set can be expressed and implemented as transactions.

123

524 Int J Parallel Prog (2009) 37:508–535

Fig. 6 Partitioning a speculative body into several parts

4 Experiments

4.1 Experimental Setup

We have implemented the speculative loop parallelization approach described in this
paper and carried out experiments for a set of programs. To speculatively parallelize
loops, we first profile the loop code to gather information such as the dependence
graph and dynamic access patterns of variables. In our implementation we use the
Pin [3] instrumentation framework to enable profiling. Since the output of Pin is in the
form of instruction or memory addresses, we use the output of objdump, a utility that
can display the information from object files, to map these addresses to the names of
variables and statements in the original programs. We make the stack variables static
so that they get stored in the data or bss segment and hence can be recognized by
objdump. Based upon the gathered profile data, the compiler performs code transfor-
mation. We choose LLVM [4] as our compiler infrastructure as it allows us to perform
static analysis and customized transformation. All code transformations are performed
at the level of bc code, the intermediate representation of LLVM. After the transfor-
mation, we use the native option of LLVM to generate the x86 binary code which can
be executed on the real machine. All our experiments were conducted under Fedora
4 OS running on a dual quad-core (i.e., total of 8 cores) 3.0 GHz Xeon machine with
16 GB memory.

The benchmarks used in the experiments are divided into two groups. The first
group contains five programs taken from SPEC [5] and MiBench [6] suites in which
the program transformation that creates a single speculative code segment is used,
i.e. one loop iteration or multiple loop iterations are assigned to a single parallel
thread and after all of the assigned work is finished the results are committed to
non-speculative state. The programs in this group include: 197.parser, 130.li,
256.bzip2, 255.vortex, and CRC32. The second group of five programs is
taken from the STAMP [7] suite of programs and they include bayes, kmeans,

123

Int J Parallel Prog (2009) 37:508–535 525

labyrinth, vacation, and yada. The main loops in all these programs contain
definite loop dependencies caused by commutative statements. Thus, parallelization in
these programs requires creation of multiple speculative code segments from a single
loop iteration which are intervened by statements involving definite loop dependences.
Note that we only use selected benchmarks from various suites in our experiments.
The rest of the programs were not used due to a variety of reasons: they could not be
parallelized using our approach, the parallelism is insufficient causing no net benefit
in performance, or the program could not be currently handled by our compilation
infrastructure.

Table 2 describes the characteristics of the programs we used. In this table, the
first two columns show the name and the number of source code lines of each pro-
gram. The profiling input is shown by column Prof. Input and the column Exp. Input
gives the input used in the experimental evaluation. The next two columns show the
contents of the prologue and epilogue of the parallelized loop. We also use profil-
ing to identify different communication types of each variable used in the specu-
lative body. The last four columns show the distribution of variables across these
categories.

4.2 Execution Speedups

Next we present the results of execution speedups obtained using our parallelization
algorithms. In this experiment, we first measured the baseline which is the sequential
execution time of the loop that was parallelized. Then we measured the execution time
of this loop in our model with different numbers of parallel threads. Figure 7 shows
the speedup for the the first group of programs (SPEC and MiBench programs). From
Fig. 7, we can see that when the number of parallel threads increases, the speedup
for all benchmarks goes up linearly. The highest speedup achieved ranges from 4.1
to 7.8 across the benchmarks when 8 parallel threads are used. We also notice that
the performance of our model with one parallel thread is slightly worse than with
the sequential version for some benchmarks. That is due to the copying, tracking and
checking overhead. In fact, if only one core is available, we can force the main thread
to perform all computations rather than spawning parallel threads.

The data shown in Fig. 7 was obtained by selecting loop parallelization that reduced
the effect of thread idling. In particular, with the exception ofCRC32, thread idling was
observed in the four other programs whenever more than 5 parallel threads were cre-
ated. In fact we observed that when a single iteration of work was assigned to each par-
allel thread, thread idling caused performance to remain unchanged for197.parser,
130.li,256.bzip2, and255.vortexwhen the number of threads was increased
beyond 5 threads. However, when multiple iterations were assigned to each parallel
thread in a single step, thread idling was eliminated and improvements in speedups
was observed. Figure 8a–d shows the speedups of these benchmarks with and without
elimination of thread idling.

As we can see from the figure, when less than 5 threads are used, the use of the
optimization does not affect the speedup as all parallel threads are busy. However,
when more than 5 threads are used, without using the optimization higher speedups

123

526 Int J Parallel Prog (2009) 37:508–535

Ta
bl

e
2

C
ha

ra
ct

er
is

tic
s

of
be

nc
hm

ar
ks

Pr
og

ra
m

L
O

C
(K

)
Pr

of
.i

np
ut

E
xp

.i
np

ut
Pr

ol
og

ue
E

pi
lo

gu
e

V
ar

s.
in

bo
dy

I
O

L
IO

19
7.

pa
rs

er
9.

7
1

K
fil

e
36

K
fil

e
fg

et
s

pr
in

tf
49

6
12

2

13
0.

li
7.

8
6

sc
ri

pt
s

72
sc

ri
pt

s
i+

+
pr

in
tf

,v
ar

+
+

30
0

3
6

25
6.

bz
ip

2
2.

9
20

0
K

fil
e

7.
5

M
fil

e
fg

et
c

fp
ut

c
12

8
11

1

25
5.

vo
rt

ex
49

.3
Te

st
/in

pu
t

T
ra

in
/in

pu
t

+
+

i
fp

ri
nt

f
76

5
4

6

C
R

C
32

0.
2

O
ne

4M
-fi

le
80

4M
-fi

le
s

−−
ar

gc
pr

in
tf

1
0

2
1

B
ay

es
3.

1
Si

m
ul

at
or

in
pu

t
N

on
-s

im
ul

at
or

in
pu

t
G

et
a

ta
sk

U
pd

at
e

T
M

L
IS

T
4

0
4

1

K
m

ea
ns

0.
6

n2
04

8-
d1

6-
c1

6
n6

55
36

-d
32

-c
16

lo
op

+
+

U
pd

at
e

ne
w

ce
nt

er
5

0
3

2

L
ab

yr
in

th
1.

6
x3

2-
y3

2-
z3

-n
96

x5
12

-y
51

2-
z7

-n
51

2
G

et
a

ta
sk

U
pd

at
e

PV
E

C
T

O
R

3
0

2
3

V
ac

at
io

n
1.

8
Si

m
ul

at
or

in
pu

t
N

on
-s

im
ul

at
or

in
pu

t
i+

+
N

on
e

6
0

5
2

Y
ad

a
1.

6
63

3.
2

tti
m

eu
10

00
00

0.
2

G
et

a
ta

sk
U

pd
at

e
re

gi
on

,v
ar

+
+

2
1

2
4

I
C

op
y

In
;O

C
op

y
O

ut
;L

T
hr

ea
d

L
oc

al
;I

O
C

op
y

In
an

d
O

ut

123

Int J Parallel Prog (2009) 37:508–535 527

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
S

pe
ed

up

Number of Parallel Threads

197.parser
130.li

256.bzip2
255.vortex

CRC32

Fig. 7 Execution speedups for SPEC and MiBench programs

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

S
pe

ed
up

(a) 197.parser

w/ Opt.
w/o Opt.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

S
pe

ed
up

(b) 130.li

w/ Opt.
w/o Opt.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

S
pe

ed
up

(c) 256.bzip2

w/ Opt.
w/o Opt.

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

S
pe

ed
up

(d) 255.vortex

w/ Opt.
w/o Opt.

Fig. 8 Handling thread idling

are not possible because the additional threads are simply waiting for their result to
be committed and new work to be assigned to them. Note that in the case of CRC32,
each single iteration processes a 40 MB file which is a big enough computation to keep
each thread busy. Therefore, assigning multiple iterations to one thread will not result
in any additional speedup.

Figure 9 shows the speedups for the second group of programs (STAMP bench-
marks). Most of the computations performed in these programs are performed on
either the global heap data or the local heap data. The accesses to the global heap
are the ones that give rise to serialized code segments inside a loop which are com-
mutative and thus as long as these regions are executed atomically, the correctness
will be ensured regardless their execution order. In our implementation of the parallel

123

528 Int J Parallel Prog (2009) 37:508–535

0

 0.5

1

 1.5

2

 2.5

3

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
S

pe
ed

up

Number of Parallel Threads

bayes
kmeans
labyrinth
vacation

yada

Fig. 9 Execution speedups for STAMP programs

versions, software transactional memory system was used to execute the commutative
regions. In this way, our parallel threads do not require the global heap data to be
copied into their own P space. Instead, they can directly access the D space memory
with the assistance of transactional memory support provided in [8]. The rest of the
speculative code segments are executed using our CorD model.

From Fig. 9, we can see that for all 5 programs we used, we obtain some benefit from
parallelizing the execution. However, the speedups that result in smaller than those that
were observed for the first set of programs. This is because of several reasons. First, in
some benchmarks, the non-parallelizable code takes a significant amount of execution
time (bayes, yada). Second, the execution of serialized code limits the speedup that
can be obtained. In fact, when 7 or 8 threads are used in program labyrinth, the perfor-
mance worsens because the serialized code causes significant amount of transaction
conflicts which nullifies some of the parallelism benefits. Third, more interactions
between the main thread and parallel threads are required due to the partition of the
body code, which increases the overhead of using our parallelization strategy.

4.3 Overheads

4.3.1 Time Overhead

Our software speculative parallelization technique involves overhead due to instruc-
tions introduced during parallelization. We measured this execution time overhead
in terms of the fraction of total instructions executed on each core. The results are
based upon an experiment in which we use 8 parallel threads, and we breakdown
the overhead into five categories as shown in Table 3. The second column Static
Copy is the fraction of the total number of instructions used for performing copy-
in and copy-out operations by the main thread. This overhead ranges from 0.02
to 5.28% depending on how many variables need to be copied. The third column
Dynamic Copy gives the fraction of instructions for on-the-fly copying. The Excep-
tion Check column shows the fraction of instructions used by parallel threads to check
if a variable has been copied into the local space. According to the results, these

123

Int J Parallel Prog (2009) 37:508–535 529

Table 3 Overhead breakdown on each core

Program Static copy (%) Dynamic copy (%) Exception check (%) Misspec. check (%) Setup (%)

197.parser 3.51 0.33 0.02 1.76 0.62

130.li 0.08 0 0 1.08 0.07

256.bzip2 1.32 0.25 0.06 1.03 0.48

255.vortex 5.28 0.04 0.01 1.25 0.39

CRC32 0.02 0 0 0.01 0.32

Bayes 0.43 0 0 0.15 0.11

Kmeans 0.57 0 0 0.02 0.38

Labyrinth 0.13 0 0 0.01 0.09

Vacation 0.89 0 0 0.66 0.30

Yada 0.87 0 0 0.53 0.26

two numbers are very low for the benchmarks we used. Another category of over-
head comes from the Misspeculation Checking. This uses 1–2% instructions for all
SPEC benchmarks and less than 1% instructions for CRC32 and STAMP bench-
marks, which do not have many variables to copy. Besides the above four categories,
there are other instructions executed for Setup operations (e.g., thread initialization,
mapping table allocation and deallocation etc.). The last column shows the result. In
total, no more than 7% of total instructions are used for execution model on each
core.

4.3.2 Space Overhead

Since we partition the memory into three states during the execution, and each parallel
thread has its own C and P state memory, extra space certainly needs to be used in our
execution model. So we measured the space overhead of the executions of parallel-
ized loops. The space overhead is shown in Fig. 10. The space used by the sequential
version serves as the baseline.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8S
pa

ce
 O

ve
rh

ea
d

of
 L

oo
p

E
xe

cu
tio

n

Number of Parallel Threads

197.parser
130.li

256.bzip2
255.vortex

crc32
bayes

kmeans
labyrinth
vacation
vacation

Fig. 10 Memory overhead

123

530 Int J Parallel Prog (2009) 37:508–535

Table 4 Size of binary code
Program Sequential version (K) Parallel version (K)

197.parser 234 239

130.li 179 183

256.bzip2 53 57

255.vortex 1336 1370

CRC32 8 10

Bayes 165 170

Kmeans 47 48

Labyrinth 106 111

Vacation 170 173

Yada 182 186

As we can see, the overhead for most benchmarks is between 1.3x and 3.2x when
8 threads are used. Given the speedup achieved for these benchmarks, we can see that
the memory overhead is acceptable. For 256.bzip2, a large chunk of heap memory
allocated in D space is used during the compression. In our execution model, each
parallel thread will make a copy of this memory space to execute the speculative body.
Therefore, as more parallel threads are used, more memory is consumed.

Besides the dynamic space consumption, we also examined the increase in the static
size of the binary. As shown in Table 4, the increase varied from 1 K to 5 K for most
programs, a very small fraction of the binary size.

4.4 Comparison with Other Techniques

A significant amount of research has been performed on thread level speculation (TLS)
[9–15]. Similar to our work, TLS is aimed at extracting parallelism from sequential
codes. However, TLS relies heavily upon hardware support for executing threads
speculatively. In particular, TLS requires a multithreading processor which has the
ability to detect misspeculation and recover the computation state. Thread isolation
is achieved by either versioned cache or versioned memory. These hardware features
are expensive and not available in commercial processors at this time.

In comparison to TLS techniques, the techniques in [16] and this paper are imple-
mented purely in software. There is no requirement for hardware to detect misspe-
culation or isolate speculative state. Hence, these software solutions are practical for
use on machines available today. In this we demonstrate the advantages of our tech-
nique over the technique in [16] through experimentation. Note that in Ding et al. [16],
proposed a process based runtime model that enables speculative parallel execution
of Potentially Parallel Regions (PPRs) on multiple cores. We compare our work to
this process based work in three respects: overall performance, copying overhead, and
process creation overhead.

Figure 11 shows the comparison of speedups obtained by our technique and esti-
mated speedups of the technique in [16]. The comparison is made for all benchmarks

123

Int J Parallel Prog (2009) 37:508–535 531

Process Based Model
Copy Or Discard Model

0

1

2

3

4

5

6

7

8

ya
da

va
ca

tio
n

la
by

ri
nt

h

km
ea

ns

ba
ye

s

C
R

C
32

25
5.

vo
rt

ex

25
6.

bz
ip

2

13
0.

li

19
7.

pa
rs

er

Sp
ee

du
p

Fig. 11 Speedup comparison

when 8 processes/threads are used. As we can see, our approach outperforms the pro-
cess based model proposed in [16] across all benchmarks. In particular, for the first
group of benchmarks, excluding CRC32, the performance difference ranges from
1.1 for 130.li to 2.0 for 256.bzip. In case of CRC32 the performance difference is
smaller – 0.2. For the second of group of benchmarks, while our approach can achieve
1.4x–2.5x speedup, the process based model slows down the original execution in all
programs except kemeans where 1.12x speedup is achieved.

There are three reasons for the above performance difference. First, in [16], the
speculative region is executed by a process instead of a thread. Each process can only
communicate with its child process, and the last process cannot know the termination
of the first process if more than two processes are created. Therefore, the work has to
be assigned to the processes running on different cores in rounds. Thus, parallelism
cannot be fully exploited.

Second, copying overhead for [16] is large. As already mentioned, in [16], the spec-
ulative region is executed by a process instead of a thread. The advantage of using a
process is that all required data by a speculative process is supplied by the OS through
copy-on-write scheme. While this makes implementation of the runtime system easy,
the copying overhead is higher as copying at OS level is carried out at the granularity
of a page. In particular, once a memory cell is written in a speculative process, OS will
make a copy of the entire page containing that cell. It is worth noting that more pages
need to be allocated so as to solve the false sharing problem caused by tracking the
dependence at page level. According to the description in [16], each global variable
needs to be allocated on a distinct page. This worsens the overhead of the copying
operation. In contrast, a thread in our model only copies the data that can be potentially
accessed. This will avoid a large amount of unnecessary copying operations.

Table 5 shows the average size of the data that needs to be copied for each working
process or thread in the two approaches. As we can see, while the size of data copied
in our approach ranges from 0.1 KB to 965 KB across all benchmarks, it ranges from

123

532 Int J Parallel Prog (2009) 37:508–535

Table 5 Copying overhead
comparison

Program Copy-on-discard model (K) Process-based model

197.parser 12 4.6 M

130.li 6 5.5 M

256.bzip2 965 17.9 M

255.vortex 19 4.1 M

CRC32 0.1 395 K

Bayes 56 34.8 M

Kmeans 67 58.7 M

Labyrinth 2 36.6 M

Vacation 62 25.6 M

Yada 27 17.9 M

 0x

 50x

 100x

 150x

 200x

 250x

 300x

 350x

 400x

ya
da

va
ca

tio
n

la
by

ri
nt

h

km
ea

ns

ba
ye

s

C
R

C
32

25
5.

vo
rt

ex

25
6.

bz
ip

2

13
0.

li

19
7.

pa
rs

er

O
ve

rh
ea

d
of

 P
ro

ce
ss

 C
re

at
io

n

Fig. 12 Overhead of process creation per core

395 KB to 58.7 MB for process based approach. In particular, for each benchmark, the
data copied in the process based model is much more than in our approach. Clearly,
the time for copying the data is significant.

Lastly, the overhead of process creation is high. In [16] new processes are contin-
uously created when old processes finish their execution. In the case a loop has large
number of iterations, frequently creating processes negatively impacts performance.
In contrast, our work creates working threads only once. After the creation, each thread
simply waits for the main thread to dispatch a task to it. A thread terminates only after
the entire loop has been executed. To show the difference in these costs, we measured
the average time of process creation across all 8 cores for the process based model.
We also measured the time of creating 8 threads in our model. The ratio of process
creation time to the thread creation time is shown in Fig. 12.

As we can see, the ratio is between 17 and 363, which means that the process based
model spent much more time on creating processes on each core than our model where

123

Int J Parallel Prog (2009) 37:508–535 533

totally 8 threads are only created once. Note that the process creation time varies on
each benchmark because it is directly affected by the number of speculative tasks. The
more the number of tasks is, the greater the number of processes created.

5 Related Work

Ding et al. [16] proposed a process based runtime model that enables speculative
parallel execution of PPRs on multiple cores. However, the parallelism is not fully
exploited in this scheme because the work is assigned to the cores round by round
and the next round cannot start until all work in the previous round is finished suc-
cessfully. Besides, due to use of processes, significant amount of memory pages need
to be copied during the speculative execution. Moreover, each parallel region has to
be executed in one process, and hence processes have to continuously created. None
of the above drawbacks are present in our approach. Kulkarni et al. [2,17] proposed
a runtime system to exploit the data parallelism in applications with irregular par-
allelism. Parallelization requires speculation with respect to data dependences. The
programmer uses two special constructs to identify the data parallelism opportuni-
ties. When speculation fails, user supplied code is executed to perform rollback. In
contrast, our work does not require help from the user, nor does it require any roll-
backs.

One commonly-used approach for parallelization of loops is software pipelining.
This technique partitions a loop into multiple pipeline stages where each stage is
executed on a different processor. Decoupled software pipelining (DSWP) [18–20]
is a technique that targets multicores. The proposed DSWP techniques require two
kinds of hardware support that is not commonly supported by current processors.
First, hardware support is used to achieve efficient message passing between differ-
ent cores. Second, hardware support is versioned memory which is used to support
speculative DSWP parallelization. Since DSWP requires the flow of data among the
cores to be acyclic, in general, it is difficult to balance the workloads across the
cores. Raman et al. [19] address this issue by parallelizing the workload of over-
loaded stages using DO-ALL techniques. This technique achieves better scalability
than DSWP but it does not support speculative parallelization which limits its applica-
bility. Other recent works on software pipelining target stream and graphic processors
[21–25].

The alternative approach to exploiting loop parallelism is DO-ALL technique [2,9–
17] where each iteration of a loop is executed on one processor. Among these works,
a large number of them focus on TLS which essentially is a hardware-based tech-
nique for extracting parallelism from sequential codes [9–15]. In TLS, speculative
threads are spawned to venture into unsafe program sections. The memory state of the
speculative thread is buffered in the cache, to help create thread isolation. Hardware
support is required to check for cross thread dependence violations; upon detection of
these violations, the speculative thread is squashed and restarted on the fly. Compared
to TLS, our work does not require any hardware support and can be done purely in
software.

123

534 Int J Parallel Prog (2009) 37:508–535

Vijaykumar et al. [26] also presented some compiler techniques to exploit paral-
lelism of sequential programs. A set of heuristics operate on the control flow graph
and the data dependence graph so that the code can be divided into tasks. These
tasks are speculatively executed in parallel and the hardware is responsible for detect-
ing misspeculation and performing recovery. However, this work focuses specifi-
cally on Multiscalar processors. Instead of concentrating on extracting coarse-grained
parallelism, Chu et al. [27] recently proposed exploiting fine-grained parallelism
on multicores. Memory operations are profiled to collect memory access informa-
tion and this information is used to partition memory operations to minimize cache
misses.

There has been significant research work on transactional memory systems [28–31].
Although it has some similarities with out speculative parallelization work, there are
some fundamental differences. First, the purpose of developing transactional memory
is to replace the error-prone synchronization locks. Its main capability is to ensure
atomicity. Therefore, it appears in the context of developing concurrent programs
and used by programmers. Our work, on the other hand, focuses on the sequential
loop parallelization, so the parallel version can use transactional memory to maintain
the atomicity property if necessary. Second, the implementation of a transactional
system requires tracking every memory cell. However, our approach tracks every
variable thanks to the use of profiling and compiler technique. Thus, the overhead
of our technique is smaller. Moreover, the compiler performs program specific opti-
mizations during the compilation while the transactional memory is not capable of
that.

6 Conclusion

We presented a novel Copy or Discard (CorD) execution model to efficiently support
software speculation on multicore processors. The state of speculative parallel threads
is maintained separately from the non-speculative computation state. The computa-
tion results from parallel threads are committed if the speculation succeeds; otherwise,
they are simply discarded. A profile-guided parallelization algorithm and optimiza-
tions are proposed to reduce the communication overhead between parallel threads
and the main thread. Our experiments show that our approach achieves significant
speedups on a server with two Intel Xeon quad-core processors.

Acknowledgments This work is supported by NSF grants CNS-0810906, CNS-0751961, CCF-0753470,
and CNS-0751949 to the University of California, Riverside.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bridges, M., Vachharajani, N., Zhang, Y., Jablin, T., August, D.: Revisiting the sequential programming
model for multi-core. In: MICRO, pp. 69–84 (2007)

123

Int J Parallel Prog (2009) 37:508–535 535

2. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Paul Chew, L.: Optimistic paral-
lelism requires abstractions. In: PLDI, pp. 211–222 (2007)

3. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazel-
wood, K.: Pin: building customized program analysis tools with dynamic instrumentation. In: PLDI,
pp. 190–200 (2005)

4. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis & transformation.
In: CGO, pp. 75–88 (2004)

5. http://www.spec.org
6. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: a free,

commercially representative embedded benchmark suite. In: IEEE 4th Annual Workshop on Workload
Characterization (2001)

7. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: stanford transactional applications for
multi-processing. In: IISWC, pp. 35–46 (2008)

8. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: DISC, pp. 194–208 (2006)
9. Cintra, M.H., Martínez, J.F., Torrellas, J.: Architectural support for scalable speculative parallelization

in shared-memory multiprocessors. In: ISCA, pp. 13–24 (2000)
10. Hammond, L., Willey, M., Olukotun, K.: Data speculation support for a chip multiprocessor. In:

ASPLOS, pp. 58–69 (1998)
11. Vijaykumar, T.N., Gopal, S., Smith, J.E., Sohi, G.S.: Speculative versioning cache. IEEE Trans. Parallel

Distrib. Syst. 12(12), 1305–1317 (2001)
12. Gregory Steffan, J., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-level spec-

ulation. In: ISCA, pp. 1–12 (2000)
13. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multithreading. In: SPAA,

pp. 99–108 (2002)
14. Marcuello, P., González, A.: Clustered speculative multithreaded processors. In: ICS, pp. 365–372

(1999)
15. Zilles, C., Sohi, G.: Master/slave speculative parallelization. In: MICRO, pp. 85–96 (2002)
16. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior oriented parallel-

ization. In: PLDI, pp. 223–234 (2007)
17. Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Paul Chew, L.: Optimistic paral-

lelism benefits from data partitioning. In: ASPLOS, pp. 233–243 (2008)
18. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with decoupled software

pipelining. In: MICRO, pp. 105–118 (2005)
19. Raman, E., Ottoni, G., Raman, A., Bridges, M.J., August, D.I.: Parallel-stage decoupled software

pipelining. In: CGO, pp. 114–123 (2008)
20. Vachharajani, N., Rangan, R., Raman, E., Bridges, M,J., Ottoni, G., August, D.I.: Speculative decou-

pled software pipelining. In: PACT, pp. 49–59 (2007)
21. Buck, I.: Stream computing on graphics hardware. PhD thesis, Stanford, CA, USA (2005)
22. Fan, K., Park, H., Kudlur, M., Mahlke, S.A.: Modulo scheduling for highly customized datapaths to

increase hardware reusability. In: CGO, pp. 124–133 (2008)
23. Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P., Owens, J.D.: Programmable

stream processors. Computer 36(8), 54–62 (2003)
24. Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on multicore platforms. In:

PLDI, pp. 114–124 (2008)
25. Thies, W., Chandrasekhar, V., Amarasinghe, S.: A practical approach to exploiting coarse-grained

pipeline parallelism in c programs. In: MICRO, pp. 356–369 (2007)
26. Vijaykumar, T.N., Sohi, G.S.: Task selection for a multiscalar processor. In: MICRO, pp. 81–92 (1998)
27. Chu, M., Ravindran, R., Mahlke, S.: Data access partitioning for fine-grain parallelism on multicore

architectures. In: MICRO, pp. 369–380 (2007)
28. Adl-Tabatabai, A.-R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman, T.: Compiler and

runtime support for efficient software transactional memory. In: PLDI, pp. 26–37 (2006)
29. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid transactional

memory. In: ASPLOS, pp. 336–346 (2006)
30. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures.

In: ISCA, pp. 289–300 (1993)
31. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift, M.M., Wood, D.A.: Sup-

porting nested transactional memory in logtm. SIGOPS Oper. Syst. Rev. 40(5), 359–370 (2006)

123

http://www.spec.org

	Speculative Parallelization of Sequential Loops on Multicores
	Abstract
	1 Introduction
	2 Speculative Parallel Execution Model
	2.1 State Separation
	2.2 Misspeculation: Detection & Recovery
	2.3 Optimizing Copying Operations

	3 Speculative Parallelization of Loops
	3.1 Algorithm for Partitioning a Loop Iteration
	3.2 Transforming Partitioned Loop
	3.3 Runtime Memory Layout
	3.4 Loop Parallelization Variants

	4 Experiments
	4.1 Experimental Setup
	4.2 Execution Speedups
	4.3 Overheads
	4.4 Comparison with Other Techniques

	5 Related Work
	6 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

