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Abstract In this paper we provide universal formulas
describing Drinfeld-type quantization of inhomogeneous
orthogonal groups determined by a metric tensor of an arbi-
trary signature living in a spacetime of arbitrary dimension.
The metric tensor does not need to be in diagonal form
and κ-deformed coproducts are presented in terms of clas-
sical generators. It opens the possibility for future applica-
tions in deformed general relativity. The formulas depend on
the choice of an additional vector field which parametrizes
classical r -matrices. Non-equivalent deformations are then
labeled by the corresponding type of stability subgroups.
For the Lorentzian signature it covers three (non-equivalent)
Hopf-algebraic deformations: time-like, space-like (a.k.a.
tachyonic) and light-like (a.k.a. light-cone) quantizations of
the Poincaré algebra. Finally the existence of the so-called
Majid–Ruegg (non-classical) basis is reconsidered.

1 Introduction

Deformations of relativistic symmetries have been fruitful for
the description of quantum symmetries governing physics
at the Planck scale. Such quantum deformations of space-
time symmetries are described within the Hopf-algebra lan-
guage and are controlled by classical r -matrices satisfy-
ing the classical Yang–Baxter (YB) equation: modified or
unmodified one. One of the most interesting deformations,
from the point of view of physical applications, the so-called
κ-deformation, has been found in [1–4]. The deformation
parameter corresponds to the Planck Mass; its inverse defin-
ing fundamental length can be considered as a quantum grav-
ity scale. The r -matrix for the κ-deformation of Poincaré
algebra is given then by r = M0i ∧ Pi and it satisfies the
modified (inhomogeneous) Yang–Baxter equation (MYBE):
[[r, r ]] = Mμν ∧Pμ∧Pν . The κ-Poincaré Hopf algebra con-
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stitutes the deformed symmetry of the κ-Minkowski algebra
[4,5] which is a quantum version of the standard Minkowski
spacetime. The κ-Minkowski spacetime has been mostly
studied in the so-called time-like version of κ-deformation,
distinguishing the ’time’ coordinate as the quantized one. The
r-matrix mentioned above corresponds to this case.1 Another
option is the so-called light-like (null-plane) deformation cor-
responding to null-vectors, which was firstly considered in
[9] (then also in [10,11]) with quantum-deformed direction
on the light cone (x+ = x0 + x3) and with the correspond-
ing symmetry the so-called ’null-plane quantum Poincaré Lie
algebra’. It was inspired by the central problem of quantum
relativistic systems in the Hamiltonian formulation, which
has been studied for the null-plane evolution. In this case the
information provided by the Poincaré invariance splits into a
dynamical and kinematical part which is also the case after
the deformation. One of the advantages of the deformation of
this type is that it is triangular i.e. it can be described by the
classical r-matrix satisfying classical Yang–Baxter equation
(CYBE) and the twisting element satisfying two-cocycle con-
dition do exist [12]. Moreover, the differential calculus for
the null-plane κ-Minkowski is shown to be bicovariant and
four-dimensional [13], which has been proved to be impossi-
ble to built for other kinds of κ-deformations (i.e. time- and
space-like) [14]. It was also shown [15] that after suitable
(nonlinear) change of basis the quantum algebra presented
in [9] can be identified with the κ-deformation, given in [16]
for the choice of g00 = 0.

Till now the most popular form of presentation of quan-
tum κ-Poincaré algebra is the one which uses formulas for
deformed coproducts found for the first time in [4] (with the
primitive energy generator P0). The corresponding system
of generators, known also as Majid–Ruegg or bicrossprod-
uct basis, satisfy classical commutation relations between

1 The corresponding classification of quantum deformations (complete
for Lorentz and almost-complete for Poincaré algebras) has been per-
formed in Refs. [6,7] (see also dual matrix quantum group version in
[8]).
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Lorentzian generators and deformed ones in the boosts-
momenta sector. In contrast our formulas for quantized
coproducts are written entirely in the classical Lie algebra
basis.2 Some formulas for coproducts can be found in differ-
ent realization-dependent) context in [18–25]; see also [26].
The κ-Poincaré algebra combined with the non-orthogonal
form of the metric tensor was originally studied in [16] in
Majid–Ruegg basis and later with extended analysis, e.g.
in [13]. A passage from the Majid–Ruegg into the classi-
cal basis, which provides the so-called Drinfeld quantization
map, has been a subject of investigations in various context
[27–29]. Particularly, the explicit formulas expressing clas-
sical basis in terms of bicrossproduct one have been obtained
therein. Similarly, the null-plane deformation has been orig-
inally obtained and investigated in the basis inherited from
the so-called deformation embedding method [9]. The clas-
sical Lie algebra basis in this context has not been explored
yet.

Our aim in this paper is to provide a unified descrip-
tion for κ-deformed coproducts of classical Poincaré gen-
erators characterizing various κ-deformations according to
the Zakrzewski classification scheme [6,7]. The formulas
depend on the choice of an external vector field τ which
parameterizes classical r-matrices. Non-equivalent deforma-
tions are then labeled (classified) by the corresponding sta-
bility groups of τ .

The metric tensor can take the form of arbitrary symmetric
and non-degenerate matrix. For example for the Lorentzian
signature (in arbitrary dimension) one can distinguish three
different quantizations: time-like, space-like and light-like.
The corresponding orbits are characterized by the following
stability subgroups in SO(D − 1, 1): SO(D − 1), I SO(D −
2), SO(D − 2, 1) respectively. This form of the unified
description is particularly important from the point of view
of future applications in deformations of general relativity
[30,31] where the metric might be a function of the coordi-
nates [32] and/or in the so-called relative locality where it
might live on the momentum space [33].

The universal formulas are followed by the example of
orthogonal D = 1 + (D − 1) decomposition, which is suit-
able for non-null τ . This case allows for the change of sys-
tem of generators into the well-known Majid–Ruegg (nonlin-
ear) basis. Another example is the null-vector case (τ 2 = 0)
which provokes orthogonal 2+ (D −2) decomposition. This
(a.k.a. null-plane) case admits additionally Drinfeld twist,
due to the fact that r-matrix satisfies CYBE. The universal
formulas for coproducts coincide (up to quantum R-matrix)
with the twisted ones. Also the partial analog of Majid–Ruegg
basis can be found in that case. We finish this paper with some
conclusions and perspectives.

2 It has been demonstrated in [17] that the classical basis is related with
bi-crossed product construction as well.

2 Preliminaries and notation

Let V be a vector space (spacetime) of arbitrary dimension
D equipped with the metric tensor g of arbitrary signature.
Let denote the (special) orthogonal group of g as SO(g) =
{� ∈ GL(V ) : �T g� = g, det � = 1} and the correspond-
ing inhomogeneous orthogonal group as I SO(g)—Poincaré
group.3 Adopting typical relativistic notation one chooses the
basis {eμ}D−1

μ=0 and introduces the components of the metric:
gμν = g(eμ, eν).

There always exists an orthonormal basis {ea} and a vier-
bein matrix ξ

μ
a which diagonalizes the metric and then gμν =

ξa
μξb

ν ηab with the diagonal elements ηaa = ±1. Therefore we
are used to write I SO(p, q) in order to distinguish between
positive and negative diagonal entries: p + q = D.

The Lie algebra iso(g) as an infinitesimal form of this
group admits the Lie algebra basis {Mμν , Pμ} adopted to the
basis {eμ}D−1

μ=0 in V . It consists of the familiar commutation
relations:

[Mμν, Mρλ] = i(gμλMνρ −gνλMμρ +gνρ Mμλ − gμρ Mνλ),

(1)

[Mμν, Pρ] = i(gνρ Pμ − gμρ Pν), [Pμ, Pλ] = 0. (2)

The universal enveloping algebra Uiso(g) of this Lie alge-
bra can be equipped with a primitive Hopf-algebra structure,
which can later be quantized within the Drinfeld formalism.
Because of this, one requires the extension to the formal
power series Uiso(g)[[ 1

κ
]] (see e.g. [34–36] for more details).

This associative and unital algebra has a quadratic Casimir
element (aka Casimir of mass) defined as Cg = Pμ Pμ =
gμν Pμ Pν = C ∈ Uio(g) (a central element of Uiso(g)) which
plays very important role in physics, it represents the mass.
It takes a constant numerical value in any irreducible repre-
sentation.

However, from the point of view of physical applications
e.g. at the Planck scale we are interested in quantum deforma-
tions. As is well known, quantum groups are quantizations of
Poisson–Lie groups determined by Lie bialgebra structures
on the corresponding Lie algebras. They are described by
classical r -matrices satisfying Yang–Baxter equation. In the
case of orthogonal groups an interesting class of r-matrices
has been found in [6,7] (see also [37,38]). For any (non-
zero) vector τ = τμeμ ∈ V one defines the corresponding
r -matrix

rτ = τα Mαμ ∧ Pμ ≡ 1

2
τ��, (3)

where � = Mμν ∧ Pμ ∧ Pν is known to be the only invariant
element in ∧3iso(g) and τ� is used for contraction with the

3 In fact, we should restrict ourselves to the connected component of
unity instead of the full SO(g). For example the special Lorentz group
SO(1, 3) = SO↑(1, 3) ∪ SO↓(1, 3) has two connected components.
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vector τ . It appears that the Schouten bracket gives

[[rτ , rτ ]] = −g(τ, τ )�. (4)

This implies two possibilities:

I. τ 2 ≡ g(τ, τ ) ≡ τμτμ �= 0 for which the correspond-
ing r-matrix satisfies MYBE (Modified Yang–Baxter
Equation). It will provide the so-called standard (a.k.a.
Drinfeld–Jimbo) quantization with the quasi-triangular
quantum R-matrix.

II. τ 2 = 0 (provided non-Euclidean signature) with rτ sat-
isfying CYBE (Classical Yang–Baxter equation). In this
case one deals with the non-standard (a.k.a. twisted) tri-
angular deformation.

We consider a stability group Gτ of the vector τ , as a sub-
group which leaves the vector τ invariant under the natu-
ral action of SO(g) in V . Isomorphism classes of stability
groups classify the type of orbits. According to the general
formalism developed in [6,7] they can also be used to single
out the non-equivalent deformations labeled by τ . Regarding
the possible orbit types for the non-trivial vector τ �= 0 in
(V, g), assuming generic (p, q) signature, one can encounter
two main situations:

(A) τ 2 �= 0 and there is a basis {e0 = τ, ei }D−1
i=1 in V

such that g0i = 0. This basis provides the so-called
1 + (D − 1) orthogonal decomposition. The stability
subgroup is a homogeneous orthogonal group SO(gi j )

in D − 1 dimensions. The signature of the metric gi j

indicates the orbit type.
(B) τ 2 = 0 (provided we have a non-Euclidean signature).

There is a basis {e0 = τ, eD−1 = τ̃ , ea}D−2
a=1 in V

such that g00 = gD−1 D−1 = g0a = gD−1 a = 0 and
g0 D−1 = gD−1 0 = 1. This basis is called a light-cone
basis and it provides the so-called 2+(D−2) orthogonal
splitting. The two-dimensional Lorentzian space with
anti-diagonal metric is spanned by two light-like vec-
tors τ, τ̃ . Again the signature of the metric gab indicates
the orbit type. The stability subgroup is an inhomoge-
neous orthogonal group I SO(gab) in D −2 dimensions
in this case.
In other words if 1 ≤ p, q ≤ D − 1 one distinguishes
three cases: either SO(p − 1, q) or SO(p, q − 1) or
I SO(p − 1, q − 1). Particularly, for the Lorentzian sig-
nature one recovers the well-known cases:

(i) τ is a time-like vector, with Euclidean Gτ
∼= SO(D −

1) as a stability group. It corresponds to the original κ-
deformation with rτ = M0i ∧ Pi ;

(ii) τ 2 = 0, i.e. τ is a null-vector (light-cone deformation). In
this case the stability group Gτ

∼= E(D−2) ≡ I SO(D−
2) is an inhomogeneous Euclidean group;

(iii) τ is a space-like vector (tachyonic deformation) with
Gτ

∼= SO(D−2, 1) being the D−1-dimensional Lorentz
group.

3 Unified description for κ-deformations

For a given pair (gμν, τ
λ) the deformed coproducts imple-

mented by the vector τ (in fact, by the corresponding classical
r -matrix rτ ), when written in classical generators satisfying
the commutation relations (1)–(2)4, take the following form:

�τ

(
Pμ

) = Pμ ⊗ τ + 1 ⊗ Pμ

−τμ

κ
Pα−1

τ ⊗ Pα − τμ

2κ2 Cτ
−1
τ ⊗ Pτ , (5)

�τ

(
Mμν

) = Mμν ⊗ 1 + 1 ⊗ Mμν

+ 1

κ
Pα−1

τ ⊗ (
τν Mαμ − τμMαν

)

− 1

2κ2 Cτ
−1
τ ⊗ (

τμMτν − τν Mτμ

)
, (6)

where τμ denote covariant components of τ with respect to
the metric gμν and Pτ = τμ Pμ, Mτλ = τα Mαλ. In order to
preserve a compact form for the formulas (5)–(6) we have
also introduced the following notation (extending our previ-
ous notation from [39]):

τ = 1

κ
Pτ +

√

1 + 1

κ2 τ 2C,

−1
τ =

√
1 + 1

κ2 τ 2C − 1
κ

Pτ

1 + 1
κ2

(
τ 2C − P2

τ

) , (7)

τ 2Cτ = κ2
(
τ + −1

τ − 2 + 1

κ2

(
τ 2C − P2

τ

)
−1

τ

)
. (8)

The left (and right) hand side of the last equation vanishes
when τ 2 = 0. Further calculations give rise to

Pτ = κ

2

(
τ − −1

τ

(
1 + 1

κ2

(
τ 2C − P2

τ

)))
,

τ 2Cτ = 2κ2

(√

1 + 1

κ2 τ 2C − 1

)

. (9)

We would like to point out that all formulas considered so
far are valid also in the null-vector case, i.e. as τ 2 = 0. (For
τ ≡ 0 one recovers the primitive undeformed coproducts).
We shall specify later the expression for Cτ for this particular
case. At the moment one can observe that the inverse to (9),
the formula

4 For a realization-dependent version see e.g. [22–26].
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C = Cτ

(
1 + τ 2

4κ2 Cτ

)
, (10)

strongly suggests Cτ = C for τ 2 = 0.
Following the Drinfeld formalism of quantum groups all

equalities presented here are understood in the sense of for-
mal power series in one (undetermined) variable 1

κ
, for exam-

ple5

√

1 + 1

κ2 τ 2C =
∑

n≥0

(τ 2)n

κ2n

(
1/2

n

)
Cn = 1

+τ 2C

2κ2 +
∑

n≥2

(−1)n−1(τ 2)n(2n − 3)!!
2nn!κ2n

Cn, (11)

where
(1/2

n

) = 1/2(1/2−1)···(1/2−n+1)
n! are binomial coeffi-

cients. Cτ is a central element in Uiso(p,q)[[ 1
κ
]] which in

the classical limit κ → ∞ gives C and, therefore, plays the
role of deformed Casimir operator. From the above ones one
calculates

�τ (τ ) = τ ⊗ τ , �τ (
−1
τ ) = −1

τ ⊗ −1
τ , (12)

as well as (τ 2 �= 0)

�τ

(√

1 + 1

κ2 τ 2C

)

=
√

1 + 1

κ2 τ 2C ⊗ τ

− 1

κ
−1

τ ⊗ Pτ + τ 2

κ2 Pα−1
τ ⊗ Pα − τ 2

κ
Pτ

−1
τ ⊗ Pτ .

(13)

Finally, in order to complete the Hopf-algebra structure
we set the classical counit (ε(1) = 1, ε(Pλ) = ε(Mμν) = 0)
and deformed antipodes:

Sτ

(
Pμ

) = −
(

Pμ + τμ

κ

(
C + 1

2κ
Pτ Cτ

))
−1

τ ,

Sκ(τ ) = −1
τ , (14)

Sτ

(
Mμν

) = −Mμν + 1

κ
Pα
(
τν Mαμ − τμMαν

)

+ 1

2κ2 Cτ

(
τν Mτμ − τμMτν

)
. (15)

Moreover, the square of the antipode (14), (15) is given
by a similarity transformation S2(X) = D−1

τ X1−D
τ (cf.

[23,24]). Such deformed Hopf-algebraic structure will be
denoted U τ

iso(g)
[[ 1

κ
]].

Remark 1 It is worth to underline that these universal for-
mulas describe κ-Poincaré Hopf algebra not only in different

5 For the standard (i.e. Drinfeld–Jimbo-type) deformation one can
always switch to the so-called q-analog version with all infinite series
hidden in the one additional generator. In the case of κ-Poincaré it is
−1

τ which solves a specialization problem for κ , for details see [39].

Lie algebra basis induced by different basis in the underlying
vector space V but also provide the different types of defor-
mations. This can be seen from the well-known formula

lim
κ→∞ κ(�τ − �

op
τ )(X) = [�0(X) , rτ ], (16)

relating deformed coproducts with the corresponding clas-
sical r -matrices. Here �0(X) = X ⊗ 1 + 1 ⊗ X denotes
primitive (undeformed) coproduct for X ∈ iso(g) and �op

stands for the opposite coproduct with flipped legs. The right
hand side of the last equation defines cobracket determining
Lie bialgebra structures on iso(g). Therefore our coproducts
can be considered as their quantization. The following further
comments are now in order.

Remark 2 One should notice that the expression τ 2 C is inde-
pendent of the sign convention for g: the change g → −g
gives rise to τ 2 → −τ 2 and C → −C .

Remark 3 Re-scaling at the same time τ → sτ and κ → sκ
for any real parameter s leaves coproducts (5)–(6) invariant.
Notice that neither τ nor κ are present in the commutation
relations (1)–(2). For this reason (except the case τ 2 = 0)
one can assume that the vector τ is normalized, i.e. τ 2 = ±1
provided τ 2 �= 0.

Remark 4 Consider the well-known κ-Minkowski (quan-
tum) algebra Mτ as a unital associative algebra generated
by the noncommutative spacetime coordinate generators x̂μ

modulo the following relations [16]:

[
x̂μ, x̂ν

] = i

κ

(
τμ x̂ν − τ ν x̂μ

)
, (17)

where τμ is a fixed four-vector from V ; μ, ν = 0, 1, . . . , D−
1. This algebra becomes a Hopf module algebra (see e.g.
[40] for necessary definitions) with respect to the κ-deformed
Hopf-algebra structure (5)–(6). It means that the relation (17)
is preserved under the module action �, provided classical
action of the classical Poincaré generators (1)–(2) on the κ-
Minkowski coordinates (17):

Pμ�x̂ν = −ıδν
μ, Mμν�x̂ρ = −i

(
x̂μδρ

ν − x̂νδ
ρ
μ

)
. (18)

To this aim one requires the compatibility condition (a.k.a.
generalized Leibniz rule):

L � (x̂μ · x̂ν
) = (

L(1) � x̂μ
) · (L(2) � x̂ν

)
, (19)

where, for simplicity, we have used a Sweedler-type notation
for the coproduct: �τ(L) = L(1) ⊗ L(2) for L ∈ {Mμν, Pρ}.
Using a smash product construction one can unify spacetime
and symmetry generators (see e.g. [40]) into one algebra with
quantum Hopf-algebroid structure [41].
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Remark 5 It is well known that the real algebras Uiso(p,q)

of different signatures (p, q) can be viewed as different real
forms determined on the same complex algebra Uiso(D,C).
These real forms are represented by the corresponding
∗-conjugation. The standard and convenient way to estab-
lish appropriate conjugations is by the choice of a Lie alge-
bra basis composed of self-conjugate (Hermitean) elements.
One can observe that the basis (1)–(2) is compatible with Her-
mitean conjugation and it can be used for determining the cor-
responding real forms. Thus the universal coproducts (6) are
compatible with the signature implemented ∗-conjugations
in the following sense:

�τ (a)∗ = �τ (a
∗); (a ⊗ b)∗ = a∗ ⊗ b∗;

a, b ∈ Uiso(D,C).

Similarly, the relation (17) can be considered as providing the
real structure on the complex module algebra Mτ provided
that the vector τ remains real.

Examples Take the diagonal metric ημν = ημν = (−,+,

+,+) of the Lorentzian signature in D = 4 dimensions.
Three different choices: 1τ

μ = (1, 0, 0, 0), 1τ
2 = −1; 2τ

μ =
(0, 0, 0, 1), 2τ

2 = 1 and 3τ
μ = (1, 0, 0, 1), 3τ

2 = 0 provide
three different (non-equivalent) Hopf-algebraic structures
on Uiso(1,3)[[ 1

κ
]]: the original κ , tachyonic and light-cone

deformations, respectively (see also [11,15,16,42] for earlier
works in this context). We shall denote them U SO(3)

iso(1,3)
[[ 1

κ
]],

U E(2)

iso(1,3)
[[ 1

κ
]] and U SO(1,2)

iso(1,3)
[[ 1

κ
]] correspondingly. These

examples will be treated in more detail in the next subsec-
tions.

Yet another example can be considered by taking the diag-
onal metric ημν = ημν = (+,−,+,−) of neutral (Kleinian)
signature in D = 4 dimensions. The choice τμ = (1, 1, 1, 1)

(τ 2 = 0) provides a new type of deformation of Uiso(2,2)
.

Equivalently one can take more convenient basis with the
metric6

gμν = gμν =

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠ ,

being a direct product of the two light-cone metrics, and
we have τμ = (1, 0, 1, 0). In this basis one sees Hopf-
algebra isomorphism U τ

iso(2,2)
[[ 1

κ
]] ∼= U 1τ

iso(1,1)
[[ 1

κ
]] ⊗

U 1τ

iso(1,1)
[[ 1

κ
]] with 1τ = (1, 0).

6 This indicates Lie algebra isomorphism iso(2, 2) ∼= iso(1, 1) ⊕
iso(1, 1).

4 The orthogonal D = 1 + (D − 1) decomposition
versus the Majid–Ruegg basis

Contracting (5)–(6) with τμ yields

�(Pτ ) = Pτ ⊗ τ + −1
τ ⊗ Pτ

−τ 2

κ
Pα−1

τ ⊗ Pα − τ 2

2κ2 Cτ
−1
τ ⊗ Pτ , (20)

�τ (Mτν) = Mτν ⊗ 1 + 1 ⊗ Mτν

+ 1

κ
Pα−1

τ ⊗
(
τν Mατ − τ 2 Mαν

)

− τ 2

2κ2 Cτ
−1
τ ⊗ Mτν . (21)

Let us study the case of τ 2 �= 0 in more detail (the oppo-
site case will be the subject of our study in the next sec-
tion). In fact, without the loss of generality, one can assume
τμ = (1, 0, . . . , 0). More exactly, by the choice of the suit-
able basis (eμ)D−1

μ=0 in the vector space V with e0 = τ

and (ei )
D−1
i=1 being orthogonal to τ : g00 = τ 2; g0i =

g(e0, ei ) = 0. This provides the orthogonal decomposition
(V, gμν) ∼= (R, g00) × (V D−1, gi j ). Notice that the (D − 1)
dimensional metric gi j does not need to be in the diagonal
form.

In the corresponding Lie algebra basis {Pτ , Pi , Mτ i , Mi j }
the universal coproducts read now as:

�τ (Pτ ) = Pτ ⊗ τ + −1
τ ⊗ Pτ − τ 2

κ
P j−1

τ ⊗ Pj ,

(22)

�τ (Pi ) = Pi ⊗ τ + 1 ⊗ Pi , i, j = 1, . . . , D − 1,

(23)

�τ

(
Mi j

) = Mi j ⊗ 1 + 1 ⊗ Mi j , (24)

�τ (Mτ i ) = Mτ i ⊗ 1 + −1
τ ⊗ Mτ i + τ 2

κ
P j−1

τ ⊗ Mi j ,

(25)

where τ 2 after normalization can be reduced to ±1, here we
used the following identity:

(
1 − τ 2

2κ2 Cτ
−1
τ − 1

κ
Pτ

−1
τ

)
= −1

τ .

The above reminds one of some formulas from [39].
This enables us to introduce the new system of generators

{Pτ , Pi , Mτ i , Mi j } → {P̃τ , P̃i , Mτ i , Mi j } with

P̃τ
.= κ ln τ , P̃i

.= Pi
−1
τ ⇒ τ = e

P̃τ
κ , (26)
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which provides the deformed coproducts in the familiar
Majid–Ruegg form

�κ

(
P̃τ

)
= 1 ⊗ P̃τ + P̃τ ⊗ 1,

�κ

(
Mi j

) = 1 ⊗ Mi j + Mi j ⊗ 1, (27)

�κ

(
P̃i

)
= exp

(

− P̃τ

κ

)

⊗ P̃i + P̃i ⊗ 1, (28)

�κ

(
Mτ j

) = Mτ j ⊗ 1 + exp

(

− P̃τ

κ

)

⊗ Mτ j

− 1

κ
τ 2 P̃k ⊗ Mkj . (29)

The algebraic relations in the Majid–Ruegg basis are

[Mτ i , P̃τ ] = −iτ 2 P̃i , [Mi j , P̃k] = i(g jk P̃i − gik P̃j ),

[Mi j , P̃τ ] = 0, (30)

[Mτ i , P̃j ] = i

2
κgi j

(

1 − exp

(

−2 P̃τ

κ

)

− τ 2

κ2 P̃i P̃ i

)

+ iτ 2

κ
P̃j P̃i . (31)

Notice that the Lie algebra of the stability group Gτ con-
sist of the elements {Mi j } for which the coproduct remains
primitive. The expressions (27)–(31) cover all the standard
κ-deformations; for the Lorentzian signature they describe
both the time-like and the space-like quantizations.

5 The null-plane light-cone deformation
and the 2 + (D − 2) decomposition

In the case of light-like deformation, i.e. when τ 2 = 0, one
deals with the non-Euclidean geometry I SO(p, q); p, q �=
0. Therefore we shall introduce the most convenient “light-
cone” Poincaré generators:

Pμ = (P+ , P− , Pa), Mμν = (M+− , M+ a , M− a , Mab)

a, b = 1, 2 . . . D − 2. (32)

as a basis in the Lie algebra iso(gp,q). To this aim we have
to decompose the space V D = V 2 × V D−2, by a suitable
choice of basic vectors, into the orthogonal product of the
two-dimensional Lorentzian space {V 2, gAB} with a D −
2-dimensional one {V D−2, gab}: (A, B = +,−), (a, b =
1, 2 . . . D − 2). Moreover, the total metric gμν = gAB × gab

becomes a product metric. We choose gAB =
(

0 1
1 0

)
in its

anti-diagonal (light-cone) form as well as two null-vectors
τμ ≡ τ

μ
+ = (1, 0, . . . 0), τ̃ μ ≡ τ

μ
− = (0, 1, 0 . . . 0): τ+τ− =

1 in order to obtain the convenient light-cone basis in the
space of the Lie algebra generators (32). This algebra consists
of the following (non-vanishing) commutators:
[
M+ a , M−b

] = −i (Mab + gab M+−),
[
M± a, M± b

] = 0,

(33)
[
M± a , Mb c

] = i (gab M± c − ga c M± b),

[
M+−, M± a

] = ±i M± a, (34)
[
M+−, P±

] = ±i P±,
[
M± a , Pb

] = igab P±, (35)
[
M± a, P±

] = [
M+−, Pa

] = 0,
[
M± a, P∓

] = − i Pa,

(36)

together with the standard commutation relations within the
D − 2 dimensional sector (Ma b, Pa, gab), cf. (1)–(2). The
universal formula for the coalgebra structure, in this case,
reduces to

�τ(M) = M ⊗ 1 + 1 ⊗ M for M ∈ {M+ a, Mab}
�τ(P) = P ⊗ + + 1 ⊗ P for P ∈ {P+, Pa}, (37)

�τ(P−) = P− ⊗ + + −1+ ⊗ P−

− 1

κ

(
P− + 1

2κ
C+
)

−1+ ⊗ P+ − 1

κ
Pa−1+ ⊗ Pa, (38)

�τ (M+−) = M+− ⊗ 1 + −1+ ⊗ M+−

− 1

κ
Pa −1+ ⊗ M+ a, (39)

�τ (M− a) = M− a ⊗ 1 + −1+ ⊗ M− a

− 1

κ

(
P− + 1

2κ
C+
)

−1+ ⊗ M+ a − 1

κ
Pb−1+ ⊗ Mba,

(40)

where +
.= 1 + 1

κ
P+ and (1 − 1

κ
P+−1+ ) = (+ −

1
κ

P+)−1+ = −1+ and C+ is still to be determined. The
Lie subalgebra corresponding to the stability group of τ+
consists of iso(p − 1, q − 1) = gen{Ma b, M+ b}, i.e. the
generators with the primitive coproducts.

On the other hand, the classical r -matrix corresponding to
the vector τ+ reads

rLC = M+− ∧ P+ + M+ a ∧ Pa .

Since τ 2+ = 0 it satisfies the CYB equation and gener-
ates the non-standard (triangular) deformation. Its construc-
tion involves two Abelian D − 1-dimensional subalgebras
�+ = gen{M+− , Pa} and �− = gen{P+ , M+ a} satisfying
certain cross-commutation relations (cf. formulas (35)–(36)
and Ref. [12]). The corresponding twisting element has the
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following form:7

F = exp (−i M+− ⊗ ln +) exp

(
− i

κ
M+ a ⊗ Pa−1+

)

= exp

(
− i

κ
M+ a ⊗ Pa

)
exp (−i M+− ⊗ ln +). (41)

We are now in a position to calculate coproducts directly from
the twist by making use of the similarity transformation

�LC (X) = F�0(X)F−1, (42)

where �0(X) = X ⊗ 1 + 1 ⊗ X denotes as before the primi-
tive (undeformed) coproducts. After performing the involved
calculations it turns out that

R�LC (X)R−1 = �
op
LC (X) = �τ(X), (43)

where R = F21F−1 is a triangular quantum R-matrix, pro-
vided C+ = C as suggested by the formula (10). (Note that
in the light-cone basis one has C = 2P+ P− + Pa Pa and
P− + 1

2κ
C = P−+ + 1

2κ
Pa Pa). In other words, the formu-

las (37)–(39) and (42) describe in a different way the same
Hopf-algebraic structure.

Another observation is that for coproducts �LC (X) one
can introduce a partial analog of the Majid–Ruegg basis
(observed before in [13]). Indeed, setting P̃+ = ln +, P̃a =
Pa−1+ one has a primitive coproduct for P̃+ and M ∈
{M+ a, Mab} as in (27) and for P̃a and M+− as in (28)
and (29), respectively. As far as algebra is concerned we
get

[
M+−, P̃+

]
= i

(

1 − exp

(

− P̃+
κ

))

,
[

M+ a , P̃b

]

= igabκ

(

1 − exp

(

− P̃+
κ

))

, (44)

[
M+ a, P̃+

]
= 0,

[
M+ −, P̃a

]
= i P̃a

(

1 − exp

(

− P̃+
κ

))

,

[
M− a , P̃+

]
= − i

κ
P̃a, (45)

with the rest of commutators staying classical as in (33)–(34).
The only generator which does not fit into this Majid–Ruegg
scheme is P− .

6 Conclusions and perspectives

In the study of Poincaré algebra, from the point of view
of physical applications, one focuses on the representation

7 It is called an extended Jordanian twist since it enlarges the basic
Jordanian twist exp(−i M+ − ⊗ ln +) (see [43] for details).

theory and the value of Casimir operator C = P2. We believe
that physical objects are represented by time- or light-like
four-momentum. In this paper we have considered a coor-
dinate analog of such four-vector in the κ-deformed case
and we have shown that it is possible to consider analogous
(time-, space- and light-like) cases which in fact parameter-
ize the deformation. The universal formulas for the deformed
Poincaré algebra depend on the choice of the additional
vector field τ and allow one to consider three cases of
deformations all being the symmetry of the corresponding
noncommutative κ(τ)-Minkowski spacetimes (17). These
non-equivalent deformations are classified by the stability
groups of τ . In other words we have presented a class of κ-
deformations of orthogonal groups SO(g) in the way that
they explicitly depend on the choice of normalized four-
vector τ .

From the point of view of physical applications we can
focus here on four dimensions with the metric of Lorentzian
signature. Deformed Hopf algebra describes a symmetry of
quantized spacetime. In the most studied case the vector
τ is time-like which corresponds to κ-Minkowski space-
time algebra with noncommutativity between time and space
coordinates. Therefore such (time-like) vector can be iden-
tified with a preferred direction which can be interpreted
as a four-velocity of the preferred observer. Corresponding
3 + 1 decomposition provides a preferred frame. We have
shown that in such frame the utilization of Majid–Ruegg
coproducts is fully justified. It is also known that theories
with preferred spacetime direction violate Lorentz invari-
ance. In fact, the Lorentzian symmetry should be reduced
to the stability subgroup for which the coproducts remain
undeformed.

Also general relativity models with a preferred direction
(Einstein-æther) are currently under debate (see e.g. [44] and
references therein). Astrophysical data indicates as well that
the universe has a preferred (primordial) direction imprinted
on the microwave background [45,46]. It has been already
demonstrated that noncommutative effects turn out to be
helpful for the explanation of this fact [47–49].

Alternatively, one can want to restore full Lorentz covari-
ance allowing to transform the vector τ . Indeed, the Lorentz
transformation : τμ → τ̃ μ = �

μ
ν τν does not change the orbit

type. Therefore it preserves the deformation type. Such sce-
nario is similar to that one which encounters in Special Rela-
tivity which admits a class of preferred observers (frames)—
the inertial ones. Conversely, any two inertial observers are
connected by the Lorentz transformation. The same reason-
ing allows one to restore full diffeomorphism invariance on
a curved background.

Another nice feature of our approach comes from the fact
that the metric tensor g determining the orthogonal group
does not need to be in its canonical (diagonal) form. It implies
that the deformation can be executed in an arbitrary coordi-
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nate system. In particular, on a curved manifold when the
components of the metric g representing gravitational field
as well as the components of τ are point-wise dependent. In
such a case the usage of Majid–Ruegg bases is not, in gen-
eral, allowed unless some stronger assumptions (e.g. global
hyperbolicity, foliation, etc.) are taken into account. The uni-
fied description seems to be particularly useful from the point
of view of applications in deformations of general relativity.
A deformation in the geometric setting has been under inves-
tigation for quite some time as an alternative to the quanti-
zation of gravity [30,31]. For example one can follow the
most recent proposition to consider gravitational and cos-
mological models induced directly from noncommutative,
i.e. quantum spacetime [32]. In this approach the metric is
taken to be a function of coordinates. The unified description
already suitable for the arbitrary metric tensor could be gen-
eralized to include the metric as a function of coordinates
belonging to the center of the algebra (17). Such general-
ization would require suitable modification of the Poincaré
algebra (2) (see e.g. [50–52]). However, the quantum defor-
mation would be still described by the classical r-matrix rτ

and would imply two possibilities for the deformation, i.e.
τ 2 �= 0 or τ 2 = 0. This could allow to obtain more gravi-
tational and cosmological models induced by (17). Another
application could be found in the so-called relative locality
where the metric might live on the momentum space [33].
The so-called relative-locality effects were already investi-
gated in the time-like case [53,54]. The unified description,
however, opens a way to also consider the light-like one. In a
similar fashion as used in [55] one could define momenta real-
izations compatible with light-like deformation, i.e. twisted
realizations and proceed with the relative-locality formula-
tion [53]. Moreover, the unified description proposed in this
paper might be of use in the formulation of quantum field
theory on Lie algebraic type of noncommutative spacetimes;
see e.g. [56,57].

It is to be stressed that the twist (41) satisfies two-cocycle
conditions which make the light-cone deformation triangular.
In contrast, it has been shown recently [58] that the light-like
and space-like deformations cannot be reached by a similarity
transformation of type (42) even if one abandons the cocycle
conditions.
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