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Abstract Metallic one-dimensional (1-D) nanostructures

are widely studied owing to their important role in devel-

oping electronic and electromechanical systems at the

nanoscale. In the context of their structures, the large sur-

faces play a governing role in dictating many of their

fundamental characteristics and hence, the surface prop-

erties are the most vividly studied issues. In the present

work, we employ the harmonic oscillator model to analyze

the thermodynamic properties of 1-D copper nanostruc-

tures. Our simulations reveal that owing to the large sur-

face to volume ratio, the structural energies of these

nanomaterials significantly exceed that of the bulk copper.

Nevertheless, the harmonic oscillator approach enables us

to directly evaluate the free energy of the system and

eventually provides the associated entropy. The calcula-

tions are performed for three different crystal orientations

and the results clearly indicate that the per atom entropy of

thinner nanostructures is larger than their bulk counterpart.

This increment in entropy is attributable to the increased

degrees of freedom of the surface atoms and has the ten-

dency of stabilizing the surface structure. The harmonic

oscillator model works over a reasonable range of tem-

perature and the technique demonstrated here is well

extendable to other nanomaterials of interest.

Keywords 1-D Nanostructure � Atomistic simulation �
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Introduction

Over the past several years, there has been an over-

whelming increase in research activities in the field of one-

dimensional (1-D) metallic nanostructures. This is on

account of their extensive applications in nanoelectronic

devices (Nakamura et al. 1999; Gelves et al. 2006; He et al.

2008) and nanoelectromechanical systems (Fan et al. 2005;

Li et al. 2007) in the form of nanorods, nanotubes, nano-

beams, nanocantilevers and nanowires. In this context,

copper became a widely studied material because of its

excellent properties and easy availability at low cost. In

particular, advents of the in silico methods have boosted

much research in this direction. These copper nanostruc-

tures are found to exhibit interesting elastic (Liang and

Zhou 2003; Liang et al. 2005) as well as plastic (Park et al.

2006; Ji and Park 2007; Sutrakar and Mahapatra 2008)

properties. Besides, they posses peculiar features regarding

structural transformations (Guo and Guo 2006; Kang and

Hwang 2003), ballistic transport (He et al. 2008), melting

(Hwang and Kang 2003; Zhang and He 2010), vibration

(Kang and Hwang 2003) and point defects (Kang et al.

2002; Onat et al. 2009).

In the case of 1-D nanostructures, the large surface to

volume ratio makes the surface effects extremely promi-

nent. The large exposed surfaces are highly energetic and

often undergo spontaneous relaxations, thereby reducing

the surface energies (Aghemenlo et al. 2006; Crowson

et al. 2007; Wu 2009). This manifests in an altered value of

the interplanar spacing at the surface layers, both normal

and parallel to the plane of the surface (Sokolov et al. 1984;

Sinnott et al. 1991; Matveev 2008). In addition, a signifi-

cant surface stress is created, which can even induce elastic

nonlinearity in the 1-D systems (Liang et al. 2005). Most of

the studies on surface relaxation deal with the analysis and
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computation of surface energies and the energies of

relaxation (Diao et al. 2004; Ouyang et al. 2008; Lu et al.

2008). A large fraction of such results are the outcome

of first principle calculations and classical atomistic

simulations.

The work reported in this communication is based upon

the idea that the nanoscale devices are actually meant to be

used at finite temperatures. Therefore, the energies of

surface (computable from direct molecular statics simula-

tion) alone would not disclose the true picture of the

underlying thermodynamics. Instead, the entropic contri-

butions must also be considered with equal weight to have

a broader perspective of this process. Here, we perform the

atomistic simulation of surface relaxation of 1-D copper

nanostructures of different sizes and compute the free

energies and entropies corresponding to this phenomenon.

The harmonic oscillator model has been employed for the

purpose of free-energy calculations.

Thermodynamic model

Consider an ensemble of N strongly interacting particles,

each of mass m, with 3 N degrees of freedom. The Ham-

iltonian of this ensemble can be written as

Hðr; pÞ ¼ pj j2

2m
þ VðrÞ; ð1Þ

where the vectors r and p denote the position and momentum

of the system in the phase space, and V is the potential

function of the system. If the system is in a local potential

minimum V0, the Hamiltonian in the close neighborhood of

the point in the phase space at equilibrium is given by

Hðr; pÞ ¼ V0 þ
1

2
drT � =:dr þ pj j2

2m
; ð2Þ

where = ¼ o2VðrÞ is the Hessian matrix with 3N 9 3N

components and dr is a small displacement vector around

the equilibrium. The Hessian matrix, being symmetric,

yields a real matrix X upon diagonalization. Orthogonal

transformation of both sides of Eq. 2 yields

Hðr0; p0Þ ¼ V0 þ
1

2

X3N

i¼1

Xi � hdr02i i þ
p0j j2

2m
: ð3Þ

Here Xi denotes the ith element of the matrix X and the

prime (0) indicates the transformed values. We observe that

Eq. 3 resembles the Hamiltonian of an ensemble of 3N

non-interacting harmonic oscillators with spring constants

Xi. Therefore, the eigenfrequencies corresponding to these

oscillators are xi = (Xi/m)1/2. Once the eigenfrequencies

are estimated, we can compute the total free energy of the

system as

F ¼ V0 þ kT
X3N

i¼1

ln
�hxi

kT
; ð4Þ

where �h and k are the Planck’s constant and the Boltz-

mann’s constant, respectively.

The most advantageous feature of this model is its

simplicity itself. The only major atomistic computations

required are the structural relaxation of the ensemble, fol-

lowed by the construction of the Hessian matrix. Never-

theless, one primary source of inaccuracy appears in Eqs. 2

and 3, where the cubic and higher order terms are ignored.

Thus, the outcome of this implementation is expected to be

reliable as long as the studied temperature range is low to

moderate. At higher temperatures, nonlinear effects can

predominate and the methodology may become erroneous.

For such circumstances, the techniques of thermodynamic

integration (de Koning et al. 2000) can be more preferable.

So far, various versions of the harmonic oscillator model

have been applied to a variety of problems ranging from

the dislocation vacancy interaction (Bulatov and Cai 2006)

to the estimation of free energies of biomolecules (Yoshioki

2004).

Atomistic simulation

All the simulations described in this paper have been

performed using the MD?? molecular dynamics code

(http://micro.stanford.edu). We simulate bulk and 1-D

copper nanostructures with the many body embedded-atom

model (EAM) potential. The EAM potential has already

been discussed widely in different literatures. As the

potential satisfactorily reproduces the elastic properties and

the energetics of defects and surfaces, it has been com-

monly used in the classical atomistic computations for

similar studies.

By the term 1-D nanostructure, we denote a system of

nanoscale size, with its lateral dimensions much smaller

than its longitudinal dimension. We study single crystalline

structures of square and rectangular cross sections. Exam-

ples of earlier studies of similar systems can be found in

many of the given references. Three types of crystal

structures are used as described below.

Structure 1. The [001] is the longitudinal direction while

the (100) and (010) facets are the exposed surfaces. The

cross section is square.

Structure 2. The [001] direction is longitudinal and

(110), ð110Þ planes are at the free surfaces of the system

with square cross section.

Structure 3. The system is oriented along 121 and (101),

(111) are the free surfaces. It has a rectangular cross

section with aspect ratio *1.225.
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A typical simulation cell is shown in Fig. 1. The cell is

periodic only along the longitudinal direction (x), effec-

tively making the system infinitely long but finite in the

other two directions. Because of 1-D periodicity, it is

sufficient to simulate with only a few atoms along the

longitudinal direction, which is of particular advantage in

terms of computational load.

Before determining the Hessian matrix, it is essential

to minimize the system to its local potential minimum.

A straightforward structural relaxation of the simulated

system can generate a flawed matrix. This happens when

the algorithm reduces the potential energy, but fails to

converge to the exact potential minimum. In some other

cases, the algorithm converges to the nearest shallow local

minimum and misses a nearby state which can be in a

deeper potential well. Such conditions can be detected by

inspecting the eigenvalues. In principle, the first three

eigenvalues must be zero as they correspond to the trans-

lation of the entire crystal, whereas the rest of them should

be positive definite. Nevertheless, we have observed that

imperfect relaxation may manifest in small negative

eigenvalues. Clearly, direct relaxation if the structure is

inefficient as the algorithm would generate the same result

at each implementation. In our work, we circumvent this

problem by allowing the system to explore the phase space

dynamically. This is implemented through a series of

molecular dynamics simulations at different temperatures.

With random choice of initial atomic velocities, equili-

bration runs are carried out in the sequence of 150, 100, 50,

10 and 5 K at a small time step of 0.5 fs. Each run is

performed for 1,000 time steps, followed by structural

relaxation using the conjugate gradient algorithm. During

the relaxation process, dimension of the simulation cell is

allowed to vary longitudinally so that the residual stresses

(Liang et al. 2005; Wu 2009) can be minimized. Because of

random initial conditions, the thermal fluctuation is now

capable of knocking the structure out of an inappropriate

potential valley. We have observed this method to enhance

the probability of perfect energy minimization to a sig-

nificant extent. Once the relaxed structure has been

obtained, we can easily generate the Hessian matrix and

calculate the free energies as described in the previous

section.

Results and discussion

The free energy versus temperature plot is shown in Fig. 2.

This result corresponds to an ensemble of 192 atoms in the

bulk crystal simulated with periodic boundary conditions in

all the three directions. This trend is typical of all such free-

energy plots, where the energy maxima are obtained

because of the inherent feature of Eq. 4. However, from the

perspective of physical implication, the free-energy dif-

ferences yield more meaningful information than the

absolute free-energy values and hence all the results

obtained for the nanostructures are compared with that of

the bulk. Moreover, while comparing the thermodynamic

quantities such as changes in the internal energy, free

energy and entropy for different lateral dimensions of the

nanostructures, it is preferable to express them as average

values per atom, since these quantities are extensive in

nature.

Figure 3 displays the potential energy differences

DE (Enano - Ebulk/atom) between the relaxed nanostruc-

tures and the bulk for the three configurations under study.

We observe that although the surface relaxation compen-

sates for the large surface energies, the system is still at a

Fig. 1 A typical simulation cell periodic along the x direction. The

surface atoms are separately shown in green and are selected by

energy filtering

Fig. 2 Free energy versus temperature plot for the bulk copper. The

negative values are the result of the large cohesive energy of the metal
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higher energy state as compared to the bulk. With incre-

ment in the size of the structure, the energy decreases and

approaches that of the bulk. As DE is larger for the struc-

ture 2 as compared to the other systems, the relaxation

brings the structures 1 and 3 to states that are apparently

more stable than the structure 2.

Next we study the entropies of the 1-D nanostructures.

For this purpose, the free-energy differences DF (Fnano -

Fbulk/atom) of the three systems at 300 K are evaluated

using the Eq. 4. These free-energy differences involve the

change in the structural energy of the system as well as the

change in the entropies due to creation of free surfaces,

followed by surface relaxation. Once the free energies have

been computed, the entropic contributions can be estimated

as DS = (DE - DF)/T. An important concept is worthy of

being discussed at this point. The internal energy difference

DE can be split into static and thermal components as

DE = DEstat ? DEtherm. We measure DF and DS at a finite

temperature T, whereas DE is obtained from the static

(T = 0 K) simulations. The use of the static value of DE in

calculating DS at non-zero temperature does not produce an

error (Bulatov and Cai 2006), for the average thermal energy

of a system (Etherm) with harmonic potential is proportional to

the temperature T. Consequently, the thermal contributions

cancel out while calculating DE/T and the potential function

V(r) dictates the quantity alone. Figure 4 displays the entropy

changes at 300 K. The entropic benefits are clearly more for

the smaller nanostructures. Interestingly, the entropy change

(DS/atom) is maximum for the structure 2, which implies the

largest entropic stability despite its maximum instability in

terms of the corresponding DE value as exhibited in Fig. 3.

Another important observation in this regard is the enhanced

entropy for the thinner nanostructures. This size effect can be

attributed to the larger exposed surface in smaller nanosys-

tems. Owing to their reduced coordination numbers, the

boundary atoms are loosely bound, which manifests in

the increased effective degrees of freedom and. Consequently,

the per atom entropy rises as the size of the 1-D nanostructure

reduces (Fig. 4).

We have presented all the results of computation at

300 K. The influence of the ambient temperature on the

thermodynamic quantities can be estimated directly with-

out separate calculations. Consider two arbitrary configu-

rations, say C and C0, with the same number of atoms and

the interatomic potential function. If {xi} and {xi

0
} be their

respective eigenfrequencies, from Eq. 4, the free-energy

difference varies with the temperature linearly as

DFðTÞ ¼ DE þ kT ln
Y3N

i¼1

xi

x0
i

: ð5Þ

Similarly, the entropy change is given as

DS ¼ k ln
Y3N

i¼1

x0
i

xi
: ð6Þ

Equation 6 indicates that in general, the harmonic

oscillator model predicts that the entropic variation of a

system is independent of the temperature and solely

depends on the equilibrium atomic configuration. As a

result, the entropic stability contribution TDS becomes a

linear function of the system’s temperature. However, it

must be noted that in cases where the temperature is too

large, or when the interatomic potential is highly nonlinear

or soft, the abovementioned conclusion may not remain

valid and DS can become a function of the temperature.

Fig. 3 The structural potential energies (DE/atom) of the nanostruc-

tures with variation in system size. The square, triangular and

circular marks represent the values for structures 1, 2 and 3,

respectively. Clearly, structure 2 is most energetic out of all the

three studied systems, owing to its large surface energy. Moreover,

the potential energies increases with the reduction in size due to

enhanced surface to volume ratio

Fig. 4 The change in entropy (DS/atom) of the 1-D nanostructures, as

the functions of system size for the studied structures. Structure 2 can

be seen to avail the maximum entropic benefit. The gain in the

entropies is larger for the smallest systems and reduces with increase

in the system size

322 Appl Nanosci (2012) 2:319–323

123



Conclusion

By the way of summary, we have studied the thermody-

namic quantities associated with the surface relaxation of

one-dimensional copper nanostructures. The study reveals

that the process of creating free surface is capable of

inducing entropic stability to a nanostructure. The method

of free-energy calculation using the harmonic oscillator

model has been demonstrated. The present work can be

considered as a case study and the methodology can be

extended to other systems of interest. We reveal that the

analysis of the underlying thermodynamics on the basis of

structural energy is incomplete and must be supplemented

with the entropic contributions to arrive at the final quan-

titative predictions.
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