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Abstract We address the nursing service budgeting problem from the department man-
ager’s point of view. The model allocates the budget dynamically to three types of nursing
care capacities: 1) permanent nurses, 2) temporary nurses, and 3) overtime. The quarterly
tactical decisions are the aggregate weekly shift pattern of permanent nurses and the policy
for hiring temporary nurses and using overtime. The decisions are optimized with respect to
nursing care shortage and a soft-constraint on the annual budget. For the aggregate weekly
shift pattern, permanent nurses require a notification lead-time of one quarter to prepare the
personal rosters. Our model offers a solution to the nursing service budgeting problem that
extends the existing literature by using a Markovian demand model, resolving the anticipa-
tion of the operational decisions, and applying general budget as well as shortage penalty
functions.

Keywords Manpower planning · Non-linear stochastic dynamic programming · Health
service · Optimization · Stochastic processes

1 Introduction

For many hospitals, the costs and availability of nurses are of great concern. How to best
allocate the nursing budget is a complicated problem that the operations research (OR) lit-
erature can help address. Today, the existing OR-literature on nurse planning is mainly con-
centrated on nurse scheduling models (see e.g. Burke et al. 2004). Interestingly, the nursing
service budgeting problem has been utterly ignored in the last two decades.

The nurse workforce management process comprises decisions that are situated at dif-
ferent levels of the decision-making hierarchy. In general three stages are distinguished:
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budgeting, scheduling, and daily staffing (Brusco and Showalter 1993). It is a complex task
to model the entire hierarchical structure; even the simplest sensible budgeting calculations
are difficult. Cavouras and McKinley (1997) warn for the necessity of feedback reporting
among the decision-makers at different levels. Since the levels of the decision-making hier-
archy are all interrelated, isolated optimization of the different levels can easily yield poor
performance (Lowerre 1979). Easton et al. (1992) also point out the importance of integrat-
ing staffing and scheduling decisions over a year-long horizon. Following Abernathy et al.
(1973), very recently, Li et al. (2007) recall the importance of integrating the decision lev-
els in the workforce planning. These two papers suggest iterative methods for solving the
hierarchical workforce planning models, they propose.

The more practice-oriented nursing service budgeting literature takes an accounting
point-of-view to be applied by managers. Kirby and Wiczai (1985) recommend starting
with a basic budgeting system. The simple calculations illustrated in their paper have two
steps: (1) NHPPD (nursing hour per patient day) times annual patient days gives the an-
nual workload, (2) annual workload times productivity factor per full-time equivalent hours
(contractual FTE) gives the number of full-time nurses to be hired. Arthur and James (1994)
review the major workload measurement practices. The exact determination of the produc-
tivity factor is an important element of this line of research (Lowerre 1979).

To the best of our knowledge, only two papers contain annual nursing service budgeting
models in the traditional OR-literature. The primary concern of Trivedi (1981) is to ensure
balanced staffing, to meet union demands, and to satisfy cost control and containment regu-
lations, such that the number of part-time and the number of full-time nurses satisfy integrity.
This complex problem is modeled as mixed-integer goal programming, which allows em-
ploying only deterministic demand. Kao and Queyranne (1985) study a set of models along
three dimensions: having multi- or single-period, being disaggregate or aggregate for skill
classes, and modeling probabilistic or deterministic demand pattern. We refer the reader to
Venkataraman and Brusco (1996) for references to simulation based approaches on inte-
grated budgeting and scheduling in services.

The traditional OR-literature does not address important concerns of other, health care
originated papers. For example, Jeang (1996) alloys the work of Trivedi (1981) and Kao and
Queyranne (1985) in order to build a stochastic model that provides the weekly pattern of
the permanent nurses. The main decision is on the weekly pattern of the permanent nurses
as in Trivedi (1981), nevertheless the model accounts for uncertainty of demand, as Kao and
Queyranne (1985).

In our paper, similarly to Trivedi (1981), Kao and Queyranne (1985) and Jeang (1996),
we introduce a new annual nursing service budgeting model with some additional complex-
ities, and illustrate the model’s performance via calculations with real-life data. We also
follow the mentioned three budgeting papers in not comparing with any previously estab-
lished model, but claiming a better representation of real-life. It is the model’s different
outputs and input needs that impede any of such comparison.

The two major additional complexities that we add are the non-stationary stochastic
evolving demand and forecast updates. These aspects are not present in any of the above
mentioned papers. Our non-stationary stochastic evolving demand representation allows cal-
culation with multiple future demand scenarios at the same time as well as an autocorrelated
demand process. Without forecast updates, capacity decisions are assumed to be made such
that they do not react to the actual demand realization. In contrast, we use a Markovian de-
mand model that allows us to represent forecast updates and our dynamic budget allocation
to become responsive to these updates.

We aim at building a model that satisfies the main concerns of health care specialists and
nursing managers and meets the modeling requirements of the state of the art in OR. To
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achieve this goal, we use the principles of OR literature in health care for conceptual mod-
eling, the guidelines of health care specialists for modeling capacity decisions, and nursing
managers’ accounting suggestions for determination of important cost aspects. This paper
thus helps the communication between OR specialists and health care managers as well as
serves as a good basis for developing practical nursing service budgeting models.

In the following two sections, we introduce a set of descriptive models. These are the
shortage penalty cost, the budget penalty, the demand and the productivity models. In the
end of Sect. 3, we propose a decision structure and build a conceptual optimization model for
the stochastic dynamic nurse budgeting problem. Simplifications of this conceptual model
result in the final computational model, which is introduced in Sect. 4. We demonstrate the
usefulness of the computational model via performing numerical experiments in Sect. 5.
Conclusions are drawn in Sect. 6.

2 Longitudinal service budget allocation

This section presents a simple optimization model, which introduces the general notion
of the longitudinal service budget allocation. The model represents the budget allocation
process focusing on the trade-off between service capacity shortage and budget deviation.
The severity of different levels of service capacity shortages and budget deviations are de-
scribed by penalty functions, which we discuss in more details.

2.1 Capacity shortage penalty function

The concept of shortage penalty cost (a virtual cost) shows a general way of modeling loss
of quality due to capacity shortage. This concept was developed for the case of nursing
services by Warner and Prawda (1972). It is more general than the service level concept, see
e.g. Jeang (1996), who restricts capacity allocation.

According to the shortage penalty concept, predefined penalty costs are assigned to ca-
pacity shortages. The following axiomatic statements characterize the shortage penalty func-
tion: (1) the penalty is positive in case of shortage and zero if there is no shortage; and (2) the
cost is convexly (and non-linearly) increasing function of the shortage.

In our model, we use a generalized shortage penalty cost model. We assume that the
shortage penalty cost is an arbitrary time-dependent function of the demand for nursing care
and the available nursing capacity in the period.

2.2 Budget deviation penalty function

Although some existing models use penalty functions for budget deviations, the concept of
such penalty has not been axiomatically described yet. We mention that the penalty function
in the nursing service budgeting model of Trivedi (1981) is assumed to be linear, and that the
more abstract service budgeting model of Zimmerman (1976) uses a general function form.
In our model, we also use a general form of budget penalty function, which can depend on
the annual budget and the annual capacity costs.

2.3 Conceptual optimization model for longitudinal budget allocation

We present a conceptual optimization model, (OM1), to demonstrate the use of shortage and
budget penalty costs. The given budget W is distributed over periods with the objective to
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find a balance between shortages and budget deficit.

Model 1—Conceptual static optimization model for the budgeting problem (OM1)

min
capacity

{(∑
t

ShortagePenalty(demandt, capacityt)

)

+ BudgetPenalty(W,Cost(capacity))

}
.

The budget W is thus a resource, which is to be optimally allocated for employing capacity
to minimize the shortages and budget deviations. Naturally, the shortage and budget penalty
functions need to have the same unit of utility, so that we can calculate a trade-off between
them. Our further models preserve the trade-off idea of this conceptual model, and extend it
by a detailed decision structure and demand dynamics.

3 Stochastic dynamic nursing service budgeting

Many details are missing from OM1 that are specific to the budgeting of nursing service.
Since our goal is to build a nursing service budgeting model, we need to gain understanding
how the demand patterns look, what the productive part of the service capacity is, as well as
the capacity sources and capacity decisions are.

3.1 Demand pattern characteristics

In order to find the most appropriate demand model, we need to gain understanding of
its characteristics. Warner and Prawda (1972) find that demand prediction for nursing care
has 5–10% error for a few days ahead. However, after the first few days, error increased
to 20–30%. The relatively small error in the short-term allow them to use a deterministic
demand model with a twice a week rolling schedule. Kao and Queyranne (1985) compare
time-dependent stochastic demand models having independent, monthly periods with their
deterministic counterparts. Their results indicate that ignoring demand uncertainty can lead
to an underestimate of budget needs. By the computations, Kao and Queyranne (1985) use
an ARIMA model to generate a stochastic demand model with independent periods. Kao
and Tung (1980) show that the number of monthly patient days at different departments
fit different ARIMA models. The type of their best fit ARIMA models suggest that the
assumption of independent demand periods is not appropriate. Generally, the assumption of
independent periods is not justified and unwanted.

In our model, we use a general stochastic demand process model with a general de-
pendency structure. The only assumption is that the demand process is exogenous, i.e., our
decisions do not influence the demand. Similarly to Kao and Queyranne (1985), we simplify
the demand model for our computations. However, next to the time-dependency of demand,
we allow dependencies between demands of different periods.

3.2 Productivity

The calculation of productivity gives a substantial part of the nursing capacity cost account-
ing. Keeling (1999) explains that we can expect to have 1,477 hours productive work (pro-
ductive FTE) from the 2,080 hours contracted (contractual FTE). Lowerre (1979) lists hol-
idays, vacations, personal days, and sick days that constitute the non-productive fraction of
the contractual FTE, and shows a sequential procedure for accurate calculation.
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Table 1 Some descriptive information on nursing from Siferd and Benton (1992)

Starting time (on weekdays) three 49%, four to five 29%

Shift pattern have most or all staff with a permanent shift assignment 49%

have most or all staff who work a set pattern of days on and off 33%

have most or all staff who work the same days each week 21%

Overtime authorize nursing overtime 100 to 400 times per year 42%

always use voluntary overtime for a shortage of nursing staff 54%

Temporary nurses authorize use of temporary nursing staff 30 or more times per year 43%

sometimes use hospital pool nurses for a shortage of nursing staff 62%

Hiring (and leaves) hire new nursing staff 2 to 9 times per year 61%

One can find productivity constants in models as either the ratio of productive and con-
tractual FTE as p in Kao and Queyranne (1985), or its reciprocal, as γ in Trivedi (1981). We
employ the former, ‘p’ productivity definition in our model. Contrary to the deterministic
productivity formulations in the literature, we take sample paths of productivity to describe
its random behavior shift by shift (Pti). To evaluate the available (productive) workforce in
a shift, which is supposed to be an integer, we use controlled stochastic rounding (R(.)).

3.3 Capacity decisions

In this section, we make our modeling choices for the decisions, their timing and structure,
and extend the optimization model OM1 to a more detailed one, OM2. After a short review
of the axiomatic models, we recall some results of an empirical study that can serve as a
good basis for the model extension.

Practical computational models on budgeting are concerned with calculating the number
of full-time, part-time nurses on pay-roll, the overtime to be utilized, and a usually week
long pattern that repeats throughout the budgeted horizon (Trivedi 1981; Jeang 1996), or
make decisions only at an aggregate, monthly level (Kao and Queyranne 1985). All these
models fail to represent the dynamics, if the capacity decisions are taken responsively to the
recent demand realizations and the actual remaining budget. Consequently, these models do
not anticipate future capacity response (to e.g. a sustaining low level of demand), and do not
benefit from the fact that most of the capacity decisions need not to be made in the beginning
of the horizon. In Sect. 3.1, we mentioned that the demand forecast error can increase from
5–10% for a few days ahead to 20–30% on a longer term. This observation suggests that
delaying the decision making must have some added value.

A better source of input for modeling the decision structure is the empirical literature.
Siferd and Benton (1992) surveys hospital nursing units providing useful statistics on nurs-
ing service capacity decisions. These statistics are summarized in Table 1 outlining how
often certain capacity options are used among their respondents. Afterwards, we group the
capacity decisions by their frequency, creating a new table, Table 2. Here, we include the
decisions’ lead-time in brackets, additionally. We deduce the hierarchical structure of deci-
sions based on this table to build the model, OM2.

The starting time abbreviates the number of shifts and the daily time slots that the shifts
cover. This is a decision at the strategic level: the feasible set of shift timings remains un-
changed for years. In our model, we assume three shifts each day with some exogenous,
fixed starting times.
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Table 2 Decisions (and their lead times) grouped by their frequency

years starting time (0)

yearly/quarterly shift pattern (1), hiring and leaves (1)

per shift temporary nursing (0 or more), overtime (0 or more)

The shift pattern stands for the aggregate weekly pattern of permanent nurses. That is,
21 values describing the regular number of permanent nurses in each shift of the week. Al-
ternatively, the shift pattern can be for example two-week long. Our model calculates the
aggregate shift patterns as well as the hiring decisions, which may be necessary, (approx-
imately) quarterly. Naturally, it is more practical to shorten or prolong the quarters so that
those start and end at the time of leaves or in times of better hiring opportunities.

We note that the determination of the number of permanent nurses from their aggregate
shift pattern is simple: the total of the aggregate shift pattern needs to be multiplied by the
ratio of the single shift workload per year, 365 × 8 h = 2920 h, and the productive FTE.

The operational level consists of overtime and temporary nurse hiring decisions. We
assume a limited overtime, enough supply to reach the overtime limit, and an infinite supply
of temporary nurses that we can unlimitedly use, as in Kao and Queyranne (1985). In our
model, we assume to limit the overtime according to a predefined policy, which declares a
set of feasible overtime values (Z). Temporary nurse hiring is mostly an ad-hoc operational
decision. It is a separated short-term decision even in the best practical models (Bard and
Purnomo 2006), not reckoning with the budget constraints on the long term. In the next
subsection, we propose a model that overcomes the coordination problem of the operational
and higher level decisions.

3.4 Conceptual optimization model for nursing service budgeting

We formulate a conceptual stochastic dynamic programming model for the budgeting prob-
lem, OM2, which uses the concept of OM1 and the descriptive models. The model, OM2
includes the demand and productivity aspects as explained in Sects. 3.1 and 3.2, and uses the
decision structure of Table 2. In the model, the tactical and operational decisions create an
embedded structure of (penalty) cost-to-go functions: the f (.) functions correspond to the
tactical decisions, and the g(.) functions to the operational ones. The quarterly cost-to-go
f (.) has t index, while the shift index of g(.) is i. There are T = 5 quarters since we include
the first quarter’s permanent shift pattern decision made one quarter in advance before the
budgeted year starts (OM2.B); quarter t has It shifts.

In line with OM1, the only costs are the budget penalty and some shortage penalties
(see sti (. , .) in (OM2.D) and B(. , .) in (OM2.G)). The model’s state space consists of
the remaining budget, the demand state, and the shift pattern for the next quarter. By the
operational decisions, we need the current quarter’s shift pattern, additionally. E.[.] stands
for the expected value operator.

Model 2—Conceptual stochastic dynamic nurse budgeting optimization model (OM2)

f0 = f1(W,m1), (OM2.A)

f1(r1,m1) = min
ū2

{ED1(m1)[f2(r2, ū2,D(D1(m1)))]} with r2 = r1, (OM2.B)

ft (rt , ūt ,mt ) = min
ūt+1

{EDt (mt ),Pt [gt,1(rt − cuūt , ūt , ūt+1, Dt (mt ))]}, (OM2.C)
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gt,i(rt,1, ūt , ūt+1, Dt (mt )) = min
vti ,oti

{sti(Dt i (mt ),R(uti , Pt i ) + vti + oti) + gt,i+1(rt,1

− vtic
v
j − otic

o
j , ūt , ūt+1, Dt (mt ))}, (OM2.D)

gt,It +1(rt,It +1, ūt , ūt+1, Dt (mt )) = ft+1(rt,It +1, ūt+1,D(Dt (mt ))), (OM2.E)

fT (rT , ūT ,mT ) = EDT (mT ),PT
[gT,1(rT − cuūT , ūT ,0, Dt (mt ))], (OM2.F)

fT +1(W, rT +1) = B(W,W − rT +1). (OM2.G)

The tactical decisions can be seen in (OM2.B, OM2.C, OM2.F, OM2.G), which give the
quarterly dynamics of the model, whereas the operational decisions are modeled in (OM2.D,
OM2.E), which give the dynamics at the shift level. Equation (OM2.A) defines the minimal
expected annual quality loss for a budget, W , and an initial demand state, m1. Equation
(OM2.B) determines the first nurse shift pattern of the budgeted year, ū2. Equation (OM2.C)
decides on the permanent shift pattern of a quarter ahead, where the feasible shift pattern, ūt ,
is a 21 element long non-negative integer vector. Equation (OM2.D) describes the decisions
per shift, where we minimize penalty costs for a given demand by making the best choice
for overtime and temporary nurses. The feasible overtime values, vti are from the set, Z.
The number of temporary nurses can be any non-negative integer value. Equation (OM2.E)
calculates the transition to the new demand state, based upon the demand pattern realizations
that correspond to the previous demand state, mt . Equation (OM2.F) is similar to (OM2.C),
but as this is the last quarter no shift pattern decision is made any more. Finally, in (OM2.F),
takes into consideration the consequences of end-of-year budget deviations, how much the
starting budget has been depleted by the costs of permanent nurses (OM2.C, OM2.F), and
the costs of temporary help (OM2.D).

We represent the evolving demand by a set of year-long sample paths. These sample
paths are categorized into groups in each quarter (e.g., low/medium/high total demand in
the quarter). The groups are associated with demand states (mt). The quarterly demand state
transition probabilities can be calculated as the number of paths changing demand state
accordingly.

The demand state serves as the tactical level information source that let model the dy-
namics of forecast updates. The tactical level decision, ūt , is based on the knowledge of the
remaining budget and the present demand state, from which the set of relevant path contin-
uations can be extracted. For each of the relevant paths, a deterministic problem is solved
resulting in the operational level decisions, vti and oti .

Table 3 summarizes the notations of variables used. The second column declares the
variable category: input (I), output (O), and auxiliary (–). In the latter category, we classified
outputs of no particular importance.

4 Computational model

Since OM2 has more than thousand decision epochs and a large state space, it is not attrac-
tive computationally. We build another model, which is a simplified version of OM2, and as
such, its minimizations can be evaluated. We take two simplification steps.

4.1 Computational optimization model for the stochastic dynamic nursing service
budgeting problem

In the first simplifying step, we reduce the number of decision epochs to the number of
periods plus one by creating a hierarchical optimization structure. The numerous decision
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Table 3 Notations (variable, variable category (input I, output O, and auxiliary –), description)

indices

t – period index (t = 1, . . . ,5, quarters; quarters 2, . . . ,5 are budgeted)
i – subperiod index within a period (i = 1, . . . , It ,8h shifts, where It = 270,273 or 276)
j (t, i) – (we abbreviate it to j ) subperiod index within a midperiod (j = 1, . . . ,21,8h shifts of

the week)

capacity decisions

ūt O = (ū1, . . . , u21) aggregate weekly shift pattern of permanent nurses, where uj is the
number of permanent nurses in each weekly subperiod j of the actual period, and
similarly, u1 is the number of permanent nurses in subperiod i of the actual period

Vt O temporary help policy; it gives our preferred exchange rate between the penalty costs
and the real money

vi O the number of temporary pool nurses hired in subperiod i of the actual period
(vi = 0,1,2, . . .)

oi O the amount of overtime utilized in subperiod i of the actual period (oi ∈ Z)

capacity restrictions

Z I the set of feasible amount of overtime per shift

cost functions

ft (.) O expected minimal penalty-cost-to-go from the beginning of period t onwards
gt,i (.) O expected minimal penalty-cost-to-go from the beginning of subperiod i of period t

onwards

cost coefficients

cu
j

I unit shiftly cost of a permanent nurse in the subperiod j of a week

cv
j

I unit shiftly cost of a temporary pool nurse in the subperiod j of a week

co
j

I unit shiftly cost of overtime in the subperiod j of a week

budget and cost

W I annual budget
rt – remaining budget in the beginning of period t

C(d̄, ū,V ) O capacity cost subtotal in the actual period for demand sample path d̄, aggregate
permanent midperiodly shift pattern ii, and temporary help policy V

penalty cost functions

St (d, ū,V ) O nursing care shortage penalty cost subtotal in period t for demand sample path d,
aggregate permanent weekly shift pattern ū, and temporary help policy V

sj (d, c) I nursing care shortage penalty cost in the subperiod j of a week, when demand for
nursing care is d, and the nursing capacity is c

B(W,C) I budget penalty cost for annual budget W and for annual capacity costs C

demand

mt – demand state that captures information about the demand process’ of period t in the
beginning of the period

Dt (mt ) I Markovian demand process in period t

di – demand realization in subperiod i of the actual period
D(d̄) – demand state transition function, e.g. if the demand realization in period t was d̄ , it

gives the next demand state mt+1; it can be interpreted as forecast information for
period t + 1
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Table 3 (Continued)

productivity

Pt i I a random process that gives the fraction of the productive permanent nursing capacity

R(x) – =
{

�x� with probability x − �x�
�x� with probability �x� − x

, a random variable that helps generate randomized

integers from the real number x

epochs of OM2 are a result of the operational decisions. Our goal is to find tactical decisions
that define the operational decisions. Therefore, we assume that the operational decisions
follow a policy, which is decided at the tactical level. We call this policy the temporary help
policy Vt , renewed each quarter. By this way the operational decisions form a consistent part
of the budget allocation. For example, if we expect to end up with budget deficit, we will be
less willing to use overtime or hire temporary nurses.

In the second simplifying step, we reduce the state space via a mapping. It is the aggregate
permanent shift pattern that makes the state space large. We carry 21 dimensions of the shift
pattern next to few other dimensions. We propose an approximation that helps in resolving
the curse of dimensionality for this situation. Namely, we create a mapping ūt (mt−1,B

u
t ),

which calculates the aggregate shift pattern from only two dimensions: the demand state
at the time of the decision mt−1, and the budget part allocated to cover the shift pattern
of permanent nurses Bu

t . This way the multiple dimensions of ūt are translated to the two
dimensions mt−1 and Bu

t . The necessary mapping we calculate via a greedy algorithm.
The apparent simplicity compared to OM2 is a result of the disappearing optimizations

(OM2.D) and (OM2.E) and the reduced state space dimensionality. Equation (SDNBOM.A)
represents the minimal expected annual penalty costs for a budget W and an initial demand
state (m0,m1). Equation (SDNBOM.B) determines the first quarter’s permanent nurse bud-
get, while (SDNBOM.C) also decides on the temporary help policy parameter, Vt , minimiz-
ing the expected future penalty costs for the remaining budget.

Model 3—Stochastic dynamic nurse budgeting optimization model (SDNBOM)

f0 = f1(W,m0,m1) (SDNBOM.A)

f1(r1,m0,m1) = min
Bu

2

{ED1 [f2(r2,m1,D(D1),B
u
2 )]} with r2 = r1 (SDNBOM.B)

ft (rt ,mt−1,mt ,B
u
t ) = min

Vt ,B
u
t+1

{EDt ,Pt [St (Dt , ūt , Vt )

+ ft+1(rt − cuūt − C(Dt , ūt , Vt ),mt ,D(Dt ),B
u
t+1)]}

(SDNBOM.C)

fT (rT ,mtT −1,mT ,Bu
T ) = min

VT

{EDT ,PT
[ST (DT , ūT ,VT )

+ fT t+1(W, rT − cuūT − C(DT , ūT ,VT )))]} (SDNBOM.D)

fT +1(W, rT +1) = B(W,W − rT +1) (SDNBOM.E)

where ūt and Dt abbreviates ūt (mt−1,B
u
t ) and Dt (mt−1,mt ), respectively.

A fortunate advantage of SDNBOM is that the state space transformation with the
ūt (mt−1,B

u
t ) mapping imported a new dimension, mt−1, to the state space of period t . This
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implies that we can afford to use a second-order Markovian demand model. We remark
that some extra calculations are necessary: in (SDNBOM.C) and (SDNBOM.D) we need to
evaluate the St (.), the C(.) functions, and ūt .

4.2 Algorithms for the simplifying calculations

In this section, we discuss implementation issues of algorithms that can evaluate the St (.),
and C(.) functions, and the ūt vectors. The algorithms, we present are examples and not
intended to provide the optimal operational decisions. Instead, the provided operational de-
cisions are reasonable and, importantly, coordinated with the tactical decisions.

Algorithm 1 calculates the shortage penalty and capacity cost St (.) and C(.) for a given
temporary help policy and sample path, optimizing the temporary help and overtime. The
temporary help policy class has a single parameter, Vt , which gives our preferred exchange
rate between the quality-related penalty costs and the money allocated from the budget
for temporary help, in quarter t . We invest into overtime and/or temporary nurses up to
the capacity level where the shortage penalty/capacity cost ratio in the shift get closest to
Vt while not exceeding it. The policy parameter Vt , we optimize in the beginning of each
quarter. For the calculations, we take a number of realizations of Dt as a function of mt−1,
which are sample paths (vectors) with elements di , the demand in shift i.

Algorithm 2 is a greedy algorithm, which calculates the aggregate permanent shift pat-
tern, ūt . Here, Qj(k) = EDt [

∑
the weekly index of

shift i inquarter t is j
si(Dti , k)] is defined as the expected sum of

shortage penalties in the actual period incurred if k nursing capacity is used for the weekly
index j (e.g., j is ‘Monday night’, then Qj(5) is the sum of shortage penalties of Monday
night shifts throughout the period if 5 permanent nurses are hired). (Qj(0))j is the vector of
Qj(0)’s having elements for all j ’s. Bu is a given upper bound for Bu

t . �Q is the vector of
the actual Qj gradients. The algorithm provides the table (Bu

i , ui) for all shift i, for some
given quarter and demand state.

Algorithm 1 Calculation of shortage penalty and capacity costs St (.) and C(.)

qi(v, o) = si(di,R(ui Pt i ) + v + o)

uic
u
i + vcv

i + oco
i

(vi, oi) = arg max
(v,o)∈N0×Z

qi (v,o)≤Vt

qi(v, o)

C(d,ut ,Vt ) =
∑

i

vcv
i + oco

i

St (d,ut ,Vt ) =
∑

i

si(di,R(ui Pt i ) + vi + oi)

4.3 Justification of the simplifying steps

The policy class that Algorithm 1 represents is an approximation, which ignores the demand-
and budget-responsiveness of the temporary help decisions within the quarter, but it re-
mains quarterly responsive. Under the assumption that the quarters are static (the demand
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Algorithm 2 Calculation of the permanent shift pattern ūt (mt−1,B
u
t )

(i,Bu
i , ui,Q) := (0,0,0, (Qj (0))

j
)

�Q :=
(

Qj − Qj(1)

cu
j

)
j

while Bu
i+1 ≤ Bu

j∗ := arg max
j

{�Qj }

ui+1 := ui

(Bu
i+1, u

i+1
j∗ ) := (Bu

i + cu
j∗, u

i+1
j∗ + 1)

Qnew := Qj∗(ui+1
j∗ )

(�Qj∗,Qj∗) := (Qj∗ − Qnew,Qnew)

i := i + 1

end while

and budget circumstances do not change), Algorithm 1 can provide optimal temporary help
decisions. Namely, if si(di, .) is convex for all i and all possible demand value di , then Al-
gorithm 1 becomes equivalent with a greedy algorithm yielding an optimal behavior (Fox
1966). In the greedy algorithm, Vt becomes the terminating gradient value. Since Vt is opti-
mized, the budget spent for temporary help in the quarter is also optimized. Note that if the
year is split into more periods, then the approximation improves.

The optimality of Algorithm 2’s greedy mechanism may be damaged by poor anticipation
of the future use of temporary help. We may assume that either no temporary help is used or
we use temporary help only as replacement in case of absenteeism of the permanent workers
(Warner and Prawda 1972). Under any of these assumptions, the greedy Algorithm 2 gives
an optimal solution (Fox 1966).

4.4 Discussion of the assumptions

Since the nursing service budgeting is a composite problem, many assumptions need to be
taken while modeling. We create an explicit list of our modeling assumptions so that one can
judge the models applicability. The assumptions are ordered by their time span decreasingly.

Assumption 1 Three shifts a day meaning three fixed starting times.

Siferd and Benton (1992) reports that 49% of the surveyed hospitals use three starting
times. In the cases, where more starting times are in use, appropriate alternative algorithms
to Algorithm 1 and 2 are difficult to find. Provided these algorithms, however, our model is
still applicable without taking this assumption.

Assumption 2 Demand for nursing care is purely exogenous, independent from the capac-
ity level, the quality of care provided or other controllable variables.
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Demand for care is not independent on the capacity levels, in general. On the one hand,
when staffing at adequate levels patients’ stays are shorter than by consistently short staffing,
because then adequate nursing care is received (Flood and Diers 1988). On the other hand, by
a continuously unsatisfactory level of nursing capacity, patients may tend to select another
hospital because of the low quality or the long waiting times. Our assumption can, however,
get justification since our model optimizes capacity decisions for a given budget. The budget
limits the long-term level of nursing capacity that can be provided, so both the capacity and
the service level can be, approximately, regarded as constant.

Assumption 3 Years are independent; no long-term effects are taken into account.

On the strategic long-term, the surrounding population of patients and nurses can increase
or decrease. Costs of capacities can change; new regulations may come into effect. We
do not model these aspects, although the annual change in the patient population can be
incorporated into the demand model.

Assumption 4 In the end of each quarter nurses can be hired or fired in unlimited amount
at no cost.

This assumption can be restrictive in times of a nursing shortage (Brusco and Showalter
1993). For the situations, where hiring cannot be solved easily, we suggest using a modified,
constrained version of SDNBOM, where we constrain the search space of the aggregate shift
pattern of permanent nurses (e.g., |∑j ut+1,j − ∑

j ut,j | ≤ 5 for some t).

Assumption 5 Once we set up an aggregate weekly shift schedule, new permanent nurses
are hired, and the permanent nurses establish a set of personal rosters to meet the aggregate
schedule in one quarter.

We can use period lengths different from a quarter, which are suitable to describe the
lead-time of hiring and personal roster negotiations. Note that our model allows variable
period lengths as well.

Assumption 6 Budget is known a quarter in advance, before the budgeted year starts.

For the case, if the budget is not known by the time, we decide on the coming year’s
first shift pattern, we can say, it is known in stochastic terms. Again, we suggest using
an altered version of SDNBOM: an expectation on the budget may follow the first stage’s
minimization.

Assumption 7 Nursing care shortage depends only on demand, capacity and time.

Although this type of shortage penalty function is a broad generalization of that in Warner
and Prawda (1972), it can still carry restrictions to particular situations. For example, a fur-
ther generalization to dependency on demand, permanent capacity, overtime, temporary ca-
pacity and time may be preferable. The SDNBOM model allows this generalization without
any additional calculational complexity.

Assumption 8 Budget penalty depends only on the given annual budget and the annual
costs.



Ann Oper Res (2010) 178: 5–21 17

We generalized the linear soft budget constraint of Trivedi (1981) to an arbitrary penalty
function. We are not aware of any sensible broader generalization.

Assumption 9 No difference in efficiency between nurses.

This assumption relates to Assumption 7: we can translate the possible efficiency differ-
ences to differences in the generalized shortage penalty function.

Assumption 10 Demand forecast error is negligible in the short-term: demand during a
shift is assumed to be known at the beginning of the shift.

Naturally, this assumption can be seriously restrictive, when a large fraction of incom-
ing patients is emergency type, and the claimed closely deterministic short-term demand
structure is not valid. Otherwise, it is a reasonable assumption (Warner and Prawda 1972).

Assumption 11 Temporary nurses can be hired only for whole shifts.

Assumption 12 Overtime for less than one shift.

If we needed more nursing care that the permanent nurses can provide, we will use
temporary nurses or overtime. As long as we can calculate the best feasible overtime—
temporary nurse combination from the desired temporary help capacity, we can modify the
SDNBOM model to cover any temporary capacity policy till the shifts are independent. I.e.,
the SDNBOM model cannot treat policies that have constraints on a set of shifts, e.g., if one
had overtime last weekend, she would not be allowed to have overtime this weekend.

Assumption 13 Temporary nurses and overtime volunteers have infinite supply; we can
hire them in the beginning of the shift.

Temporary nurses and overtime volunteers are not generally always available (Brusco
and Showalter 1993). Constant upper limits on their number can be included in our model.
Alternatively, by gradually increasing the hourly cost of temporary nurse hiring, we can also
lower the use of temporary nurses to some given limit.

Assumption 14 No carry-over of workload from shift to shift (lost service).

In the call-center staffing literature, Atlason et al. (2005) point out that service of con-
secutive (short) time periods are interrelated, demand is partially lost, and partially carried
over to the next period. We can expect the same interrelation to hold for demand for nursing
care.

Assumption 15 Single nurse class and substitution between classes.

If there are fixed ratios between nursing classes, the permanent capacity cost will be
approximately linear function of the permanent capacity. For the better application of the
greedy algorithm, we need to have this permanent capacity cost function being convexly
increasing (Fox 1966). We do not handle substitution between classes.
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Table 4 The pure and the relative quadratic penalty cost functions

pure quadratic relative quadratic

ShortagePenalty = (demand − capacity)2 ShortagePenalty = ( demand−capacity
demand

)2

5 Numerical experiments

In this section, we first demonstrate what kind of solution SDNBOM can provide. After-
wards, we show experiments investigating the shortage penalty cost model selection.

To illustrate the functioning of SDNBOM, we used workload data of a mental health
inpatient ward (Ridley 2007). The maximum of nursing care demand per shift was eight
nurses; the daily total demand was about 11, with around 6, 3, and 1 in the day, evening, and
night shifts, respectively. The number of demand sample paths was twelve, which we gained
by simulating the ARMA demand process fit to the workload data. The more sample paths,
the better the demand process is represented, and the more memory and calculation time is
needed. The number of productivity sample paths was three, with an average productivity
around 70%. The number of demand states per period was three. Under this setting, one
evaluation of the SDNBOM took around 5 minutes (main computer parameters: 2.8 GHz
CPU, 1 Gb RAM).

We modeled the capacity shortage costs as being dependent both on the demand and
the available capacity, resulting in the relative quadratic penalty cost function (see Table 4),
which we considered more realistic than the pure quadratic shortage penalty cost function
of Warner and Prawda (1972). Namely, as opposed to the relative quadratic penalty, the pure
quadratic penalty has a shortcoming in that it regards the situation with one demand and no
nurses as severe as having ten demand and nine nurses.

While solving SDNBOM with the setting described above, we archived the state-
dependent decisions throughout the year. This archive allowed us to show for the different
demand sample paths how the budget is allocated longitudinally (see Fig. 1), and how far
capacity is matched to demand (Fig. 2).

In Fig. 1, we can see how the budget is allocated to permanent capacity and temporary
capacities (including overtime) along the year for 12 demand scenarios. Each quarter starts
with a step downwards, which corresponds to the quarterly permanent capacity expendi-
tures. Within each quarter, some part of the budget is consumed by the temporary capacity
expenses. By the end of the year, the remaining budget finishes around zero. For some sce-
narios, this could only be reached by allowing considerable capacity shortage costs in the
last quarter.

Figure 2 depicts the match between demand and capacity for each shift and each scenario,
quarterly grouped. Although the majority of the points are on the shortage side because of
the limited budget, SDNBOM provides a good match between demand and capacity.

In our further experiments, we evaluated the SDNBOM with pure and relative quadratic
penalty cost functions and tested the impact of modeling updated forecasts. We compare the
outcomes in Table 5. The table demonstrates the solution of the first quarter’s permanent
shift pattern for an annual budget of 8,000 and forecast updates. Because of the random-
ization in the SDNBOM, we can get different results for the same parameter setting. The
repeated experiments under the same setting showed that using the pure quadratic penalty
the SDNBOM sometimes assigns zero nurses to night shifts (still overtime and temporary
labor can be used) and more fluctuations in the number of permanent nurses in a shift of
the week. To the contrary, using the relative quadratic penalty seems to result in overstaffing
night shifts. Although the SDNBOM does not enable us to justify the use of any penalty
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Fig. 1 Illustration of the
remaining budget in the course of
the year for 12 demand scenarios

Fig. 2 Demand vs. the available capacity in the four quarters for the same 12 demand scenarios as in Fig. 1.
The diagonal line indicates from where shortage penalty is to be paid (below the line)

Table 5 Outcomes and outcomes ranges under the same parameter settings for the pure and the relative
quadratic penalty cost functions based on 25 runs

Pure quadratic Permanent shift pattern for the first quarter (ūt ) Total FTE

Bu
2 D E N D E N D E N D E N D E N D E N D E N

median 2,038.3 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 9 5 2 22.0

minimum 1,428.3 7 2 0 7 3 0 7 3 0 7 3 0 7 3 0 7 2 0 7 3 0 15.0

maximum 2,074.7 10 5 2 9 5 2 10 5 2 10 5 2 9 5 2 10 5 2 9 5 2 22.4

Relative quadratic Permanent shift pattern for the first quarter (ūt ) Total FTE

Bu
2 D E N D E N D E N D E N D E N D E N D E N

median 1,561.7 5 4 3 5 4 3 6 4 3 5 4 3 6 4 3 5 4 3 5 4 3 17.4

minimum 1,433.9 4 4 3 4 4 3 5 4 3 4 4 3 5 4 3 5 4 3 4 4 3 16.2

maximum 1,861.5 7 5 3 7 5 3 7 5 3 7 5 3 7 4 3 7 5 3 7 4 3 20.6

cost functions, we can conclude that the results are sensitive on the selection of the shortage
penalty cost model, and that the preferences of the hospital management could play a large
role in deciding on the penalty cost function.
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In our further comparisons, we evaluated the SDNBOM with and without modeling fore-
cast updates. In this example, we found that the penalty cost reduction gained from using
quarterly forecast updates is 91%. However, for some stable demand process, we generated,
the cost reduction becomes marginal, between 0–2%. We note that the response to the quar-
terly forecast updates is sometimes a big change in the permanent nursing capacity, which
is not necessarily wanted.

6 Conclusions

We built a stochastic dynamic optimization model for the nursing service budgeting prob-
lem based on existing concepts. We generalized some of these concepts, and in few cases
we gave suggestions for further generalizations. First, we built a conceptual optimization
model, which consisted of exact descriptive models of the generalized concepts. As far as
the underlying concepts and the data are reliable, the OM2 conceptual model provided op-
timal decisions. Due to its high complexity, we could not evaluate the conceptual model.
Therefore, we proposed some simplifying steps, which led to our final optimization model,
SDNBOM. We verified the results the SDNBOM provide and illustrated how far it makes
demand and capacity match. The SDNBOM model, we could evaluate in some minutes on
a single personal computer, for multiple periods.

By building our model, we put emphasis on the precise modeling of reality. Although
we cannot expect the results to be optimal, we used our model to test assumptions on the
shortage penalty cost models and on the demand forecast updates. We found that differ-
ent shortage penalty cost functions can lead to quite different staffing decisions. Therefore,
the management should carefully select a shortage penalty cost function that appropriately
represents their preferences. All in all, our overview and our findings can supplement the
development of future practical computational models on nursing service budgeting.

Future research, may address empirical modeling of the shortage and budget penalty
functions. Using empirical penalty functions would make further numerical experiments
with the SDNBOM interesting. Additionally, studying a set of real-life demand processes
would be necessary to draw appropriate conclusions on the value of using forecast updates.
Furthermore, it would be interesting to formulate a mixed integer program instead of the
simple greedy approximation of Algorithm 2.
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