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equations with Ñ punctures by deformation of the corresponding quantum glN rational

R-matrix. They have two parameters. The limit of the first one brings the model to the

ordinary rational KZ equation. Another one is τ . At the level of classical mechanics the

deformation parameter τ allows to extend the previously obtained modified Gaudin models

to the modified Schlesinger systems. Next, we notice that the identities underlying generic

(elliptic) KZB equations follow from some additional relations for the properly normalized

R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic

functions. The simplest one is the unitarity condition. The quadratic (in R matrices)

relations are generated by noncommutative Fay identities. In particular, one can derive

the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide

identities for the KZB equations as well as quadratic relations for the classical r-matrices

which can be treated as halves of the classical Yang-Baxter equation. At last we discuss

the R-matrix valued linear problems which provide glÑ CM models and Painlevé equations

via the above mentioned identities. The role of the spectral parameter plays the Planck

constant of the quantum R-matrix. When the quantum glN R-matrix is scalar (N = 1)

the linear problem reproduces the Krichever’s ansatz for the Lax matrices with spectral

parameter for the glÑ CM models. The linear problems for the quantum CM models

generalize the KZ equations in the same way as the Lax pairs with spectral parameter

generalize those without it.
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1 Introduction

Let V be a finite-dimensional module of the group GLN . The quantum R-matrix is an

operator R : V ⊗ V → V ⊗ V satisfying the quantum Yang-Baxter equation [52–57]:

R~
12(z − w)R~

13(z)R
~
23(w) = R~

23(w)R
~
13(z)R

~
12(z − w) , (1.1)

where z, w - spectral parameters. We consider a special class of non-dynamical R-matrices

which includes Belavin’s elliptic glN R-matrix and its (nontrivial) degenerations, i.e. z is

a local coordinate on the (degenerated) elliptic curve. Let us fix the normalization of R~

in the way that the unitarity condition takes the form

R~
12(z)R

~
21(z) = 1⊗ 1Φ~(z)Φ~(−z) , (1.2)
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where Φ~(z) is the function defined in the elliptic case1 as

Φ~(z) = Nφ(N~, z) , φ(z, u) =
ϑ′(0)ϑ(u+ z)

ϑ(z)ϑ(u)
, (1.3)

where ϑ(z) = θ11(z|τ) is the odd Riemann theta-function, τ — elliptic moduli.

We demonstrate here that starting with the R-matrix one can construct different fam-

ilies of classical and quantum integrable system. These constructions are based on two

special features of the R-matrices. The first one is the quasi-classical expansion. With the

normalization (1.2)–(1.3) it acquires the form:

R~
12(z) =

1

~
1⊗ 1 + r12(z) + ~ m12(z) +O(~2) , (1.4)

where r12(z) is the classical r-matrix. It leads to integrable Euler-Arnold glN tops2 and

Gaudin systems.

The second is the property of Painlevé-Calogero correspondence, which is equivalent

to the heat equation:

∂τR
~
12(z) = ∂z∂~R

~
12(z) (1.5)

The latter leads to the monodromy preserving equations (non-autonomous tops, Schlesinger

systems) and the KZB systems.

At last, the main tool is the set of identities for the quantum R-matrices which we

introduce below. R-matrix is an operator acting on the tensor product of vector spaces V .

Consider a set of points z1, . . . , zÑ (on the curve where z is a local coordinate). Let

R~
ab = R~(za − zb) , (1.6)

be the R-matrix acting on the a-th and b-th components of V ⊗Ñ . In our case R-matrices

satisfy the following property:

R~
ab(za − zb) = −R−~

ba (zb − za) , (1.7)

i.e. the terms of the expansion (1.4) are of definite parity:

rab = −rba , mab = mba . (1.8)

We show that the R-matrices satisfy a set of relations similar to identities for function

φ(z, u) (1.3). In particular, φ(z, u) satisfies the Fay identity

φ(x, zab)φ(y, zbc) = φ(x− y, zab)φ(y, zac) + φ(y − x, zbc)φ(x, zac) , (1.9)

where zab = za − zb. We notice that the following analogue of the Fay identity holds:

R~
abR

~′

bc = R~′

acR
~−~′

ab +R~′−~

bc R~
ac (1.10)

It will be shown that one can derive the quantum Yang-Baxter equation (1.1) from (1.10).

1In the rational case we use Φ~(z) = z−1 + ~
−1. The trigonometric case will be considered separately.

2The integrable tops were previously proved to be related (equivalent) to the (spin) Calogero-Ruijsenaars

models by the symplectic Hecke transformations. See. e.g. [35, 37–40].
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While the quantum R-matrix is similar to φ(~, z) the classical r-matrix is the analogue

of function E1(z) = ∂z log ϑ(z). For example, the following relation holds:

(rab + rbc + rca)
2 = 1a ⊗ 1b ⊗ 1cN

2(℘(za − zb) + ℘(zb − zc) + ℘(zc − za)) , (1.11)

where ℘(z) is the Weierstrass ℘-function with moduli τ . It is the analogue of the identity

(E1(za − zb) + E1(zb − zc) + E1(zc − za))
2 = ℘(za − zb) + ℘(zb − zc) + ℘(zc − za) . (1.12)

Together with (1.11) the classical Yang-Baxter equation

[rab, rac] + [rac, rbc] + [rab, rbc] = 0 (1.13)

leads to the following relations:

rab rac − rbc rab + rac rbc = mab +mbc +mac . (1.14)

Difference of (1.14) written for indices a, b, c and a, c, b gives (1.13).

Let us remark that the class of R-matrices we discuss here includes Baxter-Belavin’s

one [5–7] as the most general. Its trigonometric analogue was found in [4, 16] (we are going

to consider it in separate publications). At last the rational case is known from [16, 39, 40,

58–60]. In the simplest cases one gets the ordinary XXZ and XXX Yang’s R-matrices. In

the rational case the Yang’s R-matrix [61] (with normalization (1.2)) is of the form:

R~,Yang

ab =
1a ⊗ 1b

~
+

Pab

za − zb
, (1.15)

where Pab is the permutation operator. We deal with non-trivial deformations of (1.15).

In particular, they allow us to define not only KZ but also KZB equations. At the same

time the rest of our construction works for ordinary XXX (and XXZ) R-matrices as well.3

The purpose of the paper. is twofold. First, we construct the rational analogue of the

(elliptic) KZB equations. For this purpose we find τ deformation of the quantum R-matrix

suggested in [39, 40]. Second, we show that integrable systems of Calogero-Moser type

admit higher rank Lax representations which generalize the Krichever’s one [30] in the same

way as (1.10) generalize (1.9). The standard (non-diagonal) matrix elements φ(λ, za − zb)

are replaced by the quantum R-matrices Rλ
ab, i.e. the spectral parameter is given by the

Planck constant entering R-matrix. Our constructions are independent of specific form of

the R-matrix, but based only on the set of identities (such as (1.10), (1.14), (1.5)) which

can be verified separately.

Rational KZB equations. Besides the standard trigonometric and rational versions of

the elliptic R-matrix there are more sophisticated degenerations. In this paper we consider

one of them [39, 40] and show that it leads to some modifications of the standard Gaudin

and Schlesinger systems and the KZ (KZB) equations.

3It is interesting if similar construction works for Toda-like models which can be obtained from the

elliptic systems by nontrivial (Inozemtsev) degenerations.
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The Belavin’s R-matrix depends on the moduli of the elliptic curve τ . We notice that

it satisfies the heat equation (1.5) and treat this equation as Painevé-Calogero property.

In [31, 32] it was formulated in the following way: the Lax pair of the CMmodel satisfies also

the monodromy preserving equations and describe the (higher rank) Painlevé equations.

We refer to (1.5) as the heat equation because this equation for the function φ(~, z) follows

from the heat equation for ϑ-function 2∂τϑ(z|τ) = ∂2zϑ(z|τ).

The natural (noncommutative) analogue of ϑ-function is the modification of bundle

Ξ(z, τ). In the elliptic case it was found in [26] in the context of the IRF-Vertex transfor-

mation, and then described in [35] (see also [37–40]) as an example of the Symplectic Hecke

Correspondence for integrable systems. Its rational analogue was suggested in [3] and was

know to be free of τ dependence. Here we explain how to introduce the τ -dependence. We

construct the τ deformation of the rational R-matrix based on the heat equation

2∂τΞ = ∂2zΞ . (1.16)

The solution provides possibility for construction of the rational analogue of the KZB

equations










∇̂aψ = 0 , ∇a = ∂za +
∑

c 6=a

r
τ
ac(za − zc) ,

∇̂τψ = 0 , ∇τ = ∂τ +
1
2

∑

b,c

m
τ
bc(zb − zc) ,

(1.17)

where r and m are the terms of the expansion (1.4) and τ indicates the τ -deformation. The

system of KZ of KZB equations is known to be related to the quantum (and classical) CM

models by the Matsuo-Cherednik construction [17, 46] (see also [47]). Recently relations

between CM (and Ruijsenaars-Schneider (RS)) models to quantum spin chains were actively

investigated [1, 2, 27].

2. R-matrix valued Lax pairs. The Fay type identities (1.10) for the quantum R-

matrices allows to suggest extended version of the Krichever’s ansatz for CM Lax pairs

with spectral parameter [30]. Consider the following block matrix Lax operator

L =
Ñ
∑

a,b=1

Ẽab ⊗ Lab (1.18)

where Ẽab is the standard basis of glÑ and

Lab = δabpa 1a ⊗ 1b + ν(1− δab)R
~
ab , R~

ab = R~
ab(za − zb) . (1.19)

When N = 1 the glN R-matrix reduces to its scalar analogue — function φ(z, ~) and we

reproduce the answer from [30] for Ñ -body CM system. Notice that the Planck constant

of glN R-matrix plays here the role of the spectral parameter for glÑ CM model. The

corresponding M -operator is given in (4.14). The Lax equation ∂tL = [L,M] is equivalent

to dynamics of Ñ CM particles

z̈a = N2ν2
∑

b 6=a

℘′(za − zb) . (1.20)
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In the same way the monodromy preserving equation ∂τL − ∂~M = [L,M] leads to the

Painlevé equations

∂2τ za = N2ν2
∑

b 6=a

℘′(za − zb) . (1.21)

The corresponding linear problem has the form

(∂~ + L)Ψ = 0 . (1.22)

Let us also mention that the linear problem for the quantum version of CM model

L̂Ψ = ΨΛ , L̂ab = δab ∂za 1a ⊗ 1b + ν(1− δab)R
~
ab (1.23)

resembles very much the KZ connections from the first line of (1.17). Equation (1.23)

(or (1.22) with L̂) generalizes the first line of (1.17) in the same way as the Lax pairs with

spectral parameter generalize those without it. We hope to clarify exact relations between

R-matrix valued linear problems and KZB equations in our future papers.

Choosing elliptic, trigonometric or the rational R-matrix we describe the CM models

similarly to gl1 case [30]. Notice that the glN R-matrix itself describes glN integrable

systems such as integrable tops which are gauge equivalent to CM or RS models. Here

we use glN R-matrices as auxiliary spaces for derivation of glÑ models. The next natural

step is to get similar result for the Ruijsenaars-Schneider (quantum) model. In this case

we deal with two Planck constants. Our general idea is that the both Planck constants

can play different roles, i.e. each of the constants can be either the spectral parameter in

a “classical-quantum” glÑ system (of (1.19) type) or the Planck constant in a quantum

glN system or the relativistic deformation parameter in a classical relativistic glN model

(see [39, 40]).4 We hope that this can shed light on numerous dualities in integrable systems

mentioned in [19, 43–45, 48, 62–64].

2 From integrable tops to KZB equations

In this section we describe the sequence of steps which leads to the KZB equations [20–22]

starting from integrable tops. As it was mentioned above, our consideration is independent

on the choice of particular top model. The basic element is the underlying quantum R-

matrix [39, 40].

First, we briefly recall the structures underlying integrable tops and proceed to the non-

autonomous dynamics. It is described by the monodromy preserving equations. In the same

way the Schlesinger system is originated from the corresponding Gaudin model. At last,

the KZB equations arise from the quantization of the Schlesinger system [28, 29, 33, 34, 49].

4Let us also remark that in [41, 42] we have already found an R-matrix intermediate between the

Belavin’s and the Felders’ one. Her we use a different description. Presumably, the interrelation between

different descriptions is given by the Fourier-Mukai type transformation.

– 5 –
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2.1 Integrable tops

In [39, 40] we defined the relativistic integrable top by means of the quantum R-matrix.

The glN Lax matrix is given by

Lη(z, S) = tr2(R
η
12(z)S2) , S = Res

z=0
Lη(z, S) , (2.1)

where S =
N
∑

i,j=1
EijSij is the glN -valued dynamical variable,5 and Rη

12(z) is the corre-

sponding quantum non-dynamical R-matrix. It satisfies the quantum Yang-Baxter equa-

tion (1.1). The non-relativistic limit (η → 0)

Lη(z, S) = η−1 trS

N
1N×N + L(z, S) + ηM(z, S) +O(η2) (2.2)

is related to the classical limit (~ → 0) (1.4) via (2.1):

L(z, S) = tr2 (r12(z)S2) , S = Res
z=0

L(z, S) , (2.3)

M(z, S) = tr2 (m12(z)S2) . (2.4)

The quantity r12(z) in (1.4), (2.3) is the classical r-matrix. It is skew-symmetric (1.8)

r12(z) = −r21(−z) (2.5)

and satisfies the classical Yang-Baxter equation:

[r12(z − w), r13(z)] + [r12(z − w), r23(w)] + [r13(z), r23(w)] = 0 . (2.6)

As it was mentioned in [39, 40] the matrices (2.3), (2.4) appear to be the Lax pair of the

non-relativistic top. It means that the Lax equation

∂tL(z, S) = [L(z, S),M(z, S)] (2.7)

is equivalent to equations of motion

∂tS = [S, J(S)] , (2.8)

where the inverse inertia tensor is given by the linear functional

J(S) = M(0, S) . (2.9)

The equations (2.8) are Hamiltonian with the Hamiltonian function

Htop(S) =
1

2
tr(S J(S)) (2.10)

and the Poisson-Lie brackets on gl∗N

{S1, S2} = [S2, P12] (2.11)

or {Sij , Skl} = δilSkj − δkjSil.

5{Eij , i, j = 1 . . . N} is the standard basis in the fundamental representation of glN : (Eij)kl = δikδjl.

– 6 –
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2.2 Painlevé-Calogero correspondence and non-autonomous tops

The (classical) Painlevé-Calogero correspondence was suggested in [31, 32]. It claims that

the (Krichever’s) Lax pair of the elliptic Calogero-Moser model can be also used for the

monodromy preserving equations, which describe the higher rank Painlevé equations in the

elliptic form.

Let us formulate here the Painlevé-Calogero correspondence in the form of the quantum

non-dynamical R-matrix property.

Definition 1. Suppose that the quantum R-matrix entering (2.1) depends on some addi-

tional parameter τ : R~,τ (z) = R(z, ~, τ). We say that the R-matrix satisfies the property

of the “Painlevé-Calogero correspondence” if the following relation holds:6

∂τR
~,τ (z) = ∂z∂~R

~,τ (z) . (2.12)

Plugging the expansion (1.4) into (2.12) we get a set of relations. The first non-trivial is

∂τr
τ
12(z) = ∂zm

τ
12(z) , (2.13)

where rτ12(z) = r12(z, τ) is the classical r-matrix. An example of the R-matrix with this

property is given by the Baxter-Belavin’s one [5] (see appendix B). The parameter τ in

this example equals τ ell/2πı, where τ ell is the module of the underlying elliptic curve, and

the property (2.13) is due to the heat equation for the theta-functions

2∂τϑ(z|τ) = ∂2zϑ(z|τ) . (2.14)

From (2.13) and (2.3)–(2.4) it follows that

∂

∂τ
Lτ (z, S) =

∂

∂z
Mτ (z, S) , (2.15)

where Lτ (z, S) = L(z, S, τ), Mτ (z, S) = M(z, S, τ). Therefore, we can define the mon-

odromy preserving equations in time τ

dτL
τ (z, S)− ∂zM

τ (z, S) = [Lτ (z, S),Mτ (z, S)] , S = S(τ) (2.16)

(dτ = d
dτ ) as the non-autonomous version of the integrable top’s equations of motion (2.8):7

∂τS = [S, Jτ (S)] . (2.17)

Indeed, the total derivative dτL
τ (z, S) contains both — the partial derivatives by explicit

and implicit dependence on τ :

dτL
τ (z, S(τ)) = dτ tr2(r

τ
12(z)S2) = tr2

(

(∂τr
τ
12(z))S2

)

+ tr2

(

rτ12(z) (∂τS2)
)

. (2.18)

6Notice that the definition depends on the gauge choice.
7These models are no more integrable but can be treated as alternative description of (higher) Painlevé

equations. See [36] for the example of Painlevé VI.
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The first term is cancelled by ∂zM
τ (z, S) (2.15), and we get the same result as in (2.8) fol-

lowing from the Lax equations (2.7). But this time it contains explicit dependence on τ via

Jτ (S) = Mτ (0, S) . (2.19)

Similarly to the autonomous case this system is Hamiltonian (see (2.10)) with

Hτ (S) =
1

2
tr(S Jτ (S)) (2.20)

and the Poisson brackets are given by (2.11).

Let us keep the notation ∂
∂τ (but not ∂τ ) for the partial derivative by only explicit

dependence on τ , i.e.

∂

∂τ
Lτ (z, S(τ)) = tr2

(

(∂τr
τ
12(z))S2(τ)

)

. (2.21)

2.3 Gaudin models

The phase space of the Gaudin model [8–11] is the direct product of n coadjoint orbits, i.e.

Ñ copies of S: Sa ∈ glN , a = 1, . . . , Ñ with some fixed eigenvalues. Its Poisson structure

{Sa
1 , S

b
2} = δab [Sa

2 , P12] (2.22)

is the direct sum of (2.11). The Lax matrix has n simple poles at {za, a = 1, . . . , Ñ} with

residues Sa. It is given in terms of the top Lax matrix (2.3):

LG(z) =
Ñ
∑

a=1

Lτ (z − za, S
a) =

Ñ
∑

a=1

tr2

(

rτ12(z − za)S
a
2

)

. (2.23)

Here we imply the existence of the deformation parameter τ (2.14)–(2.20) from the very

beginning in order not to repeat (almost) the same notations with τ and without τ as we

made for the top and its non-autonomous version.

We consider the flows corresponding to Hamiltonians

ha = −

Ñ
∑

c 6=a

tr (Sa Lτ (za − zc, S
c)) = −

Ñ
∑

c 6=a

tr12

(

rτ12(za − zc)S
a
1S

c
2

)

(2.24)

for a = 1, . . . , Ñ and

H0 =
1

2

Ñ
∑

b,c=1

tr
(

SbMτ (zb − zc, S
c)
)

=
1

2

Ñ
∑

b,c=1

tr12

(

mτ
12(za − zc)S

b
1S

c
2

)

. (2.25)

Notice that the terms coming from b = c in (2.25) are the top Hamiltonians Hτ (Sc) (2.20).

The functions (2.24)–(2.25) Poisson commute because (2.22) is equivalent to the classical

exchange relations

{LG

1 (z), L
G

2 (w)} = [LG

1 (z) + LG

2 (w), r
τ
12(z − w)] . (2.26)

– 8 –
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The dynamics generated by (2.24)–(2.25)







∂taS
b = −[Sb, Lτ (za − zb, S

a)] , b 6= a

∂taS
a =

n
∑

c 6=a

[Sa, Lτ (zc − za, S
c)]

(2.27)

for a = 1, . . . , Ñ and

∂t0S
a = [Sa, Jτ (Sa)] +

∑

c 6=a

[Sa,Mτ (za − zc, S
c)] (2.28)

possesses the Lax representations

∂tdL
G(z) = [LG(z),MG, d] , d = 0, . . . , Ñ (2.29)

where

MG, a(z) = −Lτ (z − za, S
a) , a = 1, . . . , Ñ (2.30)

and

MG, 0(z) =
Ñ
∑

c=0

Mτ (z − zc, S
c) . (2.31)

2.4 Schlesinger systems

Similarly to the description of Painlevé equation in the form of non-autonomous tops let

us also represent the Schlesinger system [50, 51] as the non-autonomous Gaudin model.

First, it follows from (2.23) and (2.30) that

∂

∂za
LG(z) =

∂

∂z
MG, a(z) . (2.32)

Secondly, it follows from (2.23), (2.31) and (2.15) that8

∂

∂τ
LG(z) =

∂

∂z
MG, 0(z) . (2.33)

Therefore, the monodromy preserving equations (or compatibility conditions for isomon-

odromic deformations)

∂zaL
G(z)− ∂zM

G, a(z) = [LG(z),MG, a(z)] (2.34)

and

∂τL
G(z)− ∂zM

G, 0(z) = [LG(z),MG, 0(z)] (2.35)

generate dynamics in time variables za and τ . They have form form of non-autonomous

versions of the Gaudin’s one (2.27)–(2.28):










∂zaS
b = −[Sb, Lτ (za − zb, S

a)] , b 6= a

∂zaS
a =

Ñ
∑

c 6=a

[Sa, Lτ (zc − za, S
c)]

(2.36)

8In (2.32) and (2.33) the partial derivatives are taken with respect to explicit dependence on τ or

za (2.21).
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for a = 1, . . . , Ñ and

∂τS
a = [Sa, Jτ (Sa)] +

∑

c 6=a

[Sa,Mτ (za − zc, S
c)] . (2.37)

The Hamiltonians (2.24)–(2.25) and the Poisson structure (2.22) are of the same form.9

2.5 KZB equations

The relation between KZB equations and the quantum monodromy preserving equations

was described in [49] (see also [28, 29, 33, 34]). Let us formulate it using notations of (1.4)

with the τ -deformation satisfying (2.13). The KZB equations have form:

{

∇̂aψ = 0 ,

∇̂τψ = 0 ,
(2.38)

where

∇a = ∂za +
∑

c 6=a

r
τ
ac(za − zc) , (2.39)

∇τ = ∂τ +
1

2

∑

b,c

m
τ
bc(zb − zc) . (2.40)

Here r
τ
ac and m

τ
ac are the operators acting by a-th and c-th components of U(glN )⊗Ñ (the

tensor product of Ñ copies of the universal enveloping algebra). Recall that in classi-

cal integrable systems (as well as in the Schlesinger systems) we used the fundamental

representation ρN of glN (see e.g. (2.3)–(2.4)):

rτ12(z) = ρN (rτ12(z)) =
∑

i,j,k,l

rτij,kl Eij ⊗ Ekl ,

mτ
12(z) = ρN (mτ

12(z)) =
∑

i,j,k,l

mτ
ij,kl Eij ⊗ Ekl ,

(2.41)

The algebra U(glN )⊗Ñ can be considered as a quantization of the classical phase space

with the Poisson structure (2.22). Indeed, let

Sa → Ŝa : Ŝa
ij := eaji , (2.42)

where {eaij}: [e
a
ij , e

a
kl] = δab(eailδkj − eakjδil) is the standard basis in the a-th component of

U(glN )⊗Ñ . In this notation

r
τ
ab =

∑

i,j,k,l

rτij,kl(za − zb) e
a
ije

b
kl =

∑

i,j,k,l

rτij,kl(za − zb) Ŝ
a
jiŜ

b
lk , (2.43)

m
τ
ab =

∑

i,j,k,l

mτ
ij,kl(za − zb) e

a
ije

b
kl =

∑

i,j,k,l

mτ
ij,kl(za − zb) Ŝ

a
jiŜ

b
lk . (2.44)

9The elliptic case was considered in [18, 28, 29, 33, 34, 37, 38].
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The fundamental representation is given by ρN (eaij) = 1⊗ . . .⊗ 1⊗Eij ⊗ 1⊗ . . .⊗ 1, where

(Eij)kl = δikδjl is on the a-th place. Then r-matrix is an operator acting on the a-th and

b-th components of an element of the tensor product V ⊗Ñ . The operator is represented

by matrix of N Ñ × N Ñ size because it also contains (as factors) the product of identity

operators for the rest of components
⊗

c 6=a,b

1c. The residue of r-matrix is (up to factor N

in (B.11)) the permutation operator replacing a-th and b-th components of an element of

the tensor product V ⊗Ñ to which ψ belongs.

Then

[Ŝa
0 , Ŝ

b
0′ ] = δab [Ŝa

0′ , P00′ ] , Ŝa =
N
∑

i,j=1

Ŝa
ij ρN (eaij) (2.45)

or [Ŝa
ij , Ŝ

b
kl] = δab

(

Ŝa
kjδil − Ŝa

ilδkj

)

. The indices 0, 0′ in (2.45) are the notations for the

components of
(

ρN (U(glN )⊗Ñ )
)⊗2

— tensor product of auxiliary spaces. To quantize

the Hamiltonian (2.25) we also need to fix the ordering. Consider the symmetric (Weyl)

ordering

Ŝa
ijS

b
kl =

1

2

(

Ŝa
ijŜ

b
kl + Ŝb

klŜ
a
ij

)

. (2.46)

Then the KZB connections (2.39)–(2.40) are written in terms of the quantum versions of

the classical Hamiltonians ha and H0 (2.24)–(2.25):

∇̂a = ∂za − ĥa , ∇̂τ = ∂τ + Ĥ0 . (2.47)

In the same time the KZB equations (2.38) acquire the form of the non-stationary

Schrödinger equations in times z1, . . . , zÑ and τ .

The compatibility conditions of KZB equations (2.38)

[∇̂a, ∇̂b] = 0 (2.48)

[∇̂a, ∇̂τ ] = 0 (2.49)

are fulfilled identically.10 The first one (2.48) follows from the classical Yang-Baxter equa-

tion

[rab, rbc] + [rbc, rac] + [rab, rac] = 0 , (2.50)

where rab = r
τ
ab(za − zb). The set of identities underlying (2.48) consists of the prop-

erty (2.13)

∂τ rab = ∂zamab , (2.51)

where mab = m
τ
ab(za − zb) and

1

2
[rab,maa +mbb] + [rab,mab] = 0 , (2.52)

[rab,mbc] + [rab,mac] + [rac,mab] + [rac,mbc] = 0 . (2.53)

10This statement was verified directly in different cases. See [23–25, 28, 29] for elliptic examples.
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Remark 1. One can get more identities relating rab and mab and higher order terms of

expansion (1.4) from the Yang-Baxter equation (1.1) R~,τ
ab R

~,τ
ac R

~,τ
bc = R~,τ

bc R
~,τ
ac R

~,τ
ab . The

first non-trivial identity is (2.50). The next one is

[rab,mac] + [mab, rac] + [rab,mbc] + [mab, rbc] + [rac,mbc] + [mac, rbc]+

+rabracrbc − rbcracrab = 0 ,
(2.54)

where rab = rτab(za − zb), mab = mτ
ab(za − zb).

3 Rational non-autonomous tops and KZB equations

The rational top was first studied for small rank cases in [58–60] by degenerating the elliptic

Lax matrix [35]. Later it was constructed for glN case using its relation to the rational

Calogero-Moser model [3]. The idea was to compute the classical (skew-symmetric non-

dynamical) r-matrix as follows:

r12(z) =
∂L1(z, S)

∂S2
, S = Res

z=0
L(z) . (3.1)

In [39, 40] this relation was extended to the quantum R-matrix by proceeding to the

relativistic top:

R~
12(z) =

∂L~
1(z, S)

∂S2
, S = Res

z=0
L~(z) , (3.2)

where the classical Lax matrix L~(z) depends on the constant ~ playing the role of the

relativistic deformation parameter. The Lax matrix was found using its relation to the

Ruijsenaars-Schneider (RS) model. In the spinless case the gauge transformation relating

two models

Lη(z, S) = g(z)LRS(z, η)g−1(z) (3.3)

can be written explicitly in terms of the RS particles coordinates qj : g(z, q) = Ξ(z, q)D−1,

where11

Ξ(z, q) = (z + qj)
̺(i) ,

̺(i)6 = i− 1 for i ≤ N − 1; ̺(N) = N .
(3.4)

3.1 τ -deformation of quantum rational R-matrix

Our aim is to construct τ -dependent R-matrix satisfying the Painlevé-Calogero prop-

erty (2.12) starting from the τ -independent one (3.2). The answer follows from (3.8)

(see below). It appears that the deformation of the Yang’s rational R-matrix suggested

in [39, 40] admits this kind of deformation similarly to the elliptic case. The idea is to

deform first Ξ(z) (3.4). Let us find Ξ(z, q| τ) satisfying the heat equation

2∂τΞ(z| τ) = ∂2z Ξ(z| τ) (3.5)

11The explicit from of LRS(z, η) as well as diagonal matrix Dij = δij
∏

k 6=i

(qi − qk) is not used in what

follows.
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with the boundary condition

Ξ(z| 0) = Ξ(z) . (3.6)

Then the R-matrices (3.1), (3.2) constructed by means of Ξ(z| τ) satisfy the prop-

erty (2.12).12 The solution of (3.5)–(3.6) is given by

Ξ(z| τ) = exp
( τ

2
∂2z

)

Ξ(z) (3.7)

or

Ξ(z| τ) = exp
( τ

2
T
)

Ξ(z) , (3.8)

where T is the nilpotent operator representing the action of ∂2z on the N -dimensional

column-vector (1, z, z2, . . . , zN−2, zN )T . It is N ×N matrix with elements

Tij =

{

j(j + 1)δi−2,j , i < N ,

j(j + 1)δi−1,j , i = N .
(3.9)

For example, for N = 2, 3, 4 we have:

TN=2 =

(

0 0

2 0

)

, TN=3 =







0 0 0

0 0 0

0 6 0






, TN=4 =











0 0 0 0

0 0 0 0

2 0 0 0

0 0 12 0











. (3.10)

Denote

T := exp
( τ

2
T
)

, (3.11)

i.e. Ξ(z| τ) = T Ξ(z| 0). Then for N = 2, 3, 4 the operator T equals

TN=2 =

(

1 0

τ 1

)

, TN=3 =







1 0 0

0 1 0

0 3 τ 1






, TN=4 =











1 0 0 0

0 1 0 0

τ 0 1 0

6 τ2 0 6 τ 1











. (3.12)

It follows from (3.1)–(3.3) and (3.8) that τ -deformation of R-matrix is given by the

following gauge transformation:

R~(z| τ) = T1T2R
~(z| 0) T −1

1 T −1
2 (3.13)

written in terms of (3.11). See appendix A for explicit answer in gl3 case.

3.2 Rational KZB equations

It follows from (3.13) that

rτab(za − zb) = TaTb rab(za − zb) T
−1
a T −1

b ,

mτ
ab(za − zb) = TaTbmab(za − zb) T

−1
a T −1

b .
(3.14)

Then the condition (2.13) is fulfilled as well as (2.51) for (2.43)–(2.44).

12It can be also proved directly by using explicit answer for the quantum R-matrix [39, 40].
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The Lax pair (2.3)–(2.4) is transformed by not only the gauge transformation since

the residue S also changes. From (2.3)–(2.4) and (3.14) we have

L(z, S, τ) = T L(z, T −1ST , 0) T −1 , (3.15)

M(z, S, τ) = T M(z, T −1ST , 0) T −1 . (3.16)

Let us summarize the results:

Proposition 1. The τ -deformed quantum R-matrix (3.13) satisfies the Painlevé-Calogero

property (2.12).

Proposition 2. The τ -deformed quantum r and m-matrices (3.14) define the KZB equa-

tions (2.38), i.e. the corresponding KZB connections ∇a (2.39) and ∇τ (2.40) are compat-

ible (2.48), (2.49).

The proof is direct. Below we give explicit examples of τ -deformations in the rational

case.

3.3 Example: gl2 case

Quantum R-matrix (satisfying (2.12)):

R~,τ (z) =

















~−1 + z−1 0 0 0

−~− z ~−1 z−1 0

−~− z z−1 ~−1 0

−(z + ~)(z2 + z~+ ~2 + 4τ) ~+ z ~+ z ~−1 + z−1

















(3.17)

Classical r-matrix

rτ12(z) =











z−1 0 0 0

−z 0 z−1 0

−z z−1 0 0

−z3 − 4zτ z z z−1











(3.18)

and m-matrix (the next term of expansion of (3.17) in ~) satisfying (2.13):

mτ
12(z) =











0 0 0 0

−1 0 0 0

−1 0 0 0

−2z2 − 4τ 1 1 0











(3.19)

The following additional relation holds:

− ∂zr
τ
12(z) =

P12

z2
−

3

2
mτ

12(z) +
1

2
mτ

12(0) . (3.20)

Non-autonomous top Lax pair and Hamiltonian:

L(z, S| τ) =
1

z







S11 − z2S12 S12

S21 − z2(S11 − S22)− z4S12 − 4z2τS12 S22 + z2S12






(3.21)
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M(z, S| τ) = −







S12 0

S11 − S22 + 2z2S12 + 4τS12 −S12






(3.22)

H(S, τ) = −S12(S11 − S22)− 2τS2
12 . (3.23)

The Gaudin (or Schlesinger) Hamiltonians:

ha=
Ñ
∑

c 6=a

ha,c , ha,c = −tr12 (r
τ
12(za − zc)S

a
1S

c
2) = (3.24)

−
tr(SaSc)

za−zc
+(za−zc)

(

Sa
12(S

c
11−S

c
22)+S

c
12(S

a
11−S

a
22)+4τSa

12S
c
12

)

+(za−zc)
3 Sa

12S
c
12 ,

h0=
1

2

Ñ
∑

b,c=1

tr
(

SbM(zb−zc, S
c)
)

=−
n
∑

b,c=1

Sb
12(S

c
11 − Sc

22)+S
b
12S

c
12

[

(zb−zc)
2+2τ

]

. (3.25)

Some similar formulae for gl3 case are given in the appendix A.

4 Planck constant as spectral parameter

4.1 R-matrix valued Fay identities

In this paragraph we show that the quantum R-matrices satisfy a set of relations which

are similar to their scalar analogues — the functions Φ (1.2). It is convenient to discuss

the elliptic case (B.5)–(B.14) because the trigonometric and rational versions are obtained

by some (nontrivial) degenerations.

The function φ(x, z) (B.5) (or (B.14)) satisfies the Fay identity:

φ(x, zab)φ(y, zbc) = φ(x− y, zab)φ(y, zac) + φ(y − x, zbc)φ(x, zac) , (4.1)

where zab = za − zb. Let us formulate its noncommutative analogue.

Proposition 3. The Belavin’s R-matrix (B.8) satisfies the following relation:

R~
abR

~′

bc = R~′

acR
~−~′

ab +R~′−~

bc R~
ac , (4.2)

where R~
ab = R~

ab(za − zb).

Proof. Denote by T a
α the basis element Tα (B.1) standing on the a-th place in the tensor

product 1⊗. . .⊗1⊗Tα⊗1⊗. . .⊗1. It follows from the definition (B.8) and the multiplication

rule (B.3) that

R~
abR

~′

bc =
∑

α,β

T a
α T

b
β−α T

c
−β κ−α,β ϕ

~
α(za − zb)ϕ

~′

β (zb − zc) , (4.3)

R~′

acR
~−~′

ab =
∑

α,β

T a
α T

b
β−α T

c
−β κβ,α−β ϕ

~′

β (za − zc)ϕ
~−~′

α−β (za − zb) , (4.4)

R~′−~

bc R~
ac =

∑

α,β

T a
α T

b
β−α T

c
−β κβ−α,α ϕ

~′−~

β−α(zb − zc)ϕ
~
α(za − zc) , (4.5)

Notice that κ−α,β = κβ,α−β = κβ−α,α due to (B.4). Then the statement (4.2) follows

from (4.1), where x = ~+ ωα and y = ~′ + ωβ .
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Proposition 4. The quantum Yang-Baxter equation (1.1) follows from (4.2), the prop-

erty (1.7) and unitarity condition (1.2).

Proof. Consider (4.2) for a, b, c = 1, 2, 3 and ~′ = ~/2:

R~
12R

~/2
23 = R

~/2
13 R

~/2
12 +R

−~/2
23 R~

13

Replace ~ → 2~ and multiply this relation by R~
23 from the left:

R~
23R

~
13R

~
12 = R~

23R
2~
12R

~
23 −R~

23R
−~
23 R

2~
13 . (4.6)

Similarly, consider (4.2) for a, b, c = 1, 3, 2 and ~′ = ~/2, replace ~ → 2~ and multiply the

obtained relation by R~
23 from the right:

R~
12R

~
13R

~
23 = R2~

13R
~
32R

~
23 −R−~

32 R
2~
12R

~
23 . (4.7)

The r.h.s. of (4.6) equals r.h.s. of (4.7) due to the property (1.7) and unitarity condi-

tion (1.2).

Consider the derivative of (4.2) with respect to zb:

R~
abF

~′

bc − F ~
abR

~′

bc = F ~′−~

bc R~
ac −R~′

acF
~−~′

ab , (4.8)

where F ~
ab(z) = ∂zR

~
ab(z). The function F ~

ab(z) has no singularities at ~ = 0. Therefore, we

can put ~ = ~′ in (4.8). This gives

R~
abF

~
bc − F ~

abR
~
bc = F 0

bcR
~
ac −R~

acF
0
ab , (4.9)

The latter equation is analogue of the following identity

φ(x, zab)f(x, zbc)− f(x, zab)φ(x, zbc) = φ(x, zac)(℘(zab)− ℘(zbc)) ,

f(x, zab) = ∂zaφ(x, zab)
(4.10)

underlying Lax equations (integrability) of the Calogero-Moser model [12–15, 30].

4.2 R-matrix valued linear problem for Calogero-Moser model

Consider the eigenvalue problem

LΨ = ΨΛ (4.11)

for the following block matrix operator

L =
Ñ
∑

a,b=1

Ẽab ⊗ Lab , (4.12)

where Ẽab is the standard basis of glÑ and

Lab = δabpa 1a ⊗ 1b + ν(1− δab)R
~
ab , R~

ab = R~
ab(za − zb) . (4.13)
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It is worth mentioning that in gl1 case (N = 1) this operator is the Krichever’s Lax matrix

with spectral parameter for the Calogero-Moser model [30]. The eigenvalue matrix consists

of vectors ψ1, . . . , ψÑ . In the case of quantum CM model (pa → ∂za) equation (4.11) should

have well defined limit ~ → 0 which gives the KZ equations for ψ1 = . . . = ψÑ = ψ.

The spectral parameter in (4.13) is ~ - the Planck constant. TheM -operator is defined

as follows:

Mab = νδabda + ν(1− δab)F
~
ab + νδabF

0 , (4.14)

where

F ~
ab = ∂zaR

~
ab(za − zb) , (4.15)

da = −

Ñ
∑

c: c 6=a

F 0
ac , F 0

ac = F ~
ac |~=0 , (4.16)

F0 =
1

2

Ñ
∑

b,c: b 6=c

F 0
bc =

Ñ
∑

b,c: b>c

F 0
bc . (4.17)

M -operator (4.14) is also straightforward generalization of the one proposed in [30] except

the last term F0. The latter is not needed in N = 1 case because in this case it is

proportional to the identity matrix.

Proposition 5. The linear problem

(∂t +M)Ψ = 0 , M =
Ñ
∑

a,b=1

Ẽab ⊗Mab (4.18)

is compatible with (4.11). The compatibility condition is equivalent to dynamics of glÑ
Calogero-Moser model.

Proof. The compatibility condition is the Lax equation ∂tL = [L,M]. For brevity sake let

us denote L = p+R, M = d+ F + F0. The commutator equals

[L,M] = [p, F ] + [R, d] + [R,F ] + [R,F0] . (4.19)

The term [p, F ] is cancelled by ∂tR (due to ża = pa).

Consider the off-diagonal block ac. It has three inputs from

1. from [R,F ]:
∑

b 6=a,c

R~
abF

~
bc − F ~

abR
~
bc

(4.9)
=

∑

b 6=a,c

F 0
bcR

~
ac −R~

acF
0
ab;

2. from [R, d]: −R~
ac

∑

b 6=c

F 0
cb +

∑

b 6=a

F 0
abR

~
ac;

3. from [R,F0]: [Lac,F
0].

The sum of the inputs equals zero. We used that F 0
ab = F 0

ba (due to F 0
ab = ∂zarab(za − zb)).

On a diagonal block we get equations of motion:

ṗa = ν2
∑

b 6=a

R~
abF

~
ba − F ~

abR
~
ba

(4.22)
= N2ν2

∑

b 6=a

℘′(za − zb) . (4.20)
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It is natural to expect that the same receipt works for other root systems (not only glN )

as well, i.e. one can replace the function φ(x, z) in the Lax matrix with the corresponding

quantum R-matrix.

Denote the off-diagonal part of (4.13) by L0: L0
ab = (1−δab)R

~
ab. We conjecture that:13

t̃r((L0)k+1)aa =
Ñ
∑

b1,...,bk=1

R~
ab1 . . . R

~
bka

= 11 ⊗ . . .⊗ 1Ñ

Ñ
∑

b1,...,bk=1

Φ~(za − zb1) . . .Φ
~(zbk − za) ,

(4.21)

where t̃r denotes the trace over glÑ component of L and the sums do not contain zero argu-

ments (i.e. b1 6= a, b2 6= b1, . . . ,bk 6= a). Relation (4.21) means that traces of L (4.12)–(4.13)

provides the Hamiltonians of the glÑ Calogero-Moser model (where za are coordinates of

particles).

For k = 1 (4.21) follows from the unitarity condition:

∑

b

R~
abR

~
ba = 1a ⊗ 1b

∑

b

Φ~(za − zb)Φ
~(zb − za) = N2℘(N~)−N2℘(za − zb) . (4.22)

For k = 2 and Ñ = 3 we have

R~
abR

~
bcR

~
ca+R

~
acR

~
cbR

~
ba = 1a⊗1b⊗1c

(

Φ~(zab)Φ
~(zbc)Φ

~(zca) + Φ~(zac)Φ
~(zcb)Φ

~(zba)
)

(4.23)

(zab = za − zb) or, in particular

R~
12R

~
23R

~
31 +R~

13R
~
32R

~
21 = 1⊗1⊗1

(

Φ~(z12)Φ
~(z23)Φ

~(z31) + Φ~(z13)Φ
~(z32)Φ

~(z21)
)

(4.24)

The function in the r.h.s. of (4.24) equals

Φ~(z12)Φ
~(z23)Φ

~(z31) + Φ~(z13)Φ
~(z32)Φ

~(z21) =











−N3℘′(~) in elliptic case ,

2/~3 in rational case .

(4.25)

4.3 Half of the classical Yang-Baxter equation

Consider the unitarity condition R~
abR

~
ba = Φ~(zab)Φ

~(zba). Its expansion in the ~0 order

gives

r2ab − 2mab = 1a ⊗ 1bN
2℘(za − zb) . (4.26)

Here rab = rτab(za − zb), mab = mτ
ab(za − zb). Next, consider (4.23)–(4.25). In the ~1 order

it provides the following relation between r and m matrices:

[rab, rbc]+ + [rbc, rca]+ + [rab, rca]+ + 2(mab +mbc +mac) = 0 , (4.27)

where [∗, ∗]+ is the anticommutator [A,B]+ := AB+BA. Using the classical Yang-Baxter

equation

[rab, rac] + [rac, rbc] + [rab, rbc] = 0 (4.28)

13The proof will be given elsewhere.

– 18 –



J
H
E
P
1
0
(
2
0
1
4
)
1
0
9

we can combine (4.27) and (4.28) into two “halves” of the classical Yang-Baxter equation:

rab rac − rbc rab + rac rbc = mab +mbc +mac (4.29)

and

rac rab − rab rbc + rbc rac = mab +mbc +mac . (4.30)

The difference of (4.29) and (4.30) gives (4.28) while the sum leads to (4.27).

In the light of (4.26) the expansion R~(z) = ~−1 + r(z) + ~m(z) is similar to the

expansion (B.9). Indeed, using (4.26) we have

R~
ab(z) =

1

~
1a⊗1b+ rab+~mab+ . . . =

1

~
1a⊗1b+ rab+

~

2

(

r2ab −N2℘(zab)
)

+ . . . . (4.31)

In the same time (4.27) can be re-written as

(rab + rbc + rca)
2 = 1a ⊗ 1b ⊗ 1cN

2(℘(za − zb) + ℘(zb − zc) + ℘(zc − za)) (4.32)

using (4.26). It is an analogue of the elliptic functions identity

(E1(za − zb) + E1(zb − zc) + E1(zc − za))
2 = ℘(za − zb) + ℘(zb − zc) + ℘(zc − za) . (4.33)

4.4 Identities for KZB equations

It follows from (4.26) that

[rab,mab] = 0 . (4.34)

This is equation (2.52) written in the fundamental representation (in this case maa are

some scalar operators). Equation (2.53) keeps its form in the fundamental representation.

Let us prove it.

Proposition 6. The following identities holds true:

[rab,mac +mbc] + [rac,mab +mbc] = 0 , (4.35)

[rbc,mab −mac] + rabrbcrac − racrbcrab = 0 . (4.36)

The first one underlies the compatibility of KZB equations. See (2.53).

Proof. Consider the Yang-Baxter equation R~
caR

~
cbR

~
ab = R~

abR
~
cbR

~
ca in the ~0 order. It is

given by the sum of (4.35) and (4.36). Consider also (4.23) in the ~0 order. It is given by

the difference of (4.35) and (4.36).

The identities (4.26)–(4.27) allow also to get the following Matsuo-Cherednik’s like [17,

46] statement:

Proposition 7. Consider the glN KZB equations for Ñ punctures:

∇iψ = 0 , ∇i = ∂i + ν
∑

j:j 6=i

rτij(zi − zj) , (4.37)
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for i = 1, . . . , Ñ and14

∇τψ = 0 , ∇i = ∂τ +
ν

2

∑

j 6=k

mτ
jk(zj − zk) , (4.38)

where rτij and mτ
ij are the coefficients of the expansion (1.4) and ν is a free constant. Then

the conformal block satisfies the following equation:

(

Ñν∂τ +
1

2
∆

)

ψ =



−ν
∑

i<j

∂ir
τ
ij −

1

2
Ñν2

∑

j

mτ
jj + ν2N2

∑

i<j

1i ⊗ 1j ℘(zi − zj)



ψ

(4.39)

where ∆ =
∑

i
∂2i and mτ

jj = mτ
jj(0) are scalar operators depending on τ .

Proof. Let us omit the dependence on τ , i.e. rτij := rij .

∂2i ψ =



−ν
∑

j:j 6=i

∂irij + ν2





∑

j:j 6=i

rij





2

ψ . (4.40)

Summing up equations (4.40) for i = 1 . . . Ñ we get

1

2
∆ψ =



−ν
∑

i<j

∂irij + ν2
∑

i<j

r2ij +
1

2
ν2
∑

k

∑

i<j

[rki, rkj ]+



ψ (4.41)

Let us transform the last sum using identity (4.27):

1

2

∑

k

∑

i<j

[rki, rkj ]+ = −
1

2

∑

k<i<j

[rki, rij ]+ + [rij , rjk]+ + [rjk, rki]+

(4.27)
=

∑

k<i<j

(mki +mkj +mij) = (Ñ − 2)
∑

i<j

mij

(4.42)

Plugging it into the r.h.s. of (4.41) and using (4.26) we obtain:

1

2
∆ψ =



−ν
∑

i<j

∂irij + ν2
∑

i<j

r2ij + (Ñ − 2) ν2
∑

i<j

mij



ψ

(4.26)
=



−ν
∑

i<j

∂irij + ν2N2
∑

i<j

1i ⊗ 1j ℘(zi − zj) + Ñν2
∑

i<j

mij



ψ .

(4.43)

The Proposition result (4.39) follows from (4.43) and (4.38).

14The summation of indices runs over 1 . . . Ñ . Here and elsewhere we shall omit the limits of summation

when it can be done without ambiguity.
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4.5 Painlevé equations

The block matrix Lax pair (4.13), (4.14) can be also used for description of the Painlevé

equations likewise it was done in [31, 32] in N = 1 case, i.e. the result of Proposition 5 is

naturally generalized to the following one:

Proposition 8. Consider the linear problem
{

(∂~ + L)Ψ = 0 ,

(∂τ +M)Ψ = 0 ,
(4.44)

where L and M are defined by (4.13), (4.14). The compatibility condition

∂τL − ∂~M = [L,M] (4.45)

is equivalent to glÑ Painlevé equations

∂2τ za = N2ν2
∑

b 6=a

℘′(za − zb|τ) . (4.46)

The proof repeats the one for the Proposition 5. Additionally one should use the

property (2.12) of the Painlevé-Calogero correspondence.
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A gl
3
(rational) case

Undeformed gl3 quantum R-matrix:

R
~(z) = (A.1)



















































~
−1 + z−1 0 0

1 ~
−1 0

2 ~2 + 3 z~+ 2 z2 −3 ~− 3 z ~
−1

−1 z−1 0

2 ~+ 2 z 0 0

2 z3 + 3 z~2 + 2 ~3 + 3 z2~ −3 ~2 − 3 z~− z2 1

−2 ~2 − 3 z~− 2 z2 −3 ~− 3 z z−1

2 z3 + 3 z~2 + 2 ~3 + 3 z2~ 3 z2 + 3 z~+ ~
2 −1

2 ~5 + 3 z4~+ 3 z2~3 + 2 z5 + 3 z~4 + 3 z3~2 3 z4 − 3 ~4 − 3 z~3 + 3 z3~ −z2 + ~
2
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0 0 0 0 0 0

z−1 0 0 0 0 0

−3 ~− 3 z 3 0 z−1 0 0

~
−1 0 0 0 0 0

0 ~
−1 + z−1 0 0 0 0

−3 z~− 3 z2 − ~
2 0 ~

−1 1 z−1 0

−3 ~− 3 z −3 0 ~
−1 0 0

z2 + 3 ~2 + 3 z~ 0 z−1 −1 ~
−1 0

3 z~3 + 3 ~4 − 3 z3~− 3 z4 −6 ~3 − 6 z3 − 9 z~2 − 9 z2~ 3 z + 3 ~ −~
2 + z2 3 z + 3 ~ ~

−1 + z−1



















































The τ -deformation generated by (3.13) with TN=3 from (3.12) yields

R
~(z| τ) = R

~(z| 0) + δR
~,τ (z) , (A.2)

δR
~,τ (z) =

= 3τ ×



















































0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 ~+ 2 z −1 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

2 ~+ 2 z 1 0 1 0 0 0 0 0

2(z + ~)(2 z2 + z ~+ 2 ~2 + 3 τ) 3 z2 − 3 ~2 0 −3 z2 + 3 ~2 −6 z − 6 ~ 0 0 0 0



















































Classical tau-deformed r and m-matrix:

r
τ (z) = (A.3)


















































z−1 0 0 0 0 0 0 0 0

1 0 0 z−1 0 0 0 0 0

3 τ + 2 z2 −3 z 0 −3 z 3 0 z−1 0 0

−1 z−1 0 0 0 0 0 0 0

2 z 0 0 0 z−1 0 0 0 0

2 z3 + 6 τ z −z2 − 3 τ 1 −3 z2 − 3 τ 0 0 1 z−1 0

−3 τ − 2 z2 −3 z z−1 −3 z −3 0 0 0 0

2 z3 + 6 τ z 3 z2 + 3 τ −1 z2 + 3 τ 0 z−1 −1 0 0

18 τ2z + 12 τ z3 + 2 z5 9 τ z2 + 3 z4 −z2 −9 τ z2 − 3 z4 −6 z3 − 18 τ z 3 z z2 3 z z−1


















































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m
τ (z) =



















































0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3 z −3 0 −3 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 z2 + 6 τ −3 z 0 −3 z 0 0 0 0 0

−3 z −3 0 −3 0 0 0 0 0

3 z2 + 6 τ 3 z 0 3 z 0 0 0 0 0

18 τ2 + 18 τ z2 + 3 z4 3 z3 0 −3 z3 −9 z2 − 18 τ 3 0 3 0



















































The Lax pair for τ -deformed (autonomous or non-autonomous) rational top can be found

from (2.3)–(2.4). It describes dynamics generated by the following Hamiltonian:

H = S2
12 − 3S11S23 + 3S33S23 − 3S13S21 + 6τS12S13 − 9τS2

23 + 9τ2S2
13 . (A.4)

B Belavin’s R-matrix

Consider the following basis in glN (some details can be found in [37, 38]):

Ta = Ta1a2 = exp
(πı

N
a1a2

)

Qa1Λa2 , (B.1)

where a1 , a2 ∈ ZN and

Qkl = δkl exp

(

2πi

N
k

)

, Λkl = δk−l+1=0modN , k, l = 1, . . . , N . (B.2)

The multiplication is defied by the following relation:

Ta1a2Tb1b2 = κa,b Ta1+b1,a2+b2 , (B.3)

where

κa,b = exp
(πı

N
(b1a2 − b2a1)

)

. (B.4)

For the odd Riemann theta function ϑ(z) = ϑ(z|τ)

φ(z, u) =
ϑ′(0)ϑ(u+ z)

ϑ(z)ϑ(u)
, (B.5)

ϕa(z) = exp(2πız∂τωa)φ(z, ωa) , ωa =
a1 + a2τ

N
, (B.6)

ϕ~
a(z) = exp(2πız∂τωa)φ(z, ωa + ~) . (B.7)

The Belavin’s R-matrix [6, 7] can be defined as

R~
12(z) =

∑

α∈ZN×ZN

ϕ~
α(z)Tα ⊗ T−α . (B.8)
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The local behavior of φ(~, z) (B.5) near ~ = 0 is give by

φ(~, z) =
1

~
+ E1(z) +

~

2

(

E2
1(z)− ℘(z)

)

+ . . . , (B.9)

where

E1(z) = ∂z log ϑ(z) (B.10)

and ℘(z) is the Weierstrass ℘-function. Therefore, expansion (1.4) of (B.8) gives

r12(z) = E1(z) 1⊗ 1 +
∑

α 6=0

ϕα(z)Tα ⊗ T−α , (B.11)

m12(z) =
E2

1(z)− ℘(z)

2
1⊗ 1 +

∑

α 6=0

fα(z)Tα ⊗ T−α , (B.12)

where

fa(z) = exp(2πız∂τωa)∂uφ(z, u) |u=ωα
. (B.13)

The function Φ entering the unitarity condition (1.2) equals

Φ~(z) = Nφ(N~, z) . (B.14)

Notice that the residue of the R-matrix (B.8) at z = 0 equals NP12, where P12 =

N−1
∑

a
Ta ⊗ T−a is the permutation operator.

It follows from the heat equation for function (B.7)

∂τϕ
~
a(z) = ∂z∂~ϕ

~
a(z) (B.15)

that the R-matrix (B.8) satisfies the property (2.12):

∂τR
~
ab = ∂z∂~R

~
ab . (B.16)
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