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Abstract Recent studies have shown that projection tar-

gets in the mouse neocortex are correlated with their gene

expression patterns. However, a brain-wide quantitative

analysis of the relationship between voxel genetic com-

position and their projection targets is lacking to date. Here

we extended those studies to perform a global, integrative

analysis of gene expression and projection target correla-

tions in the mouse brain. By using the Allen Brain Atlas

data, we analyzed the relationship between gene expression

and projection targets. We first visualized and clustered the

two data sets separately and showed that they both exhibit

strong spatial autocorrelation. Building upon this initial

analysis, we conducted an integrative correlation analysis

of the two data sets while correcting for their spatial au-

tocorrelation. This resulted in a correlation of 0.19 with

significant p value. We further identified the top genes

responsible for this correlation using two greedy gene

ranking techniques. Using only the top genes identified by

those techniques, we recomputed the correlation between

these two data sets. This led to correlation values up to 0.49

with significant p values. Our results illustrated that

although the target specificity of neurons is in fact complex

and diverse, yet they are strongly affected by their genetic

and molecular compositions.

Keywords Projection targets � Gene expression patterns �
Visualization � Clustering � Correlation � Feature selection

1 Introduction

The functions of neurons are largely determined by their

molecular compositions. Those molecules are encoded by

the genome that is expressed uniquely in each neuron. The

mammalian brain contains a large number of neurons that

are connected in diverse patterns, resulting in complex

interaction networks that control information flow. In those

interaction networks, neurons typically have very diverse

projection target specificity. For example, projections from

the primary somatosensory cortex (S1) target both cortical

and subcortical regions [1]. Also, it has been shown that

cortico-cortical projections in the mouse visual cortex are

also functionally target specific [2]. To obtain a better

understanding of the diversity of projection neuron classes,

transcriptome analysis of the neurons along with a direct

correlation with projection targets is needed.

The integrative analysis of neuronal gene expression and

connectivity patterns was initially carried on the worm

Caenorhabditis elegans as its gene expression and neuron-

level connectivity are simple and largely known [3–6].

Those studies showed that the genetic properties of neurons

significantly influence their synaptic network structures.

Kaufman et al. [4] performed a co-variation correlation

experiment known as Mantel test and illustrated that gene
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expression and connectivity patterns are significantly cor-

related. A similar analysis was performed later on the

mammalian brain, leading to more significant results [7–9].

Specifically, French and Pavlidis [8] carried out a large-

scale analysis of the transcriptome-connectome correlation

in the rodent brain, leading to a correlation of 0.25. These

high correlations inspired other studies to even predict the

connectome based on the gene expression patterns. Wolf

et al. [10] performed this prediction with an accuracy up to

83 % in the rodent brain. In addition, they identified many

genes that contribute most to this high prediction.

Similarly, Ji et al. [11] obtained a very high prediction

accuracy of 93 % by using the Allen Brain Atlas data.

They were able to achieve almost the same accuracy when

using a few number of most predictive genes. Such analysis

has recently been extended to the human brain [12].

The abovementioned studies focused on analyzing how

the gene expression patterns of source and target neurons

are correlated as compared to neurons that are not con-

nected. The prediction studies used the expression patterns

of target neurons to predict their connectivity with a par-

ticular source neuron. On the other hand, increasing evi-

dence has shown that there are also direct correlations

between source neuron gene expression patterns and pro-

jection target specificity [13]. In a recent study, efforts have

been made to identify genes that are expressed in specific

excitatory projection neuron classes [1]. The study showed

that the neocortex contains diverse populations of excita-

tory neurons that are definable by their specific cortical and

subcortical projection targets. However, some of the most

broadly used markers for specific layers were found not to

be expressed selectively in neurons with a specific pro-

jection target. This indicates that in spite of the significant

correlations between marker genes and projection targets,

the excitatory neuron projection targets are in fact diverse

and complex [1].

In this study, we conducted in a global, quantitative

analysis of gene expression and projection target correla-

tions in the adult mouse brain. We mainly focused on

studying how the gene expression patterns in the source

neurons are globally related to projection target specificity.

In this sense, our study is fundamentally different from the

prior ones reported in [8–11]. Instead, our work was mainly

motivated by [1] and aimed at a global, quantitative ana-

lysis that is lacking to date. By using the Allen Mouse

Brain Atlas and the Allen Mouse Brain Connectivity Atlas

data, we started by visualizing and clustering the injection

site gene expression patterns and projection targets

separately. These initial analyses showed that both data sets

exhibit strong spatial autocorrelation. That is, nearby in-

jection sites tend to express similar sets of genes and also

tend to project to similar targets.

To account for spatial autocorrelation, we performed the

partial Mantel test [14] in which the spatial effect is cor-

rected. We found that even after correcting for the spatial

autocorrelation, the two data sets are highly correlated with

a partial correlation of 0.19. We adopted two greedy gene

ranking approaches to identify the top genes responsible

for this correlation. Using only the top genes identified by

our gene ranking techniques in the correlation analysis, we

were able to obtain a series of significant correlations with

values up to 0.49. These results indicate that the voxel gene

expressions directly affect their target projections. These

results are consistent with the findings reported in [1], but

have extended the previous study to a global and quanti-

tative analysis.

2 Material and methods

In our experiments, we used two data sets from the Allen

Brain Atlas (ABA) [15]. Specifically, we used data from

the Allen Mouse Brain Atlas [16] and the Allen Mouse

Brain Connectivity Atlas [17], which provide gene ex-

pression data and connectivity data, respectively, in the

adult mouse brain. To allow an integrated study of both

data sets, the ABA provides an annotated 3D reference

model upon which all images from both atlases were

aligned. Both atlases provide grid-level voxel data obtained

from images mapped to the same 3D reference space.

2.1 Allen Mouse Brain Atlas

The Allen Mouse Brain Atlas (the Gene Expression Atlas)

provides in situ hybridization (ISH) data in the male P56

C57BL/6J mouse brain. Genome-wide data are provided in

sagittal sections, and coronal sections for about 4000 genes

with restricted expression patterns are also provided. Our

experiments were carried out on the coronal genes, since

these include functionally important genes. When multiple

data sets are available for the same gene, we computed the

average values across data sets. For this atlas, the grid-level

voxel data are provided at 200 lm resolution.

2.2 Allen Mouse Brain Connectivity Atlas

In the Allen Mouse Brain Connectivity Atlas (the Con-

nectivity Atlas), axonal projections in the mouse brain are

visualized by viral tracers from more than 200 regions.

This atlas provides axonal projections along with injection

voxel coordinates for 1788 injection sites. We treated each

injection data set independently throughout the ex-

periments though some of the brain regions were injected

multiple times, since the specific injection voxels are
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unique. In this atlas, the grid-level voxel data are provided

at 100 lm resolution.

2.3 Data extraction and processing

To perform an integrative analysis of gene expression

patterns and projection targets, the gene expression and

connectivity data sets should be mapped to the same space

as they are originally provided in different resolutions. The

data extraction and processing steps are illustrated in

Fig. 1. Specifically, the coronal gene expression data are

provided for approximately 4000 genes in a 3D grid-level

format at a 200 lm resolution. For each gene, we extracted

the energy values at the 60,452 voxels annotated in the

reference atlas. The extracted voxels for each gene form a

column of the gene expression data matrix. The connec-

tivity data are provided for 1788 injection sites at a 100 lm

resolution. Similar to the gene data, we extracted the en-

ergy values at more than 4,00,000 annotated voxels from

each projection data set corresponding to a specific injec-

tion site. Those extracted voxels form the columns of the

projection data matrix. The two processed data sets were

used later in our experiments to generate the injection sites

gene correlation and projection correlation matrices.

To make an integrative analysis of the two data sets

possible, the gene signature of each injection site is needed.

We obtained the gene signature of each injection site by

first down-sampling its injection voxels to the 200 lm
resolution and then extracting the rows corresponding to

those voxels from the gene signature matrix. The number

of injection voxels is usually different for different injec-

tion sites. We computed the average gene signature across

all injection voxels to come up with a vector of ap-

proximately 4000 genes representing the gene signature of

Fig. 1 Illustration of the data extraction and processing pipeline. The left and right panels show the steps involved in processing the gene

expression and connectivity data, respectively. The processed data were used along with a distance matrix to perform the partial Mantel test
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a single injection site. This vector forms a column in the

injection site gene signature matrix that was used later

throughout our experiments. We observed that the energy

values of the injection voxels are usually very high, as they

represent injection values instead of projection energy. To

eliminate these data artifact, we set the values of injection

voxels to zero for each injection site independently.

2.4 Data visualization using t-SNE

We intended to study the relationship between gene ex-

pression patterns and projection target specificity for dif-

ferent injection sites. To this end, we visualized the high-

dimensional gene expression and projection target signa-

tures associated with each injection site using the t-dis-

tributed stochastic neighbor embedding ( t-SNE) method

[18, 19]. t-SNE is an extension of SNE [20] to simplify the

optimization and overcome the so-called ‘‘crowding prob-

lem’’. t-SNE aims to model local structures of high-di-

mensional data points while ensuring that global

dissimilarity between clusters is preserved. To this end, t-

SNE computes two similarity matrices; one is obtained

based on symmetrized Gaussian conditional distributions

of original data space, and one is computed from Student t-

distributions of low dimensional space. The low dimen-

sional data, known as map points, is learned by minimizing

the Kullback–Leibler (KL) divergence between the prob-

ability distributions in the original data space and the

embedding space. Since KL divergence is not symmetric,

different types of mismatches contribute differently to the

overall cost. As a result, nearby map points are produced to

represent nearby original data points, while distant map

points are derived to reflect the original data points that are

far apart. It has been shown that t-SNE is able to preserve

the local structure of the high-dimensional data points, and

its objective function is particularly straightforward to

optimize in comparison to the original SNE objective [19].

t-SNE has been used in the visual exploration of high-

dimensional gene expression data [21].

In the context of our experiments, we aimed at mapping

the high-dimensional gene expression and connectivity

data associated with each injection site to 2D space. For

each injection site, we generated gene expression and

projection target signature vectors representing the gene

expression and projection targets for each of the 1788 in-

jection sties. For the gene expression data, each vector

contains 4084 elements that correspond to the gene ex-

pression values of the 4084 genes in the injection site.

Similarly, each projection target vector contains 60,452

values representing the projection strength from the injec-

tion site to the 60,452 voxels in the entire brain. The gene

expression and projection target vectors for all injection

sites were collected into matrices, and t-SNE was applied

to map these high-dimensional vectors onto 2D space for

visual exploration.

2.5 Hierarchical clustering

We employed hierarchical clustering to further explore the

gene expression and projection target patterns. Hierarchical

clustering constructs a dendrogram to represent the rela-

tions among all data points in a data set. Each leaf in the

dendrogram represents an individual data point and each

internal node represents a cluster. Such clustering method

is particularly useful when the number of clusters is un-

known. There are two common approaches for performing

hierarchical clustering. The agglomerative approach begins

by treating each individual data point as a cluster and

successively merges cluster pairs with minimal inter-clus-

ter distance. This process repeats until a single cluster

containing all the data points is obtained. In contrast, the

divisive approach starts from a single cluster containing the

entire data set and recursively split each cluster until each

data point forms a single cluster.

Two important parameters in hierarchical clustering are

the similarity measure between two data points and the

criteria for computing the inter-cluster similarity. Hierar-

chical clustering uses linkage criteria to compute inter-

cluster similarity. Three commonly used linkage criteria

are single, complete, and average linkages, which define

similarity between two clusters as the minimum, max-

imum, and average similarity between members in two

clusters, respectively. For distance metrics, the cosine,

Person correlation and Spearman correlation are commonly

applied in hierarchical clustering.

Given that brain structures are hierarchically organized

based on morphology and function, we hypothesized that

constructing hierarchical clusters from voxels that contain

expression and connectivity information is likely to recover

similar brain hierarchical ontology. To test this hypothesis,

we used agglomerative hierarchical clustering with com-

plete linkage and Pearson correlation to construct dendro-

gram for both the gene expression and the projection target

data.

Specifically, each injection site is associated with a gene

expression vector and a projection target vector. These

vectors are treated as individual data points. The matrix

containing all the injection site gene expression vectors

was used in gene expression clustering while the matrix

containing all the injection site projection vectors was used

in connectivity clustering.

2.6 Partial mantel test

We generated the gene expression correlation matrix and

the projection target correlation matrix from the injection
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site gene expression and projection target data matrices,

respectively. We are interested in studying the relationship

between gene expression patterns and projection target

correlations by integrating those two correlation matrices.

Mantel test [22] determines the statistical significance of

the correlation between two correlation matrices, and is a

tool that matches our need. Our experimental results indi-

cate that both gene expression and project target are

strongly correlated with spatial distance. That is, nearby

injection sites tend to express similar sets of genes and also

tend to project to similar targets. To account for spatial

autocorrelation, we performed the partial Mantel test [14,

23] in which the spatial effect is excluded. Since both gene

expression and projection target correlate significantly with

the injection site physical distance, partial Mantel test be-

comes essential when studying their correlation together.

To perform partial Mantel tests, we generated a distance

matrix capturing the pairwise distance between all injection

sites. Specifically, we first computed the coordinate of each

injection site by averaging the coordinates of all voxels

belonging to that injection site. We then calculated the

Euclidean distance between each pair of injections based

on the averaged coordinates. We also tried using the log of

the Euclidean distance, and this resulted in very similar

results. The resulting distance matrix was used along with

the gene correlation and projection correlation matrices to

perform the partial Mantel test. This test determines the

statistical significance of results by computing the p value.

Specifically, the data were randomly permuted 1000 times

and the p value is computed as the probability that the same

or higher correlation value is achieved by the randomized

data.

2.7 Greedy group gene selection

The injection site gene correlation matrix described in

Sect. 2.6 was computed based on the correlation of all

genes in the coronal set. Since not all genes contribute

equally to the correlation with projection targets, we em-

ployed greedy strategies to identify subsets of genes that

correlate most with the projection targets. Essentially, we

aimed at removing some columns of the injection site gene

signature matrix before the correlation matrix was gener-

ated. We used two greedy techniques to obtain a gene

ranking that can help eliminating the least important genes.

In the greedy group gene selection approach, we fol-

lowed a greedy method used in [4]. This method operates

in an iterative way. In each iteration, we computed a score

for each gene as the Mantel test value after eliminating its

corresponding column from the injection site gene signa-

ture matrix. This score indicates the importance of each

gene in determining the correlation with projection targets.

After the scores for all genes were computed, a specific

percentage of the least important genes were then

eliminated as a group from the data set before proceeding

to the next iteration. This operation continued until a pre-

defined number of genes were obtained.

To make the greedy approach more robust, this proce-

dure was repeated multiple times using 50 % of the data

randomly sampled from the original set each time. We then

constructed a frequency vector for all the genes containing

the frequency that each gene was selected among the

multiple repetitions. Note that a similar approach was first

used in [4], but the goal was not to obtain a gene ranking.

We modified this technique and increased the number of

repetitions and decreased the sampling percentage to obtain

a gene frequency ranking. We refined our gene frequency

ranking by combining the results generated from applying

this procedure several times with different parameters. We

used different numbers of repetitions, different stopping

criteria.

2.8 Greedy single gene selection

We also employed a greedy single gene selection approach

as in [8] to obtain a complete gene ranking for all the genes

used in our experiments. Similar to the group selection

method, we computed a score for each gene in each it-

eration of the method to capture its effect on the correlation

with the projection targets. In each iteration, only the least

important gene was removed. This procedure continued

until all genes were eliminated. By treating the gene that

was removed first as the least important gene, we can ob-

tain a complete gene ranking from this method. In com-

parison with the group selection method, the single gene

selection method is much more computationally expensive.

We used a parallel implementation for this scheme in order

to accelerate the computation.

3 Results and discussion

In this section, we report the results of visualizing the gene

expression and connectivity target data by projecting them

onto 2D space using t-SNE. We then performed hierar-

chical clustering on these two data sets to gain further in-

sights. The primary aim of this work was to provide an

integrative analysis of these two data sets and study their

relationships.

3.1 Gene expression and projection targets

visualization

We used t-SNE to visualize the gene expression and

projection target data. The gene expression matrix contains

1788 rows, and the columns represent all the genes. t-SNE
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was used to reduce the number of columns to 2, thereby

facilitating data visualization. Similarly, the projection

target matrix was also reduced to 2D. We associated each

injection data set with its primary injection structure and

used the same color code provided by the ABA for visu-

alization. The ABA color code assigns each brain structure

a unique color, where nearby structures are given similar

colors. The color code used in visualization is provided in

Supplemental Fig. 1 as in [24].

The visualization of gene expression data is given in

Fig. 2. We can observe that voxels with similar colors were

mapped to nearby locations. This shows that gene expres-

sion patterns correlate strongly with spatial distance, a re-

sult consistent with prior findings [21, 25–28]. Specifically,

voxels were mainly separated into two groups, namely the

brain stem and the cerebrum. In brain stem, voxels of

substructures of interbrain, midbrain and hindbrain were

grouped together. In cerebrum four major groups were

observed: visual cortex, sensory-motor cortices and the rest

of cortex areas, cerebral nuclei and hippocampal formation.

Unlike the gene expression data results, t-SNE visual-

ization of the projection target data in Fig. 3 was unable to

show clear boundaries between brain structures. Never-

theless, this result shows that interbrain, midbrain and

hindbrain structures from brainstem were still largely pre-

served. Although cerebrum voxels were more scattered in

2D space in comparison to those of the brain stem, some

spatial structures were observed for visual cortex, sensory-

motor cortices and hippocampal formation. We also ob-

served that some voxels from brain stem were mixed with

those from cerebrum. This could reflect similar connec-

tivity patterns between them due to their characteristics in

terms of neuronal information processing. For example,

thalamus relays information between subcortical nuclei and

the cerebral cortex. Therefore, the connectivity of voxels

from cerebral cortex remains similar to those of thalamus

being connected to them.

Our results illustrate that the t-SNE projection of gene

expression data showed a high consistency with the neu-

roanatomy. Similar colors representing nearby regions

were mapped to nearby locations, forming clusters that are

similar to the brain anatomy. This indicates that the gene

expression data clearly demonstrate a strong spatial lo-

cality. A similar relationship also holds for the projection

target data, but to a less extent. These results indicate that

both gene expression and projection target patterns exhibit

spatial locality with different levels of significance.

3.2 Hierarchical clustering

We used the gene expression and connectivity data matri-

ces directly in hierarchical clustering. The gene expression

matrix contains 1788 rows representing all the injection

sites and 4084 columns representing all the genes.

Similarly, the connectivity data matrix contains 1788 in-

jection data sets as rows and 60,452 brain voxels as

Fig. 2 Scatter plot visualization

of the injection site gene

expression data after mapping to

2D space using t-SNE. Each

injection site is associated with

its primary injection structure.

The colors of structures were

obtained from the ABA, where

similar colors represent related

brain structures. The complete

color code used in visualization

is provided in Supplemental

Fig. 1
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columns. We used agglomerative hierarchical clustering

with complete linkage and Pearson correlation as the

similar measure on both data sets. The same color code

provided by the ABA was used in the dendrogram.

Figure 4 shows the dendrogram for the gene expression

data set. Similar to the t-SNE visualization result, hierar-

chical clustering on gene expression data resulted in two

major clusters, namely the brain stem and cerebrum. The

voxels of interbrain, midbrain and hindbrain largely form

clusters. In the cerebrum, the clusters of visual cortex,

sensory-motor cortices, auditory cortex and cerebral nuclei

can be clearly observed.

Figure 5 shows the dendrogram for the projection target

data set. We can observe that this clustering generated four

major clusters. The first two clusters primarily involve in

sensory-motor related functions, with one of which con-

tains voxels belonging to visual and auditory area exclu-

sively. For the other two clusters, in addition to both

containing hippocampal formation and brain stem voxels,

one includes cerebellum voxels and one contains cerebral

nuclei voxels. In the cerebrum, we observed that despite

the voxels of cerebellar cortex tend to cluster together

based on their neuronal functions, they are mixed with

voxels of other subcortical nuclei and the thalamus of in-

terbrain. Such patterns revealed in our hierarchical clus-

tering is consistent with known neuronal connectivity and

function of the thalamus. That is, thalamus is heavily in-

terconnected with subcortical nuclei and the cerebral cortex

and plays an important role as information relay center.

Hence, voxels of thalamus exhibit connectivity patterns

similar to those of voxels from cerebellar cortex to which

they are connected.

Overall, we observed that the clusters generated from

the gene expression data were more consistent with the

brain anatomy than the clusters generated from the con-

nectivity data. These results are consistent with the results

of visualization. Both experiments showed that spatial lo-

cality is stronger in the gene expression data than in the

projection target data.

3.3 Gene expression and projection target correlations

The primary aim of this study was to investigate the cor-

relation between gene expression patterns and projection

target specificity. By visualizing and clustering the gene

expression and projection data sets, it is clear that both of

them demonstrate spatial autocorrelation. We therefore

employed the partial Mantel test to correlate these two data

sets while the spatial effect is eliminated.

We constructed the injection site gene expression cor-

relation matrix by computing the correlation between the

rows of the gene signature matrix. Similarly, the injection

site projection target correlation matrix is constructed by

computing the correlation between the rows of the pro-

jection signature matrix. These two correlation matrices

capture the correlations between gene expression patterns

and projection target specificity in the same set of injection

sites. To eliminate the spatial autocorrelation effect, we

constructed a physical distance matrix that captures the

Fig. 3 Scatter plot visualization

of the injection site projection

target data after mapping to 2D

space using t-SNE. Each

injection site is associated with

its primary injection structure.

The colors of structures were

obtained from the ABA, where

similar colors represent related

brain structures. The complete

color code used in visualization

is provided in Supplemental

Fig. 1
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pairwise Euclidean distance between the injection sites.

Another distance matrix was constructed using the log of

the Euclidean distance, and this resulted in very similar

results. We performed partial Mantel test to quantify the

significance of correlation between these two correlation

matrices while eliminating their spatial autocorrelation.

This test resulted in a correlation score of 0.1981 with a

p value of less than 0.001. The significance of the corre-

lation result indicates that the gene expression patterns and

projection target specificity are significantly correlated, a

result consistent with the previous findings [1].

Motivated by previous studies [4, 8], we also tried to

maximize the correlation score by selecting a subset of

genes. Specifically, we used the greedy gene selection

approaches to obtain a gene ranking and used different

numbers of top ranked genes to compute the injection site

gene correlation matrix. We used two greedy techniques to

obtain gene rankings as described in the Material and

Methods. The detailed results of the partial Mantel test

corresponding to different numbers of top genes is shown

in Fig. 6.

It is clear from the result that the partial Mantel corre-

lation can be significantly improved when a subset of se-

lected genes were used. The two gene selection methods

yielded a single peak approximately when the top 400

genes were used in computing the gene expression corre-

lation matrix. The correlation scores obtained by using the

top 400 genes were 0.4998 and 0.4629 for the single and

Fig. 4 Dendrogram generated by hierarchical clustering on the

injection site gene expression data. The acronyms annotated on the

cluster nodes were given based on the brain structure that majority of

voxels in the leaf node belong to. The colors of brain structure were

obtained from the ABA, where similar colors represent related brain

structures. The complete color code is provided in Supplemental

Fig. 1. The acronyms and the corresponding full brain structure

names are as follows: ACA anterior cingulate area, AUD auditory

areas, CA1 filed CA1, CA3 field CA3, CB cerebellum, CNU cerebral

nuclei, DG dentate gyrus, ECT ectorhinal area, ENT entorhinal area,

HB hindbrain, HY hypothalamus, MB midbrain, MOp primary motor

area, MOs secondary motor area, ORB orbital area, RSP retrosple-

nial area, SSp-bfd primary somatosensory area, barrel field, SSP-ll

primary somatosensory area (lower limb), TEa temporal association

areas, TH thalamus, VIS visual areas, PTLp posterior parietal

association areas
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group selection techniques, respectively. These scores are

much higher than the score obtained by using all the genes.

We note that all the p values corresponding to the results in

Fig. 6 are less than 0.001 and thus are significant. The

result also shows that the single gene selection technique

yielded higher correlation results than the group selection

method. This is reasonable as the group selection method

might exclude a batch of highly important and less im-

portant genes simultaneously as they had similar rankings

at a specific iteration. On the other hand, the single gene

selection technique re-evaluates all the remaining genes at

every iteration after excluding one gene at a time. While

both techniques had a single peak at approximately 400

genes, after closely examining those genes, we found that

they only overlap in 89 genes which accounts for 22 %

overlap. This indicates that the high correlation obtained is

not attributed to individually important genes but rather to

gene groups. The top 400 genes selected by each technique

are provided in Supplemental Table 1.

4 Conclusion

Our work represents the first global analysis of the gene

expression and projection target correlations in the adult

mouse brain. We studied each modality separately and

revealed their own characteristics to set the stage for the

Fig. 5 Dendrogram generated by hierarchical clustering on the

projection target data. The acronyms annotated on the cluster nodes

were given based on the brain structure that majority of voxels in the

leaf node belong to. The colors of brain structure were obtained from

the ABA, where similar colors represent related brain structures. The

complete color code is provided in Supplemental Fig. 1. The

acronyms and the corresponding full brain structure names are as

follows: ACA anterior cingulate area, AUD auditory areas, AN

amygdala nuclei, CA1 filed CA1, CA3 field CA3, CB cerebellum,

CNU cerebral nuclei, DG dentate gyrus, ENT entorhinal area, HB

hindbrain, HY hypothalamus, MB midbrain, MOp primary motor area,

MOs secondary motor area, OLF olfactory areas, ORB orbital area,

RSPretrosplenial area, SSp-bfd primary somatosensory area, barrel

field, SSP-ll primary somatosensory area (lower limb), TEa temporal

association areas, TH thalamus, VIS visual areas, PTLp posterior

parietal association areas. SUB subiculum, HPF hippocampal forma-

tion, CP caudoputamen
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integrative study. We showed through visualization and

clustering that both the gene expression and the projection

targets data demonstrated significant levels of spatial au-

tocorrelation that needs to be accounted for in the inte-

grative analysis. By using the partial Mantel test, we

showed that these two modalities were significantly cor-

related even after correcting for spatial autocorrelation. We

employed greedy gene selection technique and used it to

generate gene rankings. Based on the gene ranking results,

we obtained much higher correlations by using different

numbers of the top genes. The correlations results reported

in this study are more significant than the values reported in

previous studies given that the spatial autocorrelation effect

has been eliminated.

This study is one of the first studies towards exploring

the correlation of gene expression patterns and projection

target specificity at a brain-wide scale. Given that the gene

expression and the projection targets are highly correlated,

a lot more in-depth analysis in this area could be further

pursued. We will explore different patterns of gene ex-

pression that result in specific projection target patterns in

the future. We will also perform in-depth analysis on the

top genes identified in this study and investigate their

functions. We will investigate whether this type of corre-

lation between gene expression patterns and projection

target specificity holds in other brains such as the human

brain.
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