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Abstract Mobile augmented reality (AR) applications

have become feasible with the evolution of mobile hard-

ware. For example, the advent of the smartphone allowed

implementing real-time mobile AR, which triggered the

release of various applications. Recently, rapid develop-

ment of display technology, especially for stereoscopic

displays, has encouraged researches to implement more

immersive and realistic AR. In this paper, we present a

framework of binocular augmented reality based on stereo

camera tracking. Our framework was implemented on a

smartphone and supports autostereoscopic display and

video see-through display in which a smartphone can be

docked. We modified edge-based 3-D object tracking in

order to estimate poses of left and right cameras jointly;

this guarantees consistent registration across left and right

views. Then, virtual contents were overlaid onto camera

images using estimated poses, and the augmented stereo

images were distorted to be shown through a video see-

through display. The feasibility of the proposed framework

is shown by experiments and demonstrations.

Keywords Mobile augmented reality � Stereoscopic
display � Video see-through display � Stereo camera

tracking � Model-based tracking

1 Introduction

Augmented reality (AR) provides immersive experiences

for users by overlaying a camera preview with virtual

contents. In order to make AR realistic, the real world and

virtual world should be aligned precisely; this alignment

can be achieved by using physical sensors or camera

images.

Recently, the use of smartphones equipped with cameras

and sensors such as global positioning system (GPS),

digital compass, and gyroscope has boosted various mobile

AR applications in fields such as education, tourism, and

advertising. There is also a growing sense of anticipation of

the possibility that mobile AR can be more immersive and

realistic with the help of advanced display technology.

There are several types of stereo displays that allow

people to feel the cubic effect, for example, stereoscopic

display and head-mounted display (HMD). With the

development of these displays, realistic 3-D contents in

contexts such as games, movies, virtual reality (VR), and

AR have also been extensively explored. Technologies

concerned with these contents on a stereoscopic display

have usually been studied in order to create and provide

3-D movies and broadcasts; people have usually watched

them in static environments such as theaters and living

rooms. However, the stereoscopic displays have become

available on portable game consoles and smartphones as

they have been miniaturized, and this has allowed people to

enjoy realistic 3-D content anywhere. Stereo cameras being

placed on those devices have also enabled interactive

applications on stereoscopic displays, including mobile

AR.

Meanwhile, the recent evolution of HMD technology

has brought with it an increasing interest in virtual and

augmented reality technologies. Video see-through HMDs,
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especially their high-end versions, provide immersive VR

experiences based on their capacity to render quality,

wearability, a wide field of view, sensors, and so on.

However, as AR devices, they have some problems, for

example, the need for additional computing devices, the

absence of a camera, limited mobility, and a high price. On

the other hand, there are HMDs in which smartphones can

be docked. Some of them, for example Google Cardboard,1

have quite a simple composition, because they use the

smartphone’s display and sensors; this can make their price

quite low. By using them, we can get a VR system for only

a few dollars; immersive mobile AR applications can also

be available if they have a stereo camera.

Some things should be considered for the implementa-

tion of mobile AR using a stereo display; these include a

precise registration between the real and virtual worlds,

real-time processing, and a handling of the intrinsic hard-

ware problems. In early stages, physical sensors were used

for registration in AR [1]. However, sensors are sensitive to

noise, and their accuracy is not enough for robust and

precise registration; for precise registration, a vision-based

tracking technique is necessary. Vision-based tracking is

one of the computer vision techniques that have been

actively researched, with many methods that can be run in

real time even on mobile devices. A marker-based

approach provides precise and robust registration despite

the simplicity of the algorithm [2]. Furthermore, it is fast

enough to perform stereo camera tracking in real time.

Therefore, a marker-based approach was widely used rel-

atively earlier than other vision-based tracking approaches

for stereo AR.

However, stereo camera tracking in natural scenes

exacts a computation cost; it often makes the implemen-

tation of a real-time application difficult. For example,

there was a mobile AR using stereo camera tracking based

on depth sensing algorithms that recovered geometric

structure captured in stereoscopic images [3]. Although this

approach was well implemented on a smartphone with 3-D

display, it was still not suitable for processing in real time,

because of its expensive computational costs. Recently, it

has become possible to run natural feature-based planar

object tracking [4] as well as 3-D object tracking in real

time even on a mobile platform [5, 6] with the development

of hardware and software. Nevertheless, expansion of those

methods to stereo camera tracking requires the careful

design of an algorithm and optimization, because of the

additional computation required for consistent registration

across cameras.

On the other hand, stereo displays still have problems as

AR devices, due to their hardware and operating principles.

In the case of autostereoscopic display, doubt has been

raised about the effectiveness of depth perception in AR.

Recent studies of this problem discovered that the effect of

stereo display on depth perception can be significantly

superior to mono display, depending on whether the scene

provides other depth cues more dominant than stereopsis

[7, 8]. A video see-through display has the problem of

image distortion and chromatic aberration due to the lenses

inside the display. Although geometric distortion can be

handled by a predistortion of images [9], it is still being

studied in order to learn more effective and efficient ways

to generate fine-quality images. For example, Pohl et al.

[10] proposed an improved predistortion method that cor-

rects chromatic aberration. The method distorts each color

channel separately by considering a different index of

refraction according to the wavelength.

In this paper, we present a mobile binocular AR

framework based on stereo camera tracking. Our approach

aims to provide AR on mobile stereoscopic displays; the

proposed framework supports autostereoscopic display and

a Google cardboard-like video see-through HMD. We

implemented the proposed framework on a stereo camera-

equipped smartphone. Stereo images were converted from

YUV to RGB color space and were warped for stereo

image rectification. Camera poses for registration between

the real and virtual worlds were estimated by stereo camera

tracking; at this point, camera poses were jointly estimated

using the geometric relationship between cameras in order

to guarantee consistent registration across the left and right

views. Then, the virtual contents were augmented onto

rectified images. If the user were to use a video see-through

display, the augmented image would be predistorted in

order to correct lens distortion. For real-time performance,

we separated the tracking and rendering processes into

different threads, and color space conversion and stereo

image rectification, which were run in the rendering thread,

were implemented on GPU. The feasibility of the proposed

framework was shown by experiments and demonstrations.

2 The framework

Figure 1 shows the proposed mobile binocular AR frame-

work based on stereo camera tracking. The framework

consists of two threads. One of them performs stereo

camera tracking, and the other performs the rendering of

images from the stereo camera and virtual contents. They

are here called the tracking thread and the rendering thread,

respectively.

In the tracking thread, camera poses are estimated using

edge-based 3-D object tracking. Correspondences between

the edges of the mesh model of a target object and the

edges detected from the Y channel image are established

for each view of the stereo pair. Then, camera poses are1 https://www.google.com/get/cardboard/.
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jointly estimated using the correspondences from both

sides and are sent to the rendering thread. In the rendering

thread, the YUV images captured by the stereo camera are

converted into an RGB color space and are rectified. At this

time, these color space conversion and stereo image rec-

tifications are performed on a GPU for real-time perfor-

mance. The rectified images are rendered, and the virtual

contents are augmented onto them using camera poses.

Geometric transformations between the cameras, the

intrinsic camera parameters, and the mapping information

for stereo image rectification are computed at the offline

stage. In addition, the predistortion map for video see-

through HMD is also computed at the offline stage.

2.1 Stereo camera tracking

We extended the edge-based 3-D object tracking method

proposed by Seo et al. [5] to stereo camera tracking and

applied it to our framework. Edge-based 3-D object

tracking uses the silhouette of a 3-D mesh model of the

target object and the image edges as visual cues. Figure 2

shows the process of correspondence searching in edge-

based 3-D object tracking. In order to extract the silhouette

of the 3-D model, back-faces invisible at the camera pose

in the previous frame are removed by back-face culling,

and edges that are not shared by two faces among the

remaining faces are removed. However, edges inside the

silhouette cannot be removed completely, and they can

interfere with robust tracking. Therefore, another round of

filtering is performed in order to remove the remaining

edges inside the silhouette. An object region mask is cre-

ated by rendering all faces of the 3-D model onto the image

plane, and a silhouette is extracted from the object mask by

contour detection. Then, the remaining edges are projected,

and the edge whose distance from silhouette is over a

certain threshold is filtered.

Edges belonging to the extracted silhouette are regularly

sampled and projected onto the image plane. Then, the

closest image edge that lies on the normal direction of each

model edge sample is set into correspondence with the

edge sample. The image edge can be detected by a Canny

operator [11]; however, it is inefficient to detect edges from

the whole image, since the searching ranges of the model

edge samples may not cover the entire image plane.

Therefore, local edge components are detected by applying

a Sobel filter only to the pixels within the searching ranges

of the model edge samples, for computational efficiency

(Fig. 3). These processes, from silhouette extraction to

correspondence searching, are performed independently on

each view.

We can estimate the camera pose using the established

correspondences. The camera pose of a monocular camera

Et is updated from previous pose Et�1 by camera motion

DE.

Et ¼ Et�1 � DE ð1Þ

The camera motion DE consists of the rotation transfor-

mation R and the translation transformation t between the

Fig. 1 Flowchart of the proposed framework

Fig. 2 Correspondence searching of the edge-based 3-D object

tracking
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previous and current frames. It can be parameterized by an

exponential map as follows,

DE ¼
R t

01�3 1

� �
¼

X5
i¼0

eaiGi � Iþ
X5
i¼0

aiGi; ð2Þ

where Gi are the basis matrices of rotation and translation

transformation along the x, y, z axes in homogeneous

coordinates, ai are infinitesimal changes in their respective

bases. The distance between the projected edge samples

from a 3-D model and their correspondences should be

similar to the displacement at the projected point m̂ ¼
u v w½ �> from 3-D Point M by the basis G. The

a ¼ a0 a1 a2 a3 a4 a5½ �>

satisfying this condition can be estimated by

â ¼ argmin
a

X
j

dj �
X5
i¼0

ai nj � li;j
� ������
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2

8<
:

9=
;; ð3Þ

where nj is the normal vector of the jth sample, and li;j is its

motion vector. The motion vector li;j can be computed by

using camera intrinsic matrix K and partial derivatives of

m̂i;j:

Dm̂i;j ¼ u0j v0j w0
j

� �>¼ KEt�1GiMj ð4Þ

li;j ¼
u

w

	 
0 v

w

	 
0
� �

ð5Þ

After the motion parameter a is estimated by least square,

the camera pose Et can be updated using camera motion

DE.
In the case of a stereo camera, the individually estimated

camera pose of each view can cause inconsistent

registration. Therefore, camera poses are jointly estimated

by using the geometric relationship between cameras. From

Eq. 1, the camera pose of each view can be represented as

EL;t ¼ EL;t�1DEL

ER;t ¼ ER;t�1DER;
ð6Þ

and the camera motions of each can be estimated as

DE�
L;t ¼argmin

DEL

X
i

KLELDELXi � xik k2
( )

DE�
R;t ¼argmin

DER

X
j

KRERDERXj � xj
�� ��2

( )
:

ð7Þ

Here, the subscripts L and R indicate the left and right

cameras, respectively, and m is the correspondence of the

edge sample of the 3-D model. In order to estimate the

motion of both cameras jointly, the error functions (Eq. 7)

should be combined:

DE�
L;t;DE

�
R;t ¼ argmin

DEL;DER

X
i

KLELDELXi � xik k2
(

þ
X
j

KRERDERXj � xj
�� ��2

)
:

ð8Þ

By assuming that the motions of both cameras are the same

and that the stereo camera has already been calibrated,

Eq. 8 can be rewritten as

DE�
L;t ¼ argmin

DEL

X
i

KLELDELXi � xik k2
(

þ
X
j

KREL!RELDELXj � xj
�� ��2

)
:

ð9Þ

Now, we can estimate DEL by using correspondences

obtained from both views without regard to DER. After the

estimation of DEL, the right camera pose ER can be com-

puted by multiplying the left camera pose ER and the

relationship between cameras EL!R. The camera poses are

further optimized by performing these processes

iteratively.

2.2 Rendering stereo images

In the proposed framework, three kinds of image process-

ing are performed to render augmented images: color space

conversion, stereo image rectification, and predistortion.

These processes are suitable for performing parallel pro-

cessing, because the same operation is performed inde-

pendently for each pixel. Therefore, we implemented these

processes on the GPU using a programmable shader in

order to enhance performance. Fortunately, no bottlenecks

Fig. 3 Correspondence searching using local edge component

detection
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due to data transfer from the GPU to CPU existed, because

the processing results were displayed immediately and

asynchronously.

Although Android smartphones usually support YUV

camera input, the OpenGL ES API for image rendering

does not support YUV textures. Thus, camera images

should be converted from YUV format to RGB format for

camera preview rendering. This conversion can be com-

puted simply by a matrix multiplication for each pixel

value and can be faster on a GPU.

The converted RGB image needs to be rectified because

a misalignment of cameras and lens distortions can be

caused by the manufacturing process, which can result in

an interference in the 3-D effect. Stereo image rectification

allows the alignment of cameras to be coplanar and

resolves the problem. Since stereo image rectification

including the undistortion of the image is a nonlinear

transformation, each pixel is warped inversely using the

transformation map. The transformation map contains the

coordinates to which each pixel moves and can be com-

puted in the offline stage. Although this process is quite

simple, the use of the transformation map and bilinear

interpolation requires much memory access and floating

point instructions; these requirements can be a burden on a

mobile phone with low computing power and a small cache

when those operations are sequentially performed.

After stereo image rectification, virtual contents are

rendered onto the rectified stereo image using camera

poses, and the augmented image can be displayed.

However, when the framework runs with a video see-

through HMD docked in the smartphone, the lenses inside

the HMD for providing a wide field of view cause geo-

metric distortion and chromatic aberration as shown in

Fig. 4a. In our framework, only the geometric distortion is

handled, because it may not be possible to achieve

chromatic aberration correction in real time. The geo-

metric distortion can be corrected by applying predistor-

tion to the image to be displayed, as shown in Fig. 4b.

In our framework, predistortion method based on texture

mapping [9] is used. After the augmented images are

rendered to offscreen buffer, each pixel in the offscreen

buffer was warped using a distortion map computed in

advance; this warping was similar to that for stereo image

rectification. The distortion map was obtained by a camera

calibration algorithm with a chessboard pattern image

distorted as a barrel shape.

3 Experimental results

We implemented the proposed framework on the Android

platform; the device used for the experiments was an LG

Optimus 3-D smartphone with a stereo camera and parallax

barrier display, a dual-core 1.0 GHz CPU, and 512 MB

RAM (Fig. 5).

The distortion caused in video see-through HMD can be

easily corrected by using software development kits pro-

viding predistortion functionalities (e.g., Cardboard SDK

for Android,2 Oculus SDK,3 Mali VR SDK4); however,

unfortunately, our target device could not be supported by

any SDKs, because of the low version of the Android OS

and because of GPU capability. Therefore, we imple-

mented predistortion by ourselves as described in Sect. 2.2.

The distorted pattern image for computing predistortion

map was created by applying a distortion filter in Photo-

shop and fitting it to a screenshot captured from another

device on which the Google Cardboard application was

running.

We calibrated the stereo camera in advance in order to

obtain the cameras intrinsic parameters, the distortion

coefficient, and the geometric relationship between the left

and right cameras; information for stereo image rectifica-

tion such as the rectification transformation matrix and the

lookup tables were also computed after stereo calibration.

Fig. 4 Pincushion distortion due to lens in video see-through HMD

(a) lens distortion correction by rendering predistorted image (b)

2 https://developers.google.com/cardboard/android/.
3 https://developer.oculus.com/.
4 http://malideveloper.arm.com/resources/sdks/mali-vr-sdk/.

J Real-Time Image Proc

123

https://developers.google.com/cardboard/android/
https://developer.oculus.com/
http://malideveloper.arm.com/resources/sdks/mali-vr-sdk/


At this point, we fixed the focal length of the cameras and

disabled the auto-convergence mode, which adjusts dis-

parity according to the depth of a subject by a disparity

remapping-like algorithm [12], since this would invalidate

the stereo camera calibration. Figure 6 illustrates the

cameras and the calibration patterns with respect to the left

camera. The distance along the x-axis between the cameras

was estimated at 23.29 mm, which means that the cameras

were correctly calibrated, because this was close to the

distance in the specifications of the device (24 mm).

Figures 7 and 8 show the target objects to be tracked

and their 3-D models. We used three objects and their

models: a cube whose model had 8 vertices and 18 edges; a

piece of pottery whose model had 673 vertices and 2000

edges; and a cat figure whose model had 1252 vertices and

3750 edges. We chose objects whose models had different

complexities in shape from each other in order to explore

how the performance of our framework varied with the

complexity of the model.

Figure 9 shows the resulting images from tracking the

pottery object and the augmentation using the proposed

framework. In order to visualize 3-D images via paper, the

3-D images were rendered in anaglyph form instead of

using the parallax barrier display. The 3-D model of the

target object with the green color was successfully and

correctly overlaid on the object. Figure 10 demonstrates

the augmentation on autostereoscopic display and the

predistortion image for the video see-through HMD;

tracking can be performed even with a complex model.

Table 1 shows the average processing time of each

thread over 500 frames. We measured the elapsed time

only for color space conversion and stereo image rectifi-

cation in the rendering thread. The processing time in the

rendering thread was stable, because it did not rely on the

complexity of the model but on the image resolution. The

processing time in the tracking thread was longer than that

for the rendering thread even when the simplest model was

used. Since the device had a dual-core CPU, each thread

could run in parallel. Therefore, the overall speed was

bounded by the tracking process. In this experiment, the

minimum speed of the framework was about 14 fps, which

meant that the framework could run at an interactive rate.

On the other hand, the use of the GPU allowed faster

processing than with the CPU. Table 2 shows the average

processing time of color conversion and stereo image

rectification on CPU and GPU. We achieved about an

eightfold speed-up by implementing these processes on the

GPU.

In order to verify that joint camera pose estimation is

superior to independent estimation of each camera pose in

Fig. 6 Stereo camera calibration result of Optimus 3-D smartphone

Fig. 5 Optimus 3-D smartphone

Fig. 7 a Cube and pottery and b their 3-D mesh models for tracking

Fig. 8 a Cat figure and b its 3-D mesh model for tracking
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Fig. 9 Tracking and augmentation results (pottery). Top side-by-side images. Bottom anaglyph images

Fig. 10 Tracking and augmentation results: a augmented side-by-side image, b the side-by-side image (a) is displayed via autostereoscopic

display, and c the side-by-side image (a) is rendered as predistorted image for video see-through HMD
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terms of accuracy and robustness, we compared jointly

estimated poses and independently estimated poses with

the ARToolkit [2] which was regarded as a ground truth

due to its sufficient robustness and accuracy. We used a

marker-attached box (Fig. 11); this allowed both edge-

based 3-D object tracking and marker-based tracking to be

applied same image sequence. The image sequence has 500

frames and was captured from the stereo camera on the

Optimus 3-D smartphone. Figure 12 shows the trajectories

of the cameras, which were estimated jointly and inde-

pendently using box model, and from ARToolKit. Their

differences were mostly not so significant; however, the

error of independently estimated position of the left camera

(orange line) increased in the interval from frame 418 to

449. This error results in inconsistent augmentation on

stereo display, which can disrupt immersion and cause

visual discomfort; this problem can be avoided by adopting

joint camera pose estimation. On the other hand, joint

camera pose estimation worked well maintaining geomet-

ric relationship between the left and right cameras at every

frames.

However, stereo camera tracking we used can fail if

camera motion between adjacent frames is too large

because correspondence searching range cannot cover

the motion and edges cannot be detected due to motion

blur. Because this is the intrinsic problem of the edge-

based tracking, it is difficult to evade tracking failure

Fig. 11 Target object for comparison of jointly estimated and

independently estimated poses: a a box with marker and b its 3-D

model

Table 1 Average processing time in each thread

Tracking thread (ms) Rendering thread (ms)

Cube model 27 14

Pottery model 61 14

Cat model 71 14

Table 2 Processing times for color space conversion and stereo

image rectification in rendering thread on CPU and GPU

CPU implementation

(ms)

GPU implementation

(ms)

Processing time 117 14

Fig. 12 Comparison of estimated trajectory using ARToolKit (blue line) and edge-based 3-D object tracking with independent pose estimation

(orange line) and with joint pose estimation (gray line) from stereo image sequence. Top left camera. Bottom right camera
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due to large motion. In order to handle tracking failure, a

recovery method such as [13] should be adopted.

Unfortunately, the device we used does not have suffi-

cient computing power to performing such recovery

method; if new devices which have newest hardware and

stereo camera are released, recovery methods can be

adopted.

4 Conclusion

This paper presented an augmented reality framework

for mobile stereo display. Our framework supports

autostereoscopic display as well as a video see-through

display like Google cardboard. Joint camera pose esti-

mation in stereo camera tracking allows the precise

registration of the real and the virtual worlds and con-

sistent augmentation across both views. Utilizing the

GPU and multi-threading enabled the framework to

perform at an interactive rate, despite many computa-

tions for stereo camera tracking and image warping. The

experiments and demonstration showed the feasibility of

the framework.

Nevertheless, there is considerable room for the

improvement of our framework. One issue is that the dis-

tortion mapping function for predistortion was not esti-

mated to completely adjust the features of the display but

was just approximated. Another is that the use of the old-

fashioned device restricted the potential speed-up of the

tracking by optimization. For example, recent devices have

many possibilities for optimization by supporting OpenCL

and memory mapping between the CPU and GPU. We are

currently conducting more optimizations of tracking for

further speed-up and robustness.
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