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Abstract: We construct a set of parton distribution functions (PDFs) in which fixed-order

NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up

to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD cal-

culation in which threshold resummation is included at the level of partonic cross sections.

These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-

inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed

calculations can be consistently used. We find that, close to threshold, the inclusion of re-

summed PDFs can partially compensate the enhancement in resummed matrix elements,

leading to resummed hadronic cross-sections closer to the fixed-order calculations. On the

other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts.

Our results demonstrate the need for a consistent use of resummed PDFs in resummed

calculations.

Keywords: Resummation, QCD, Deep Inelastic Scattering

ArXiv ePrint: 1507.01006

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2015)191

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81710107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marco.bonvini@physics.ox.ac.uk
mailto:smarzani@buffalo.edu
mailto:juan.rojo@physics.ox.ac.uk
mailto:luca.rottoli@physics.ox.ac.uk
mailto:ubiali@hep.phy.cam.ac.uk
mailto:rdb@ph.ed.ac.uk
mailto:valerio.bertone@cern.ch
mailto:stefano.carrazza@mi.infn.it
mailto:nathan.hartland@physics.ox.ac.uk
http://arxiv.org/abs/1507.01006
http://dx.doi.org/10.1007/JHEP09(2015)191


J
H
E
P
0
9
(
2
0
1
5
)
1
9
1

Contents

1 Introduction 1

2 Threshold resummation 4

2.1 Theoretical framework 4

2.2 Numerical implementation 7

3 Settings of the resummed PDF fit 9

3.1 Experimental data 10

3.2 Calculation of resummed K-factors 13

4 Parton distributions with threshold resummation 16

4.1 Baseline fixed-order fits 16

4.2 DIS-only resummed PDFs 18

4.3 DIS+DY+top resummed PDFs 20

4.4 Partonic luminosities 22

5 Resummed PDFs: implications for LHC phenomenology 25

5.1 SM and BSM Higgs production in gluon fusion 27

5.2 High-Mass Drell-Yan dilepton mass distributions 28

5.3 Supersymmetric particle production 29

6 Summary 31

1 Introduction

The accurate determination of the parton distribution functions (PDFs) of the proton is

an essential ingredient of the LHC physics program [1–5]. In order to reduce theoretical

uncertainties, it is crucial to incorporate in global PDF fits higher-order perturbative QCD

corrections, both to the hard partonic cross sections and to the parton evolution. While

recent progress in fixed-order NLO (see e.g. [6] for a recent review), NNLO (e.g. [7–23])

and even N3LO [24] calculations for different processes in hadron-hadron collisions has

been impressive, it is also well-known that fixed-order perturbative calculations display

classes of logarithmic contributions that become large in some kinematic regions, thus

spoiling the perturbative expansion in the strong coupling constant αs. The importance

of these contributions varies significantly with both the type and the kinematic regime of

the processes which enter PDF fits. Therefore, their omission can lead to a significant

distortion of the PDFs, thereby reducing their theoretical accuracy (see ref. [25] for a

detailed discussion). In order to avoid this problem, it is necessary to supplement fixed-

order calculations with all-order resummations of these large logarithms.
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Logarithmic enhancements of higher-order perturbative contributions originate from

a number of different kinematic regions and require, in general, different resummation

techniques (see e.g. ref. [26] for a recent review). For instance, enhancements may take place

when the centre-of-mass energy of the partonic collision is much higher than the hard scale

of the process: this corresponds to the small-x region of the PDFs, and the resummation

of such terms is known as high-energy or small-x resummation, see e.g. [27–30]. Small-x

resummation is certainly relevant for PDF determination and might be needed to describe

the most recent HERA data, where some tensions with fixed-order DGLAP have been

reported [31–33]. A study of small-x resummation in PDF fits will be presented elsewhere.

In this paper we concentrate instead on another type of logarithmic enhancement of higher

order perturbative contributions which appear close to threshold for the production of the

final states: this is the large-x kinematic region, and the resummation of logarithms from

this region is known as large-x, soft gluon, or threshold resummation.

All-order threshold resummations exist for many of the processes which play a central

role in the exploration of the electroweak scale being pursued at the LHC. For instance,

the current Higgs Cross section Working Group recommendation for the gluon-fusion cross

section includes threshold resummation [34, 35], and resummed Higgs cross sections in this

channel are available up to N3LL [36–38]. Additional resummed calculations for Higgs

physics exist, for example for gluon-induced Higgs Strahlung [39] and for Higgs-pair pro-

duction [40]. The basis for threshold resummation in QCD were laid in refs. [41–43], in

which explicit resummed expressions to NLL accuracy were given for processes relevant

for global fits of parton distributions, such as deep-inelastic structure functions and Drell-

Yan total cross section. Subsequently, higher-order resummed calculations have been made

available for deep-inelastic scattering structure functions [44–48], invariant mass distribu-

tions [38, 47–51] and rapidity distributions [52–58] in Drell-Yan production, and top quark

pair production, both inclusive [59, 60] and differentially [61–63]. As far as processes rele-

vant for New Physics searches are concerned, resummed calculations exist for squark and

gluino production [64–67], stop quark pair production [68, 69], slepton and gaugino pair

production [70–73] among many others.

Moreover, it is well known [74, 75] that in the commonly used MS scheme, thresh-

old resummation affects only partonic coefficient functions, while the singular part of the

DGLAP splitting function is given, to any order in perturbation theory, by the cusp con-

tribution: P (x, αs) ∼ Γcusp(αs)/(1−x), as x→ 1. Therefore, to perform a resummed PDF

fit it is only necessary to modify the partonic cross sections, while the NLO [76–79] and

NNLO [80, 81] DGLAP evolution kernels remain unchanged.

Despite the wide range of resummed calculations available, a complete global PDF fit

including the effects of threshold resummation has never been produced (although some

preliminary results were presented in ref. [82]). A first study, restricted to non-singlet

DIS structure functions, was performed in ref. [83], finding that at NLO resummation

could suppress the large-x valence quark PDFs by as much as ten percent. The impact

of threshold resummation in direct photon production and its implications on the large-x

gluon was studied in ref. [84]. More recently, threshold resummation has been studied in

the context of the CJ fits [85], with emphasis on the description of the large-x JLAB data.
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Given the impressive theoretical developments in the resummation of hard-scattering cross

sections, it is clear that a state-of-the-art resummed global PDF fit is most timely. This is

what we plan to achieve in this paper.

To this end we will produce for the first time NLO+NLL and NNLO+NNLL threshold-

resummed fits based on the NNPDF methodology [86–93]. Since NNPDF fitting is free from

theoretical bias, due to the very flexible PDF parametrisation, it is sufficiently precise to

be able to detect even small changes in PDFs due to threshold resummation of the various

processes that go into the global fit.

A major obstacle to producing a truly global resummed fit is that for a number of im-

portant processes, in particular inclusive jet production and W production at the leptonic

level, threshold resummation is not readily available. For inclusive jets, resummed calcu-

lations have been used to determine approximate expressions [94–96] for the yet unknown

NNLO contributions, but codes that provide all-order results are not publicly available.

For W production, resummation is available only at the level of reconstructed W but not

for the measured lepton-level distributions.

For this reason, in this work we have begun by producing variants of the NNPDF3.0

global NLO and NNLO fits [97] based only on those processes which can be consistently

resummed: fixed-target and collider neutral and charged current deep-inelastic structure

functions, fixed-target and collider neutral current Drell-Yan production, and inclusive top-

quark pair production. These DIS+DY+top fits then provide a suitable baseline to compare

with the NLL and NNLL resummed fits. One important drawback is that the resulting

fits will be affected by larger PDF uncertainties as compared to the global NNPDF3.0 set,

due to the missing experiments, affecting in particular gluon-initiated processes. In this

respect, it will be important to produce updated resummed fits as soon as the missing

resummed calculations become available.

An important goal of this paper is to quantify the inaccuracies that affect current

resummed calculations due to the inconsistent use of a fixed-order PDF with resummed

partonic cross sections. As we will show, for final states with large invariant mass, close to

the hadronic threshold, the main effect of the resummed PDFs is to bring the resummed

hadronic calculation closer to the fixed-order result, thereby canceling partially the effect

of the resummation in the matrix elements. On the other hand, for final states far below

threshold, such as inclusive Higgs production at the LHC, the effect of the resummation

on the PDFs can be small compared with the resummation in the matrix elements. We

also find that, unsurprisingly, resummed and unresummed PDFs are much closer at NNLO

than at NLO. Our results emphasise the need for a consistent use of resummed PDFs in

resummed calculations: the use of fixed-order PDFs with resummed matrix elements can

lead to misleading results, particularly at NLO.

The outline of this paper is as follows. In section 2 we review some basic concepts

and results in threshold resummation, as well as their implementation. In section 3, we

discuss the settings of the global PDF fit used here to include threshold resummation

effects, which is a variant of the recent NNPDF3.0 global fit. The results of the resummed

fits are then discussed in section 4, where we compare resummed with fixed-order PDFs at

NLO(+NLL) and NNLO(+NNLL). Then in section 5 we discuss the implications of the
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resummed PDFs for LHC phenomenology, with emphasis on the mismatch that can arise

if fixed-order PDFs are used in resummed calculations. Finally we summarise in section 6

and discuss the delivery of the resummed PDFs produced in this work.

2 Threshold resummation

In this section we review the theoretical formalism of threshold resummation, and then we

discuss its practical implementation in order to be able to use it in the resummed NNPDF

fits. We work in the traditional framework of perturbative QCD (see e.g. [98]); alternative

results can be obtained using the methods of Soft-Collinear Effective Theory (see ref. [99]

for a recent review and refs. [100–103] for more detailed comparisons between the two

formalisms).

2.1 Theoretical framework

We start by considering a hadron-level cross section

σ(x,Q2) = x
∑
a,b

∫ 1

x

dz

z
Lab
(
x

z
, µ2F

)
1

z
σ̂ab

(
z,Q2, αs(µ

2
R),

Q2

µ2F
,
Q2

µ2R

)
, (2.1)

where a, b run over parton flavors, Q2 is the hard scale of the process, x is a dimensionless

variable and x → 1 defines the threshold limit. For the resummed fit we are going to

consider three processes: deep-inelastic scattering (DIS) of a lepton off a hadron, the Drell-

Yan process (DY) and top-anti-top production (tt̄). In DIS, Q2 is the off-shellness of the

exchanged boson Q2 = −q2 and x = Q2

2p·q , where p is the hadron momentum. In DY, Q

is the invariant mass of the lepton pair and x = Q2

s , being
√
s the collider centre-of-mass

energy. Finally, for tt̄, Q2 = 4m2
t and x = Q2

s . In eq. (2.1), Lab(z, µ2) is a parton luminosity,

defined as

Lab(z, µ2) =

∫ 1

z

dw

w
fa

(
z

w
, µ2
)
fb(w, µ

2) , (2.2)

in the hadron-hadron collision case, while in the case of DIS it is just a single PDF. In the

following we are going to set µR = µF = Q.

In order to diagonalise the convolution integral, we take Mellin moments of eq. (2.1):

σ(N,Q2) =

∫ 1

0
dxxN−2σ(x,Q2) =

∑
a,b

Lab(N,Q2)σ̂ab(N,Q
2, αs) , (2.3)

where αs = αs(Q
2) and

Lab(N,Q2) =

∫ 1

0
dz zN−1Lab(z,Q2) , (2.4a)

σ̂ab(N,Q
2, αs) =

∫ 1

0
dz zN−2σ̂ab(z,Q

2, αs) . (2.4b)

In Mellin space the threshold limit corresponds to N →∞ and the aim of threshold resum-

mation is to obtain a more reliable estimate of the hadron-level cross section by resumming

– 4 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
1

to all orders in the strong coupling αs the logarithmically enhanced contributions to the

partonic cross section σ̂ab at large N . The resummed partonic cross section can be written

as the product of a Born contribution and an all-order coefficient function:

σ̂
(res)
ab (N,Q2, αs) = σ

(born)
ab (N,Q2, αs)C

(res)
ab (N,αs) , (2.5)

where

C
(res)
ab (N,αs) =

∑
I

ḡ0
(I)
ab (αs) exp S̄(I)(N,αs) ,

S̄(I)(N,αs) = ln ∆a + ln ∆b + ln Jc + ln Jd + ln ∆
(I)
ab→cd . (2.6)

The notation ab → cd has been chosen to accommodate all the processes that enter our

fit. For tt̄ production, we have to consider the resummation of two Born-level processes,

namely qq̄ → tt̄ and gg → tt̄. For DIS instead we have V ∗q → q and for DY qq̄ → V ∗.

Moreover, while in DIS and DY we have one color structure, in the tt̄ case we have two

contributions, i.e. I = singlet, octet.

Let us now examine the different contributions to the resummed exponent. If i is a

color-singlet, then ∆i = Ji = 1. For each initial-state QCD parton, we have an initial-state

jet function

ln ∆i =

∫ 1

0
dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2F

dq2

q2
Ai
(
αs(q

2)
)
, i = a, b . (2.7)

For each massless final-state QCD parton we have a final-state jet function

ln Ji =

∫ 1

0
dz
zN−1 − 1

1− z

[ ∫ (1−z)Q2

(1−z)2Q2

dq2

q2
Ai
(
αs(q

2)
)

+
1

2
Bi

(
αs
(
Q2(1− z)

))]
, i = c, d ,

(2.8)

while there is no jet-function for t or t̄. Finally we also have a large-angle soft contribution,

which depends in principle on both the process and the color flow:

ln ∆
(I)
ab→cd =

∫ 1

0
dz
zN−1 − 1

1− z
D

(I)
ab→cd

(
αs
(
Q2(1− z)2

))
. (2.9)

The functions Ai(αs), Bi(αs), D
(I)
i (αs), and obviously ḡ0

(I)
ab (αs), are free of large logarithms

and can be computed in fixed-order perturbation theory. The accuracy of their determina-

tion fixes the logarithmic accuracy of the resummation. In particular, (N)NLL requires Ai
to second (third) order in the strong coupling αs, and Bi, D

(I)
i , and ḡ0ab to first (second)

order.1 Threshold resummation is actually known to N3LL for DIS [45] and DY [38, 49–51],

and to NNLL for tt̄ production [59, 104].

We have left out of our discussion inclusive jet production.2 The general framework to

perform this resummation has been worked out long ago [105]. However, different treat-

ments of the jet kinematics at threshold can lead to substantially different results, see

1This accuracy is sometimes referred to as (N)NLL′. For a precise definition of all possible accuracies

and their nomenclature in threshold resummation, see table 1 of ref. [36].
2We acknowledge discussions with Mrinal Dasgupta and Werner Vogelsang on this topic.
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e.g. ref. [94] and [106]. Moreover, depending on the way the threshold limit is defined,

NLL resummation can be affected by non-global logarithms [107] and the result may ac-

quire a non-trivial dependence on the jet algorithm [108, 109]. In addition, as previously

mentioned, computer programs that implement threshold resummation for jet produc-

tion are not, to the best of our knowledge, publicly available. On the other hand, recent

progress [110–112] has shown that NNLL accuracy is perhaps achievable in the near future.

We leave a detailed phenomenological analysis of jet production and its inclusion in a PDF

fit to future work.

The Mellin integrals in the resummed expression eq. (2.6) are often evaluated in the

N → ∞ limit, thereby keeping only those contributions that do not vanish at large N

and behave as powers of lnN . In this approximation, which we refer to as N -soft in the

following, the resummed coefficient function becomes

C(N -soft)(N,αs) = g0(αs) expS(lnN,αs) ,

S(lnN,αs) =

[
1

αs
g1(αs lnN) + g2(αs lnN) + αsg3(αs lnN) + . . .

]
, (2.10)

where, in order to simplify our notation, we henceforth drop all the flavor and color-flow

indices and it is understood that all the modifications we discuss are applied to each

partonic subprocess and each color-flow. The functions gi(αs lnN) with i ≥ 1 resum

αns lnnN contributions to all orders in perturbation theory. They can be derived directly

by the integral representations eqs. (2.7)–(2.9) by computing the integrals as an expansion

in powers of αs at fixed αs lnN , in the large N limit.

Other resummation schemes, which are equivalent to N -soft at large N , but preserve

the analytic structure of fixed-order coefficient functions at finite N , have been considered

in the context of Higgs production [36, 113, 114] and heavy quark production [115]. The

extension of these resummation schemes to DIS and DY, and their application to the

determination of PDFs, will be considered elsewhere.

Threshold resummation can be extended to rapidity distributions, see e.g. [52–58]. In

this work we follow the approach of ref. [58]. The basic observation is that the resummed

partonic rapidity distribution coincides with the rapidity integrated one up to terms which

are power-suppressed in the threshold limit. Therefore, in order to obtain the hadron-level

resummed rapidity distribution, we have only to modify the parton luminosity. While we

refer the Reader to ref. [58] for an explicit derivation, here we limit ourselves to note that

the resummed rapidity distribution is constructed in such a way that the integral over

rapidity gives back the resummation of the rapidity-integrated cross section.

Finally, we mention that the calculation of hadron-level cross sections and distribu-

tions from resummed results in N space requires a prescription because of the presence of

a logarithmic branch-cut for real N > NL, originating from the Landau pole of the running

coupling. As a consequence, the resummed result does not admit an inverse-Mellin trans-

form. Different solutions to this problem exists, such as the Minimal Prescription [116],

which consists on a simple modification of the Mellin inversion integral, and the Borel

prescription [58, 117–120], which relies on a Borel summation of the divergent series of the

order-by-order inverse Mellin transform of the resummed coefficient function. In this paper

– 6 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
1

we adopt the Minimal Prescription, but we stress that from a practical point of view, dif-

ferences between these prescriptions become only relevant at extremely large values x [120],

a region where no experimental data is available.

2.2 Numerical implementation

In this section we discuss the numerical implementation of the N -soft threshold resum-

mation described above. For the PDF fits performed in this work, the processes that

we are interested in are DIS (both neutral and charged currents), lepton-pair invariant

mass and rapidity distribution for Drell-Yan production, and inclusive top pair production

cross section. For DIS and Drell-Yan, we use a new version of the public code ResHiggs,

written originally [36] to perform threshold resummation of Higgs inclusive cross section,

including several improvements with respect to standard N -soft resummation, and later

extended [37] to also perform (improved) resummation in the Soft-Collinear Effective The-

ory formalism. Because of the inclusion of additional processes, the new version of this

code changes name from ResHiggs to TROLL, standing for TROLL Resums Only Large-x

Logarithms, publicly available at the webpage [121]. To give continuity with the original

code ResHiggs, the first version of TROLL is v3.0. For top pair production we use the

public code Top++ [7].

The code TROLL is designed to provide only the contribution of the resummation,

while the fixed-order calculation is obtained from a separate code (in our case, the same

FKgenerator code used for the NNPDF3.0 fits). More specifically, the output of TROLL is

∆jKNkLL, defined as the difference between a resummed K-factor at NjLO+NkLL and a

fixed-order K-factor at NjLO, such that

σNjLO+NkLL = σNjLO + σLO ×∆jKNkLL , (2.11)

where all the cross sections appearing in the above equation are evaluated with a common

NjLO+NkLL PDF set. Internally, ∆jKNkLL is computed by subtracting off the expansion

of the resummed coefficient up to O(αjs) from the coefficient itself, multiplying this by

the parton luminosity, computing the inverse Mellin transform and finally dividing by the

parton luminosity.

There are several advantages in using the ∆K-factors defined in eq. (2.11): the fixed-

order normalisation is irrelevant, the K-factor is much less sensitive to the input PDFs than

the cross section itself, and finally, since the resummed contribution has the same kinematic

structure as the Born cross section (soft radiation does not change the kinematics), the

effect of phase space constraints like kinematic cuts are correctly taken into account if they

are applied to the LO cross section in eq. (2.11).

We note that in DIS, Target Mass Corrections (TMCs) at next-to-leading twist are

included in the resummation according to the same prescription used in the NNPDF fitting

code [88], which amounts to multiplying the Mellin transforms of the partonic coefficient

functions by an N -dependent factor. No TMCs are included for the fixed-target DY data.

In figure 1 we show the ∆K-factors for the neutral current DIS structure function

F2(x,Q), as a function of x, for Q = 2 GeV and Q = 30 GeV. The plot on the left

– 7 –
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Figure 1. ∆K-factors eq. (2.11) for the neutral current DIS structure function F2(x,Q), as a

function of x, for Q = 2 GeV and Q = 30 GeV. The plot on the left corresponds to j = 1, k = 1 in

eq. (2.11), i.e. NLO and NLL, while the one on the right to j = 2, k = 2, i.e. NNLO and NNLL.

The effect of adding TMCs is shown as a thin solid line.
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Figure 2. Same as figure 1 for the NLL (left plot) and NNLL (right plot) resummation of neutral-

current Drell-Yan invariant mass distribution at the Tevatron and at the LHC.

corresponds to j = 1, k = 1 in eq. (2.11), i.e. NLL to be matched to NLO, while the

one on the right to j = 2, k = 2, i.e. NNLL to be matched to NNLO. We note that the

resummation enhances the cross section at large x, while it gives a very small contribution

at small x, as it should. We also note a dip in the region of intermediate x, which is also

present in fixed-order calculations [122].

TMC effects are also shown as light shadows to the actual curves: as expected, at large

scales they are negligible, while at smaller scales their effect is non-negligible, in particular

at large x, where they reduce the effect of the resummation. Note that in the definition of

∆K we use the fact that the same TMCs are already included in the LO cross section, so

much of their effect cancels out.

In figure 2 we show the corresponding ∆K-factors this time for Drell-Yan invariant

mass distributions, for LHC at
√
s = 7 TeV and for the Tevatron at

√
s = 1.96 TeV. In

figure 3 we also present the results for the lepton pair rapidity distribution in DY processes
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Figure 3. Same as figure 1 for the neutral-current Drell-Yan rapidity distribution, for different

experiments and different values of the lepton invariant mass.

LHC 7 TeV LHC 8 TeV

σNLO+NLL/σNLO 1.086 1.081

σNNLO+NNLL/σNNLO 1.031 1.029

σNNLO/σNLO 1.123 1.122

Table 1. K-factors for tt̄ production at LHC at 7 and 8 TeV. The first line is obtained using

NLO PDFs, while the second and third lines are obtained with NNLO PDFs (in all cases, both

numerator and denominator are computed with the same PDFs).

as a function of Y/Ymax, with Ymax = 1
2 ln(s/M2) being the maximum rapidity of the lepton

pairs allowed by kinematics. The experiments cover different kinematic regimes: close to

threshold (Fermilab’s fixed-target Drell-Yan experiments at M = 7 GeV), an intermediate

region (Tevatron and LHC at the Z pole) and away from threshold (low mass DY at LHC).

We note that threshold resummation always gives a significant correction at large rapidities.

For the fixed-target kinematics and M = 7 GeV, the effect of threshold resummation is

important even at central rapidities.

Finally, in table 1 we collect the K-factors for tt̄ production obtained using Top++. In

this case we provide directly the K-factors for the (N)NLO+(N)NLL over (N)NLO cross

sections, with both numerator and denominator computed with the same (N)NLO PDFs.

We can see from the table that the impact of the resummation is non-negligible, and in

fact rather important especially at NLO+NLL, where the correction is about 9% of the

fixed-order NLO result, comparable to the NNLO correction. Even at NNLO+NNLL, the

effect of resummation is comparable to other theory uncertainties like the values of αs(m
2
Z)

or of the top quark mass [123].

3 Settings of the resummed PDF fit

In this section we present the settings used in the resummed PDF fits. These are con-

structed as variant of the recent NNPDF3.0 global fits [97]: they use exactly the same
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fitting methodology, the same input parameters (strong coupling, heavy quark masses,

etc.), and the same fixed-order theoretical calculations. The experimental dataset is also

similar except that some specific processes have been excluded.

In this section, we first review the experimental data that can be consistently included

in a threshold resummed global PDF analysis, and then we explain the procedure used

to construct the resummed K-factors that will be used to include threshold resummation

in the NNPDF fits. We also show the resulting resummed K-factors for a representative

subset of the experiments used in the fit.

3.1 Experimental data

In a PDF fit with threshold resummation, as compared to fixed-order fits, some datasets

cannot be included since for these processes threshold resummation is either unknown or

not currently available in a format that can be used in a fit. In particular, when compared

to NNPDF3.0, in the present resummed fit we include all the neutral and charged current

DIS data, neutral current DY production and top quark pair production data. However we

exclude the DY charged current datasets, for which data is provided in terms of the lepton

kinematics, and the construction of resummed expressions is more involved, and inclusive

jet production for the reasons discussed in section 2.1.

In table 2 we list all the datasets used in the NNPDF3.0 NLO and NNLO global anal-

ysis, and indicate whether or not they are now included in the NLL and NNLL resummed

NNPDF3.0 fits. For each dataset we also display the corresponding measured observable,

and the relevant publication. A more complete description of each of these datasets, as

well as of their impact in terms of PDF constraints in the global fit, can be found in [97].

From table 2, we infer that, when compared to the global fit, the resummed fits lose

experimental constraints on the medium and large-x gluon (due to the exclusion of the

jet data) and on the quark-flavor separation (due to the exclusion of the W data). Still,

given that we include in the resummed fit more than 3000 data points, the loss of accuracy

due to the exclusion of these datasets is not dramatic, as we will show in section 4. In

future studies, we aim to include the missing processes once the corresponding resummed

calculations become available.

The kinematic cuts applied in the present fits closely follow the ones of the NNPDF3.0

fixed-order analysis. In particular, a cut on the final-state invariant mass of DIS data

W 2 ≥ 12.5 GeV2 is applied, in order to reduce the dependence on higher-twists at large x.

It would be interesting to loosen this cut in future analyses, in order to test the stability of

the leading-twist PDF determination once the large-x resummation is included; this might

also allow us to include additional large-x, low-Q2 DIS measurements, such as for example

JLAB data [164].

In addition, a stability analysis of the calculations for neutral-current Drell-Yan pro-

duction indicates that our results, even when supplemented with resummation, become

unstable for data points too close to the production threshold, either because the invariant

mass Mll of the Drell-Yan pairs is too large, or because the rapidity Y is too close to the

kinematic boundary Ymax. Therefore, we have supplemented the NNPDF3.0 kinematic

– 10 –
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Experiment Observable Ref. NNPDF3.0 global NNPDF3.0 DIS+DY+top

(N)NLO (N)NLO [+(N)NLL]

NMC σNC
dis , F

d
2 /F

p
2 [124, 125] Yes Yes

BCDMS F d2 , F
p
2 [126, 127] Yes Yes

SLAC F d2 , F
p
2 [128] Yes Yes

CHORUS σCC
νN [129] Yes Yes

NuTeV σCC,charm
νN [130] Yes Yes

HERA-I σNC
dis , σ

CC
dis [131] Yes Yes

ZEUS HERA-II σNC
dis , σ

CC
dis [132–135] Yes Yes

H1 HERA-II σNC
dis , σ

CC
dis [136, 137] Yes Yes

HERA charm σNC,charm
dis [138] Yes Yes

DY E866 σNC
DY,p, σ

NC
DY,d/σ

NC
DY,p [139–141] Yes Yes

DY E605 σNC
DY,p [142] Yes Yes

CDF Z rap σNC
DY,p [143] Yes Yes

CDF Run-II kt jets σjet [144] Yes No

D0 Z rap σNC
DY,p [145] Yes Yes

ATLAS Z 2010 σNC
DY,p [146] Yes Yes

ATLAS W 2010 σCC
DY,p [146] Yes No

ATLAS 7 TeV jets 2010 σjet [147] Yes No

ATLAS 2.76 TeV jets σjet [148] Yes No

ATLAS high-mass DY σNC
DY,p [149] Yes Yes

ATLAS W pT σCC
DY,p [150] Yes No

CMS W electron asy σCC
DY,p [151] Yes No

CMS W muon asy σCC
DY,p [152] Yes No

CMS jets 2011 σjet [153] Yes No

CMS W + c total σNC,charm
DY,p [154] Yes No

CMS 2D DY 2011 σNC
DY,p [155] Yes Yes

LHCb W rapidity σCC
DY,p [156] Yes No

LHCb Z rapidity σNC
DY,p [157] Yes Yes

ATLAS CMS top prod σ(tt̄) [158–163] Yes Yes

Table 2. List of all the experiments that were used in the NNPDF3.0 global analysis, and whether

or not they are now included in the present (N)NLL resummed fits (and in the corresponding

baseline fixed-order fits). For each dataset we also provide the type of cross section that has been

measured and the corresponding publication references.

cuts with two additional cuts for the fixed-target Drell-Yan experiments, as summarised in

table 3. For the collider Drell-Yan data, the cuts are the same as in NNPDF3.0.

It is useful to quantify which experiments determine the behaviour of the large-x PDFs

in the global analysis. In figure 4 we compare the relative PDF uncertainties in variants of

the NNPDF3.0 NLO fit based on different input datasets: HERA-only, no LHC data, no

jet data, a DIS+DY+top fit (our baseline for the resummed fits) and the global fit. We

focus in the large-x region for Q2 = 104 GeV, a typical scale for LHC phenomenology. We

show the gluon, the total quark singlet, the total valence and the ū quark PDFs. From

this comparison we see that the PDF that at large-x is most dependent on the choice of
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Experiment Kinematic cuts

DIS Q2 ≥ Q2
min = 3.5 GeV2

W 2 ≥W 2
min = 12.5 GeV2

Fixed target Drell-Yan τ ≤ 0.08

|Y |/Ymax ≤ 0.663

Table 3. Kinematic cuts applied to the DIS and fixed-target Drell-Yan data in the baseline and

resummed fits. For the collider Drell-Yan data, the cuts are the same as in NNPDF3.0.
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Figure 4. Comparison of the relative PDF uncertainty at large-x between NNPDF3.0 NLO fits

based on different input datasets. We show the results for the gluon, total quark singlet, total

valence and ū quark PDFs, at a typical LHC scale of Q2 = 104 GeV2. The fits shown are the

HERA-only, no LHC data, no jet data, DIS+DY+top (our baseline for the resummed fits) and

finally the global fit.

input dataset is the gluon. For the total valence and singlet quark PDFs, the bulk of the

constraints are provided by the DIS and fixed target Drell-Yan data, which are common

datasets in all these fits (except for the HERA-only fit). For the sea quarks, in this case

the ū quark, the information on both jet data and LHC data are necessary to achieve the

best possible accuracy. The baseline DIS+DY+top fit is slightly less accurate at large-x

for the quark flavor separation due to the missing charged-current Drell-Yan data.
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3.2 Calculation of resummed K-factors

As mentioned in the introduction, in the MS scheme all the effects of threshold resummation

are encoded in the partonic cross sections, and thus parton evolution is the same as in

fixed-order calculations. Therefore, apart from the modification of the hard-scattering

cross sections, all theoretical settings in the resummed fit will be the same as those of

the NNPDF3.0 fixed-order analysis, including the use of the FONLL general-mass VFN

scheme [165], the values of the heavy quark masses, and so on. We will produce results for

single a value of the strong coupling, αs(m
2
Z) = 0.118.

As discussed in ref. [97], the NNPDF3.0 global analysis for hadronic observables always

uses fast NLO calculations [166–168] supplemented with NNLO/NLO K-factors when re-

quired. These are defined as the ratio of the NNLO over the NLO bin-by-bin cross sections,

using a common PDF luminosity computed with a NNLO PDF set. For the resummed fits,

we follow exactly the same procedure: we include the effect of resummation supplementing

the fixed-order computation with a K-factor. Since the K-factor is computed externally

using a fixed set of PDFs, the fit is re-iterated several times, recomputing each time the

resummed K-factor using as input PDFs those obtained from the previous iteration.

As discussed in section 2.2, the resummed contributions for DIS and DY processes is

obtained using the program TROLL in the form of ∆K-factors, eq. (2.11), and hence must

be converted into actual K-factors. For DIS cross sections, since the NNLO calculation is

implemented exactly in the NNPDF fitting code, this is done according to

KNkLO+NkLL
DIS ≡ σN

kLO+NkLL

σN
kLO

= 1 + ∆kKNkLL ·
σLO

σN
kLO

, (3.1)

with k = 1, 2 for NLO+NLL and NNLO+NNLL respectively. For hadronic processes we

use a similar expression, but (at NNLO) also including the NNLO/NLO K-factor,

KNLO+NLL
hadr ≡ σNLO+NLL

σNLO
= 1 + ∆1KNLL ·

σLO

σNLO
, (3.2)

KNNLO+NNLL
hadr ≡ σNNLO+NNLL

σNLO
= KNNLO + ∆2KNNLL ·

σLO

σNLO
, (3.3)

where KNNLO = σNNLO/σNLO. In the above expressions, all contributions are meant to be

computed with the same NkLO+NkLL PDF set. For the leading-order cross section σLO,

dedicated FK tables with LO coefficient functions but NLO and NNLO PDF evolution

have been produced using the APFEL program [169], validated with the same FKgenerator

internal code used in the NNPDF3.0 fits.

In principle, all these contributions should be recomputed at each iteration of the fit;

in practice, the computation of KNNLO is time consuming, so for this contribution we use a

fixed value. Specifically, in the present work, these fixed-order NNLO/NLO K-factors are

the same as in the NNPDF3.0 fits, with the exception of those for fixed-target Drell-Yan

experiments, which have been recomputed using Vrap [170] with the NNPDF3.0 global

PDF set as input.

For the computation of the resummed K-factors eq. (3.1)–(3.3), we find that two

iterations of the fit are enough to reach a satisfactory convergence, meaning that these
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Figure 5. The resummed K-factors for DIS, eq. (3.1), for a representative subset of the experiments

included in the resummed fit: BCDMS F p2 , NMC σpNC, SLAC F p2 and CHORUS σνN . We show

both the results corresponding to NLL and to NNLL resummation. The DIS kinematics (x,Q2, y)

is that of the corresponding experimental data included in the fit, plotted just as a function of x,

so for each value of x there are measurements at different values of Q2 and y.

K-factors are essentially unchanged if we use resummed PDFs from the last or from the

next-to-last iteration of the fit.

It is now interesting to illustrate the effect of the (N)NLL resummation for some of the

datasets used in the present resummed PDF fit. To this purpose, we plot the DIS, eq. (3.1),

and hadronic, eqs. (3.2) and (3.3), resummed K-factors for representative experimental

datasets with exactly the same kinematics as for the data points to be used in the fit. In

these calculations, we have consistently used the NNPDF3.0 DIS+DY+top NLO+NLL and

NNLO+NNLL PDF sets discussed in the next section, with αs(m
2
Z) = 0.118, in both the

fixed-order and resummed cross sections. To isolate the effect of the resummation, in these

comparison plots we will factor out KNNLO from the hadronic NNLO+NNLL resummed

K-factor eq. (3.3). Note that in these plots we will only include those data points that

satisfy the kinematic cuts imposed in the fit, summarised in table 3.

The results for the DIS case are shown in figure 5. For each experiment, we show

both the results corresponding to NLL and to NNLL resummation. The DIS kinematics

(x,Q2, y) is that of the associated experimental measurements, so for each value of x there

are measurements at different values of Q2 and y. We do not show the results for any of the
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Figure 6. Same as figure 5 for selected Drell-Yan experimental datasets included in the fit: the E866

pp neutral Drell-Yan cross sections, the CDF Z rapidity distribution, the CMS double-differential

Drell-Yan distribution at 7 TeV and the LHCb Z → µµ rapidity distribution. The resummed K-

factors are now those defined in eqs. (3.2) and (3.3), but to isolate the effect of resummation from

that of the fixed-order NNLO corrections, in the NNLL case we divide eq. (3.3) by KNNLO. In the

two left plots data points differ by the values of the rapidity and the invariant mass of the pair, but

only the dependence on the rapidity is shown.

HERA datasets, for which the effect of the resummation turns out to be negligible since

the data is either at small-x or at high scales. As expected, the impact of the resummation

is only relevant at large x, and of course the impact of the resummation decreases when

more fixed perturbative orders are included in the calculation.

From the results of figure 5 we see that the effect of threshold resummation is most

important for the BCDMS data, while it is milder for the other experiments. Effects of

NLL resummation reach up to 15% at the highest values of x available, which is reduced

to up to a few percent for NNLL resummation (since part of the effects at NLL are now

included in the fixed NNLO calculation). Note also that the cut in W 2 removes most of

the large-x SLAC data, where resummation effects are very large. We also note that the

effect of resummation is comparable to the experimental uncertainties, and thus we should

expect to see an impact on the resulting large-x parton distributions.

The corresponding results for the resummed K-factors eq. (3.3) for representative

neutral-current DY experiments are collected in figure 6. As in the case of DIS, except
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for Z peak measurements, for each DY rapidity Y value there are various data points at

different invariant mass M . We show the Drell-Yan E866 pp cross sections, the CDF Z

rapidity distribution, the CMS double-differential Drell-Yan distribution at 7 TeV and the

LHCb Z → µµ rapidity distribution.

From figure 6 we verify the expectation that the impact of resummation is rather more

important at NLO+NLL than at NNLO+NNLL, and that it grows with the di-lepton

rapidity (since in this case the kinematic threshold is approached). For those collider

measurements differential in rapidity, the effect of (N)NLL resummation can be as large

as 50% (20%) at the highest rapidities. For the fixed-target DY experiments the effect

of resummation is substantial even at NNLL, since in this case many data points have

kinematics close to threshold. For example, for the E866 pp dataset, the effect of the

resummation results is an enhancement of the cross section that can be as large as 35% at

NLL, and 20% at NNLL.

Following this discussion on the settings used to produce the threshold resummed fits,

in the the next section we turn to explore the actual effects that the inclusion of resummed

calculations have on the NNPDF3.0 PDFs.

4 Parton distributions with threshold resummation

In this section we discuss the results of the NNPDF3.0 fits with threshold resummation.

One important difference of the resummed fits as compared to the NNPDF3.0 global fits

is that the dataset is different, because we leave out the inclusive jet and W production

data, as discussed in section 3. Therefore, first we quantify the information loss due to

the reduced dataset by comparing the global NNPDF3.0 fits and the reduced dataset fits

obtained with fixed-order matrix elements (henceforth denoted as the baseline fits).

Having established this, we move to quantify the impact of threshold resummation

on the fit quality and the resulting PDFs, by comparing fits at NLO and NLO+NLL

first, and then at NNLO and NNLO+NNLL. This is done both for DIS-only fits and for

DIS+DY+top fits, and the comparison is performed both at the level of PDFs and of χ2.

Finally, we assess the impact of threshold resummation at the level of partonic luminosities.

The phenomenological implications of the resummed PDFs for LHC applications will

be discussed in the next section.

4.1 Baseline fixed-order fits

First of all, we compare the baseline fixed-order fits with the NNPDF3.0 global sets. As

mentioned in section 3, in the fixed-order baseline fits all settings are identical to those of

NNPDF3.0 with the only difference of the use of a reduced dataset, see table 2. Therefore,

we expect the two fits to be consistent, with the baseline fit affected by larger PDF uncer-

tainties due to the reduced dataset. For simplicity, we restrict these comparisons to NLO,

since the impact of the reduced dataset is roughly independent of the perturbative order.

We have produced two baseline fits: one with the all the data marked in the last

column of table 2, and the other with only DIS-data included. In figure 7 we compare

the NNPDF3.0 NLO DIS-only and DIS+DY+top set with αs(m
2
Z) = 0.118, with the
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Figure 7. Comparison of the fixed-order NNPDF3.0 NLO fits based on different datasets: global,

DIS-only and DIS+DY+top, for αs(m
2
Z) = 0.118, at a typical LHC scale of Q2 = 104 GeV2. Results

are normalised to the central prediction of the NNPDF3.0 NLO global fit. From left to right and

from top to bottom, we show the gluon, the total quark singlet, the total valence PDF and the

total strangeness.

corresponding global set.3 In both cases we use Nrep = 100 replicas, and the comparison

is performed at a typical LHC scale Q = 100 GeV. Results are normalised to the central

prediction of the global fit. From left to right and from top to bottom, we show the gluon,

the total quark singlet, the total valence PDF and the total strangeness.

As we can see, there is a reasonable agreement for most of the PDF flavours and of

momentum fraction x between the three fits, with as expected larger PDF uncertainties

in the DIS-only and DIS+DY+top fits due to the reduced dataset. The DIS-only fit is

relatively close to the global fit for the large-x quarks, since these are well constrained

by the DIS fixed-target data. On the other hand, the DIS-only fit is affected by rather

larger uncertainties as compared to the global fit for the gluon (due to the missing jet

data) and for the total valence (due to the missing Drell-Yan data that constrains flavor

separation). In any case, the DIS-only and the global fit are always consistent at the

one-sigma level.

3In the rest of this section, we concentrate only on the large-x region of the PDFs, since as we will show

the effects of threshold resummation are negligible at medium and small-x.
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Experiment NNPDF3.0 DIS-only

NLO NNLO NLO+NLL NNLO+NNLL

NMC 1.36 1.39 1.36 1.32

SLAC 1.12 1.15 1.02 1.04

BCDMS 1.19 1.20 1.21 1.22

CHORUS 1.10 1.05 1.09 1.07

NuTeV 0.52 0.46 0.55 0.51

HERA-I 1.07 1.13 1.06 1.07

ZEUS HERA-II 1.40 1.42 1.42 1.43

H1 HERA-II 1.67 1.79 1.68 1.74

HERA charm 1.28 1.29 1.29 1.24

Total 1.237 1.257 1.237 1.242

Table 4. The χ2 per data point for all experiments included in the DIS-only threshold resummed

fits, at NLO and NNLO, compared with their resummed counterparts.

Concerning the DIS+DY+top fit, for quark PDFs (singlet, valence and strangeness)

the results of the DIS+DY+top fit are quite close to the global fit. Therefore, we can

conclude that for quark-initiated processes, calculations done with the DIS+DY+top fits

are essentially equivalent to those performed using the global PDFs. The only differences

are as expected related to the gluon PDF, where the missing inclusive jet data cause a

substantial increase in the large-x gluon PDF uncertainties compared to the global fit.

Note however that in the resummed DIS+DY+top fit a handle on the large-x gluon is still

provided by the total top-quark pair production cross section [123, 171].

After having established the impact of the reduced datasets on the baseline fits that

will be used for the resummation, in the following we concentrate in quantifying the impact

of resummation for fits based on a common dataset, first for the DIS-only fits, and then

for the DIS+DY+top fits.

4.2 DIS-only resummed PDFs

Now we present the results of the resummed fits. We begin with the DIS-only fits, and

compare the baseline NLO and NNLO fixed-order with the corresponding NLO+NLL and

NNLO+NNLL threshold resummed fits.

In table 4 we provide the χ2 per data point for all experiments included in the DIS-

only threshold resummed fits, at NLO+NLL and NNLO+NNLL, to be compared with

their unresummed counterparts.4 From table 4 we see that, as expected, the impact of

resummation is moderate and restricted to the fixed-target DIS experiments. In the case of

SLAC, there is a clear improvement in the χ2 due to the inclusion of threshold resummation,

both at NLO and at NNLO. For other experiments the change in χ2 is not significant,

meaning that the small effect of threshold resummation can be absorbed in the fitted PDFs.

4As in NNPDF3.0, the present fits used the t0 definition of the covariance matrix for the χ2 minimisation,

but then use the experimental definition to assess the consistency between theory and data. See [2, 172]

for the explanation of the different definitions of the χ2 estimators.
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Figure 8. Comparison between the NNPDF3.0 DIS-only NLO fit and the corresponding NLO+NLL

fit, for αs(m
2
Z) = 0.118, at a typical LHC scale of Q2 = 104 GeV2. PDFs are normalised to the

central value of the fixed-order fit.

The total χ2 is slightly improved when going from the NNLO to the NNLO+NNLL fit,

while it is essentially unaffected in the NLO+NLL case.

Now we turn to study the impact of the resummation on the PDFs themselves. In

figure 8 (for the NLO) and in figure 9 (for the NNLO) we compare the NNPDF3.0 DIS-only

(N)NLO set with αs(m
2
Z) = 0.118, with the corresponding (N)NLO+(N)NLL threshold

resummed PDFs, respectively.

First of all, we note that as expected the inclusion of threshold resummation affects only

PDFs at large x, for x ≥ 0.1, which is consistent with the modifications that resummation

induces on the DIS structure functions. We also see that the impact on the PDFs is more

important at NLL than at NNLL, again as expected since NLL captures part of the NNLO

corrections to the DIS structure functions. For the quark PDFs, the effect of resummation

is a suppression of the central values for quite large x. For example, for the NLO+NLL

fit, the total quark singlet Σ(x,Q2) is suppressed by ∼ 5% at x ∼ 0.6. One also observes

a small enhancement of the valence PDF for x ∼ 0.2, presumably due to a compensation

for the suppression at very large x through the valence sum rules. Therefore, we expect

resummation to have phenomenological impact for the calculation of quark-initiated heavy

production processes in BSM scenarios, which probe rather large values of x. The gluon
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Figure 9. Same as figure 8 now comparing the NNLO DIS-only fit with the corresponding

NNLO+NNLL fit.

distribution is also suppressed at large x, though PDF uncertainties are too large in a

DIS-only fit to make this suppression significant.

4.3 DIS+DY+top resummed PDFs

Now we turn our discussion to the impact of threshold resummation in the case of the

fits based on the DIS+DY+top dataset. In table 5 we provide the χ2, again using the

experimental definition, for all experiments included in the DIS+DY+top threshold re-

summed fits, at NLO+NLL and NNLO+NNLL, compared with their fixed-order counter-

parts.

As we can see from table 5, in the NLO+NLL fits the fit quality of most of the

experiments is improved as compared to the fixed-order NLO fit. This is especially marked

in the case of SLAC, as in the DIS-only fit, but also for the CHORUS neutrino structure

functions, the CDF Z rapidity distribution, ATLAS high-mass DY, LHCb Z rapidity and

the top quark pair production. The only exception is the fixed target Drell-Yan data,

where resummation makes the χ2 worse. Note however that in the resummed fit the overall

balance between experiments in the global fit is modified compared to the fixed-order fit,

so this does not necessarily imply that resummation degrades the internal fit quality for
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Experiment NNPDF3.0 DIS+DY+top

NLO NNLO NLO+NLL NNLO+NNLL

NMC 1.39 1.34 1.36 1.30

SLAC 1.17 0.91 1.02 0.92

BCDMS 1.20 1.25 1.23 1.28

CHORUS 1.13 1.11 1.10 1.09

NuTeV 0.52 0.52 0.54 0.44

HERA-I 1.05 1.06 1.06 1.06

ZEUS HERA-II 1.42 1.46 1.45 1.48

H1 HERA-II 1.70 1.79 1.70 1.78

HERA charm 1.26 1.28 1.30 1.28

DY E866 1.08 1.39 1.68 1.68

DY E605 0.92 1.14 1.12 1.21

CDF Z rap 1.21 1.38 1.10 1.33

D0 Z rap 0.57 0.62 0.67 0.66

ATLAS Z 2010 0.98 1.21 1.02 1.28

ATLAS high-mass DY 1.85 1.27 1.59 1.21

CMS 2D DY 2011 1.22 1.39 1.22 1.41

LHCb Z rapidity 0.83 1.30 0.51 1.25

ATLAS CMS top prod 1.23 0.55 0.61 0.40

Total 1.233 1.264 1.246 1.269

Table 5. Same as table 4 for the DIS+DY+top fits.

this particular observable.5 At the level of total χ2 we see that fixed-order and resummed

fits lead to essentially the same value, since in the resummed case the improvement in some

experiments is compensated by the deterioration of others.

Turning to the NNLO+NNLL fit results in table 5, we see that now the effect of

resummation is more moderate. Effects are small, and also in this case resummation

deteriorates the fit quality for the fixed-target Drell-Yan data. Interestingly, the χ2 for the

LHCb Z rapidity data, which, being in the forward region, probe rather large values of x,

improves substantially with the inclusion of resummation, even at NNLL. Given the small

differences at the χ2 level, we also expect smaller differences at the PDF level, as in the

case of the DIS-only NNLO+NNLL fit.

The comparison of the PDFs between the NLO and NLO+NLL DIS+DY+top

fits is shown in figure 10, and the corresponding comparison between the NNLO and

NNLO+NNLL fits is found in figure 11. These can be compared with the corresponding

DIS-only fits, see figure 8 and figure 9. In the case of the NLO+NLL fit, the trend is similar

to that of the DIS-only fit: softer quarks at very large x, and a corresponding enhancement

5We have checked that in a fit based only on HERA data and fixed-target Drell-Yan data, in both the

NLO+NLL and NNLO+NNLL fits we get χ2 ∼ 1 for the Drell-Yan data. Therefore, the deterioration of

the χ2 of E866 in the resummed fits can be attributed to tension with other datasets, rather than a failure

of the resummation to correctly describe this dataset.
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Figure 10. Comparison between the NNPDF3.0 NLO DIS+DY+top fit and the corresponding

NLO+NLL fit, for αs(m
2
Z) = 0.118, at a typical LHC scale of Q2 = 104 GeV2.

of the valence distribution at medium x. At small x, the effect of resummation is negligible

as expected. We note that both for the total quark singlet and for the total valence PDF

the effect of the resummation has become more significant than in the DIS-only fit, due

to the reduction of PDF uncertainties. Indeed, for Σ(x,Q2) for example, the shift of the

central value is about ∼ 5% at x ' 0.5, and the uncertainty bands of the two fits, although

still overlapping, are clearly departing from each other.

At the NNLO+NNLL level, figure 11, the impact of the resummation is as expected

even smaller. In particular, the PDF uncertainty bands of the fixed order and resummed

fits are quite similar and they overlap in the entire x range. Large shifts in the central

values only occur in regions where the PDF uncertainties are large. For example, for the

large-x gluon, at x ∼ 0.3 the resummed central value is ∼ 15% smaller than the fixed order

one, however the PDF uncertainty in this region is substantially larger than the central-

value shift. At very large x, a similar trend can be seen for the total valence PDF, which

however exhibits an enhancement at x ∼ 0.3, which is as big as the PDF uncertainty.

4.4 Partonic luminosities

We now study the impact of the inclusion of threshold resummation on PDFs at the level of

partonic luminosities. This comparison is useful because it provides direct information on
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Figure 11. Same as figure 10, now comparing the NNLO DIS+DY+top fit with the corresponding

NNLO+NNLL fit.

how the cross sections for the production of a given final state with invariant mass MX will

be affected by the inclusion of resummation in the PDFs. It should be emphasised however

that in a consistent calculation the impact of the resummation in the PDFs may be compen-

sated by a similar sized effect of the resummation in the partonic matrix elements of the pro-

cess under consideration. The consistent comparison of LHC cross sections with resumma-

tion included both at the PDFs and in the matrix elements is performed in the next section.

We begin by estimating the effect on the PDF luminosities of the reduced dataset used

in our baseline fits, as compared to the NNPDF3.0 global fit. Thus in figure 12 we compare

the NNPDF3.0 NLO partonic luminosities for αs(m
2
Z) = 0.118, in the global fit and in the

DIS+DY+top baseline fit. In the upper plots we show the quark-antiquark and quark-

quark luminosities, and in the lower plots the gluon-gluon and gluon-quark luminosities.

The calculation has been performed for the LHC 13 TeV, as a function of the mass of the

final state MX , and results are normalised to the central value of the global fit.

As we can see in figure 12, there are some important differences between the global and

DIS+DY+top fits. For the qq luminosity, the impact of varying the dataset is small, both

in terms of central values and of PDF uncertainties, except at very large values of MX . For

the qq̄ luminosity, the differences are again only sizeable at large MX , where the central

value of the DIS+DY+top fit is softer than that of the global fit, for instance by 10% at
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Figure 12. Comparison of the NNPDF3.0 NLO partonic luminosities for αs(m
2
Z) = 0.118, in the

global fit and in the DIS+DY+top fit which is used as fixed-order baseline for the resummed fits.

In the upper plots we show the quark-antiquark and quark-quark luminosities, and in the lower

plots the gluon-gluon and gluon quark luminosities. The calculation has been performed for the

LHC 13 TeV, as a function of the mass of the final state MX , and results are normalised to the

central value of the global fit.

MX ' 3 TeV. PDF uncertainties are similar in the two cases, and the two fits agree within

one-sigma. The missing jet data have a stronger impact on the gg and qg luminosities. For

instance for the gg luminosity above 0.5 TeV, PDF uncertainties increase by a factor two or

more. Therefore, in order to consistently assess the impact of the resummation, one should

compare the resummed and fixed-order DIS+DY+top fits, rather than the NNPDF3.0

global fit, with the resummed fits presented here.

The comparisons between the DIS+DY+top fixed-order and resummed fits are dis-

played in figures 13 (at NLL) and 14 (at NNLL). We see that in all cases the fixed-order

and resummed fits agree at the level of one sigma, and that the effect of resummation is as

expected smaller at NNLL than at NLL. In the comparison between NLO and NLO+NLL,

the qq and qq̄ luminosities are enhanced by about one sigma for MX . 1 TeV, while they

are suppressed at larger values of MX . This behaviour follows from the corresponding PDF

comparisons, where quarks are slightly enhanced at x ' 0.1− 0.4 but suppressed for larger

values of x. This suppression can be sizeable: for MX ' 3 TeV the qq̄ luminosity in the

NLO+NLL fit is reduced by ∼ 15%. In the qq channel, this suppression instead is small
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Figure 13. Same as figure 12, now comparing the results of DIS+DY+top fits using either NLO

or NLO+NLL calculations.

unless very large values of MX are probed. The gg and gq luminosities are also suppressed

at large invariant masses, for instance for gg the suppression is already ∼ 10% at 1 TeV,

though still consistent with the fixed-order fit within the large PDF uncertainties.

From the corresponding comparison between the NNLO and NNLO+NNLL fits, shown

in figure 14, we see that the effects of resummation are very small everywhere except for

the largest values of MX . The central values of the qq̄, gg and qg luminosities exhibit some

suppression at very large MX , but this suppression is not relevant when compared to the

PDF uncertainties. From the comparison in figure 14 we thus conclude that the impact of

threshold resummation in a global PDF analysis is only relevant at NLO, while at NNLO it

appears to be negligible, at least with the current PDF uncertainties. If future data leads

to substantial reduction of PDF uncertainties at large-x, threshold resummation could be

relevant even for NNLO fits.

5 Resummed PDFs: implications for LHC phenomenology

In this section we discuss the implications of the NLO+NLL and NNLO+NNLL resummed

PDF sets for LHC phenomenology. Our aim is to quantify, for a variety of processes, the

difference between using consistently NLO+NLL and NNLO+NNLL calculations at the
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Figure 14. Same as figure 13, this time comparing the NNLO and NNLO+NNLL fits.

level of both PDFs and matrix elements, and the usual (but inconsistent) approach of

using resummed partonic cross sections with fixed-order PDFs.

For illustration, we consider three representative LHC processes for which resummed

calculations are publicly available, either at the level of total cross sections or of differential

invariant-mass distributions. We start by considering Higgs production in gluon fusion,

both for mH = 125 GeV and for a heavy BSM Higgs-like neutral scalar. Note that the

current recommendation of the Higgs Cross section Working group for inclusive Higgs

production in gluon fusion is based on the NNLO+NNLL calculation [35, 173]. We then

consider threshold resummation for the invariant mass distributions of dileptons in the high-

mass Drell-Yan process, which is important in many New Physics searches, for example

for Z ′ searches. Finally we study the invariant mass distribution of supersymmetric lepton

(slepton) pair production, a typical final state analysed in electroweak SUSY searches.

While Higgs production is driven by the gg luminosity, both high-mass Drell-Yan and

slepton pair production are driven by the quark-antiquark luminosity, which is reasonably

well constrained even with the reduced dataset used in the present fits.

A variety of other interesting processes are available in which resummed PDFs should

be relevant, including top quark differential distributions [62, 63, 174], squark and gluino

pair production [65, 67] or stop quark pair production [69]. However for most of these

processes the corresponding resummation codes are not publicly available.
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Figure 15. Left: the total cross section for Higgs production in gluon fusion at the LHC 13 TeV

for different values of the Higgs mass, comparing the predictions of NLO fixed-order with that

of NLO+NLL resummed calculations (using either fixed order or resummed PDFs). Results are

shown normalised to the central prediction of the fixed order NLO calculation. Right: the same

comparison now performed at NNLO. The calculation has been performed using the ggHiggs code.

5.1 SM and BSM Higgs production in gluon fusion

The accurate calculation of Higgs production via gluon fusion is an essential component

of the LHC program, since it is required in order to extract Higgs couplings from the

ATLAS and CMS measurements. As a result of the recent calculation of the inclusive cross

section at N3LO [24], PDF uncertainties are now one of the dominant theory uncertainties.

In addition to the characterisation of the SM Higgs boson, many New Physics scenarios

predict heavy Higgs-like bosons [175–177], and thus it is also important to provide accurate

predictions for heavy Higgs production for these BSM searches.

Using the ggHiggs code [121], in figure 15 we show the predictions for the total cross

section for Higgs production in gluon fusion at the LHC 13 TeV, comparing the (N)NLO

fixed-order results with those of the (N)NLO+(N)NLL resummed calculations, using either

fixed-order or resummed PDFs. The calculation has been performed in the mtop →∞ limit

and neglecting finite-width effects, which is sufficient for current purposes. All results are

normalised to the central value of the fixed-order (N)NLO calculation, and we provide three

different values of the Higgs mass: mH = 125 GeV, 600 GeV and 2 TeV.

The comparisons in figure 15 are interesting because they show that for the production

of heavy final states that probe large values of x in the gluon PDF, including resummation

in the PDFs can cancel out the effect of the resummation in the matrix element. In the

case of the NLO calculation, the SM Higgs cross section is not affected by resummation of

the PDFs, but already for mH = 600 GeV, the inclusion of resummed PDFs cancels almost

half of the enhancement in the hadronic cross section that arises from resummation of the

matrix element. For an even heavier Higgs, with mH = 2 TeV, the consistent NLO+NLL

calculation is essentially identical to the NLO result. The trend is similar at NNLO, though

of course in this case the effect of perturbative corrections beyond the fixed-order NNLO

– 27 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
1

�����

����

�����

��

�����

����

�����

��� ���� ����� ����� ����� �������
���

���
���

��
��
���
��

���
���

���
��

��
��
��

��
��

��

���������

��������������������������������������������������

��������������������
������������������������
����������������������

�����

����

�����

��

�����

����

�����

��� ���� ����� ����� ����� �������
���

���
���

��
��
���
��

��
��
���

���
��

��
��
��

��
��

��

���������

��������������������������������������������������

���������������������
��������������������������
������������������������

Figure 16. Left: dilepton invariant mass distribution for high-mass neutral current Drell-Yan

production at the LHC 13 TeV, comparing the predictions of fixed-order with that of resummed

calculations. Results are shown normalised to the central prediction of the fixed-order NLO calcu-

lation. Right: the same comparison at NNLO.

calculation is smaller. Note also that PDF uncertainties are substantial at large Higgs

masses, partly because of the lack of jet data in the baseline and resummed fits.

Our results demonstrate that using consistently resummed PDFs for SM Higgs pro-

duction at the LHC has no effect, and therefore puts on a more solid ground the current

HXSWG recommendation, which is based on fixed-order PDFs. This observation is in

agreement with the findings of ref. [178] regarding the (lack of) need of N3LO PDFs for

the SM Higgs production cross section at N3LO.

5.2 High-Mass Drell-Yan dilepton mass distributions

At the LHC, high-mass Drell-Yan is one of the most important processes when looking for

new physics, in particular for new electroweak sectors. For instance, ATLAS and CMS have

explored a number of BSM signatures in the high-mass tail of neutral-current Drell-Yan

production [179–181], such as Z ′ bosons which appear in several new physics scenarios. It

is therefore interesting to assess the effect of including consistently threshold resummation

both in the PDFs and in matrix elements, compared to including it only in the matrix

element while using fixed-order PDFs.

In figure 16 we show the dilepton invariant mass distribution for high-mass neutral cur-

rent Drell-Yan production at the LHC 13 TeV, comparing the predictions of fixed-order and

resummed calculations. The fixed-order NLO and NNLO predictions have been computed

with the code Vrap supplemented with threshold resummation as provided by TROLL. In

figure 16 we show the predictions for the dilepton invariant mass distribution, comparing

the (N)NLO fixed-order results with those of the (N)NLO+(N)NLL resummed calcula-

tions, using either fixed-order or resummed PDFs. The latter comparison quantifies the

mismatch when resummed calculations are used with fixed-order PDFs.

The results are qualitatively consistent with those of the Higgs cross sections in fig-

ure 15. First, we see that even at NLO and at large invariant masses the effect of threshold

resummation is moderate: the NLL correction amounts (for fixed-order NLO PDF) to
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about 4% at Mll = 2.5 TeV, which is within the current PDF uncertainty. Including the

effect of the resummation in the PDFs consistently cancels this effect, for example in the

range for Mll ∈ [1.5, 2.5] TeV the central value of the NLO+NLL calculation agrees with

the fixed-order NLO result by less than one percent. At NNLO the impact of resummation

is completely negligible, both at the level of the PDFs and of the matrix elements.

5.3 Supersymmetric particle production

The theoretical predictions for high-mass supersymmetric pair production at hadron col-

liders are currently made at NLO, supplemented with either NLL or NNLL resumma-

tion of threshold logarithms. In particular, the NLO+NLL resummed calculations of

refs. [182, 183] have been used to produce the benchmark production cross sections at√
s = 7 TeV and 13 TeV that are used as by ATLAS and CMS in the theoretical interpre-

tation of their searches for supersymmetry [184–187].

An important limitation of these predictions is the mismatch between the fixed-order

PDFs and the resummed partonic cross sections, which should be more important at high-

masses, precisely the crucial region for New Physics searches. Thanks to the availability,

for the first time, of general-purpose resummed PDFs, it is now possible to consistently

combine resummed PDFs and matrix elements into a single calculation. It is beyond the

scope of this work to present a comprehensive study of the impact of NLO+NLL PDFs

for generic supersymmetric processes. However, for illustrative purposes, in this section we

will use the public code Resummino [70–72] to compare the effect of resummed PDFs in the

context of NLO+NLL predictions for electroweak supersymmetric particle pair production

at the LHC, in particular for slepton pair production.

Resummino computes resummed and matched predictions for supersymmetric particle

production at hadron colliders up to the NLO+NLL level. Currently the processes imple-

mented include gaugino-pair production and slepton-pair production. These final states are

characteristic signatures in electroweak SUSY searches at the LHC [188–191]. Resummino

is able to compute total cross sections as well as invariant-mass and transverse-momentum

distributions. In this study we focus on the invariant-mass distribution for slepton pair

production. Note that the production of sleptons (like many other electroweak SUSY pro-

cesses) is mostly sensitive to the qq̄ luminosity; other processes, such as squark and gluino

pair production, would be sensitive to other PDF combinations such as qg and gg.

In figure 17 we show the results of the NLO+NLL calculation of the invariant mass

distribution for slepton pair production at the LHC 13 TeV obtained with Resummino, using

both the NLO and NLO+NLL NNPDF3.0 DIS+DY+top PDFs as input. Results are shown

as ratios with respect to the NLO calculation, using consistently the NLO baseline PDFs.

The settings of the SUSY calculation are the default ones in Resummino. We use a slepton

mass of ml̃ = 564 GeV.

The comparison displayed in figure 17 is interesting for a variety of reasons. First

of all, we see that, using the NLO PDFs as input, the NLO+NLL calculation (i.e. with

resummation included only in the matrix element) enhances the cross section by several

percent, from 2% at Ml̃l̃ ∼ 1.2 TeV up to 5% at Ml̃l̃ ∼ 3 TeV. On the other hand, in the

consistent calculation in which resummation is included both at the level of PDFs and of
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Figure 17. The NLO+NLL calculation of the invariant mass distribution for slepton pair pro-

duction at the LHC 13 TeV using the Resummino program, using both the NLO and NLO+NLL

NNPDF3.0 DIS+DY+top PDFs as input. Results are shown as ratios with respect to the NLO

calculation, using consistently the NLO baseline PDFs. The settings of the SUSY calculation are

the default ones in Resummino. We use a slepton mass of ml̃ = 564 GeV.

matrix elements, this increase is only seen around Ml̃l̃ ∼ 1.2 TeV. For higher invariant

masses up to Ml̃l̃ ∼ 2.5 TeV or so the effect of resummation in the PDFs cancels the

one originating from the matrix elements, and the consistent NLO+NLL calculation is

essentially the same as the NLO one. For even higher masses, the NLO+NLL calculation

is suppressed compared to the NLO calculation by up to 5% at Ml̃l̃ ∼ 3 TeV, though in

this region PDF uncertainties are very large.

The results of figure 17 are consistent with the behavior of the qq̄ luminosity shown

in figure 13. In particular, for an invariant mass of M ' 1 TeV, the NLO and NLO+NLL

PDF luminosities are essentially the same, while for M ' 3 TeV the NLO+NLL luminosity

is suppressed by a factor of approximately 10%, a similar amount as that inferred from the

Resummino plot of figure 17. This illustrates that, for those processes which are dominated

by a single partonic luminosity, one can approximately correct a NLO+NLL matrix element

calculation using the ratio of PDF luminosities. This is also consistent with the high-mass

Drell-Yan results of figure 16, which are also driven by the qq̄ luminosity.

In summary, even though we have been able to explore only a limited number of

resummed calculations for LHC processes, a consistent trend appears. When the produced

final state has an invariant mass far from threshold, the use of resummed PDFs has a

rather small effect. However, for heavy final states, the main effect of the resummation of

the PDFs is to compensate the effect of the resummation in the matrix element, so that the

consistent (N)NLO+(N)NLL calculation is rather closer to the fixed-order (N)NLO result.

This shows that using resummation only in the matrix element but not in the PDF can be
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misleading, since it may overestimate cross sections and invariant mass distributions. This

is particularly the case for NLO+NLL calculations, because at NNLO+NNLL the effect of

the resummation is much smaller, since much of it has already been accounted for in the

NNLO fixed-order corrections.

In conclusion, one should in general always use resummed PDFs with threshold re-

summed matrix elements. This said, even if the central value of the consistent (N)NLO+

(N)NLL calculation is reasonably close to the original fixed-order (N)NLO result, it is in

general still better to use the resummed calculation, since these benefit for instance from

reduced scale dependence, and thus smaller theoretical uncertainties.

6 Summary

In this paper we have presented for the first time global fits of parton distributions extracted

at NLO+NLL and NNLO+NNLL accuracy, where the fixed-order partonic cross sections

have been systematically improved using soft-gluon threshold resummation. We find that

the main effect of threshold resummation is to suppress the PDFs in the large-x region, as

expected given that the fit compensates from the resummation-induced increment in the

partonic cross sections used in the PDF fit. This suppression is important for all PDF

flavors for x & 0.1, while at intermediate values of x, 0.01 . x . 0.1, the quark PDFs are

instead somewhat enhanced due to the sum rules. For smaller values of x, x . 0.01, the

effect of resummation becomes completely negligible.

At the level of PDF luminosities at the LHC 13 TeV, we find that at the NLO+NLL

level the suppression induced by resummation in the PDFs starts to become important for

MX & 400 GeV in the gg channel, MX & 1 TeV in the qq̄ and qg channels, and MX &
5 TeV for the qq channel. The trend is similar at NNLO, but in this case differences

between fixed-order and resummed PDFs are much smaller. We also find that fixed-order

and resummed PDFs differ by at most one sigma throughout all the range of MX .

We have investigated the corresponding implications at the level of resummed LHC

cross sections for three different processes: SM and BSM Higgs production in gluon fusion,

high-mass Drell-Yan pair production and slepton pair production. We find that the effect

of consistently including resummation in the PDFs can compensate the enhancement from

resummation of the partonic cross sections, if MX is large enough. For the production of

final states with lower MX , the effect of PDF resummation is negligible. This trend is likely

to be general: when fitting to data, PDFs adjust to absorb the effect of the resummation in

the partonic cross sections, and this compensation inevitably persists when extrapolating

to predictions for new processes.

Our results illustrate the importance of using the same perturbative order in all the

components that enter hadronic cross sections: the use of fixed-order PDFs with resummed

matrix elements can lead to misleading results, especially at high invariant masses, a region

crucial for new physics searches. The partial cancellation between resummation in PDFs

and in matrix elements indicates that consistent resummed calculations can be closer to

fixed-order results. This said, even in the case of a complete cancellation, use of resum-

mation would still be advantageous, because of the reduced scale uncertainty. For these
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reasons, we expect that the resummed NNPDF3.0 sets will provide a crucial ingredient,

missing so far, to improve the precision of all-order resummed calculations for the LHC,

and in particular those used in searches for new physics.

The main limitation of the present work is that, since resummed calculations are not

available for all processes included in the NNPDF3.0 global fit, we have restricted the

dataset in the resummed fits (and the corresponding baseline) to those processes that

can be consistently resummed. In particular, we have had to exclude the inclusive jet

production data and W lepton rapidity distributions. Hence, our resummed sets generate

larger PDF uncertainties than the NNPDF3.0 global PDFs, especially for gluon-initiated

processes. It is thus important in the future to provide resummed calculations for these

missing processes, in order to produce a truly global resummed PDF analysis.

With the recent start-up of the LHC Run II, the need for precision calculations is even

more pressing than in Run I, since precision could be the key to uncovering new physics.

The results of this paper offer for the first time fully consistent threshold resummed calcula-

tions, which constitute state-of-the-art accuracy for a number of important LHC processes,

from Higgs to supersymmetric particle production. Therefore, the resummed NNPDF3.0

sets presented here achieve a new milestone in the program of precision phenomenology at

the LHC.

Delivery. The resummed calculations for DIS structure function and Drell-Yan distribu-

tions used in this work have been obtained with the new code TROLL, version v3.0. This

code is publicly available from

http://www.ge.infn.it/∼bonvini/troll/

and can be used by any interested parties to compute their own predictions for resummed

observables.

Our resummed sets are available in the LHAPDF6 format from the authors upon request.

The available sets are:

NNPDF30 nlo disdytop

NNPDF30 nnlo disdytop

NNPDF30 nll disdytop

NNPDF30 nnll disdytop

which stand for the NLO and NNLO baseline fits, and their NLO+NLL and NNLO+NNLL

resummed counterparts. All these PDF sets are provided for αs(m
2
Z) = 0.118 with a

maximum of nf = 5 active flavors.
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