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Abstract It has recently been suggested that Einstein–
Rosen (ER) bridges can be interpreted as maximally entan-
gled states of two black holes that form a complex Einstein–
Podolsky–Rosen (EPR) pair. This relationship has been
dubbed as the ER = EPR correlation. In this work, we con-
sider the latter conjecture in the context of quadratic Palatini
theory. An important result, which stems from the under-
lying assumptions as regards the geometry on which the
theory is constructed, is the fact that all the charged solu-
tions of the quadratic Palatini theory possess a wormhole
structure. Our results show that spacetime may have a foam-
like microstructure with wormholes generated by fluctua-
tions of the quantum vacuum. This involves the spontaneous
creation/annihilation of entangled particle–antiparticle pairs,
existing in a maximally entangled state connected by a non-
traversable wormhole. Since the particles are produced from
the vacuum and therefore exist in a singlet state, they are
necessarily entangled with one another. This gives further
support to the ER = EPR claim.

1 Introduction

In the context of the firewall debate [1,2] (see [3] for
earlier work), it has recently been argued that Einstein–
Podolsky–Rosen (EPR) correlations [4] and Einstein–Rosen
(ER) bridges [5] are actually related [6]. For instance, the
ER bridge between two black holes is created by EPR-
like correlations between the microstates of the two black
holes [6]. This conjecture has been schematically dubbed the
E R = EPR correlation. More specifically, the ER bridge is a
special kind of EPR correlation, where the entanglement has
a geometric manifestation. Despite the fact that the two black
holes exist in separate and non-interacting spacetimes, their
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geometry is connected by an ER bridge, and the entanglement
is represented by identifying the bifurcate horizons [6]. Note
that the ER bridge construction is due to the fact that specific
coordinate systems naturally cover the two asymptotically
flat regions of maximally extended spacetimes [5], and the
key ingredient of the bridge construction is the existence of
an event horizon. Thus, although the geometry is connected
through the bridge/tunnel, the two exterior geometries are
not in causal contact and information cannot be transmitted
across the bridge [7]. This is an essential point to be consis-
tent with the fact that entanglement does not imply non-local
signal propagation in order to conserve causality.

Recently, the ER = EPR claim received further support
through specific models. Indeed, it was shown that the holo-
graphic dual of two colored quasiparticles can be constructed
in maximally supersymmetric Yang–Mills theory entangled
in a color singlet EPR pair [8,9]. In the holographic dual the
entanglement is encoded in a geometry of a non-traversable
wormhole on the worldsheet of the flux tube connecting the
pair. In this context, it was also pointed out that the proposed
bulk dual of an entangled quark–anti-quark pair described
above [8] corresponds to the Lorentzian continuation of the
tunneling instanton describing a Schwinger pair creation in
the dual field theory [10]. This observation supports and fur-
ther explains the claim in [8] that the bulk dual of an EPR
pair is a string with a wormhole on its world sheet. It was
also suggested that this constitutes an AdS/CFT realization
of the creation of a Wheeler wormhole [11].

Wheeler used the source-free Maxwell equations, coupled
to Einstein gravity, with the seasoning of nontrivial topology,
to build models for classical electrical charges and all other
particle-like entities in classical physics [11]. This analy-
sis culminated in the “geon” concept, coined by Wheeler
to denote a “gravitational–electromagnetic entity”. Building
on this pioneering work, Misner and Wheeler [12], in 1957,
presented a tour de force wherein Riemannian geometry of
manifolds of nontrivial topology was investigated with an
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ambitious view to explaining all of physics. Indeed, it has
also been argued that if topology change is allowed in quan-
tum gravity, it is possible to create a Wheeler wormhole [13].
In fact, Maldacena and Susskind take the radical position in
that the ER = EPR correlations are inseparably linked in a
theory of quantum gravity, even for systems of entangled par-
ticles. The intimate relationship between spacetime geometry
and the underlying degrees of freedom of entanglement has
also been explored in the literature [14–16].

In this work, we consider a concrete ER = EPR context,
namely, in the geon solutions arising in quadratic Palatini
gravity. In fact, the underlying assumptions as regards the
geometry on which the theory is constructed implies that all
the charged solutions of the quadratic Palatini theory possess
a wormhole structure. Our results support the view that space-
time could have a foam-like microstructure with wormholes
generated by fluctuations of the quantum vacuum involving
the spontaneous creation/annihilation of entangled particle–
antiparticle pairs. This gives further support to the ER = EPR
conjecture.

2 Palatini Ricci-squared theory

Consider a gravity theory coupled to matter with the action

S[g, �,ψm] =
∫

d4x
√−g [LG + Lm(g, ψm)] , (1)

where LG = f (R, Q)/(2κ2) represents the gravitational
Lagrangian, κ2 being a constant with suitable dimensions
[in General Relativity (GR), κ2 ≡ 8πG], and with the defi-
nitions R = gμνRμν, Q = gμαgνβ RμνRαβ , Rμν = Rρμρν ,
where the Riemann tensor is constructed with the connection
� ≡ �λμν , i.e.,

Rαβμν = ∂μ�
α
νβ − ∂ν�

α
μβ + �αμλ�

λ
νβ − �ανλ�

λ
μβ . (2)

Lm(g, ψm) represents the matter Lagrangian density, which
is minimally coupled to the spacetime metric gμν and ψm

collectively denotes the matter fields, to be specified below.
Now, the Palatini approach assumes that the connection

�λμν , which defines the affine structure, is a priori indepen-
dent of the metric, so that the two sets of field equations are
obtained from the variation of the action (1) with respect to
the metric and the connection as

fR Rμν − f

2
gμν + 2 fQ RμαRαν = κ2Tμν (3)

∇�
β

[√−g( fRgμν + 2 fQ Rμν)
] = 0, (4)

respectively (vanishing torsion and R[μν] = 0 have been
assumed; see [17]), where Tμν is the energy–momentum ten-
sor of the matter, and the notation fX ≡ d f/dX has been

used. By means of algebraic manipulations [18–22], Eq. (4)
can be written as ∇�

β [√−hhμν] = 0, which implies that
�αβγ is the Levi-Civita connection of an auxiliary metric hμν
defined as

hμν = gμααν√
det ̂

, hμν =
(√

det ̂
)
−1

μ
α

gαν. (5)

The matrix ̂ is defined byαν ≡ ( fRδ
ν
α+2 fQ Pαν), where

Pμν ≡ Rμαgαν . The field equations imply that Pμν, R, Q,
and ̂ are algebraic functions of the matter fields. Using
Eqs. (5), we can write Eq. (3) as [18–23]

Rμ
ν(h) = κ2√

det ̂
(LGδ

ν
μ + Tμ

ν). (6)

Given that LG and ̂ are functions of Tμν , we see that hμν
satisfies a set of GR-like second-order field equations and,
since hμν and gμν are algebraically related, it follows that gμν
also verifies second-order equations. From Eqs. (5) and (6)
it is easily seen that the vacuum field equations (Tμν = 0)
of the Palatini theory (1) recover the vacuum general rel-
ativistic equations [23], with possibly a cosmological con-
stant (depending on the specific form of the gravitational
Lagrangian LG ), which is a general property of Palatini grav-
ities [17,24,25]. Thus, no new propagating degrees of free-
dom are present, and these theories are free of the ghost-like
instabilities [26–28] which appear in the metric formulation
of theories with non-linear powers of the Ricci tensor.

In the following, we consider the specific case of a dynami-
cal spherically symmetric spacetime perturbed by an ingoing
null flux of energy and electric charge. The pressureless flux
of ingoing charged matter has a stress–energy tensor given
by T flux

μν = ρinkμkν , where ρin is the energy density of the
ingoing flux, and kμ is a null vector kμkμ = 0. Consider now
a line element of the form

ds2 = −A(x, v)e2ψ(x,v)dv2 +2eψ(x,v)dvdx +r2(v, x)d�2,

(7)

in which the integration of the Maxwell equations, ∇μFμν =
4π J ν , where J ν ≡ �(v)kν is the current of the ingoing flux,
lead to r2eψ(x,v)F xv = q(v), where q(v) is an integration
function and �(v) ≡ qv/4πr2.

As a working hypothesis, we choose a specific quadratic
extension of GR, given by

f (R, Q) = R + l2
P (a R2 + Q), (8)

where l2
P ≡ h̄G/c3 is Planck’s length squared and a a free

parameter. The motivation of this model stems from the fact
that quadratic curvature corrections arise in the quantization
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of fields in curved spacetime [29,30], in approaches to quan-
tum gravity based both on string theory [31,32] and on loop
quantum gravity [33,34], and when GR is regarded as an
effective theory of quantum gravity [35].

Taking into account the matter sources and the grav-
ity Lagrangian, one finds R = 0 and Q = κ2q4/4πr8.
After some lengthy, but straightforward calculations, the field
equations (6) are finally written as

Rμ
ν(h) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− κ2q2(v)

8πr4σ+
e−ψκ2ρin
σ+σ− 0 0

0 − κ2q2(v)

8πr4σ+ 0 0

0 0 κ2q2(v)

8πr4σ− 0

0 0 0 κ2q2(v)

8πr4σ−

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

where σ± ≡ 1 ± κ2l2
Pq2(v)/(4πr4).

Now, the solution to the field equations (9), in terms of the
physical metric gμν , is given by the following line element
(for more details of these calculations, we refer the reader to
[36]):

ds2 = −
⎡
⎣ 1

σ+

(
1 − 1 + δ1(v)G(z)

δ2(v)zσ
1/2
−

)
− 2l2

Pκ
2ρin

σ−(1 − 2r4
c

r4 )

⎤
⎦ dv2

+ 2

σ+
dvdx + r2(x, v)d�2, (10)

where

r2(x, v) = 1

2

[
x2 +

√
x4 + 4r4

c (v)

]
, (11)

with rc(v) ≡ √
rq(v)lP and r2

q (v) ≡ κ2q2(v)/4π . The fac-

tors δ1(v) = 1
2rS(v)

√
r3

q (v)/ lP and δ2(v) ≡ rc(v)/rS(v) have

been defined for simplicity, with z(x, v) ≡ r(x, v)/rc(v),

rS(v) ≡ 2M(v) (where M(v) is a mass function), the func-
tion G(z) satisfies Gz = (z4 +1)/[z4

√
z4 − 1], and we have

used the relation dr/dx = σ
1/2
− /σ+ (at constant v), which is

deduced from Eq. (5).
Consider now a compact charged perturbation propagat-

ing within the interval [vi , v f ] in an initial flat Minkowski
space. From Eq. (11), in the interval v < vi we have
r2(x, v) = x2, which extends from zero to infinity. Enter-
ing the v ≥ vi region, this radial function, which mea-
sures the area of the 2-spheres of constant x and v, never
becomes smaller than r2

c (v), with the minimum located at
x = 0. If we now consider the region v > v f , in which
ρin is again zero, the result is a static geometry. One can
verify [20–22] that in this static geometry curvature scalars
generically diverge at x = 0 except if the charge-to-mass
ratio δ f

1 ≡ δ1(v ≥ v f ) takes the value δ f
1 = δ∗1 � 0.572.

This δ∗1 is a constant that appears in the series expansion of
G(z) = −1/δ∗1 + 2

√
z − 1 + · · · as z → 1. The smooth-

ness of the geometry when δ f
1 = δ∗1 , together with the fact

that r(x) reaches a minimum at x = 0, naturally justifies the
extension of the domain of x to the negative real axis, thus
showing that the area function r2(x) bounces off to infin-
ity as x → −∞. This suggests the existence of a worm-
hole structure supported by the electric field with its throat
located at x = 0. The minimum of r2(x, v) together with
the fact that the electric flux per surface unit at x = 0, given
by �/4πr2

c (v) = q(v)/r2
c (v) = √

c7/2h̄G2, is a constant
independent of q(v) and M(v) confirms that the wormhole
(topological) structure exists even when δ f

1 
= δ∗1 , i.e., we
always have two sides (x ∈] − ∞,+∞[) regardless of the
possible existence of (local) curvature divergences at x = 0.

For |x | � rc(v), the line element (10) quickly recovers
the behavior found in GR in both the dynamic and the static
case. In fact, it is a simple matter to show that as lP → 0
in Eqs. (8) and (9) we recover the GR limit, and the the-
ory yields the well-known Bonnor–Vaidya solution of GR
[37]. Event horizons are thus expected in general, and their
location is almost coincident with the GR prediction (within
O(r2

q l2
P/r4) corrections) for not too small black holes.

To better understand the geometry around the wormhole
in the final static configurations, consider an expansion of the
metric component gvv in Eq. (10) around r/rc ≡ z ≈ 1 [23]

gvv = (1 − δ1/δ
∗
1)

4δ2
√

z − 1
− 1

2

(
1 − δ1

δ2

)
+ O(

√
z − 1). (12)

Confronting this expansion with a numerical analysis shows
that when δ1 = δ∗1 the sign of the term (1 − δ∗1/δ2) in Eq.
(12) determines whether an event horizon exists or not [20–
22]. Since δ∗1/δ2 = rq/2lP , it follows that the event horizon
is absent if rq < 2lP . This inequality can be written as a
constraint on the charge of the system. In fact, expressing the
charge as q = Nqe, where e is the electron charge and Nq the
number of charges, one finds that rq = 2lP Nq/N c

q , where
N c

q ≡ √
2/αem ≈ 16.55, which leads to δ∗1/δ2 ≡ Nq/N c

q .
Therefore, when δ1 = δ∗1 , an event horizon exists if Nq > N c

q
(and its location agrees well with GR for Nq � 2N c

q ). It can
also be shown [20–22] that for δ1 < δ∗1 there is always an
event horizon (Schwarzschild-like case), while for δ1 > δ∗1
we may have one, two, or no horizons (Reissner–Nordstrom-
like case).

For static charged configurations, therefore, non-
traversable wormhole solutions exist. These solutions consist
of an electric flux going through one of the sides of the worm-
hole and coming out through the other side, thus generating a
spherically symmetric electric field [23] associated to a nega-
tive charge on one side and a positive charge on the other. We
emphasize that an electric field of this kind does not require
the existence of sources for its generation, as first shown by
Wheeler and Misner [12]. For all practical purposes, there
is no difference between this kind of charge, arising from a
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pure electric field trapped in the nontrivial topology (going
through a wormhole), and a standard point-like charge. The
mass of these solutions is also naturally associated with the
energy stored in the electric field, which is regularized to a
finite value due to the bound r ≥ rc.

The results presented above support the view that space-
time could have a foam-like microstructure with wormholes
generated by fluctuations of the quantum vacuum involving
the spontaneous creation/annihilation of entangled particle-
pairs (the antiparticle-particle pair in a maximally entangled
singlet state is connected by a wormhole). This gives further
support to the ER = EPR conjecture.

3 Geometry of entanglement

Maldacena and Susskind [6] argue that the geometry of the
ER bridge is the geometric manifestation of the entangle-
ment between the two black holes. They further consider
several hypothetical scenarios in that an entangled black hole
pair may arise through EPR pair productions. A more subtle
scenario involves the formation of one-sided black hole by
gravitational collapse. Assume that an outside observer, over
a long period of time, captures the Hawking radiation emitted
by the black hole, and then collapses the respective radiation
into their own black hole. This involves the entanglement
between the original Hawking radiation and the one-sided
black hole. However, it is argued that, in general, entangle-
ment should be associated with wormhole formation, in that
Hawking radiation should be connected to the black hole
interior through micro-wormholes, which encode the entan-
glement. In fact, the collapse of the Hawking radiation into
a second black hole entails that the micro-wormholes com-
bine to form a macroscopic ER bridge between the two black
holes [6].

In this work, we have provided an explicit realization of
this microscopic idea but with the geon solutions arising
in the quadratic Palatini theory outlined above. The solu-
tions found arise in charged pairs of +Nq and −Nq , and
are space-like separated when the wormhole lies behind
an event horizon, which are the non-traversable Wheeler
wormholes that form the geometric entanglement between
the two black holes. These can be created through charged
perturbations of ingoing fluxes of energy, described above,
or by intense magnetic fields [13,38]. However, the impor-
tant point to bear in mind is that they are explicitly con-
nected by a non-traversable Planckian wormhole of area
AWH = 4πr2

c = (8πl2
P )Nq/N c

q .
Consider a one-sided black hole, formed by gravitational

collapse and a set of entangled pairs {+Nqi ,−Nqi }. Assume
now that the black hole captures all the positive charges.
These charges add up to form an object of charge Qtot =
i Nqi , which contains a wormhole of area Atot ∝ NQtot .

This larger wormhole is connected to the {−Nqi } partners
through their respective microscopic tunnels. Note that the
area of each of these microscopic tunnels is Ai ∝ Nqi and
that the total sum of those areas coincides with the area of the
larger tunnel Atot. This property is nontrivial and is a result of
the linear growth of the area of the wormhole with the charge.
As a result of this process, a number of bridges exist between
the black hole and the external partners of the entangled pairs.
This means that the black hole is now entangled with external
particles but is not maximally entangled. The latter maximal
entanglement only occurs between the two members of the
entangled pairs.

Relative to the issue of entanglement transfer, consider
now two pairs of entangled charged particles, {Nq1 ,−Nq1}
and {Nq2 ,−Nq2}, where each pair is connected by a micro-
scopic wormhole. There is no a priori entanglement between
the pairs 1 and 2. Assume now that Nq,1 and −Nq,2 are
absorbed by an isolated (one-sided) black hole and a station-
ary state is achieved. In this new state, the black hole has an
internal wormhole of area A ∝ |Nq1 − Nq2 | and, therefore, is
entangled with the external partners −Nq1 and +Nq2 . Note
that in the process of formation of the new state, the electric
flux of Nq1 entered through −Nq2 and reached Nq2 , which at
the same time reaches −Nq1 to close the circuit. This means
that the capture of Nq1 and −Nq2 has transferred a certain
amount of entanglement between the external members. The
black hole is thus entangled with −Nq1 and +Nq2 and those
elements between them. This process of entanglement trans-
fer is naturally visualized in terms of propagation of flow
through microscopic wormholes. Note that by combining dif-
ferent charges we can transfer and/or destroy entanglement
by local operations but cannot create it.

4 Discussion

The fact that all the charged solutions of the quadratic Palatini
theory possess a wormhole structure is an important result
which stems from the underlying assumptions as regards the
geometry on which the theory is constructed. Our approach
allows independent variations of the metric and affine degrees
of freedom and, as a result, the field equations determine
the form of the connection, i.e., we do not set it a pri-
ori to be the Levi-Civita connection of the metric. Allow-
ing the connection to account for the non-metric properties
of the geometry, we find that the theory replaces the usual
point-like curvature singularities found in GR by wormholes,
which can be formed dynamically. If cubic or quartic cur-
vature corrections are considered in the action, like in the
Born–Infeld gravity theory proposed by Deser and Gibbons
[27,28], these wormhole solutions persist unaltered if one
follows a Palatini approach [26], which gives robustness to
our results. These nontrivial topological structures support
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the view that spacetime could have an underlying foam-
like microstructure with wormholes generated by fluctua-
tions of the quantum vacuum. The latter involves the spon-
taneous creation/annihilation of particle–antiparticle pairs,
which exist in a maximally entangled state connected by a
non-traversable wormhole. We have found that by captur-
ing elements of an entangled pair, black holes can become
entangled with external systems and transfer and/or destroy
entanglement. This entanglement is directly supported by a
microscopic wormhole, as hypothesized in [6], which gives
further support to the ER = EPR claim.
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