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Abstract The Object Constraint Language (OCL) is a high-
level, object-oriented language for contractual system spec-
ifications. Despite its expressivity, OCL does not provide
primitives for a compact specification of invariability. In this
paper, problems with invariability specification are listed and
some weaknesses of existing solutions are pointed out. The
question of invariability specification is addressed and a sim-
ple but expressive extension of OCL is proposed. It allows a
view-oriented specification of invariability constraints, wher-
eby we restrict the notion of view to reducts based on order-
sorted algebras. The semantics of this extension is defined in
terms of standard OCL.

Keywords OCL · UML · Invariability · Frame problem ·
Views

1 Introduction

Contracts are the prevailing way of specifying systems from
the caller point of view (see [33,34]). Object Constraint
Language (OCL) [40,50] is a high-level language for writ-
ing contractual specifications of object-oriented systems. It
is associated with the Unified Modeling Language (UML)
[42,45] and supported by a variety of tools, e.g. [17,23]
(see [5] for a tool overview). Specification of invariable sys-
tem parts is a common problem in case of complex systems.
OCL allows for the explicit comparison of object attributes
before and after operation execution. An operation execu-
tion usually changes only a small part of a system and
consequently most of the system remains unchanged. In case
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of large systems, it is not feasible to specify what happens
with all attributes and associations. Unfortunately, OCL does
not provide primitives to specify what can and what must not
be changed when an operation is executed.

The problem of invariability specification is not restricted
to contractual languages (see [8] for an overview). In gen-
eral there exist three approaches to this problem: frame for-
mulas, implicit specification and invariability clauses. The
frame axioms are used in artificial intelligence (cf. [36,47]).
The idea is to specify modification of attributes using axiom
schemata. It requires explicit listing of all attributes which
remain unchanged and results in large formulas. The second
approach to invariability dates back to Hoare logic [28]. In
this logic all variables which are not mentioned in a Hoare tri-
ple are assumed to be unchanged. However, it does not work
well for contractual specifications because an operation exe-
cution can have very complex side-effects. The Java Model-
ing Language (JML, see [16,37]) and Spec# [10] use explicit
invariability clauses and allow for a compact specification of
invariable system parts. Invariability constraints are checked
at compile-time. Thus, it is not possible to specify invariabil-
ity requirements which cannot be checked statically.

A method for invariability specification has to address the
following issues:

– complexity: huge formulas
– fragility: the resulting formulas must be modified after

every system change
– over-specification: the specification exposes details which

should be hidden

OCL can be used directly to specify what cannot be
changed, but such specifications are usually very extensive,
fragile, hard to understand and modify. The fact that an
operation is side-effect-free is expressed in UML on the
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meta-level by the attribute isQuery. However, its meaning
cannot be specified in a compact way using OCL-constraints,
but requires extensive formulas. Similarly, the problem of
view-oriented specification with OCL has not been prop-
erly investigated. A mechanism allowing to hide specification
details is lacking. What we need is a compact way of localiz-
ing change, with a simple and monotone semantics. It should
be applicable to different system views.

In the paper [30], we proposed an extension of OCL for
a compact and precise invariability specification. The idea
is to use pairs consisting of a set of objects defined by an
arbitrary OCL term and of a modifiable attribute. Thus, its
expressive power matches the expressive power of OCL. It is
a new concept, not just a simple extension of modifiable JML
clause. This paper is a journal version of [30]. The main con-
tribution of this paper is a new and more detailed semantics
of invariability clauses and its investigation in the context of
the notion of reduct as it is used in order-sorted algebras and
database theory. This semantics is symmetric in the sense that
the relaxation of one association-end implies the relaxation
of the opposite end. It fits better to the idea that an associa-
tion consists of tuples and that it owns its ends as specified
in UML 2 (cf. [42]).

We define a formal semantics of invariability clauses and
demonstrate that reducts preserve validity of specifications.
We discuss so-called semantic variation points [42], i.e. dif-
ferent options in the semantics definition. We propose also
a method for deriving invariability clauses from post-con-
ditions. This method can be seen as a formalization of the
implicit invariability assumption, or one of its possible vari-
ants. Derived clauses are a relatively good approximation of
user intentions and as such can be used to assess soundness
and completeness of user-specified clauses.

Abstraction and information hiding play crucial roles in
software engineering. Complex systems cannot be designed
without the use of abstraction. Similarly, information hid-
ing facilitates software development [43]. A specification,
in particular the specification of invariable system parts,
should not disclose implementation details. In case of Spec#,
invariability clauses do not disclose the structure of internal
layers [10]. The possibility to specify and comprehend
a system from different points of view is essential (cf.,
e.g. [15,38]). Invariability specification in OCL should also
not force the specifier to disclose internal system details. In
the paper [30], we proposed a notion of view based on UML
1.5 [41]. In the meantime, the standard has been upgraded.
In this paper, we use the UML 2 metamodel [42] and OCL
2 [40]. The proposed notion is based on the concept of re-
duct and allows us to restrict specification of invariability to
views. It allows a specifier to abstract away from the irrele-
vant system details. It can be treated as a semantic counterpart
of package signatures and APIs. In general there are various
notions of view for object-oriented systems (cf., e.g. [31]),

but the concept of reduct is most fundamental and has regular
properties. We demonstrate that it is possible to define views
using OCL terms. In UML and OCL, the notion of query is
defined in plain English. It turns out that in our framework it
is easy to specify formally that an operation is a query, i.e. a
side-effect free operation. We demonstrate the applicability
of the proposed extension using a number of examples and
explain how it addresses problems with the specification of
invariability.

This paper is organized as follows: In Sect. 2, we use a
simple example to explain problems with invariability spec-
ification; we also sketch a solution. In Sect. 3, we relate our
extension to the UML metamodel and show how to define
views. In Sect. 4, we present the formal syntax of the pro-
posed extension. In Sect. 5, we present an OCL based seman-
tics of the proposed extension, define a formal semantics and
propose some semantic variation points; we show also how to
derive invariability clauses from post-conditions. In Sect. 6,
we perform a small case study and demonstrate the appli-
cability of our approach. In Sect. 7, we discuss the related
work. Section 8 concludes this paper.

2 Specification of invariability

In this section, we consider a simple example of a bank
account, illustrate problems with invariability specifica-
tion and explain our solution. In the first subsection, we
demonstrate problems with invariability specification, in par-
ticular with the implicit invariability assumption. In the sec-
ond subsection, we introduce informally invariability clauses
and discuss their basic properties. In the third subsection, we
show how to deal with model modification. In the fourth sub-
section, we show how to deal with operation’s side-effects.
Operations on lists are not easy to specify in OCL due to their
side effects. In the fifth subsection, we show how to deal with
this case.

2.1 Problems with invariability specification

Consider the class diagram in Fig. 1. It shows a bank account
class and a credit card class. We can specify the operation
credit in OCL in the following way:

p1

cc

0..1

ba +CreditCard

-cCNumber : Integer
*

belongs_to
+BankAccount

-name : String

+credit(amount : Real)

-balance : Real

Fig. 1 Bank account model
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context p1::Bank Account ::credit (amount : Real)

post : self.balance = self.balance@pre + amount

This specification does not mention what happens to the attri-
bute name, to the association-ends cc and ba, nor to the attri-
bute cCNumber. Therefore, we have to extend the post-con-
dition with the following frame formula:

and self.name = self.name@pre

and self.cc = self.cc@pre

and self.cc.ba = self.cc@pre.ba@pre

and self.cc.cCNumber = self.cc@pre.cCNumber@pre

Moreover, to make this specification complete, we need a
formula guaranteeing that all objects of the class BankAccount
different from self are not influenced by the execution, and
a similar formula for the class CreditCard. This requires
a separate equation for every attribute and association-end.
Clearly, in case of larger systems, writing all such axioms
results in huge formulas. Such formulas are fragile in respect
to modifications. It is easy to omit something or to add an
erroneous constraint.

A possible solution is to use an implicit invariability
assumption. In the simplistic case, it says that all that is
not specified to change does not change (see, for exam-
ple, [15,32,33]). It allows one to write simple specifications.
This approach is appealing, since it does not put any extra
burden on the specifier. However, it is not always clear what
this assumption means, especially when a high level specifi-
cation language, such as OCL, is used.

For example, equation self.cc.cCNumber = self.cc@pre.
cCNumber@pre + 1 does not say what may be changed.
There are three possibilities: either the association-end
self.cc, or the attribute cCNumber, or both. It is only clear
that at least one of those properties is changed. It seems nat-
ural to assume that self.cc = self.cc@pre, but this constraint
does not follow from the post-condition. It is rather our guess
that the association should remain unchanged. Consider the
following tautology:

CreditCard.allInstances()−>forAll(o | not o.oclIsNew() implies

o.cCNumber = o.cCNumber@pre or not(o.cCNumber

= o.cCNumber@pre))

The implicit invariability assumption would allow arbitrary
change of the attribute cCNumber, despite the fact that this
formula is a tautology. Thus, it can hardly be used in combina-
tion with formal reasoning, since proving formulas requires
application of tautological formulas (cf., e.g. [14]) and in
logic, tautologically equivalent formulas are semantically
equivalent.

There are also other problems. Changes to the under-
lying model require the specifier to rewrite the invariabil-
ity specification, but in case of large formulas it is time

consuming and error-prone. In case of subclassing, attributes
of subclasses are usually not meant to be constrained by
invariants, pre- and post-conditions concerning their super-
classes. However, if they do not occur in those constraints,
then they are assumed to be invariable. Another problem is
the specification of side-effects, i.e. effects which are not
meant to be visible to a client or concern objects different
from actual parameters.

2.2 Solution in the simple case

In this subsection, we outline a solution for the case of sin-
gle classes and packages. In the bank account example (see
Fig. 1), we need to specify what can and what must not be
changed. We restrict the specifications to packages and to
sets of model elements in general; we call those sets views
(see Sect. 3). We use the optional in-keyword to indicate
the package, or view in general, to which the specification
is restricted. The modifies clause specifies a list of variable
object-properties such as attributes and association-ends. The
variable system part can be specified either in respect to a spe-
cific view described by the in-part, or in respect to the whole
class model if in does not occur.

We specify explicitly what changes in the package p1.
The following formula puts the specification into perspec-
tive. More precisely, the specification is defined relatively to
attributes and association-ends of classes contained in pack-
age p1. The keywords are indicated by the bold characters:

context p1::BankAccount::credit(amount : Real)

post : self.balance = self.balance@pre + amount

in p1 modifies : self::balance

We use the OCL primitive :: to indicate that the attribute
balance of the implicit parameter self can be modified. In
our case, this primitive has two arguments: a term defining
an object or a set of objects, which is meant to be the scope
of change, and an association-end or an attribute possessed
by those objects. The clause in p1 modifies : self ::balance
restricts the invariability specification to the view defined
by the package p1.credit can change in this view only the
attribute balance of the actual implicit parameter. This spec-
ification does not say anything about any other package.

Figure 2 presents two object diagrams modelling states of
the bank account system. They show how states may change
when credit is executed. The first one (see Fig. 2, part (a))
consists of two objects, ba1 and ba2, of class BankAccount
and of the associated CreditCard-objects. The variable self
points to the first object. The contract for credit allows chang-
ing of the corresponding attribute balance; this is indicated by
italic font. All other attributes and associations must remain
unchanged. When this operation is executed, ba2 and the
corresponding credit card c2 are deleted and also a new bank
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(a)

(b)

Fig. 2 A pre- and a post-state of credit

+BankAccount

-name : String

+credit(amount : Real)

p1

-balance : Real

p1B

+CreditCard

-cCNumber : Integer*

cc
0..1
ba

+SavingsAccount

-savingsLimit : Real
-creditworthiness : Real

Fig. 3 Inter package extension

account ba3 is created; this is in accordance with the contract
(see part (b) of the figure).

2.3 Model modification

In this subsection, we deal with the problem of model modi-
fication. We investigate to what extent we need to change an
invariability specification if a class is subclassed within the
same package and within another package.

Let us consider Fig. 3. We subclass the class Bank Account
using another package. The class BankAccount is extended
by the class SavingsAccount. The attribute savingsLimit
specifies the lower limit of the corresponding balance and the
attribute creditworthiness specifies the creditworthiness of a
client. We assume that the second attribute is correlated with
the attribute balance; if for example the balance grows, cred-
itworthiness grows as well. The previous specification does
not specify the behaviour of the attributes savingsLimit and
creditworthiness, since they belong to a different package.
Consequently, they can be changed arbitrarily. To restrain
changes in respect to the package p1B we have to specify
them explicitly:

pA

+SavingsAccount

-savingsLimit : Real

*

-creditworthiness : Real

cc

0..1
ba +CreditCard

-cCNumber : Integer

+BankAccount

-name : String

+credit(amount : Real)

-balance : Real

Fig. 4 Intra package extension

context p1::Bank Account ::credit (amount : Real)

in p1B modifies : (if self.isKindOf (Savings Account) then

Set{self.ocl AsT ype(Savings Account)} else Set{} endif )::creditworthiness

The specification of invariability is stable in respect of exten-
sions which do not change the corresponding view (the
package p1, for example), since constraints concerning a
superclass are inherited by subclasses and consequently do
not need to be explicitly added. However, changes may be
necessary if the view is modified. Fig. 4 shows another way
of extending the BankAccount class. In this case, the view
given by package p1 is changed. Consequently, we have to
change the specification of credit, since it was done relatively
to the view defined by p1.

context p A::Bank Account ::credit (amount : Real)

post : self.balance = self.balance@pre + amount

in p A modifies : self ::balance, (if self.isKindOf (Savings Account) then

self.ocl AsT ype(Savings Account) else Set{} endif )::creditworthiness

In this case, the execution of credit may change the attribute
balance of the actual implicit parameter and if it is of class
SavingsAccount, then also its attribute creditworthiness. We
treat here single objects as singleton sets, e.g. self is treated
as Set{self }.

Suppose that a class is meant to be subclassed and for-
wards operation calls to other classes. It is a good specifica-
tion style to abstract in the superclass specification from the
attributes in subclasses and in delegatee classes. In our case,
it is possible to restrict a specification to a particular class.
The following specification restricts the view to the class:
BankAccount.

context p A::Bank Account ::credit (amount : Real)

post : self.balance = self.balance@pre + amount

in Bank Account modifies : self ::balance

2.4 Side-effects

An operation execution may result in modification of objects
different from its actual parameters. It may also modify attri-
butes which are invisible in a certain view. This is usually
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Fig. 5 Adding account history
pH

# HistoryItem

- value : Real

* -items

# AccountHistory

- name : String

+ BankAccount

- name : String

+ credit(amount : Real)

pA

+ SavingsAccount

- creditworthiness : Real

- balance : Real

cc

- savingsLimit : Real

*

ba 0..1

+ CreditCard

<< ordered >>

belongs_to

the case of method logging. When aspect-oriented program-
ming is used, it is possible to change attributes which are
not navigable from parameters of executed methods. In this
subsection, we show how to deal with such side-effects.

Figure 5 shows the class AccountHistory. An object of this
class stores information about the history of a bank account
object. If the operation credit is executed and if the values of
the attribute name of a bank account and the value of the attri-
bute name of a history object are equal, then the old balance
of the bank account is stored in a newly created object of class
HistoryItem and appended at the end of the list items. Apart
of pA, we specify a bank-internal view including package
pH:

context p A::Bank Account ::credit (amount : Real)

post post_credit : self.balance = self.balance@pre + amount and

pH ::Account History.all I nstances()−>forAll(o | o.name = self.name

implies o.items−>one(hi | hi.oclIsNew() and hi.value = self.balance@pre

and o.i tems = o.i tems@pre−>including(hi)))

in p A modifies mod_p A : self ::balance, (if self.isKindOf (Savings Account)

then self .ocl AsT ype(Savings Account) else Set{} endif )::creditworthiness

in pH modifies only mod_pH : pH ::HistoryItem.allInstances(),

pH::AccountHistory.allInstances()−>select(o | o.name = self.name)::items

The OCL expression one means that there is exactly one
object which satisfies the corresponding condition. The colon
in modifies clauses is followed by a comma-separated list of
modifiable properties and the corresponding terms defining
the scope of change. The term including(hi) means that the
object hi is appended to the end of the sequence items. The
last clause is strict which is indicated by keyword only. It
disallows the creation and deletion of HistoryItem objects.
It restricts also the changes in package pH to the attribute
items of the history objects which have the same name as
the credited bank account and allows only the creation and
deletion of HistoryItem objects.

2.5 Specification of operations on lists

In this subsection, we show how to specify operations on
singly linked lists. In standard OCL, it is not easy to specify

List
0..1
first

0..1next

sort()
+ListElement

+x : Integer

Fig. 6 Singly linked list with an anchor

what remains unchanged when a list is sorted, an element is
inserted or another list is appended. Consequently, the spec-
ification of invariable parts tends to be left out.

The class diagram in Fig. 6 shows a list composed of an
anchor object of class List and a number of elements instanti-
ating the class ListElement. The collection of elements con-
tained in a list self.elements is defined with the help of the
auxiliary function successorsOf collecting all successors of
a given list element el in the set Acc:

context List def :
elements : Set(ListElement) = if self.first−>isEmpty() then Set{}

else self.first.successorsOf (Set{self.first}) endif

context List Element def :
successorsOf (Acc : Set(ListElement)) : Set(ListElement) =

if self .next−>isEmpty() or Acc−>includes(self.next) then Acc

else self .next.successorsOf (Acc−>union(Set{self.next}) endif

We consider here only finite acyclic lists. This constraint
is expressed by an invariant saying that a nonempty list must
contain an element that does not have a successor:

context List inv no_loops :
self.elements−>notEmpty() implies

self.elements.exists(el | el.next−>isEmpty())

The operation sort orders lists according to the value of
attribute x . We use the term elements@pre to denote all list
elements which exist in the pre-state.

context List ::sort ()

post post_sort : self.elements = self.elements@pre and

self.elements−>forAll(el | el.next−>not Empty() implies el.x <= el.next.x)

We can make the specification of sort precise by adding the
following two invariability clauses:
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Fig. 7 Concrete lists with
modifiable parts

self

first

l : List

le1 : ListElement

x = 12

next

first

: List

le2 : ListElement

x = 9

next
le3 : ListElement

x = 1

next
le4 : ListElement

x = 5

next next
leC : ListElement

x = 5

leB : ListElement

x = 9

leA : ListElement

x = 12

in List modifies mod_list : self ::first

in List Element modifies : self.elements::next

The first clause says that the element associated with the
list anchor can be replaced. The second one says that the
next association-end can be modified. Those clauses in con-
junction with the first part of the post-condition say that
the elements of the list can be rearranged, but no ele-
ment can be added or removed. They relativize invariabil-
ity specification to classes List and ListElement. They do
not specify what happens outside those classes. We can
express the fact that nothing else changes using the abso-
lute clause, i.e. clause which does not contain the in-part:
modifies : self::first, self.elements::next .

Figure 7 shows an object diagram corresponding to the
class diagram in Fig. 6. Names of modifiable links are
indicated using italic. In this diagram, the variable self
refers to the anchor object l. Let us observe that the set
self.elements includes all elements of the list with anchor l,
i.e. self.elements has the form {le1, le2, le3, le4}. The clause
self.elements::next allows modification of the correspond-
ing outgoing links. Similarly, self::first allows replacing the
first element. All attributes and all other associations are
not modifiable. Consequently, the operation sort can only
rearrange the elements of this list, due to the constraint
elements = elements@pre, but it cannot change attributes of
the corresponding objects nor attributes or associations of
other objects. On the other hand, the operation cannot mod-
ify the anonymous list in anyway; it can only delete it.

3 Views

In this section we define the notion of view and investigate
its properties. We start with its brief discussion. In Sect. 3.1,
we relate the notion of view to the UML 2 metamodel and to

the notion of package. In Sect. 3.2, we show how to use the
metamodel and OCL terms to define user specific views.

In the preceding sections we restricted our specifications
to packages and classes. In general, it is possible to tune a
specification to specific needs. A system specification can
be written having a particular application in mind; it may
focus on public or reachable model elements or on model ele-
ments named using special naming conventions. Cheesman
and Daniels use class diagrams including selected classes,
attributes and methods to specify system interfaces [15]. In
general, a system specifier may define different views meant
for different users. For example, the operation’s monitoring
and logging are usually not made visible for a client. We intro-
duce an abstract concept of view which defines the focus of
a specification. It can be treated as a semantic counterpart of
the idea of package signatures and APIs. Our concept is based
on the notion of reduct as it is known in model theory (cf.,
e.g. [14]) and database theory (cf., e.g. [31]). In our approach,
the specification of the invariable part can be restricted to the
appropriate view. This allows one to avoid a disclosure of
internal details and a restriction of invisible system parts.

3.1 Relation to the UML metamodel

In this subsection, we define the notion of view in terms of
the UML 2 metamodel [42] as opposed to the notion of view
defined in [30] which was based on UML 1.5 [41]. We show
how to define views corresponding to packages and discuss
the relation between notions defined so far and the UML 2
metamodel.

Views, as defined in this paper, correspond to facades, i.e.
groupings of arbitrary model elements, as they were defined
in UML 1.5. Unlike its older version, UML 2 distinguishes
between packageable elements and non-packageable ones. In
UML 2, packages can include only elements such as types, in

123



Specification of invariability in OCL 421

particular classes and interfaces, and other packages. Other
elements such as attributes, allInstances features and oper-
ations are only indirectly included in a package via the cor-
responding classes and interfaces. The OCL standard [40]
refers to C.allInstances as a predefined feature of class C
without precisely explaining what it means. We treat this
feature simply as an attribute.

We define the notion of view using the UML metamod-
el (see [42], subsections 7.2 and 7.3). A view consists of a
set of classes and interfaces, a set of properties, and a set of
operations. The type of a view is specified by the following
OCL expression:

Tuple(classesAndInterfaces : Set(Classifier),

properties : Set(Property),

operations : Set(Operation))

We say that v is a view if v.classesAndInterfaces includes
all classes and interfaces being types of properties belonging
to v.properties and of parameters of operations belonging to
v.operations. We say that v includes a class or interface if that
class or interface belongs to the set v.classesAndInterfaces.
Similarly, we say that v includes a property or an operation
if it belongs to v.properties or v.operations, respectively. We
say that a package includes a class, a property or an operation
if it is included in the corresponding view (we define those
notions precisely in Sect. 5.2).

Observe that the in modifies clause is defined on two lev-
els of abstraction. The in part, specifying a view or a pack-
age, defines a number of properties. It is not fine enough to
deal with runtime configurations. The modifies part defines
a number of object sets and the corresponding modifiable
properties. Since we are dealing with two different levels of
abstraction, we have to distinguish between model elements
and their names. For the sake of simplicity in the rest of this
paper, we will make this distinction only when necessary.

Packages as defined in UML 2.2 [42] can contain only
the so-called packageable elements like classes, interfaces
and associations. As an example, we extract a view from
a package. In order to do that, we identify the correspond-
ing types, properties and operations. The first term presented
below defines the set of types corresponding to operation’s
parameters and results. The second term defines the types of
association-ends. Both terms are defined at the meta-level:

context Operation

def : relatedTypes : Set(Type) =
self.ownedParameter.type−>union(Set{self.type})

context Association

def : types : Set(Type) = self.memberEnd.type

For a package p, the following formula defines a set of
classes, interfaces and associations which are included in
p (we skip analogous definitions). The set p.properties con-
tains properties of classes and interfaces included in p. The

set p.operations includes all operations owned by classes
and interfaces included in p. Finally, p.classesAndInterfaces
is the set of all classes and interfaces which are either
included in the package or form types of parameters of opera-
tions, association-ends and attributes of classes and interfaces
belonging to p.

context Package

def : classes : Set(Classifier) =
self.ownedTypes−>select(c | c.oclIsKindOf (Class)).oclAsType(Class)

def : interfaces : Set(Classifier) = ...

def : associations : Set(Classifier) = ...

def : properties : Set(Property) =
(self.classes−>union(self.interfaces).ownedAttribute

−>union(self.associations)).memberEnd

def : operations : Set(Operation) =
self.classes.ownedOperation−>union(self.interfaces.ownedOperation)

def : classesAndInterfaces : Set(Classifier) =
(self.classes−>union(self.interfaces)−>union(self.properties.type)

−>union(self.operations.relatedTypes))

−>select(c | c.oclIsKindOf (Class) or c.oclIsKindOf (Interface))

.oclAsType(Classifier)

The definition above allows us to associate views with pack-
ages. Let p be a package; v is the corresponding view if the
following condition is satisfied:

v.classesAndInterfaces = p.classesAndInterfaces and

v.properties = p.properties and v.operations

= p.operations

Note that predefined OCL-types from the OCL-standard
library (see [40], Section 11), such as Integer, Boolean and
OCLAny, are not included in a view definition; similarly the
collection types. They are the constant part of considered
models and as such do not need to be explicitly listed in a
definition of a particular view. This is due to the fact that they
can be used to declare types of parameters and attributes inde-
pendently of the visibility of the corresponding operations,
classes and packages.

3.2 User-defined views

Views allow one to focus on relevant system aspects and hide
irrelevant ones. One can define views using packages. How-
ever, their extensive use bloats models. In this section, we
discuss how to define views using OCL terms.

Programming languages of different kinds provide the
possibility to define units of programming without using
explicit names. In functional languages such as ML (cf. [35])
there are anonymous functions. In object-oriented languages,
like Java or C#, there are anonymous classes and meth-
ods. Unfortunately, UML is lacking a proper mechanism that
would allow avoiding extensive use of packages when it is
not necessary. Cheesman and Daniels use selected classes
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with a choice of attributes to specify system interfaces [15];
those interfaces are the client visible parts of the system. They
demonstrate how to define system models from the client per-
spective in terms of those selections. Our concept of view is
similar to their idea of using class diagrams with arbitrarily
selected elements of the underlying class-model. It allows
one to define views corresponding to different perspectives.
A specification can be restricted to public or protected model
elements by selecting elements of proper visibility and hid-
ing the private ones. For example, for an arbitrary view v we
can define the corresponding public view vpublic by selecting
its public elements:

vpublic.classesAndInterfaces =def

v.classesAndInterfaces−>select(c | c.visibility = #public)

vpublic.properties =def v.properties−>select(p | p.visibility = #public)

and similarly for vpublic.operations.

We can define views based on naming conventions as well.
For example, it is possible to select classes and interfaces
with names having the suffix “Bean” as well as methods and
attributes with names having the prefix “ejb”. Since classes,
interfaces, properties and operations are all named elements
(cf. [42], Section 7.3.33), we can select those elements based
on their attribute name instead of visibility:

vBean.classesAndInterfaces =def

v.classesAndInterfaces−>select(c | String.allInstances

−>exists(s|c.name = s.concat(“Bean”)))

and similarly for vBean.properties and vBean.operations.

For each class one can also specify a view corresponding to all
classes navigable from that class and restrict the invariability
constraints to that view. In Sect. 2.3, we showed how to deal
with the specification of subclasses in a package. Actually,
it is rather inelegant to specify what happens to subclasses
at the level of their superclass. Let p but subclasses denote a
view including all classes and interfaces which occur in the
package p, but do not subclass a context class C . The con-
straint specifying the operation credit can be then written in
the following form:

context p A::Bank Account ::credit (amount : Real)

post : self.balance = self.balance@pre + amount

in p A but subclasses modifies : self::balance

The above immutability clause is defined relatively to classes
which do not subclass BankAccount. Every class subclassing
this class requires its own contract, and in particular invari-
ability specification, e.g. it needs to be specified what happens
to the attribute savingsLimit of the class SavingsAccount, as
the superclass contract does not restrain its behaviour.

In general, it is reasonable to restrict a specification to
underived model elements, since the behaviour of derived
elements can be deduced from the behaviour of underived
ones, i.e. for a viewv we can define a new view (v) but derived

which differs from v in that (v) but derived contains only
the underived properties included in v.properties. In some
cases, it may be reasonable to restrict an operation speci-
fication to classes which are navigable from the operation
parameters via association-ends and generalization relation-
ships traversed bottom up, since normally only objects of
those classes can be modified during an operation execution.
Such a specification can have the following form:

context C ::Op(p1 : C1, . . . , pn : Cn) : D

...

in navigableFrom(typesOfParams(Op)) modifies : ...

where typesOfParams(Op) is the list containing parameter
types of operation Op, i.e. C, C1, . . . , Cn, D. We assume
that the term navigableFrom denotes a view including all
properties of classes navigable from those types.

In fact, we can select an arbitrary set of model elements
using an OCL term defined on the meta-level. We can express
what is variable and what is not in a specific view. Let us
observe that views based on visibility and naming conven-
tions are defined on the meta-level without referring to any
concrete class-model or any concrete package. In general, a
view defined in terms of the UML metamodel can be applied
to any class-model. This shows that views can be defined
in a generic way using OCL terms. A general specification
language should not restrict users to a particular view, for
example to navigableFrom. On the contrary, users should be
free to define their own views as suits them best.

4 Extension grammar

In this section, we redefine the syntax of the OCL exten-
sion proposed in [30]. The difference is that we use the
string only as a keyword indicating that the predefined fea-
ture allInstances is taken into consideration. The grammar
is presented using the EBNF notation: [ ] means optional
occurrence, { } means arbitrary number of repetitions and |
means option. We restrict this syntax with some constraints
which cannot be expressed by a context free grammar. We use
capital characters for nonterminals and small characters for
terminals. An operation specification has the following form:

context C :: Op

pre : Pre

post : Post

{ in P modifies [Nm] : M | in P modifies only [Nm] : Mo} |
modifies [Nm] : M | modifies only [Nm] : Mo

C is the context of the specification, Op is an operation, Pre
is a pre-condition and Post is a post-condition as defined by
OCL [40]. We call an invariability clause strict if it contains
the keyword only; otherwise, we call it non-strict. We call
it relative if it contains the in-part; in the other case we call
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it absolute. The operation specification consists of a number
of strict and non-strict relative invariability clauses, or one
absolute, strict or non-strict, clause. The string Nm names
the corresponding invariability constraint. Nonterminals M
and Mo describe what can change. The difference between
M and Mo is that the second one can contain the feature
allInstances. The nonterminal P corresponds to a package
or more generally a term specifying a view. Furthermore,

P = (Pn [r] | Cn | Mt) O, O = [+] [_] [∼] [−]
M = [ nothing | Prs {, Prs} ], Prs = [T ::]Pr | Cn∗O

Mo = [ nothing | (Prs | Cn.allInstances()) {, (Prs | Cn.allInstances())} ]

Pn is a package or view name. The terminal r is optional;
it specifies all sub-packages, like the −r option of Unix
tools. Cn is a class name. Nonterminal Mt corresponds to
a tuple of the view type. The tuple Mt is defined on the class-
model level. O specifies visibility of considered properties;
the visibility can be public, package-public, protected and
private. We allow the use of multiple visibility predicates
meaning that all listed options are possible. The terminal
nothing specifies that nothing can change; it is a syntactic
sugar for an empty list. T is an OCL term defining a single
object or a set of objects; it is defined at the object level. The
nonterminal Pr corresponds to an attribute or an association-
end. The expression Cn∗O denotes all properties of class
Cn with visibility specified by O . Note that terms such as
p1 but subclasses correspond to the nonterminal P or more
precisely to Mt (cf. Sect. 3.2).

Context-free grammars are not expressive enough to deal
with types. Therefore, in addition, we require that in case of
a clause of the following form:

[in p] modifies : t1::a1, . . . , tm ::am , am+1, . . . , am+k

Property ai must be an object-attribute or an association-
end and the term ti must be well defined in respect to the
corresponding context. We assume that ti must not contain
the primitive @pre, for i = 1, . . . , m, since those terms are
evaluated in the pre-state. Moreover, all objects defined by
ti must have property ai . One can equivalently require that
ti .ai is a subterm of a syntactically correct OCL pre-con-
dition; for example, the pre-condition may have the triv-
ial form ti .ai = ti .ai . Note that we use “::” in those con-
texts where “.” can be used. To simplify the notation we
allow ti to have the form x instead of Set{x} where x
is a formal parameter of Op. In case of a relative clause
in p modifies t1::a1, . . . , tm ::am, am+1, . . . , am+k , we ass-
ume that properties ai belong to the view p. We call ti::ai

a ‘scope of change term’ or simply ‘scope-term’.
If p is a package, then we treat it as a shorthand for the

corresponding view (see Sect. 3.1). If p is a view, then the
property ai must belong to p.properties, for i = 1, . . . , m+k.
The properties am+1, . . . , am+k are class-attributes and con-
sequently do not include the predefined feature allInstances;

recall that we treat C.allInstances() as a property. In case
of modifies only, we relax the last requirement, but we
demand that if an am+i has the form C.allInstances(), then
it must belong to p.properties and the corresponding class C
must belong to p.classesAndInterfaces. p+ denotes all pub-
lic types, properties and operations included in p. The clause
in p+ modifies restricts the invariability specification to pub-
lic types and features included in p.

5 The semantics

In this section, we define a semantics of invariability clauses
and investigate its properties. In Sect. 5.1, we define the
semantics in terms of standard OCL [40]. In Sect. 5.2, we dis-
cuss its formal counterpart. In Sect. 5.3, we define a procedure
allowing one to extract invariability clauses from method’s
post-conditions. Finally, in Sect. 5.4, we discuss different
options in the definition of invariability.

5.1 OCL-based semantics

In this subsection, we define the semantics of the proposed
extension in terms of standard OCL [40]. First, we define
the semantics of a restricted form of invariability clauses.
Then we show that the semantics of all other clauses can be
defined with the help of the restricted form. The semantics
is illustrated using the bank account example. The advan-
tage of this semantics is the fact that one can rely on exist-
ing formal semantics of OCL ([40], Annex A; see also,
e.g. [13,20]) and the possibility of using standard OCL tools
(cf., e.g. [5,17,23]).

In the paper [30], we used allInstances@pre to define the
OCL-based semantics of our extension. In this paper, we
use the predicate oclIsNew to define the interpretation of the
frame formulas. This interpretation is logically equivalent
to the previous one, but it is better suited for currently
existing OCL tools, since most of them do not support
allInstances@pre. In [30], we defined the semantics in such
a way that the modification of one association-end does not
imply the modification of the opposite end. In this paper
we define the semantics in a symmetric way. It fits better to
the idea that associations are tuples of objects or links [42].
Attributes and association-ends are called in UML proper-
ties. A class owns its attributes, whereas association-ends are
not owned by the corresponding classes, but by the associa-
tion itself (see [42]). Object-attributes and association-ends
are called object-properties, as opposed to class-attributes. In
this paper, we consider only binary associations, i.e. associa-
tions with two ends. Presented semantics can be extended to
the case of n-ary associations for 2 ≤ n; however, this would
complicate the definition a lot.
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The semantics is defined via frame formulas. For sim-
plicity, we assume that packages, classes and properties have
unique names; however, in general it is necessary to use fully
qualified names to distinguish between different model ele-
ments. We define first the semantics of strict invariability
clauses of the following form:

context X ::Op

pre : Pre

post : Post

in p modifies only : t1::a1, . . . , tm ::am , am+1, . . . , am+k

We assume that properties a1, . . . , am+k are included in
p. For i = 1, . . . , m, we assume that ti is an OCL term
of type Set (Ai ) that is well defined in the context of the
operation Op, in particular it can include only the formal
parameters of Op, and that it does not contain the primi-
tive @pre. Since we can use the OCL operator union, we
can assume without a loss of generality that properties ai

are pairwise different. We assume that there exists a num-
ber g � m such that for i = 1, . . . , g property ai is an
object-attribute of class Ai and that for i = g + 1, . . . , m
property ai is an association-end of a binary association asi .
By ai we denote the end of asi opposite to ai . We assume
that ai allows navigation from class Ai to Ai , and conse-
quently ai allows navigation from class Ai to Ai . We present
properties occurring in view p as a sequence. There exist
a natural number h such that g � h � m and proper-
ties contained in p form a sequence of the following form:
a1, . . . , ag, ag+1, . . . , ah, ag+1, . . . , ah, ah+1, . . . , am,

am+1, . . . , am+k, b1, . . . , bn, c1, . . . , cl

where

1. a1, . . . , ag are object attributes listed in the invariability
clause

2. ag+1, . . . , ah are association-ends listed in the invari-
ability clause such that, for i = g + 1, . . . , h, the end ai ,
opposite to ai , is not listed in the invariability clause; the
opposite ends ag+1, . . . , ah may or may not be included
in p

3. ah+1, . . . , am are association-ends such that the opposite
association-ends are listed in the clause

4. b1, . . . , bn are all object properties which occur in p, but
are not listed in the invariability clause; Bi is the class
corresponding to the object-property bi

5. am+1, . . . , am+k are class attributes and the predefined
allInstances-features occurring in the clause, i.e. am+i

has the form C.c or C.allInstances(), for some class C ;
c1, . . . , cl are all other class attributes and allInstances
features occurring in p

For i = h + 1, . . . , m, we define term ui = ti−>

union(t j .ai ), where j is the index at which the end oppo-
site to ai occurs in the clause. Below ti @pre denotes a term

obtained from term ti by suffixing all properties occurring
in ti by @pre. We translate the specification of Op above to
standard OCL by considering cases 1–5:

context X ::Op

pre : Pre

post : Post and – f or i = 1, . . . , g, we generate :
Ai.allInstances()−>forAll(o |not(o.oclIsNew()) and ti@pre−>excludes(o)

implies o.ai = o.ai@pre)

and – for i = g + 1, . . . , h, we generate :
Ai.allInstances()−>forAll(o |not(o.oclIsNew()) and ti@pre−>excludes(o)

implies o.ai = o.ai@pre) and

Ai.allInstances()−>forAll(o |not(o.oclIsNew()) and (ti.ai)@pre−>excludes(o)

implies o.ai = o.ai@pre)

and – for i = h + 1, . . . , m, we generate :
Ai.allInstances()−>forAll(o |not(o.oclIsNew()) and ui@pre−>excludes(o)

implies o.ai = o.ai@pre)

and – for i = 1, . . . , n, we generate :
Bi.allInstances()−>forAll(o | not(o.oclIsNew()) implies o.bi = o.bi@pre)

and – for i = 1, . . . , l, we generate :
ci = ci @pre

The non-strict clauses do not contain the keyword only; con-
sequently the behaviour of allInstances is not restricted. They
can be treated as a special case of strict ones. Thus the seman-
tics of

in p modifies : t1::a1, . . . , tm ::am , am+1, . . . , am+k

is equivalent to the semantics of

in p′ modifies only : t1::a1, . . . , tm ::am , am+1, . . . , am+k

where p′ is obtained from p by removing all features of the
form C.allInstances(). In this case no restrictions on object
creation and deletion are made, apart from the post-condi-
tion and the frame formulas. In other words, the semantics
of an absolute non-strict clause is defined as the semantics
of an absolute strict-clause, but we remove the allInstances-
features. As an example, let us consider the specification
of method credit in Sect. 2.4. The strict-constraint mod_pH
restricts object creation to the class HistoryItem. The modi-
fies-clause mod_pA does not restrict object creation nor dele-
tion.

The resulting post-condition is a conjunction of the orig-
inal post-condition Post and a frame formula corresponding
to the invariability clause. This formula has five parts. The
first part deals with the change scope of object attributes. The
corresponding clause means that for every object o of class
Ai if o exists before and after execution of Op, and if o does
not belong to the set defined by ti in the pre-state, then the
property ai of o remains unchanged. In our example, the attri-
bute balance is changed only for the implicit parameter self.
For all other objects that exist before and after the method
execution this attribute remains unchanged.
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Since we use a non-strict invariability clause in case of
package pA, object creation and initialization of the attribute
name in the newly created objects is allowed. In case of class
SavingsAccount, the attribute balance can be changed only
for the implicit parameter self. This means that we have the
following frame formula:

BankAccount.allInstances()−>forAll(o | not(o.oclIsNew())

and Set{self }−>excludes(o) implies o.balance@pre = o.balance)

If the actual implicit parameter is of class SavingsAccount,
then the operation credit may change its creditworthiness
attribute:

SavingsAccount.allInstances()−>forAll(o | not(o.oclIsNew()) and

Set{self }−>excludes(o) implies o.creditworthiness@pre = o.creditworthiness)

The second part of the resulting frame formula concerns asso-
ciation-ends ai of binary associations such that the opposite
end ai is not listed in the invariability clause. In this case
we allow the modification of association-end ai for objects
defined by term ti , and, to make the definition symmetric,
the modification of the opposite end ai for objects belong-
ing to the image of ti in respect of ai . As an example, we
consider operation drop dropping a credit card assigned to a
bank account (cf. Fig. 4):

context BankAccount::drop(c : CreditCard)

post : self.cc = self.cc@pre−>excluding(c)

modifies : self::cc

In this case, ba and cc are the opposite ends of association
belongs_to. The above clause allows the modification of cc
for self. The opposite end, i.e. ba, is not listed in the clause.
If a link between a bank account and a credit card is dropped,
then the opposite link connecting the card and the account
has to be dropped too. Thus, the modification of ba is allowed
for objects included in the set self.cc.

The third part concerns associations with both ends listed
in the clause. Hence, for an association-end ai , i = g +
1, . . . , h, the opposite end ai is in the list as well, i.e. ai = a j

for some j , and consequently g < j � h. In this case,
ai can be modified for objects in the set defined by ti and
by t j .ai = t j .a j being the image of t j in respect to a j .
Hence, ui = ti−>union(t j .a j ) defines the scope of change
for ai . Similarly, we relax the association-end a j for the set
t j−>union(ti .a j ). Figure 8 shows a conceptual visualization
of this case. The sets of all objects of classes Ai and A j are
indicated by rectangles. Sets of objects defined by terms ti
and t j , and by their images in respect of ai and a j , are indi-
cated by ellipses. The two scopes of change are indicated by
the colour gray. As an example, we consider an operation
assigning a credit card to a bank account:

a j

a i

t t at i t i.a i

t a tt j.a j t j

A
a ia jA i A j

ia j

Fig. 8 Visualization of interdependent scope-terms

context BankAccount::assign(c : CreditCard)

post : self.cc = self.cc@pre−>including(c)

modifies : self::cc, c::ba

In this case, both ends of belongs_to are listed in the clause.
The association-end cc can be modified for self and for
objects in c.ba. Vice versa, ba can be modified for c and
self .cc.

The fourth part of the post-condition concerns all other
object-properties included in p. For every bi and every object
o of the corresponding class Bi if o exists before and after
execution of Op, then its property bi must not change. For
example in case of credit, attribute name and association-
end cc are not listed in the modifies list. Consequently, they
cannot be modified.

The fifth part forbids the modification of class-attri-
butes and allInstances features included in p which are
not listed in the clause. Note that there is no class-
attribute in the class diagram in question. The modi-
fication of properties am+1, . . . , am+k is not restricted.
For example in case of credit, the strict clause allows
only the modification of HistoryItem.allInstances(), but
AccountHistory.allInstances() cannot be modified, since it
is not listed there. Thus objects of the second class can be
neither created nor deleted. It is interesting to consider the
question of object existence at the programming level. Some
objects may be referenced by program variables occurring on
the program stack. Those variables can be manipulated in an
arbitrary way as long as the post-condition and the resulting
frame formula are satisfied. In general, an object cannot be
deleted during an operation execution if it is reachable from
variables on the execution-stack via links, in particular the
unmodified ones.

The grammar defined in Sect. 4 allows for using the
implicit parameter self instead of the set Set{self }. In the
examples presented in Sect. 2, we use self in that way. In
general, if a term ti occurring in a modifies clause defines
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a single object instead of a set of objects, then to apply the
semantics definition we replace the term by Set{ti}. It should
be noted that we do not deal with qualified associations sep-
arately. This is due to the fact that a qualified association
defines an unqualified one. If qualifiers in a qualified associ-
ation are missing, then one obtains the set of all associated
objects (cf. [40,50]).

One OCL-constraint may contain several in modifies only
clauses (see Sect. 4). In such a case, we define a conjunction
of the corresponding frame formulas. Other kinds of invari-
ability clauses can be treated as abbreviations of the above
one. In case of the absolute invariability clause

modifies only : t1::a1, . . . , tm ::am , am+1, . . . , am+k

the specification of changes concerns all properties. This kind
of constraint is an abbreviation of the following formula:

in ap modifies only : t1::a1, . . . , tm ::am , am+1, . . . , am+k

where ap includes all classes, interfaces, properties and oper-
ations contained in a model. The relative clause in p modifies
only : nothing can be equivalently expressed by the formula
in p modifies only : , which includes an empty list of prop-
erties. It means that no property included in p is modified.

5.2 Formal semantics

In this subsection, we formalize the notion of view. The
OCL standard defines a formal semantics of OCL (see [40],
Appendix A), but there exist other ones defined for different
purposes (see [13,20] and the references there). The seman-
tics we use here is a variation of the semantics defined in [26].
It is based on the notion of order-sorted algebra [25]. The dif-
ference between our semantics and the standard OCL seman-
tics is that we treat system states as first-order beings and
the state space as a sort like in [7]. We need this kind of
approach to apply results from the standard model theory,
in particular that reducts preserve validity of formulas (cf.,
e.g. [14]).

The concept of view presented here corresponds to the
notion of reduct as it is used in model theory (cf., e.g. [14,51])
and on the other hand to the concept of hidden algebra devel-
oped in the realm of algebraic specification (cf. [51]). Hidden
algebras are also a very powerful means of system specifi-
cation (cf. [6]). A hidden algebra provides only one external
interface to a given model, whereas there can be several views
of the same class model.

An order-sorted signature has the form Σ = (S, F,�),
where S is a set of sorts, F is a set of function symbols with
sorts in the set S and � is a partial order on S. Given a view
v, we define the corresponding signature Σ = (S, F,�).
The set of sorts S contains sorts corresponding to predefined
OCL-types and to the elements of v.classesAndInterfaces.
In particular, S contains a sort symbol C for every class and

interface C belonging to v.classesAndInterfaces and a sort
symbol for every predefined OCL-type such as Real. More-
over, for every type T in v.classesAndInterfaces, S contains
the corresponding collection types such as Set (T ). Finally,
S includes the sort OclAny and also the sort State modelling
global system states (cf. [7]). The set S is partially ordered
by the relation �, i.e. if C subclasses B, then C � B holds.
We also assume that for every sort T different from State,
T � Ocl Any holds and that State is not comparable with
any other sort. F is a set of typed function symbols corre-
sponding to attributes, association-ends, queries, state chang-
ing operations and predefined OCL functions. For example,
if a is an attribute owned by class C with values of class
D, then S contains the sorts C and D; moreover, F contains
the function symbol a : State × C → T . The additional
argument of sort State is due to the fact that the value of
an attribute depends on the current system state (cf. [7]).
The predefined feature C.allInstances() is formalized by the
function symbol C.allInstances : State → Set(C).

The set of terms is defined as the smallest set contain-
ing variables, constants, such as 0, and closed on composi-
tion, i.e. for function symbol f of type s1 × · · · × sn → s,
terms ti of sort s′

i and s′
i � si , f (t1, . . . , tn) is a term of

sort s. We formalize OCL terms using terms of the cor-
responding order-sorted signature. For example, the OCL
term self.balance >= 0 is formalized by the algebraic
term (s : State, self ).balance >= 0. Note that the func-
tion formalizing the attribute balance has an argument of
type State, since the value of attributes depend on system
states.

A model M of signature Σ = (S, F,�) is a tri-
ple consisting of the following elements: a set of sets
{sM | s ∈ S} interpreting the sort symbols, a set of func-
tions {f M | f ∈ F} interpreting the function symbols, and
the subset relation ⊆ formalizing the partial order rela-
tion on sorts. If C is a class, then CM can be inter-
preted as the corresponding location/address space. For a
function symbol f , f M is the corresponding function. If
T1 subclasses T2, then we assume that the corresponding
sorts are ordered T1 � T2 and consequently the inclusion
TM

1 ⊆ TM
2 holds. We assume that for every sort T , the set

T M contains the undefined symbol ⊥ (cf. [26]). We assume
also that for every state σ and every type T , the function
T.allInstancesM returns the set of instances existing in σ , i.e.
T.allInstancesM(σ ) ⊆ TM. In case of predefined OCL types
such as Real, we assume that Real.allInstances is invariable,
i.e. the equation Real.allInstancesM(σ )= RealM holds for
every state σ (cf. [26]).

Let Op(x1 : T1, . . . , xn : Tn) be an operation specified
by a post-condition. We formalize the post-condition by a
term of the form t (s, s′ : State, x1 : T1, . . . , xn : Tn),
where s and s′ are state variables corresponding to the pre-
and post-state, respectively; the properties occurring in the
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post-condition are formalized by the above-defined func-
tions. We say that operation Op is deterministically defined if
for every two valuations of the form v1 = [s 
→ σ, s′ 
→ σ1,

x1 
→ v1, . . . , xn 
→ vn] and v2 = [s 
→ σ, s′ 
→ σ2x1 
→v1,
. . . , xn 
→ vn] such that tMv1 = tMv2 = true, the equation
σ1 = σ2 holds. The proposed invariability clauses allow us to
reduce the determinism in operation specifications. We say
that a signature Σ0 = (S0, F0, �0) is an order-sorted reduct
of a signature Σ = (S, F, �) if the following conditions
are satisfied:

– S0 ⊆ S, �0 ⊆� and F0 ⊆ F
– �0 = � ∩ (S0 × S0)

In other words, an order-sorted reduct is a reduct in the sense
of algebraic specification [51], with the restriction that the
restricted sort-ordering relation is a restriction of the initial
sort-ordering relation.

Let Σ0 = (S0, F0, �0) be an order-sorted reduct of Σ =
(S, F, �). A model M0 of signature Σ0 is an order-sorted
reduct of a model M of signature Σ if it is a reduct in the
sense of algebraic specification, i.e. for every sort T in S0,
T M0 = T M and for every function symbol f ∈ F0, f M0 =
f M. Let us observe that in particular if the sorts OclAny
and State belong to S0, then OclAnyM = OclAnyM0 and
StateM = StateM0 . If M0 is an order-sorted reduct of M,
then for every term t of the signature Σ0, the value of t is
the same in both models. Consequently, the satisfaction rela-
tion for formulas of the signature Σ0 is preserved by reducts.
Note that this result does not always hold (cf. [24]).

Statement

Let M0 be an order-sorted reduct of M as described above.
Let t (x1 : T1, . . . , xn : Tn) be a term of the restricted signa-
ture Σ0 and let v = [x1 
→ v1, . . . , xn 
→ vn] be a valuation
such that vi ∈ T M0

i , for i = 1, . . . , n. Then tMv = tM0 v.
The simple proof follows by structural induction on the

term complexity: we prove the property for variables first and
then from the assumption that it holds for all subterms of a
term t we infer that it holds for t . If t is a variable, then the
statement holds trivially. Let it hold for all terms of complex-
ity smaller than the complexity of the term t ; let t have the
form f (t1, . . . , tn) and let v be a valuation as defined above.
Then f M = f M0 and tM

i v = tM0
i v, for i = 1, . . . , n.

Therefore, the equation tMv = tM0 v holds too.
The statement implies that the validity of OCL-constraints

is preserved by reducts and consequently by views. Another
consequence is that for arbitrary formulas Ψ and Φ of a
restricted signature, if Φ follows semantically from Ψ in
respect to models of the restricted signature, then Φ follows
semantically from Ψ in respect to models of the full signa-
ture. Thus, reasoning in terms of the restricted signature is
sound in respect to the full one.

5.3 Extraction of invariability clauses

In this subsection we present a method for extracting invari-
ability clauses from post-conditions. It can be seen as a for-
malization of the heuristic called “nothing else changes”
defined in the paper [12]. This heuristics is a liberal form
of the implicit invariability assumption. It restricts the scope
of variability to properties traversed during the evaluation of a
post-condition. Extracted clauses can be used as a touchstone
to assess the soundness and completeness of user specified
clauses.

We define an extraction function that returns a set of scope-
terms. The idea is to treat subterms of a post-condition as
scope terms. In cases of simple post-conditions which do not
contain recursively defined function symbols nor iterators
the corresponding invariability clauses are rather straight-
forward. We have to treat post-conditions containing itera-
tors in a special way because of bound variables. Extracted
scopes terms correspond to subterms of the iterated term.
They are obtained by composing those subterms with the
term we iterate over. It should be mentioned that quantifi-
ers and the select-operation can be expressed using iterators
(see [40]); thus we do not have to treat them separately. For-
mally, a variable x is called free in a term t if it is not bound
by an iterator, i.e. t does not contain a subterm of the form
t1−>iterate(x; acc = v | t2(acc, x)). Let t be an OCL term
that does not contain @pre; extract(t) is the smallest set of
scope-terms such that the following conditions are satisfied:

1. if a is a property, r.a is a subterm of t and the free vari-
ables of r are not bound in t , then the scope-term r ::a
belongs to extract(t)

2. if t has a subterm of the form t1−>iterate(x ; acc = v|
t2(acc, x)), the scope-term r ::a belongs to extract(t2)
and variable x is free in r , then the scope-term
t1−>collect(x | r)::a belongs to extract(t)

Note that in the second case x is bound in t and ranges
over the collection of values defined by t1. We treat OCL
constraints as terms. For a post-condition Post, extract(Post)
is defined as extract(t) where t is obtained from Post by
removing all primitives @pre.

As an example we consider operation credit specified in
Sect. 2.2. In this case, the extraction results in a singleton
set containing the scope-term self::balance. This term cor-
responds to the scope-term specified in that subsection. In
case of credit specification in Sect. 2.3, we get the same
scope-term despite the fact that credit is allowed to modify
the attribute creditworthiness. Thus, the scope of change is
too narrow, because this specification does not say how this
attribute has to be modified. In the other case, the extraction
function would also result in a scope-term for this attribute.

A post-condition can contain recursively defined function
symbols. To handle this case, we define function extractR.
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In case of recursive definitions, one has to synthesize invari-
ability clauses from a number of terms. For a term t we have
to consider all its unfoldings obtained by replacing those
symbols by their definitions. More precisely, an one-step
unfolding u is obtained from t by replacing a recursively
defined function symbol f (y1, . . . , ym) by its definition
F(y1, . . . , ym). We assume that an unfolding u′ of an unfold-
ing u of t is an unfolding of t . For a term t that does not
contain @pre, extractR(t) is the smallest set of scope-terms
such that if u is an unfolding of t and r ::a ∈ extract(u), then
r ::a ∈ extract R(t). It should be noted that extract R(t) can be
infinite.

As an example we consider the operation sort defined in
Sect. 2.5. Its post-condition contains the forall-quantifier and
the recursively defined symbol elements. The following term

self.elements−>forAll(el | el.next−>not Empty() implies el.x <= el.next.x)

can be expressed using an iterator as follows:

self.elements−>iterate(el ; acc = true | acc and el.next−>not Empty()

implies el.x <= el.next.x)

The application of (1) and the unfolding of elements result in
term self::first and also self.first::next, self.first.next::next,...
and so on. There are infinitely many terms of the form
self.first(.next)n::next. Nevertheless, the set of objects defi-
ned by terms self.first(.next)n is equal to self.elements and
consequently we can synthesize self.elements::next. The app-
lication of (2) results in scope-terms self.elements−>collect
(el | el)::next and self.elements.−>collect(el | el.next)::x.
The operation collect() occurring in above terms is redun-
dant. Note that scope-terms el::next, el::x and el.next::x are
not extracted, since the variable el is bound in post_sort.
Thus, we can express the invariability clause as follows:

modifies : self ::first, self.elements::next, self.elements.next::x

The resulting clause is a bit too loose, since the last term
allows undesired changes, but this is a general phenome-
non in case of the above definition. Clauses synthesized in
this way can be treated as the first approximation of the
intended scope. The specifier can select scope-terms which
are really intended and skip those which are not (for exam-
ple self.elements.next::x). On the other hand, if needed one
can adjust the extraction function so that it would result in
a more restricted set of scope-terms. It should be noted that
the extraction result depends on the actual form of post-con-
ditions and can be different for logically equivalent forms.

5.4 Semantic variation points

It is possible to define the semantics of invariability clauses
in different ways by modifying the translation procedure
defined in Sect. 5.1. UML calls such options “semantic var-
iation points” [42]. In general, it would be possible to tune

the proposed semantics according to different needs using
appropriate disambiguation heuristics (cf. [12]) and specifi-
cation patterns (cf. [3]).

Invariability can be specified relatively to all OCL-prop-
erties including queries, not only attributes and association-
ends. It is possible to extend accordingly the grammar and
the semantics defined in previous sections. However, such
specifications tend to be very complex. On the other hand,
queries are usually specified in terms of attributes and asso-
ciations anyway. Therefore, we have decided to exclude
queries.

Another semantic variation point can be identified in case
of terms defining the scope of change. In our semantics we
assume that if term t defines the scope of change, then t is
evaluated in the pre-state, or equivalently that t@pre is eval-
uated in the post-state. It would be possible to allow in the
invariability clauses general terms containing at some posi-
tions the primitive @pre and to evaluate such terms in the
post-state. However, we were not able to find any reasonable
application of such a general definition, and for the sake of
simplicity we decided to avoid this complication.

It is possible to define the semantics of invariability clauses
in such a way that the modification of one association-end
does not imply the modification of the other end; in fact we
followed this idea in the paper [30]. That approach fits bet-
ter to the implicit invariability assumption. Nevertheless, it
has somewhat unexpected consequences for object existence
when association-ends are modified; we demonstrate this in
Sect. 6.1. In general, it is more natural to allow change of an
association-end if the other end is modified.

One can treat extracted invariability clauses as implicit
parts of post-conditions. More precisely, if a post-condition
does not have an invariability clause, then the extractable
invariability clause may be assumed to hold. In this way
one can restrict scope of change as it was meant by the
implicit invariability assumption. However, this procedure
does not always yield what the specifier intends (see exam-
ples in Sect. 5.3). Therefore, in case of this semantic variation
point, one has to check that extracted invariability clauses are
correct and if not, then appropriately modify them.

One can also adjust the extraction function. For exam-
ple, in its definition it is possible to consider only max-
imal subterms, instead of all subterms. It corresponds to
the heuristic called “change only the last navigation in
a navigation chain” (COtlN, see [12]). It is also possi-
ble to liberalize the heuristic “nothing else changes”, by
allowing the change of all properties mentioned in a post-
condition and, in case of associations, their opposite ends
for all objects traversed during the evaluation of a post-
condition. In Sect. 6.1, we present an example where
this kind of liberalization is necessary. Furthermore, it is
possible to combine the liberalized heuristic with the COtlN
heuristic.
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6 Case study

In this section, we consider a specification of a more complex
system and show how it can be simplified and decomposed
using the notion of view. This case study is based on exam-
ples defined so far. In Sect. 6.1, we present a global view of
a bank account management system. In Sect. 6.2, we define
different views as needed by different system users.

Specification of complex systems resembles program-
ming in the large. A large “spaghetti specification” is hard to
understand and manipulate. It is easy to overlook an existing
error or make a new one when modifying the specification.
It also makes validation of the system implementation hard.
As in case of programming, a system specification may serve
different purposes. All these specification kinds correspond
to different system views. We present an example of how
views can be used to hide internal details and how to specify
invariability relatively to an appropriate view.

6.1 Global specification

In this subsection, we specify a bank account management
system. The specification is divided into three packages.
We show that standard OCL mechanisms such as nam-

ing of conditions can be used in combination with invari-
ability clauses. We demonstrate how to specify queries
using invariability clauses and how to deal with qualified
associations.

Package pE concerns employees and managers (see
Fig. 9). An employee is characterized by their number
eNumber. Each employee supervises a number of bank
accounts related by the association-end ba. It is qualified
by the attribute n corresponding to names of customers. The
class Employee contains the attribute eNumber specifying the
number of an employee. A manager supervises a number of
employees. The Employee-objects are stored in a list similar
to the one in Sect. 2.5. However, here, the list stores objects
of class Employee. The association-end staff is a derived
model element (cf. [42]) representing the list of supervised
employees in the form of a sequence.

The sequence of Employee objects stored in a list can be
defined analogously to the set of list elements (see Sect. 2.5).
The difference is that the list stores employee objects instead
of integers and that in this case we have to use the datatype
Sequence instead of Set. Let l.el_seq denote the sequence
of elements occurring in a list l; we assume that the ordering
of the sequence corresponds to the ordering of the list. We
skip the corresponding definition. The following invariant
specifies the staff association-end:

Fig. 9 Global view of the bank
account
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context Manager inv inv_staff :
Set{1.. self.staff −>size()}−>forAll(i |

self.staff −>at(i) = self.sList.el_seq−>at(i))

Note that this invariant relates the derived association-end
staff to model elements which determine its value. It can be
seen as the relation between a specific view and the global
one.

The operation sortByNumber in class Manager sorts
employees according to their numbers. Term Set{1.. self.sList.
el_seq−>size()} specifies the set of natural numbers corre-
sponding to positions in sequence self.sList.el_seq:

context Manager::sortByNumber()

post post_sortByNumber :
self.sList.el_seq−>asSet() = self.sList.el_seq@pre−>asSet() and

Set{1.. self.sList.el_seq−>size()}−>forAll(i, j | i <= j implies

self.sList.el_seq−>at(i).eNumber <= self.sList.el_seq−>at(j).eNumber)

in (pE, pC, pH) but derived modifies mod_sort : self.sList::first,

self.sList.el_seq::next

The expression (pE, pC, pH) but derived denotes here a
view consisting all underived properties defined in pack-
ages pE, pC, pH (cf. Sect. 3.2). Term self.sList.el_seq::next
defines the collection of links corresponding to the attribute
next for objects in the sequence. The invariability clause
implies that self.sList remains unchanged and that the links
between objects of class ListElement and objects of class
Employee do not change, since the corresponding attributes
do not occur in the modifies-part. The application of the
extraction function defined in Sect. 5.3 would extend the
list of scope-terms by self::sList. However, if the extraction
function was defined in respect to maximal subterms, then
self::sList would not be extracted (see Sect. 5.4).

The following constraint specifies the operation replace.
This operation replaces an object of class BankAccount with
an object of class SavingsAccount at the qualifier ne. The
credit cards related to the replaced objects are reassigned to
the SavingsAccount-object. Note that qualified associations
can be used as unqualified ones; self.ba denotes the set of all
objects associated to self via ba. The association-end ba is
qualified with customers’ names.

context Employee::replace(ne : String, o : SavingsAccount)

pre pre_repl : not(self.ba[ne].oclIsUndefined())

post post_repl : self.ba[ne] = o and o.cc = self.ba@pre[ne].cc@pre and

String.allInstances()−>forAll(s | s <> ne and not(self.ba[s].oclIsUndefined())

implies self.ba[s] = self.ba@pre[s])
in (pE, pC, pH) but derived modifies : o::cc, self::ba, self.ba[ne].cc::ba

If one end of a bidirectional association is relaxed, then the
opposite end has to be relaxed as well (see Sect. 5.1, cases 2
and 3). In particular, the term o::cc implies that also the end
ba is relaxed for objects defined by the term o.cc. It should be
noted that if the relaxation of association-ends was not sym-
metric, then the bank account related to self would depend

existentially on the corresponding credit cards (cf. 5.4). More
precisely, if only the ba association-end of belongs_to was
relaxed, then the replaced BankAccount-object would have
to be deleted. Otherwise, it would point to the same credit
cards as the savings account and vice versa those cards would
have to point to two different accounts, the old one and the
new one; this would contradict the multiplicity constraint
imposed on the association-end ba (see Fig. 9).

The following operation assigns a credit card to a bank
account:

context BankAccount::assign(c : CreditCard)

post : self.cc = self.cc@pre−>including(c)

in (pE, pC, pH) but derived modifies : self::cc, c::ba

The semantics of invariability clauses proposed in this paper
means that occurrence of self::cc in the modifies list implies
relaxation of ba for objects defined in self.cc, i.e. self.cc::ba.
This does not mean that all credit cards associated with self
can be assigned to new bank accounts, since we have the con-
dition self.cc = self.cc@pre−>including(c). The class dia-
gram in Fig. 9 assures that every credit card is associated
with at most one bank account. Note that in this case the
extraction function does not produce the scope-term c::ba.
However, if we applied its relaxed form (see Sect. 5.4), then
this scope-term would be generated, since the parameter c
occurs in the post-condition and ba is opposite to cc.

The operation debit charges a bank account only if there
is enough money.

context BankAccount::debit(a : Real)

pre : 0 <= a and self.balance − a >= 0

post : self.balance = self.balance@pre − a and ...

in (pE, pC, pH) but derived modifies : mod_pA, mod_pH

mod_p A and mod_pH are defined in Sect. 2.4. We skip
the part corresponding to handling of an account’s history,
since it is identical with the specification presented in that
subsection.

The query getBalance returns the balance of a bank
account. By definition, a query cannot modify anything, i.e.
it is side-effect-free in the terminology of UML. In our nota-
tion, we can express this fact formally as follows:

context BankAccount::getBalance() : Real

post post_getBalance : result = self.balance

modifies : nothing

The operation debit can be executed only if there is enough
money in the bank account. The balance of a bank account can
be checked by executing the operation getBalance. Validity
preservation in case of invariants requires stronger assump-
tions. Let us consider the following invariant:
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Fig. 10 Personnel department’s view

context SavingsAccount inv :
self.savingsLimit <= self.balance

Its validity after an operation execution depends not only on
the already existing objects, but also on the newly created
ones. According to the semantics of non-strict invariability
clauses, the invariability constraint for getBalance does not
prohibit creation of new objects nor deletion of already exist-
ing ones.

Using a strict invariability constraint, we can specify that
no object is created or deleted during a query execution. The
following constraint guarantees preservation of this invari-
ant:

context BankAccount::getBalance() : Real

post post_getBalance : result = self.balance

modifies only : nothing

6.2 User specific views

In this subsection, we define two different views of the bank
account management system corresponding to different sys-
tem users. We show that those views as well as the corre-
sponding pre- and post-conditions and invariability clauses
can be extracted from the global view. We define those views
by using class diagrams rather than OCL terms and demon-
strate that the abstraction from inessential details can be used
in combination with invariability clauses.

The first view corresponds to a personnel department (see
Fig. 10). It abstracts from the list implementation as well as
operations and attributes which are irrelevant for the depart-
ment. A manager has a list staff of their supervisees. We do
not allow members of the department to check the balance of
a particular bank account. The operation replace is specified
in a similar way as in the global view, but here we do not
refer to credit cards.

context Employee::replace(ne : String, o : SavingsAccount)

pre : pre_repl

post : self.ba[ne] = o and

String.allInstances()−>forAll(s | s <> ne and not(self.ba[s].oclIsUndefined())

implies self.ba[s] = self.ba@pre[s])
in personnel′s_view modifies : self::ba
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Fig. 11 Credit card company’s view

The operation sortByNumber is specified in terms of the per-
sonnel’s view:

context Manager::sortByNumber()

post post_sort_local : Set{1.. self.staff −>size()}−>forAll(i, j | i <= j

implies self.staff −>at(i).eNumber <= sel.staff −>at(j).eNumber)

and self.staff −>asSet() = self.staff @pre−>asSet()

in personnel′s_view modifies mod_sort_local : self::staff

Actually, the post-condition post_sort_local follows from
invariant inv_staff and post-condition post_sortByNumber
defined in Sect. 6.1. Results concerning reducts mentioned
in Sect. 5.2 imply that this post-condition holds also for the
reduct and therefore the post-condition is valid in the cli-
ent view if it is valid in the global one. It should be noted
that the post-condition post_sortByNumber and the modi-
fies term mod_sort are not compatible with the personnel’s
view, since they contain properties not visible for a person-
nel department. However, the post-condition post_sort_local
and the corresponding invariability clause are expressed in
terms of the department’s view.

The next view corresponds to a credit card company (see
Fig. 11); we name it cc_view. It crosscuts packages pC, pE
and abstracts from their irrelevant details. The company may
credit and debit accounts corresponding to credit cards. It
can also access the employee who supervises an account.
However, it cannot see the bank organization, the way how
employees are related to managers, how managers store the
employee lists and so on. The operations debit and assign
are in this case specified relatively to the corresponding view.
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The specification abstracts away from effects which are not
visible.

context Bank Account ::debit (a : Real)

pre : 0 <= a and self.balance − a >= 0

post : self.balance = self.balance@pre − a

in cc_view modifies : self::balance

context BankAccount::assign(c : CreditCard)

post : self.cc = self.cc@pre−>including(c)

in cc_view modifies : self::cc, c::ba

7 Related work

The specification of invariability is crucial in case of state-
oriented specification languages, such as OCL, VDM (cf.,
e.g. [22]) and Z (cf., e.g. [49]), as opposed to event-ori-
ented ones, such as process algebras. There exist various
approaches to invariability specification. The so-called frame
axioms (cf. [36,47]) result in large specifications. There
exists an approach which relies on a completion proce-
dure [8]; basically for every method and every predicate one
has to specify the circumstances under which the correspond-
ing atomic formulas change their truth values. Unfortunately,
for large systems it is not feasible, even if the set of underly-
ing objects is finite. In general, if abstract datatypes such as
integers are used, then the set of the corresponding atomic
formulas is infinite.

Z provides the Ξ -operator and its dual Δ to facilitate spec-
ification of invariable parts. However, this operator does not
have the flexibility and expressive power of the invariability
clause proposed in this paper. In the realm of Z, frame formu-
las are used to restrict the scope of changes. In the paper [29]
it is investigated as to when the scope of change, or its dual,
determines invariability of certain program variables. Inter-
estingly, there exists also an approach allowing the extension
of graph rewriting rules with invariability constraints [4]. It
combines OCL-constraints with imperative extensions. In the
area of object-oriented systems, an analogous approach to
ours was proposed in the paper [46]; the idea was to define a
set of objects which may be modified. This approach does not
detail which attributes may be changed. A similar approach
was proposed for OCL [9]. It uses the primitive modifiedOnly
to define the set of objects with modifiable attributes. As in
the paper [30], it advocates the use of allInstances@pre()
in the definition of invariability clauses. In our approach we
define a pair consisting of a set of objects and a modifiable
attribute. Thus, our approach was more expressive. In the
paper [11], the approach defined in [9] was augmented so
that one can specify modifiable attributes.

The paper [3] introduces a library of reusable OCL speci-
fication patterns. They facilitate the building of trusted com-
ponents. There is a tool for automatic constraint generation.
In our case, the scope-term extraction function can be used to

generate invariability constraints; however, those constraints
often need to be tuned. Nevertheless, like in case of spec-
ification patterns, the function facilitates the specification
and helps inexperienced users. In order to execute specifi-
cations, declarative specifications have to be made imper-
ative. The paper [12] provides a pattern-based method to
translate declarative specifications to imperative ones. They
are based on heuristics disambiguating post-conditions. The
scope-term extraction function defined in Sect. 5.3 formal-
izes one of the proposed patterns. However, we do not aim
here at executing OCL-specifications. The PhD thesis [44]
introduces a number of fundamental concepts concerned with
OCL.

Java Modeling Language [16] and Spec# [10] define
invariability clauses which allow one to specify what hap-
pens with actual method parameters. The change of those
parameters is specified in a way similar to our semantics.
The validity of invariability clauses can be checked at com-
pile-time. This of course restricts their expressiveness. It is
not possible to specify how the set of all existing objects of
a given class is influenced by a method execution. JML and
Spec# specifications are closely related to the corresponding
Java code, whereas OCL is a high-level specification lan-
guage. It suits the purpose of JML and Spec#, but is not well
suited for a high-level modelling.

Another point is that JML, like the implicit invariabil-
ity assumption, requires the exposition of all system details,
which contradicts the information-hiding principle [43]. It
does not allow definition of views; consequently, it is not
possible to relativize invariability definitions to views. It uses
predefined abstract data types to cope for example with lists.
However, in general, there are infinitely many datatypes. JML
and Spec# do not have the expressiveness and flexibility of
OCL. OCL combines the expressive power of the first-order
logic and the relational algebra. Spec#, like JML, requires
the specifier to define layers of abstraction in order to define
invariants via an object ownership relation. Unlike JML, in
Spec# invariability constraints do not refer to the internal
layer structure, which can be changed arbitrarily (cf. [10]).
This is similar to the view oriented invariability specification.
However, views can be defined in an arbitrary way.

Information hiding is in general one of the most important
principles in programming (cf. [43]). The purpose of infor-
mation hiding is to obtain a system modularization and to
hide implementation details. This concept also plays a cru-
cial role in system specification. Component-based software
development is a realization of this principle. It has been
advocated by many authors (cf., e.g. [48] and the references
there). There are different specification styles as there are
different object-oriented programming styles. In the context
of UML, the view-oriented approach was advocated in the
Catalysis method [18]. The concept of view has been also
defined in the realm of MDA [39]. Cheesman and Daniels
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defined informally the notion of view as a selection of inter-
faces and classes with a choice of methods and attributes [15].

The viewpoints framework [21] provides a temporal logic-
based approach to inconsistency handling. Although this
framework was in the first place meant for inconsistency
handling, it was one of the first formal approaches using a
very restricted form of views. Packages, in particular facades,
as defined in UML 1.5 (see [41], subsection 2.15.2.4), can
be used to define system views; they allow the selection of
relevant system properties and the hiding of irrelevant ones.
However, an extensive use of named packages bloats mod-
els. At present, UML is lacking a proper mechanism which
would allow one to avoid an extensive use of packages. For-
mal specification languages such as Z [49], its new form B
(cf. [1,2]), its object-oriented version Object-Z (cf. [19]) as
well as Temporal Logic of Actions (TLA) (cf. [52]) provide
mechanisms for a clear separation of different abstraction
levels. All these formalisms define the notion of refinement
to relate different levels of abstraction.

8 Conclusion

Specification of invariability poses a real problem in OCL.
Specification of complex systems resembles programming
in the large. In order to be understandable and manageable it
has to be done in a modular way and abstract from irrelevant
details. Abstraction and modularization are the two funda-
mental mechanisms for handling complexity.

In this paper we presented new OCL primitives for the
specification of invariability. We defined their semantics in
terms of standard OCL and demonstrated their applicabil-
ity. We showed that these primitives can be used to define
precisely the notion of query. We investigated also how the
concept of view can be used to hide irrelevant details. One
can define views which suit different purposes without bloat-
ing the corresponding models. We showed that views are
compatible with invariability constraints. We defined also a
procedure allowing one for an automatic derivation of invari-
ability clauses from post-conditions. Derived clauses can be
easily customized by the specifier if needed.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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