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1 Introduction

Although a lot of work has been done on strings on AdS5×S5, no complete quantization of

the model has been performed. The classical integrability found in the Green-Schwarz [1]

and pure spinor [2] formalisms, has not been extended to the full quantum theory. Inter-

esting work in this direction was done by Benichou [3], where the pure spinor formalism

was used to derive the Y-system equations [4] using world sheet techniques.

One particular advantage of the pure spinor formalism is that it can be used without

fixing any gauge, so conformal field theory methods (and conformal perturbation theory)

can be used [5, 6]. Quantum conformal invariance for any on shell classical background

was proven in [7, 8]. Other quantum consistency checks for the AdS pure spinor string

were done in [9, 10]. Furthermore, backgrounds that do not admit light-cone gauge fixing,

the pure spinor description can be used. The formalism was recently used [11]1 to compute

the energy of a particular string state conjectured to be dual to one element of the Konishi

multiplet. The result agreed with the strong coupling computation using the Y-system [14].

Some aspects of semiclassical quantization of the AdS pure spinor superstring have been

discussed in [15–17].

In this paper we use the background field method to study the pure spinor superstring

in constant backgrounds. The method is the same as the one used in [11], although more

details will be presented. The particular case of a BPS background [18] is given as an

example. Unlike in [11], the BMN limit can be used and hence the full spectrum of the string

1For related work, see [12, 13].
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can be computed. As expected, it agrees with light-cone GS formalism. The approach taken

here is very different from a previous description of the pp-wave background using pure

spinors [19]. In that work, the background is described by a contraction of the psu(2, 2|4)
algebra and hence is nonlinear in the world-sheet variables. We will see that the background

field method gives a much simpler description. We will also see that the part of the spectrum

related to the supergravity multiplet has a very simple description, almost exactly as in the

light-cone GS quantization [20]. This is a surprise because massless vertex operators for the

pure spinor string in AdS are not known in general. For progress in this direction, see [21–

24]. It would be interesting to study the spectrum we obtain away from the BMN limit.

In section 2 we review the construction of the string on a AdS5 × S5 background us-

ing the pure spinor formalism. In section 3 we expand the world-sheet action around a

bosonic solution of the classical equations of motion and verify how the BRST and confor-

mal transformations are compensated because of a gauge fixing and such that the action

remains invariant. Finally, in section 4 we study the special case of the BPS background,

in particular, we study the spectrum in this case.

2 AdS pure spinor string

In this section we present a short review of the pure spinor formalism for the AdS back-

ground and describe the BPS background used in the rest of the paper.

It is well-known that the AdS5×S5 background is described by the coset PSU(2,2|4)
SO(1,4)×SO(5) .

Elements of this coset are described by g ∈ PSU(2, 2|4) and two elements are identified

if they differ by local right multiplication by en element of SO(1, 4) × SO(5). Classical

solutions in this background are elements of the coset g(τ, σ) satisfying the equations of

motion that come from the action plus the classical Virasoro condition. In this section we

use the notation z = τ − σ, z̄ = τ + σ and σ is periodic with period 2π, and we use the

world-sheet derivatives ∂ = 1
2(∂τ − ∂σ), ∂ = 1

2(∂τ + ∂σ).

The action in the pure spinor formalism is given by [6, 8]

S = 〈1
2
J2J2 +

3

4
J3J1 +

1

4
J1J3 + ω∇λ+ ω∇λ−NN〉, (2.1)

where

〈· · · 〉 = 1

πα′

∫
d2zTr , (2.2)

and, thanks to the Z4 grading of the psu(2, 2|4) Lie algebra,2 the Metsaev-Tseytlin currents

J = g−1∂g have components

J0=(g−1∂g)[mn]T[mn], J1=(g−1∂g)αTα, J2=(g−1∂g)mTm, J3=(g−1∂g)α̂Tα̂, (2.3)

where {T[mn], Tm, Tα, Tα̂} are the algebra generators. Later we will use a more convenient

basis. The non zero commutators can be found in the appendix. Similarly we define

J = g−1∂g. The pure spinor variables are defined as

ω = ωαTα̂δ
αα̂, λ = λαTα, N = −{ω, λ}, (2.4)

2The Lie algebra H is decomposed as H0+H1+H2+H3. Note that the commutators in the Lie algebra

map Hi ×Hj into Hi+j mod 4.
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ω = ωα̂Tαδ
αα̂, λ = λ

α̂
Tα̂, N = −{ω̄, λ̄}. (2.5)

The world-sheet covariant derivatives in the action are defined as

∇ = ∂ + [J0, ], ∇ = ∂ + [J0, ].

The BRST charge is given by

Q =

∮
dσTr [λJ3 + λJ̄1]. (2.6)

We study classical solutions with vanishing BRST charge. A simple way to get this is

with J3 = J1 = 0 or with vanishing λ and λ.

The theory is also constrained by the conformal symmetry which is generated by the

stress tensor. The classical stress tensor is given by

T =
1

α′Tr [J2J2 + 2J1J3 + ω∇λ], T =
1

α′Tr [J2J2 + 2J1J3 + ω∇λ]. (2.7)

Using the world-sheet equations of motion, it can be shown that T is holomorphic and

T is antiholomorphic. The conformal transformation of the group element g is

δg = ε∂g + ε∂g, (2.8)

where ε is a holomorphic parameter and ε is an antiholomorphic parameter. The pure

spinor variables transform as

δλ = ε∂λ+ ε∂λ, δω = ∂(εω) + ε∂ω (2.9)

δλ̂ = ε∂λ̂+ ε∂λ̂, δω̂ = ∂(εω̂) + ε∂ω̂.

It is possible to show that, under (2.8) and (2.9), the action (2.1) is invariant. A similar cal-

culation shows that, using Noether theorem, (2.7) are the conserved quantities determined

by this symmetry.

3 Background field expansion

We are interested in σ independent classical solutions which are not necessarily BPS. For

instance, the action (2.1) has a classical non BPS bosonic solution with energy E and

angular momentum J in one direction of S5. The solution is given by the group element

g = eα
′τ(−ET+J J), (3.1)

where τ is the time coordinate of the world-sheet. Here T is the translation along the

time-like direction of AdS5 and J is a translation along a great equator of S5. Note that

both T and J belong to H2. The pure spinor variables are zero for this solution.

To show that E and J are the energy and the angular momentum of the classical

solution, we first find the conserved current due to the global PSU(2, 2|4) symmetry of the

action (2.1). Infinitesimally, we have δg = εg and we follow the Noether procedure to find
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the conserved current. That is, we assume ε to be non-constant such that the action varies

with a term linear in the derivative of ε. Varying the action (2.1) we obtain

δS = 〈∂εj + ∂εj〉, (3.2)

where

j = g

(
1

2
J2 +

3

4
J3 +

1

4
J1 +N

)
g−1, j = g

(
1

2
J1 +

1

4
J3 +

3

4
J1 + N̂

)
g−1. (3.3)

For the solution (3.1) the non-zero currents are J2 = J2 = (−ET +J J). We have that the

energy and the angular momentum of the classical string configuration are given by

E =
1

2πα′

∮
dσStr(Tjτ ), (3.4)

J =
1

2πα′

∮
dσStr(Jjτ ).

Note that the classical Virasoro constraint is violated if E 6= |J |

T = T̄ =
α′

4
(−E2 + J 2).

We now expand around the classical solution g = g0e
√
α′X , where X belongs to H1 +

H2 +H3. This is a gauge choice. This gauge choice does not preserve the other classical

symmetries. Consider a BRST transformation

QBg = g(λ+ λ̂).

From here, we obtain

e−
√
α′XQBe

√
α′X = λ+ λ̂, (3.5)

and expanding the left hand side,

√
α′QBX + α′ 1

2
[QBX,X] + · · · = λ+ λ̂. (3.6)

We try to determine the BRST transformation of X as an expansion in powers of X, that is

QBX =
1√
α′

∑

n=0

(QB)nX, (3.7)

where (QB)nX contains n powers of
√
α′X. Plugging this expansion in (3.5) we obtain that

QBX =
1√
α′ (λ+ λ̂)− 1

2
[(λ+ λ̂), X] + · · · . (3.8)

Since the original X does not have an H0 component, and [λ,X3] + [λ̂, X1] belongs to H0,

this BRST transformation does not preserve the form of g. Note that this analysis does

not depend on the form of the background. To preserve our initial gauge choice we have

to perform a compensating SO(1, 4)× SO(5) gauge transformation. The SO(1, 4)× SO(5)

– 4 –
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gauge transformations for X0 is given by δX0 = 1√
α′
Λ, where Λ ∈ SO(1, 4) × SO(5). The

H0 component in (3.8) can be eliminated if we choose Λ =
√
α′

2 [λ,X3] +
√
α′

2 [λ̂, X1] + · · · .
This compensating gauge transformation will affect all fields, since now the BRST trans-

formation should come together with it. In particular, the pure spinor ghosts now have a

non vanishing BRST transformation.

A similar problem happens when we consider the conformal transformation of the

gauge group element (2.8) which implies

e−
√
α′Xδe

√
α′X=ε(e−

√
α′X∂e

√
α′X+e−

√
α′XJ(0)e

√
α′X)+ε(e−

√
α′X∂e

√
α′X+e−

√
α′XJ (0)e

√
α′X),

(3.9)

where J(0) and J (0) are the components of the Metsaev-Tseytlin currents evaluated in

the background (3.1). Note that these currents have values in H2 only. Expanding the

exponentials in (3.9) we have
√
α′δX+α

′ 1

2
[
√
α′dX,X]+· · · = ε(J(0)+

√
α′∂X+

√
α′[J(0), X]+· · · )+ε(J(0)+

√
α′∂X+

√
α′[J(0), X]+· · · ).

(3.10)

As before, we try to solve this equation in powers of X such that

δX =
1√
α′

∑

n=0

δnX, (3.11)

where δnX contains n powers of
√
α′X. Then, up to first order in X,

δX = ε

(
1√
α′J(0)+ ∂X +

1

2
[J(0), X] + · · ·

)
+ ε

(
1√
α′J(0)+ ∂X +

1

2
[J(0), X] + · · ·

)
. (3.12)

Since the original X does not have an H0 component, and [J(0), X2] belongs to H0, this

conformal transformation does not preserve the gauge choice for X. The compensating

gauge transformation to restore the gauge choice forX in this case is Λ = −
√
α′ ε

2 [J(0), X2]−√
α′ ε̄

2 [J(0), X2] + · · · , where · · · are higher order terms in α′. Another way to obtain these

transformations is to use canonical quantization. In this case, the momenta conjugate

to the fields have higher order corrections and these corrections are used to replace time

derivatives of X.

3.1 Expansion of the action

Before expanding the action, we need to determine up to what order we will expand it to

check BRST and conformal invariance. Generically, the action is expanded as

S = S0 + S1 + S2 + S3 + · · · , (3.13)

where Sn is of order n in (X,λ, ω, λ̂, ω̂). Note that S0 is the value of the action for the back-

ground and S1 vanishes because the background satisfies the classical equations of motion.

Consider the BRST symmetry first. The transformation for the world-sheet fields

are given by (3.8). Note that they start with a term linear in (X,λ, ω, λ̂, ω̂), then QB =

(QB)0 + (QB)1 + · · · . When we act the BRST generator on the action, we can expand

QBS as an expansion in powers of (X,λ, ω, λ̂, ω̂) as

QBS = (QB)0S2 + ((QB)0S3 + (QB)1S2) + · · · . (3.14)

– 5 –
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The invariance of the action order by order implies

(QB)0S2 = 0, ((QB)0S3 + (QB)1S2) = 0. (3.15)

Then, if we want to test BRST invariance up to the the order shown above, then the action

has to be expanded up to order three in (X,λ, ω, λ̂, ω̂).

Consider now the conformal symmetry. The transformation for the world-sheet fields

are given by (2.9) and (3.12). Note that they start with a term independent of X in (3.12),

then δ = δ0 + δ1 + · · · . When we vary the action under the conformal transformations, δS

can be written as an expansion in powers of (X,λ, ω, λ̂, ω̂) as

δS = δ0S2 + (δ1S2 + δ0S3) + · · · . (3.16)

The action is invariant order by order implies

δ0S2 = 0, (δ1S2 + δ0S3) = 0. (3.17)

Then, if we want to test conformal invariance up to the the order shown above, we are

again led to the conclusion that the action the action has to be expanded up to order three

in (X,λ, ω, λ̂, ω̂).

We now expand the action up to order three in the quantum fields (X,λ, ω, λ̂, ω̂). We

expand the action (2.1) around the background given in (3.1), that is g = g0e
√
α′X with

g0 given as in (3.1) and X = X1 +X2 +X3. This solution is such that J(0) = J (0). The

Metsaev-Tseytlin current becomes

J = g−1dg = e−
√
α′XJ(0)e

√
α′X + e−

√
α′Xde

√
α′X , (3.18)

where d represents ∂ and ∂. Expanding, we obtain

J = J(0) +
√
α′J(1) +

α′

2
J(2) +

α′ 32

6
J(3) + · · · , (3.19)

where

J(1) = dX + [J(0), X], J(2) = [J(1), X], J(3) = [J(2), X], · · · .
We plug these expansions into (2.1) and determine S2 to be

S2 = 〈1
2
∂X2∂X2 + ∂X1∂X3 +

1

2
J(0)([X1, ∂X1] + [X3, ∂X3])〉 (3.20)

+〈1
2
J(0)

[
[J(0), X2], X2

]
+ ω∂λ+ ω̂∂λ̂〉.

To verify conformal invariance, we need the action up to order 3 because of (3.17). Note that

δ1S2 contains quantum fluctuations of order 2, then we have to search for terms of order 2 in

δ0S3. Since, the S3 is of order 3, its variation is of the form 〈XXδX〉. Then, to get terms of

order 2 here, we need variations of X which are independent of the quantum fluctuation X.

The only one are X2. Therefore, we determine the terms involving X2 only in S3. They are

1√
α′S3 = 〈−1

8
X1([∂X1, ∂X2] + [∂X2, ∂X1]) +

1

4
X2([∂X3, ∂X3]− [∂X1, ∂X1]) (3.21)
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+
1

8
X3([∂X2, ∂X3] + [∂X3, ∂X2])〉

+〈J(0)
(
1

3

[
[∂X2 + ∂X2, X2], X2

]
+

1

24

[
[5∂X1 + 11∂X1, X3], X2

])
〉

+〈J(0)
(

1

24

[
[11∂X3 + 5∂X3, X1], X2

]
+

1

24

[
[5∂X2 − ∂X2, X3], X1

])
〉

+〈J(0)
(
1

6

[
[2∂X3 − ∂X3, X2], X1

]
− 1

6

[
[∂X1 − 2∂X1, X2], X3

])
〉

−〈J(0)
(

1

24

[
[∂X2 − 5∂X2, X1], X3

])
〉

+〈1
3
[J(0), X1]

([
[J(0), X2], X1

]
+
[
[J(0), X1], X2

])
〉

−〈1
6
[J(0), X2]

([
[J(0), X3], X3

]
+
[
[J(0), X1], X1

])
〉

+〈1
3
[J(0), X3]

([
[J(0), X2], X3

]
+
[
[J(0), X3], X2

])
〉

+〈J(0)[X2, N + N̂ ]〉.

Note that the first two lines in (3.21) becomes, after integrating by parts,

〈1
2
X2([∂X3, ∂X3]− [∂X1, ∂X1])〉.

Also note that

〈[J(0), X1]
[
[J(0), X1], X2

]
〉 = 〈[J(0), X3]

[
[J(0), X3], X2

]
〉 = 0.

Apart from being important to the symmetries of the action, these cubic terms are

necessary to compute the canonical momenta for some variables.

4 A BPS background

The background around which we choose to quantize the string is given by

g0 = eα
′EτT eα

′J τJ . (4.1)

It describes a point-like string rotating along an equator in S5. The only non vanishing

left invariant current is

Jτ = g−1
0 ∂τg = α′ET + α′J J. (4.2)

One can see immediately see that such classical configurations satisfy the equations of

motion. The classical Virasoro constraint for such configuration reads

T + T̄ =
1

2α′Str J̃τ J̃τ =
α′

2
(−E2 + J 2) = 0. (4.3)

and it implies that E = |J |, which is the usual BPS condition. Later we will see that

there are quantum corrections to this constraint. We can also calculate the value of the

conserved current

jτ =
1

2πα′ gJτg
−1 =

1

2π
(ET + J J), (4.4)

– 7 –
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the charges are given by

E = −
∮
dσTr [Tjτ ] =

1

2π

∮
dσE = E , J =

∮
dσTr [Jjτ ] =

1

2π

∮
dσJ = J . (4.5)

which confirms the claim that this is a BPS solution, i.e. E − J = 0, when E = J . From

now on we will set E = J . The BMN limit is

α′ → 0 , J → ∞ , α′J = finite.

4.1 Expansion of the action

Now that we know the background, we would like to know what is the spectrum of quantum

fluctuations around it. In order to do that, we use the background field quantization. The

quantum coset element is

g = g0e
√
α′X , where X = tT+φJ+XAPA+X

IPI+ΘaQa+ΘȧQȧ+Θ̂aQ̂a+Θ̂ȧQ̂ȧ. (4.6)

Using (3.20) and the conventions in appendix A we get the pure spinor action for the

superstring on a pp-wave background

S =
1

π

∫
d2z

{
1

2

(
−∂t∂̄t+ ∂φ∂̄φ+ ∂Xi∂̄Xi − α′2J 2

4
XiXi

)
+ (4.7)

+∂Θ̂â∂̄ΘbΠâb − i
Jα′

4

(
Θaδab∂̄Θ

b + Θ̂âδ
âb̂
∂Θ̂b̂

)
+ ωa∂̄λ

a + ω̄â∂λ̄
â +

+∂Ψ̂ȧ∂̄ΨḃΠ ˙̂aḃ + ωȧ∂̄λ
ȧ + ω̄ ˙̂a∂λ̄

˙̂a

}

where i = (A, I) and we have renamed Θȧ → Ψȧ and Θ̂
˙̂a → Ψ̂ȧ. Note that the ghost action

is just the same as in flat space. This is so because we are keeping only second order terms,

we don’t have any contribution from [J0, λ] or NN̄ . These are the leading terms for the

action at the BMN limit. However, we are going to see that the cubic action (3.21) still

contributes when one computes the conjugate momenta.

4.2 Equations of Motion and Quantization

The equations of motion that come from the action (4.7) are

∂∂̄t = ∂∂̄φ =
(
4∂∂̄ + J 2α′2

)
XI = ∂∂̄Ψȧ = ∂∂̄Ψ̂ȧ = 0 (4.8)

∂∂̄Θ+ i
Jα′

2
Π∂Θ̂ = ∂∂̄Θ̂− i

Jα′

2
Π∂̄Θ = 0 (4.9)

The solutions for the bosonic coordinates are the standard ones

t = t0 + ptτ +
∑

n 6=0

(tnfn + t̄nf̄n), φ = φ0 + pφτ +
∑

n 6=0

(φnfn + φ̄nf̄n). (4.10)

Ψ = ψ −Πp
ψ̂
τ +

∑

n 6=0

(ψnfn + ψ̄nf̄n), Ψ̂ = ψ̂ +Πpψτ +
∑

n 6=0

(ψ̂nfn +
¯̂
ψnf̄n) (4.11)
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Xi = cos(Jα′τ)(ai+ + ai−) + i
1

Jα′ sin(Jα
′τ)(ai+ − ai−) +

∑

n 6=0

(xingn + x̄inḡn) (4.12)

Θ = cos(Jα′τ)θ0−sin(Jα′τ)Πθ̂0+
∑

n 6=0

(
θngn−

i

Jα′ (ωn−n)Πθ̂nḡn
)
+
∑

n

ϑnfn (4.13)

Θ̂ = cos(Jα′τ)θ̂0+sin(Jα′τ)Πθ0+
∑

n 6=0

(
θ̂nḡn+

i

Jα′ (ωn−n)Πθngn
)
+
∑

n

ϑ̂nf̄n (4.14)

λ =
∑

n

λnfn, ω =
∑

n

ωnfn, λ̄ =
∑

n

λ̄nf̄n, ω̄ =
∑

n

ω̄nf̄n. (4.15)

where

fn = e−in(τ−σ) , f̄n = e−in(τ+σ) , gn = e−i(ωnτ−nσ) , ḡn = e−i(ωnτ+nσ) , ωn = ±
√
(Jα′)2 + n2.

The conjugate momenta for the quantum fluctuations are computed using the standard

definition in terms of the variation of the action with respect to their time derivatives.3

For the transverse fields and spinors we have

P i = ∂τX
i , PΨ = ∂τ Ψ̂Π , PΨ̂ = −∂τΨΠ, PΘ = ∂τ Θ̂Π− Jα′

2
Θ, PΘ̂ = −∂τΘΠ− Jα′

2
Θ̂ (4.16)

The system is quantized using standard equal-time commutation relations

[Pi, (τ, σ), X
j(τ, σ′)] = −iδji δ(σ − σ′), [Pt, (τ, σ), t(τ, σ

′)] = −iδ(σ − σ′), (4.17)

[Pφ, (τ, σ), φ(τ, σ
′)] = −iδ(σ − σ′), {Pψ, (τ, σ),Ψ(τ, σ′)} = iδ(σ − σ′), (4.18)

{PΘ, (τ, σ),Θ(τ, σ′)} = iδ(σ − σ′), {PΘ̂, (τ, σ), Θ̂(τ, σ′)} = iδ(σ − σ′). (4.19)

The only subtle point is that, as we will see shortly, the stress-energy tensor has a liner

term in ∂t and ∂φ. Because of this, when computing their conjugate momenta, we have to

go to cubic order of quantum fields (3.21) . These higher order corrections are interpreted

as corrections to the time derivatives of t and φ when we replace them with the momenta.

From the cubic part of the action we find

Pt = −∂τ t+
√
α′

(

α
′JXAXA − i

2
(Θa∂σΘa +Ψȧ∂σΨȧ − Θ̂a∂σΘ̂a − Θ̂ȧ∂σΘ̂ȧ) +

i

2
α
′JΠȧḃΘȧΘ̂ḃ

)

, (4.20)

Pφ = ∂τφ−
√
α′

(

α
′JXIXI −

i

2
(Θa∂σΘa −Ψȧ∂σΨȧ − Θ̂a∂σΘ̂a + Θ̂ȧ∂σΘ̂ȧ)−

i

2
α
′JΠȧḃΘȧΘ̂ḃ

)

. (4.21)

These equations we be used to replace τ derivatives, and are interpreted as corrections to

τ derivatives, not the momenta.

The quantum conserved charges are calculated from

jτ =
1

2πα′ g[(J2)τ + (J1)τ + (J3)τ +N + N̄ ]g−1

using the classical solution and the quantum fluctuations. The charge of a particular

generator TA is given by

QA =
1

2πα′

∮
dσTr [TAg[(J2)τ + (J1)τ + (J3)τ +N + N̄ ]g−1] (4.22)

3For fermions the definition is with the right derivative.
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The charges E and J are straightforward to compute up to second order in quantum fields

E = J +
1

2πα′

∮
dσ

[√
α′∂τX

0 + α′δab(Θ
a∂τΘ

b + Θ̂a∂τ Θ̂
b) + α′δ

ȧḃ
(Ψȧ∂τΨ

ḃ + Ψ̂ȧ∂τ Ψ̂
ḃ)
]
, (4.23)

J = J +
1

2πα′

∮
dσ

[√
α′∂τX

5 + α′δab(Θ
a∂τΘ

b + Θ̂a∂τ Θ̂
b)− α′δ

ȧḃ
(Ψȧ∂τΨ

ḃ + Ψ̂ȧ∂τ Ψ̂
ḃ)
]

In the BMN limit only the constant and first terms contribute to these charges. So the

leading contribution to E− J is

E− J =
1

2π
√
α′

∮
dσ[Pt − Pφ] =

1√
α′ [pt − pφ]. (4.24)

4.3 Spectrum

In the BMN limit we have a free field theory with massless and massive excitations. To

know the spectrum, we have to impose BRST and Virasoro conditions. The stress-energy

tensor up to quadratic order in quantum fields in this background is given by:

T = ∂Xm∂Xnηmn −
1√
α′ (Jα

′)∂(t− φ)− (Jα′)2

4
XiXi − (4.25)

−2∂Ψȧ∂Ψ̂ḃΠ
ȧḃ

− 2∂Θa∂Θ̂bΠab − i
Jα′

2
Θaδab∂Θ

b − i
Jα′

2
Θ̂aδab∂Θ̂

b

T̄ = ∂̄Xm∂̄Xnηmn −
1√
α′ (Jα

′)∂̄(t− φ)− (Jα′)2

4
XiXi − (4.26)

−2∂̄Ψȧ∂̄Ψ̂ḃΠ
ȧḃ

− 2∂̄Θa∂̄Θ̂bΠab − i
Jα′

2
Θaδab∂̄Θ

b − i
Jα′

2
Θ̂aδab∂̄Θ̂

b

Using (4.20) and (4.21) the replace time derivatives of t and φ and the mode expansion,

the zero mode of the Virasoro constraint is given by

L0 + L̄0 =

∮
dσ(T + T̄ ) = 4Jα′ − 1

2
p2t +

1

2
p2φ + J

√
α′(−pt + pφ) + pψpψ̂ + (4.27)

+θ0Πθ̂0 + Jα′ai+a
i
− +

∑

n>0

ωn(x
i
−nx

i
n + x̄i−nx̄

i
n + θa−nθ

a
n + θ̂a−nθ̂

a
n) +

+
∑

n>0

n(t−ntn + t̄−nt̄n + φ−nφn + φ̄−nφ̄n + ψ−nψ̂n + ψ̂−nψn)

We see that the energy momentum tensor just counts the energy and the number of modes

on some particular state. The normal ordering constant 4Jα′ comes from the eight massive

bosons. The massive spinors do not contribute. As usual, physical states have to be

annihilated by both T and T̄ . Another requirement for physical states is that they are

annihilated by the BRST charge, which up to quadratic order is

Q =

∮
dσTr [λJ3 + λ̄J̄1] =

∮
dσ

[
Π
ȧḃ
λȧ∂Θḃ +Π

ȧḃ
λ̂ȧ∂̄Θ̂ḃ + (4.28)

+Πabλ
a

(
∂Θb +

Jα′

2
ΠbcΘ̂

c

)
+Πabλ̂

a

(
∂̄Θ̂b − Jα′

2
ΠbcΘ

c

)]
.

Inserting the mode expansion into the BRST charge we see that the massive fermionic

modes decouple, and only the massless fermions remain. This means that the all massive
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modes create physical states and the massless ones decouple from the spectrum.4 At this

order in quantum fields the bosonic fluctuations do not appear in the BRST charge. The

restriction imposed on these fields will come from the Virasoro condition.

We define the vacuum |0〉 to be annihilated by all positive modes. Excited states are

created by acting with other modes. Physical states should have ghost number (1, 1). The

simplest one was introduced by Berkovits [25] and describes the radius modulus. In the

notation of the previous section this state is given by (λaλ̄bΠab + λȧλ̄ḃΠ
ȧḃ
)|0〉 and we will

denote it by |λλ̄〉. Acting with the charges we have E|λλ̄〉 = J |λλ̄〉 and J|λλ̄〉 = J |λλ̄〉. The
normal ordering constant in T + T̄ means that this state is not annihilated by it. To fix

this we consider another state

|Ω〉 = e−2i
√
α′(x0−x5)|λλ̄〉, (4.29)

computing its E− J we find it is 4. This is in fact consistent with the identification made

in [25]. This string state corresponds to the SYM operator

Tr[F 2ZJ ]

Another was to compensate the Virasoro constraint it to add zero modes of the massive

spinors. For instance, consider the state

|70〉 = θa0θ
b
0θ
c
0θ
d
0 |λλ̄〉,

it corresponds to a KK mode with J charge J of the graviton and self-dual four form.

Breaking the SO(8) spinors to SO(4)× SO(4) spinors, one element of the above multiplet

corresponds to Tr [ZJ+2]. Similarly, we can construct all 128+128 lowest states expected.

Since all massive modes of Θ decouple from the BRST charge, these are all physical states.

The massless spinors are not BRST-closed in the scalar ghost vacuum. It is interesting

to note that they are all constructed on the scalar combination of the pure spinor ghosts.

This is a sharp contrast with the flat space spectrum. But it should be pointed out that

the Jα′ → 0 limit do not correspond to flat space. In summary, the lowest states are

E− J = 4 : e−2i
√
α′(x0−x5)|λλ̄〉 1

E− J = 3 : θa0e
− 3

2
i
√
α′(x0−x5)|λλ̄〉 8

E− J = 2 : θa0θ
b
0e

−i
√
α′(x0−x5)|λλ̄〉 28

E− J = 1 : θa0θ
b
0θ
c
0e

− 1
2
i
√
α′(x0−x5)|λλ̄〉 56

E− J = 0 : θa0θ
b
0θ
c
0θ
d
0 |λλ̄〉 70

(4.30)

States with more θ’s are complex conjugates of the ones above. Further states can be

obtained acting with the zero modes of the transverse directions. The first type of excited

state is the one that changes the values of E and J in such way that E−J = 0. This states is

|Ωn〉 = θa0θ
b
0θ
c
0θ
d
0e

−in
√
α′(x0+x5)|λλ̄〉, (4.31)

4We will see bellow that the full spectrum can be constructed using only a scalar combination of ghost

vacuum.
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where n = 1, 2, . . . is quantized because x5 is an angle variable. This state satisfy both

Virasoro and BRST conditions. With the quantum conserved charges we can verify that

E|Ωn〉 = (J + n)|Ω〉, J|Ω〉 = (J + n)|Ωn〉. (4.32)

One of its components corresponds to

Tr[ZJ+2+n].

In the state above, n can be positive or negative. However, it cannot be of order 1/α′, since
higher order terms in the action would be needed to study it. This is not surprising, since

a state with such large negative n would correspond to a state with finite J charge. It is

precisely this feature the differentiates the pure spinor quantization with light-cone GS. In

GS, the J charge is fixed to be the string length. Since the pure spinor case is conformal,

it is natural to expect that the we can change J by finite amounts.

Higher stringy states are created by the non zero modes of the massive world sheet

fields satisfying level match condition. For example, consider

xI−nx̄
J
−nθ

a
0θ
b
0θ
c
0θ
d
0 |λλ̄〉,

however, this state does not satisfy the Virasoro condition. The same was as above, we fix

this adding an exponential

xI−nx̄
J
−nθ

a
0θ
b
0θ
c
0θ
d
0e

−i∆
2

√
α′(x0−x5)|λλ̄〉,

where

∆ =
2

Jα′
√
(Jα′)2 + n2 = 2

√
1 +

n2

(Jα′)2

Computing E− J, we find that is it indeed ∆. Thus, we derive the full sting spectrum

on a pp-wave background. In [11], the physical state considered was of this form, however,

there the background value of E was left as a parameter to be fixed using conformal

invariance. One could repeat the analysis of that paper using the same strategy as the one

used here.

5 Conclusion

We have studied the application of the background field method to the AdS5 × S5 pure

spinor superstring around classical solution describing point-like strings. In the BMN limit

the action is quadratic in the quantum fields and the spectrum can be computed exactly.

The pure spinor description of the BMN limit given here resembles the standard Green-

Schwarz description, as opposed to the description given in [19]. There the BMN limit is

described by a contraction of the psu(2, 2|4) algebra and the resulting action is non linear.

Although the action given here is quadratic, the world-sheet and space-time symmetries

act non-linearly on the fields.

The main motivation for the present work was to understand the symmetries of these

constant backgrounds in order to further understand the model proposed to compute the
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energy of the Konishi state in [11]. A key assumption in [11] is that conformal invariance is

preserved at quantum level. Although a general argument for quantum conformal invari-

ance was given in [8], an explicit computation for that case remains to be done. Another

possible application is to use this formulation to compute scattering amplitudes in the

BMN background. As pointed out in [19], such amplitudes would be easier to compute

using the pure spinor formulation.
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A Conventions

We will use an so(4)× so(4) decomposition of the psu(2, 2|4) algebra. The generators will

be denoted by:

H0=(MAB,MA,MIJ ,MI), H2=(T, PA, J, PI), H1=(Qa, Qȧ), H3=(Q̂a, Q̂ȧ). (A.1)

The non zero commutators are given by

[MAB,MCD]=−δA[CMD]B+δA[CMD]B, [MAB,MC ]=δC[AMB], [MA,MB]=−MAB, (A.2)

[MIJ ,MKL]=−δI[KML]J + δJ [KML]I , [MIJ ,MK ] = δK[IMJ ], [MI ,MJ ] =MIJ . (A.3)

[T, PA]=−MA, [PA, PB] = −MAB, [J, PI ] =MI , [PI , PJ ] =MIJ . (A.4)

[MAB, T ]=0, [MAB, PC ] = δC[APB], [MA, T ] = −PA, [MA, PB] = −δABT, (A.5)
[MIJ , J ]=0, [MIJ , PK ] = δK[IPJ ], [MI , J ] = PI , [MI , PJ ] = −δIJJ. (A.6)

[MAB, Qa]=
1

2
(σAB)abQb, [MAB, Qȧ] =

1

2
(σAB)ȧḃQḃ, (A.7)

[MA, Qa]=
1

2
(σA)aḃQḃ, [MA, Qȧ] =

1

2
(σA)ȧbQb, (A.8)

[MIJ , Qa]=
1

2
(σIJ)abQb, [MIJ , Qȧ] =

1

2
(σIJ)ȧḃQḃ, (A.9)

[MI , Qa]=
1

2
(σI)aḃQḃ, [MI , Qȧ] = −1

2
(σI)ȧbQb. (A.10)

[MAB, Q̂a]=
1

2
(σAB)abQ̂b, [MAB, Q̂ȧ] =

1

2
(σAB)ȧḃQ̂ḃ, (A.11)

[MA, Q̂a]=
1

2
(σA)aḃQ̂ḃ, [MA, Q̂ȧ] =

1

2
(σA)ȧbQ̂b, (A.12)

[MIJ , Q̂a]=
1

2
(σIJ)abQ̂b, [MIJ , Q̂ȧ] =

1

2
(σIJ)ȧḃQ̂ḃ, (A.13)

[MI , Q̂a]=
1

2
(σI)aḃQ̂ḃ, [MI , Q̂ȧ] = −1

2
(σI)ȧbQ̂b. (A.14)
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[T,Qa]=[J,Qa] =
1

2
ΠabQ̂b, [T,Qȧ] = −[J,Qȧ] =

1

2
Π
ȧḃ
Q̂
ḃ
, (A.15)

[PA, Qa]=
1

2
(σA)aḃΠḃċQ̂ċ, [PA, Qȧ] =

1

2
(σA)ȧbΠbcQ̂c, (A.16)

[PI , Qa]=
1

2
(σI)aḃΠḃċQ̂ċ, [PI , Qȧ] =

1

2
(σI)ȧbΠbcQ̂c. (A.17)

[T, Q̂a]=[J, Q̂a] = −1

2
ΠabQb, [T, Q̂ȧ] = −[J, Q̂ȧ] = −1

2
Π
ȧḃ
Q
ḃ
, (A.18)

[PA, Q̂a]=−1

2
(σA)aḃΠḃċQċ, [PA, Q̂ȧ] = −1

2
(σA)ȧbΠbcQc, (A.19)

[PI , Q̂a]=−1

2
(σI)aḃΠḃċQċ, [PI , Q̂ȧ] = −1

2
(σI)ȧbΠbcQc. (A.20)

{Qa, Qb}=−iδab(T−J), {Qa, Qḃ}= iσAaḃPA+iσ
I

aḃ
PI , {Qȧ, Qḃ}=−iδ

ȧḃ
(T+J). (A.21)

{Q̂a, Q̂b}=−iδab(T−J), {Q̂a, Q̂ḃ}= iσAaḃPA+iσ
I

aḃ
PI , {Q̂ȧ, Q̂ḃ}=−iδ

ȧḃ
(T+J). (A.22)

{Qa, Q̂b}=
i

2

(
(σAB)acΠcbMAB − (σIJ)acΠcbMIJ

)
, (A.23)

{Qa, Q̂ḃ}=−i
(
(σA)aċΠċḃMA + (σI)aċΠċḃMI

)
, (A.24)

{Qȧ, Q̂ḃ}=
i

2

(
(σAB)ȧċΠċḃMAB − (σIJ)ȧċΠċḃMIJ

)
, (A.25)

{Qȧ, Q̂b}=−i
(
(σA)ȧcΠcbMA − (σI)ȧcΠcbMI

)
. (A.26)
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