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Abstract: A holographic description of BCS superconductivity is given in [1]. This model

was constructed by insertion of a pair of D8-branes on a D4-background. The spectrum of

intersectingD8-branes has tachyonic modes indicating an instability which is identified with

the BCS instability in superconductors. Our aim is to study the stability of the intersecting

branes under finite temperature effects. Many of the technical aspects of this problem

are captured by a simpler problem of two intersecting D1-branes on flat background. In

the simplified set-up we compute the one-loop finite temperature corrections to the tree-

level tachyon mass-squared-squared using the frame-work of SU(2) Yang-Mills theory in

(1 + 1)-dimensions. We show that the one-loop two-point functions are ultraviolet finite

due to cancellation of ultraviolet divergence between the amplitudes containing bosons and

fermions in the loop. The amplitudes are found to be infrared divergent due to the presence

of massless fields in the loops. We compute the finite temperature mass-squared correction

to all the massless fields and use these temperature dependent masses-squared to compute

the tachyonic mass-squared correction. We show numerically the existence of a transition

temperature at which the effective mass-squared of the tree-level tachyons becomes zero,

thereby stabilizing the brane configuration.
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1 Introduction

There have been many applications of the AdS/CFT correspondence to understand con-

densed matter systems. When there are gapless modes present these systems are described

by conformal field theories at low energies. This can happen at second order phase tran-

sitions, but also in metals where the excitations above the Fermi surface are gapless. For

recent developments see [2]–[9].

At low temperatures metals are unstable towards electron Cooper pair formation and

an energy gap develops. This is the BCS instability. The Cooper pairs are charged and so

the condensate breaks the U(1) of electromagnetism and the photon effectively becomes

massive as a result of the Higgs phenomenon. The energy gap ensures that at low frequen-

cies there is no dissipation of energy when a current flows. The mass of the photon results

in the exponential fall off of the magnetic field inside a superconductor. These are typical

characteristics of superconductors. Studies of various types of superconductors using holo-

graphic techniques have been been the subject of research for the past few years. A partial

list of references is [10]–[12, 13].

Inspired by this BCS phenomenon Nambu and Jona-Lasinio gave a description of

chiral symmetry breaking in strong interactions [14, 15]. Their starting point was a non

renormalizable model with four Fermi interactions. The pairing between quarks and anti-

quarks is analogous to Cooper pairing. The main point of difference (as summarized in [1])

is that due to the absence of a Fermi surface this instability in QCD happens only for large

enough coupling. Another point of difference is that the resultant condensate breaks an

axial symmetry (rather than a vector symmetry as in BCS)- the U(1) chiral symmetry that

is present in QCD (in the absence of bare mass to quarks).

A holographic dual of 3+1 QCD was constructed in [16] starting from M theory on

AdS7 × S4. Many interesting calculations have been done with this model including cal-

culation of the glueball mass spectrum - albeit at strong bare coupling [17]–[22–24]. An

extension of this model to include flavor degrees of freedom was constructed by Sakai and

Sugimoto [25]. Various aspects of this model was further explored in [26]–[31, 32]. The

flavour branes are D8 branes hanging down from the boundary (where they intersect the

D4 branes) and are wrapped on S4. It was shown that when there are D8 branes and

D8 anti branes, a stable configuration is described by the brane and anti-brane bending

towards each other and joining to form a continuous U-shaped brane. Since the branes

describe left handed quarks and anti-branes describe right handed quarks (or left handed

anti quarks) this U configuration breaks chiral symmetry.

In [1] the Sakai-Sugimoto model was modified to describe BCS superconductivity. The

Sakai Sugimoto model has unbroken vector like symmetries corresponding to the flavour

group. Thus for two flavours there is a U(2). In [1] it was shown that in the presence of a

finite chemical potential for the U(1) embedded in SU(2), a D8 brane and an anti D8 brane

cross each other. Such a configuration is known to be tachyonic and it has been argued

that the stable configuration to which this flows has a non zero charged condensate that

Higgses the U(1) symmetry [33–40]. In [1] analytical solutions were given for such systems

by solving the Yang-Mills equations describing intersecting branes in flat space-time. Semi
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analytic and numerical solutions were also given in the curved background of this modified

Sakai-Sugimoto model.

Being a strongly coupled system the expression for the gap in terms of the coupling

and other parameters is different from weak coupling BCS. The gap and thus the transition

temperature are expected to be larger here. For weak coupling the relation is ∆ ≈ ǫce
− 1

g dn
dǫ ,

whereas for strong coupling one expects ∆ ≈ ǫcg
dn
dǫ . Here ǫc is some parameter of the metal

that fixes the region around the Fermi surface that participates in the pair formation.

In this paper we attempt to calculate the transition temperature for the model de-

scribed in [1]. We do this in flat space-time for simplicity. The low energy theory on the

brane can be described by the DBI action for the massless fields on the brane. This is valid

as long as only energies ≪ 1
α′ are being probed. The DBI action describes the effect of

“integrating out classically” (i.e. via equations of motion) the massive modes of the string.

However even if the massive modes are integrated out in the quantum theory, the resul-

tant action for the massless modes would look like supersymmetric Yang-Mills corrected

by higher dimensional operators down by powers of α′ - very similar to the DBI action.

We can study this as a quantum theory with a cutoff Λ < 1√
α
′ and proceed to study the

corrections due to the massless mode quantum and thermal fluctuations. Since the Yang-

Mills action is renormalizable, we know that the effect of the irrelevant higher dimension

operators is to make finite renormalizations of the lower dimensional operators. This is

just a re-phrasing of the decoupling theorem: if the low energy theory is renormalizable

the massive modes decouple and further the ambiguities associated with the physics at and

above the cutoff scale can be absorbed into a renormalization of the parameters. While this

is a consistent procedure, this is not good enough for us because if we want to estimate

the finite thermal corrections to the action, the finite part should be unambiguous and

cannot be the finite part of an infinite term. Fortunately, because of supersymmetry, the

mass-squared corrections are finite and therefore calculable in principle. More precisely

if we calculate the corrections as a power series in Λ (with Λ ≪ 1√
α
′ ), one expects that

terms that diverge when Λ → ∞ (i.e. positive powers and logarithms) are absent. Thus

all corrections are finite and at most of order E
Λ <

√
α′E where E is a typical energy

scale. Supersymmetry in fact can ensure this even if the theory is not renormalizable as in

Dp-branes with p > 3.

The physical quantity we are interested is the temperature correction to the tachyon

mass-squared. The tachyon mass-squared isO( θ
α′ ) = −q, where θ is the angle of intersection

of the D-branes and q is defined more precisely later. Thus we would like to keep this finite

as 1
α′ → ∞. This can be achieved by taking the limit θ → 0, 1

α′ → ∞ such that q is fixed.

Thus in this limit we can use the supersymmetric Yang-Mills theory on the brane. We

also simplify further the problem by studying D1 branes. Classically the solutions we are

considering depend only on one coordinate. So the solutions are the same for all Dp branes.

Quantum mechanically the fluctuations will be different and the momentum integrals in

Feynman diagrams will be different. However many of the techniques used for D1 branes

should go through since the mass-squared corrections are finite due to supersymmetry.

Even with these simplifications the calculations are already quite involved. The main

reason is that the background configuration about which quantum corrections need to be
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calculated is space dependent. The intersecting D-brane configuration is described by one

of the adjoint scalars having a value that is linear in x, in the form φ = qx . Thus in the

x-direction one cannot use plane waves as a basis. One has to work with eigenfunctions

that are essentially harmonic oscillator wave functions. One should then calculate the

effective potential at finite temperature and then obtain the transition temperature. This

is a rather difficult calculation. In this paper as a first step we adopt the simpler procedure

of calculating the corrections to the tachyon mass-squared and finding the temperature at

which this turns positive. This is not the same thing because positive (mass)2 only ensures

local stability. In any case with these simplifications the calculation becomes tractable.

Even so, some of the calculations have to be done numerically.

There are two technical issues that become complicated because of using Hermite

polynomials instead of plane waves. One is that of showing UV finiteness. As mentioned

above, if the theory has divergent mass-squared corrections that need to be renormalized

then one cannot calculate the transition temperature from first principles because there

is always an arbitrary parameter corresponding to finite mass renormalization. Especially

when calculations have to be done numerically, one needs to be sure that the series being

summed is convergent. This demonstration is made difficult, once again because we cannot

use a plane wave basis. In this paper we show UV finiteness at one loop. This check is also

useful because it ensures that the degrees of freedom counting has been done correctly.

The second complication is that there are many massless modes. This results in in-

frared divergences. The correct solution to this problem is to use a renormalization group

and integrate out high momentum modes first. This should typically induce mass-squared

corrections to the massless modes (unless they are protected) and the final solution to the

RG equations should not have any IR divergences. The full RG is difficult to implement.

However what can be done is to first do a one loop integral where the internal lines have

only modes that do not generate IR divergences. In this step one can calculate the mass-

squared correction to all the massless modes. At the next step one includes the remaining

unintegrated modes in the tachyon mass-squared correction, with corrected massive prop-

agators and now, because there are no massless modes, there are no IR divergences.1 In

practice one needs to calculate mass-squared corrections only for those modes that are

needed for the tachyon mass-squared correction. Thus this procedure takes care of the

infrared divergences.

Once these problems are taken care of one can proceed to a calculation of the finite

temperature correction to the tachyon mass-squared. Both, the temperature independent

finite quantum correction to the masses-squared and the temperature dependent finite cor-

rections are calculated. However in the final calculation of the tachyon mass-squared, which

is done numerically, only the total correction is calculated and plotted. Thus we are able

to calculate numerically the transition temperature at which the tachyon becomes massive.

As mentioned above this calculation needs to be generalized to higher branes. Also

instead of calculating the correction to the mass-squared one should do a more complete

1At this point one is going beyond the one loop approximation and one has in effect summed an infinite

number of diagrams.
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calculation and calculate the effective potential. Finally one should generalize to curved

space time. This last may not however be very important because most of the dynamics

takes place locally at the intersection point and one should be able to make a simple

extrapolation to curved space locally using the equivalence principle.

This paper is organized as follows. Section 2 is dedicated to the study of mass spec-

trum of intersecting D1-branes at zero temperature in the Yang-Mills approximation. We

choose a background given by the vev of one of the scalar field components. We compute

the normalizable eigenfunctions for all the bosonic fields. Those fields which couple to the

chosen background become massive at the tree-level and have a discrete mass spectrum.

Those fields which do not couple to the background remain massless with a continuous

spectrum. Apart from the massive modes there are also massless modes in the expansion

of some of the bosonic fields which are accompanied with eigenfunctions with zero mass

eigenvalue. The lowest lying modes in the bosonic mass spectrum are the tachyons. In sec-

tion 3 we present the finite temperature analysis with a single scalar field using background

field method. In section 4 we present the finite temperature analysis for the intersecting

D1-branes. In section 4.1 we present the computations for the one-loop bosonic corrections

to the tree-level tachyon mass-squared at finite temperature. The fermionic eigenfunctions

and their contributions to the one-loop corrections are presented in section 4.2. In section 5

we discuss the problems of ultraviolet and infrared divergences of the amplitudes which

arise due to the presence of massless fields in the loop. While the amplitudes containing

bosons in the loop are both IR and UV divergent the amplitudes containing fermions in

the loop are only UV divergent. In section 5.1 we present the computations for the can-

cellation of the UV divergences of the amplitude for the tachyonic mode. To tackle the

IR problem we first compute the one-loop corrections to all the massless fields. Thus we

have all massive fields at one-loop level which then allows us to compute the finite two-

point functions for the tachyonic modes. The one-loop mass-squared corrections to all the

massless fields at finite temperature are computed in the sections 5.3, 5.4, 5.5 and 5.6.

We also discuss their UV finiteness. In section 6.1 we present the numerical computation

of the transition temperature and an analytical estimate of the behaviour of the masses-

squared with varying temperature. For large values of temperature, the masses-squared are

found to grow linearly with temperature. We present relevant details of the computation

in the appendices.

2 Tree-level spectrum

In this section we study the classical mass spectrum for an intersecting D1 brane configu-

ration at zero temperature in the Yang-Mills approximation. The action for two coincident

D1 branes with gauge group SU(2) has been worked out in appendix A. The action (A.13)

is the dimensional reduction of 10 dimensional N = 1 Super Yang-Mills. The equations

of motion in 1 + 1 dimensions have a solution Φ3
1 = qx and A = 0. This corresponds to

an intersecting brane configuration with slope q. Considering this background solution a

fluctuation analysis was done in [33] to analyze the spectrum of the theory. To review this

– 5 –
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analysis we first write down the relevant bosonic part of the action (A.13).

S1
1+1 =

1

g2
tr

∫

d2x

[

−1

2
FµνF

µν +DµΦID
µΦI +

1

2
[ΦI ,ΦJ ]

2

]

. (2.1)

The Bosonic Lagrangian up to the quadratic order in fluctuations separates into various

decoupled sets. In the Aa
0 = 0 (a = 1, 2, 3) gauge we write the decoupled parts sepa-

rately below.

L(A2
x,Φ

1
1) =− 1

2
A2

x∂
2
0A

2
x −

1

2
Φ1
1∂

2
0Φ

1
1 +

1

2
Φ1
1∂

2
xΦ

1
1 − q2x2

1

2
(A2

x)
2

+ qA2
xΦ

1
1 − qx∂xΦ

1
1A

2
x. (2.2)

L(A1
x,Φ

2
1) =− 1

2
A1

x∂
2
0A

1
x −

1

2
Φ2
1∂

2
0Φ

2
1 +

1

2
Φ2
1∂

2
xΦ

2
1 − q2x2

1

2
(A1

x)
2

− qA1
xΦ

2
1 + qx∂xΦ

2
1A

1
x (2.3)

L(ΦI , A
3
x) =− 1

2
Φa
I∂

2
0Φ

a
I +

1

2
Φa
I∂

2
xΦ

a
I −

1

2
q2x2(Φ1

I)
2 − 1

2
q2x2(Φ2

I)
2

− 1

2
A3

x∂
2
0A

3
x (for all I 6= 1). (2.4)

We thus have various decoupled sets of equations at this quadratic order. The solutions

of these equations give the wave functions corresponding to the normal modes. The first

two terms L(A2
x,Φ

1
1) and L(A1

x,Φ
2
1) implies that we have a two coupled sets of equations

for (A2
x,Φ

1
1) and (A1

x,Φ
2
1).

To compute eigenfunctions and the spectrum we first consider the equations for

(A2
x,Φ

1
1) fields. The eigenvalue equation for the spatial part is,

(

m2 − q2x2 −qx∂x + q

2q + qx∂x m2 + ∂2x

)(

A2
x

Φ1
1

)

= 0 (2.5)

where m2 is the eigenvalue. Eliminating, A2
x from the above equations gives the following

equation for Φ1
1,

∂2xΦ
1
1 + [P (x)−Q(x)] Φ1

1 − xP (x)∂xΦ
1
1 = 0 (2.6)

where,

P (x) =
2q2

Q(x)
; Q(x) = q2x2 −m2 . (2.7)

The asymptotic (x→ ∞) form of the equation (2.6) is,

[
∂2x +m2 − q2x2

]
Φ1
1 = 0 (2.8)

which is the Schroedinger’s equation for a harmonic oscillator. The ground state wave

function is e−qx2/2. Thus writing,

A2
x = e−qx2/2A ; Φ1

1 = e−qx2/2φ (2.9)

– 6 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
3

we get the following equations,

(m2 − q2x2)A+ (q + q2x2 − qx∂x)φ = 0 (2.10)

(−q2x2 + qx∂x + 2q)A+ (m2 − q + q2x2 − 2qx∂x + ∂2x)φ = 0 . (2.11)

Now assuming series solution of the form,

A =
∑

k

ak(x
√
q)k ; φ =

∑

k

bk(x
√
q)k (2.12)

we get the following recursion relations,
[

(2k − 1)− m2

q

]

[

k − m2

q

] bk −
(k + 1)(k + 2)
[

(k + 2)− m2

q

]bk+2 = 0 (2.13)

and

ak = bk −
(k + 1)(k + 2)
[

(k + 2)− m2

q

]bk+2 . (2.14)

The quantization condition on m2 is obtained by demanding that the series (2.12)

terminates for some value of k that is n. This implies that the numerator of the first

term of (2.13) vanishes for this value of k. We thus have the spectrum given by m2 =

(2n − 1)q. The lowest mode of mass spectrum given by n = 0 is tachyonic. To solve for

the eigenfunctions we simply need to compute the various coefficients (ak, bk) using the

recursion relations.

For n = 0, 2, 4 · · · ,

ak =
(−1)k/22k/2

(2n− 1)k!
n(n− 2) · · · (n− k + 2)(k − 1) (2.15)

bk =
(−1)k/22k/2

(2n− 1)k!
n(n− 2) · · · (n− k + 2)(2n− k − 1) . (2.16)

For n = 3, 5, 7 · · · ,

ak =
(−1)(k−1)/22(k−1)/2

(2n− 1)k!
(n− 1)(n− 3) · · · (n− k + 2)(k − 1) (2.17)

bk =
(−1)(k−1)/22(k−1)/2

2(n− 1)k!
(n− 1)(n− 3) · · · (n− k + 2)(2n− k − 1) . (2.18)

Putting these back in (2.12), the eigenfunctions are,

An =
∑

k≤n

ak(x
√
q)k ; φn =

∑

k≤n

bk(x
√
q)k . (2.19)

The normalized eigenfunctions {An(x), φn(x)} for both odd and even n can be com-

bined into the following expressions

An(x) = N (n)e−qx2/2 (Hn(
√
qx) + 2nHn−2(

√
qx)) (2.20)

φn(x) = N (n)e−qx2/2 (Hn(
√
qx)− 2nHn−2(

√
qx)) (2.21)

– 7 –
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where Hn(
√
qx) are Hermite polynomials and the normalization,

N (n) = 1/

√√
π2n(4n2 − 2n)(n− 2)! .

Let us define,

ζn(x) =

(

An(x)

φn(x)

)

. (2.22)

ζn(x) then satisfies the orthogonality condition

√
q

∫

dxζ†n(x)ζn′ (x) = δn,n′ . (2.23)

There is also a set of infinitely many degenerate eigenfunctions with m2
n = 0. The

normalized eigenfunctions for the zero eigenvalues can also be written in terms of Hermite

polynomials as

Ãn(x) = Ñ (n)e−qx2/2 (Hn(
√
qx)− 2(n− 1)Hn−2(

√
qx)) (2.24)

φ̃n(x) = Ñ (n)e−qx2/2 (Hn(
√
qx) + 2(n− 1)Hn−2(

√
qx)) (2.25)

where the normalization, Ñ (n) = 1/
√√

π2n(4n− 2)(n− 1)!. We define a different set,

ζ̃n(x) =

(

Ãn(x)

φ̃n(x)

)

. (2.26)

ζ̃n(x) again satisfies the orthogonality condition as (2.23). So that,

√
q

∫

dxζ̃†n(x)ζ̃n′ (x) = δn,n′ . (2.27)

Along with this we also have,

√
q

∫

dxζ†n(x)ζ̃n′ (x) = 0 for all n and n
′

. (2.28)

Unlike the non-zero eigenvalue sector, in the zero eigenvalue sector we have normaliz-

able eigenfunction for n = 1, which is simply H1(
√
qx). There is however no normalizable

eigenfunctions for n = 0 in this sector. The spectrum for m2
n = 0 is completely de-

generate. Henceforth in this paper we shall refer the eigenfunctions for m2
n = 0 as the

“zero-eigenfunctions”.

From the equations of motion for (A1
x,Φ

2
1) obtained from (2.3), their eigenfunctions are

simply (−An(x), φn(x)), and (−Ãn(x), φ̃n(x)) for m
2
n = (2n−1)q and m2

n = 0 respectively.

There is thus a two fold degeneracy for this spectrum of the theory.

The term L(ΦI , A
3
x) gives decoupled equations for Φa

I for each value of I 6= 1 and the

gauge index a and another equation for A3
x alone.The equation of motion for Φ1

I is

(
−∂20 + ∂2x − q2x2

)
Φ1
I = 0 . (2.29)

– 8 –
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The same equation for Φ2
I . The spatial part of the equation is the wave function

equation for a Harmonic oscillator. The time independent eigenfunctions will thus be given

by N ′

(n)e−qx2/2Hn(
√
qx) where Hn(

√
qx) are Hermite polynomials. The normalization

N ′

(n) = 1/
√√

π2nn!.The corresponding eigenvalues are γn = (2n+ 1)q. The equations of

motion for Φ3
I and A3

1 are,
(
−∂20 + ∂2x

)
Φ3
I = 0 ; ∂20A

3
x = 0 . (2.30)

This means that the time independent part of Φ3
I is just a plane wave eilx. Tables 1

and 2 in appendix B summarizes the various dimensionfull parameters, normalizations and

the eigenfunctions.

At this point we should note that the only tachyons that arise in the spectrum are

those as discussed above. There are no other tachyons. The presence of the tachyon signals

an instability. As noted in [1] and the introduction, this instability corresponds to the onset

of superconducting phase transition of the baryons in the boundary theory. In the brane

picture, the tachyon condenses and at the end of the process we are left with a smoothened

out brane configuration [33]. In the following sections we would like to study the quantum

theory at finite temperature. The main aim is to find the critical temperature at which

the tachyonic instability vanishes.

3 Finite temperature analysis with one scalar: warm up exercise

In this section we first study a simplified model consisting of only one adjoint scalar. The

purpose of this section is to outline the basic idea involved in the computation of the

mass-squared corrections of the tachyon due to finite temperature effects. With only one

scalar (namely Φ1
1) we have the equations resulting from (2.2), up to the quadratic order.

By doing a one-loop integral over the fluctuations we will find an effective action for the

tachyonic mode. The coefficient of the quadratic part of the effective action gives the

mass-squared of the tachyon as function of the temperature. We thus start by doing a

fluctuation analysis with the doublet of fields (Φ1
1, A

2
x) fields.

A2
x = AB + δA Φ1

1 = ΦB + δΦ . (3.1)

To do a finite temperature analysis, we define the Euclidean coordinate τ = it. τ is

periodic with period β, so that the integration limits over τ are from 0 to β.

We now denote the background field and the fluctuations as,

ζ(x, τ) =

(

AB(x, τ)

ΦB(x, τ)

)

, δζ(x, τ) =

(

δA(x, τ)

δΦ(x, τ)

)

. (3.2)

The quadratic background part of the action can be written as,

SB =
1

2g2

∫

dτdxζ†(x, τ)O0(x, τ)ζ(x, τ) (3.3)

where

O0(x, τ) =

(

∂2τ − q2x2 −qx∂x + q

2q + qx∂x ∂2τ + ∂2x

)

. (3.4)
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The mode expansions for the background fields is,

ζ(x, τ) = N1/2
∑

w,k

(

Cw,kζk(x) + C̃w,k ζ̃k(x)
)

eiωwτ

= N1/2
∑

w,k

(

Cw,k

(

Ak(x)

φk(x)

)

+ C̃w,k

(

Ãk(x)

φ̃k(x)

))

eiωwτ .

(3.5)

Where ωw = 2πw/β. The normalization constant N is equal to
√
q/β. ζk(x) and ζ̃k(x)

are defined in (2.22) ans (2.24) respectively. The corresponding eigenvalues are −λk =

−(2k − 1)q of the first set of eigenfunctions and λ̃k = 0 (for all k) of the second set. The

reality of ζ(x, τ) means that C−w,k = C∗
w,k and C̃−w,k = C̃∗

w,k.

With these observations, and using the orthogonality properties (2.23), (2.27)

and (2.28) the quadratic background part of the action can then be written as,

SB = − 1

2g2

∑

w,k

(

|Cw,k|2(ω2
w + λk) + |C̃w,k|2ω2

w

)

. (3.6)

The mass spectrum now consists of a tower of tachyons of mass-squared (ω2
w − q)/g2. Of

these the zero mode, w = 0 has the lowest value of mass2.

We now study the fluctuations about the above background. The part of the La-

grangian containing the fluctuations is given by,

Sδ =
1

2g2

∫

dτdxδζ†(x, τ)Oδ(x, τ)δζ(x, τ) (3.7)

where the operator Oδ(x, τ) is,

Oδ(x, τ) = O0(x, τ) +OB(x, τ)

=

(

∂2τ − q2x2 − Φ2
B(x, τ) −qx∂x + q − 2AB(x, τ)ΦB(x, τ)

2q + qx∂x − 2AB(x, τ)ΦB(x, τ) ∂2τ + ∂2x −A2
B(x, τ)

)

.
(3.8)

There will also be terms linear in the fluctuations. However since these terms do not

contribute to the 1PI effective action, we have dropped them here.

The mode expansions for the fluctuations is,

δζ(x, τ) = N1/2
∑

m,n

(

Dm,nδζn(x) + D̃m,nδζ̃n(x)
)

eiωmτ (3.9)

= N1/2
∑

m,n

(

Dm,n

(

δAn(x)

δφn(x)

)

+ D̃m,n

(

δÃn(x)

δφ̃n(x)

))

eiωmτ

where δζn(x) and δζ̃n(x) are now eigenfunctions of the τ -independent part of the operator

Oδ(x, τ). Let us assume that the corresponding eigenvalues are −Λn and −Λ̃n respectively.

Again since δζ(x, τ) is real, D−m,n = D∗
m,n and D̃−m,n = D̃∗

m,n. The partition function for
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the fluctuations is thus,

Z(β, q) =

∫

D[Dm,n][D̃m,n]e
Sδ

=

∫

D[Dm,n][D̃m,n]e
− 1

2g2

∑
m,n[|Dm,n|2(ω2

m+Λn)+|D̃m,n|2(ω2
m+Λ̃n)]

=
∏

m,n 6=0

[
1

(2πg2)2
(ω2

m + Λn)(ω
2
m + Λ̃n)

]−1/2

.

(3.10)

The eigenvalues Λn and Λ̃n are yet to be determined, for which we use perturbation

theory by assuming that the background field modes are small. We already know the time

independent eigenfunctions and the corresponding eigenvalues for the operator O0. We can

now treat the background fields in (3.8) as perturbations and find the corrections. The

background fields can be expanded in terms of the Cw,k modes. Since we are only interested

in the quadratic contribution in Cw,k’s, we do not need beyond the leading correction. This

is because the perturbation matrix OB contains two powers of background fields giving rise

to terms quadratic in the Cw,k modes.

Λn = Λ(0)
n + Λ(1)

n + . . . . with Λ(0)
n = λn = (2n− 1)q (3.11)

Λ̃n = Λ̃(0)
n + Λ̃(1)

n + . . . . with Λ̃(0)
n = λ̃n = 0 (3.12)

and,

δζn(x) = δζ(0)n (x) + δζ(1)n (x) + . . . . with δζ(0)n (x) = ζn(x) (3.13)

δζ̃n(x) = δζ̃(0)n (x) + δζ̃(1)n (x) + . . . . with δζ̃(0)n (x) = ζ̃n(x) (3.14)

so that,

Λ(1)
n = −

∫

dxdτδζ(0)†n (x)OB(x, τ)δζ
(0)
n (x) (3.15)

Λ̃(1)
n = −

∫

dxdτδζ̃(0)†n (x)OB(x, τ)δζ̃
(0)
n (x) (3.16)

with this,

logZ(β, q) = −1

2

∑

m,n 6=0

[

log

(

ω2
m + (2n− 1)q + Λ

(1)
n

2πg2

)

+ log

(

ω2
m + Λ̃

(1)
n

2πg2

)]

= −1

2

∑

m,n 6=0

[

log

(

1 +
Λ
(1)
n β2

(2πm)2 + (2n− 1)qβ2

)

+ log

(

1 +
Λ̃
(1)
n β2

(2πm)2

)] (3.17)

where in the last line we have omitted the field independent terms. For small value of

Λ
(1)
n the leading term which gives the quadratic correction to the effective action of the

background Cw,k fields is,

logZ(β, q) = −1

2

∑

m,n 6=0

[

Λ
(1)
n β2

(2πm)2 + (2n− 1)qβ2
+

Λ̃
(1)
n β2

(2πm)2

]

. (3.18)
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To find the form of the effective action due to the perturbations we first compute Λ
(1)
n

given in equation (3.15). The expression for Λ
(1)
n after putting in the mode expansions for

the background ΦB and AB fields reads,

Λ(1)
n =

∑

w,k,k
′

[

Cw,kC
∗
w,k

′F1(k, k
′

, n, n)+C̃w,kC̃
∗
w,k

′F
′

1(k, k
′

, n, n)+2Cw,kC̃
∗
w,k

′F
′′

1 (k, k
′

, n, n)
]

(3.19)

F1(k, k
′

, n, n) =
√
q

∫

dx
[
φk(x)φk′ (x)An(x)An(x) + 2Akφk′ (x)φn(x)An(x)

+ 2Ak
′φk(x)φn(x)An(x) +Ak(x)Ak

′ (x)φn(x)φn(x)
]

(3.20)

F
′

1(k, k
′

, n, n) =
√
q

∫

dx
[

φ̃k(x)φ̃k′ (x)An(x)An(x) + 2Ãkφ̃k′ (x)φn(x)An(x)

+ 2Ãk
′ φ̃k(x)φn(x)An(x) + Ãk(x)Ãk

′ (x)φn(x)φn(x)
]

(3.21)

F
′′

1 (k, k
′

, n, n) =
√
q

∫

dx
[

φk(x)φ̃k′ (x)An(x)An(x) + 2Akφ̃k′ (x)φn(x)An(x)

+ 2Ãk
′φk(x)φn(x)An(x) +Ak(x)Ãk

′ (x)φn(x)φn(x)
]

. (3.22)

Similarly expanding Λ̃
(1)
n given in (3.16) gives,

Λ̃(1)
n =

∑

w,k,k′

[

Cw,kC
∗
w,k

′ F̃1(k, k
′

, n, n)+C̃w,kC̃
∗
w,k

′ F̃
′

1(k, k
′

, n, n)+2Cw,kC̃
∗
w,k

′ F̃
′′

1 (k, k
′

, n, n)
]

(3.23)

F̃1(k, k
′

, n, n) =
√
q

∫

dx
[

φk(x)φk′ (x)Ãn(x)Ãn(x) + 2Akφk′ (x)φ̃n(x)Ãn(x)

+ 2Ak
′φk(x)φ̃n(x)Ãn(x) +Ak(x)Ak

′ (x)φ̃n(x)φ̃n(x)
]

(3.24)

F̃
′

1(k, k
′

, n, n) =
√
q

∫

dx
[

φ̃k(x)φ̃k′ (x)Ãn(x)Ãn(x) + 2Ãkφ̃k′ (x)φ̃n(x)Ãn(x)

+ 2Ãk
′ φ̃k(x)φ̃n(x)Ãn(x) + Ãk(x)Ãk

′ (x)φ̃n(x)φ̃n(x)
]

(3.25)

F̃
′′

1 (k, k
′

, n, n) =
√
q

∫

dx
[

φk(x)φ̃k′ (x)Ãn(x)Ãn(x) + 2Akφ̃k′ (x)φ̃n(x)Ãn(x)

+ 2Ãk
′φk(x)φ̃n(x)Ãn(x) +Ak(x)Ãk

′ (x)φ̃n(x)φ̃n(x)
]

. (3.26)

Putting these expansions (3.19) and (3.23) in (3.18) we now collect terms containing

two Cw,k fields, two C̃w,k or one Cw,k and one C̃w,k modes separately. A general expression

for (3.18) finally is,

logZ(β, q) = −
∑

w,k,k′

[

Cw,kC
∗
w,k

′Σ2(k, k
′

, β, q) + C̃w,kC̃
∗
w,k

′ Σ̃2(k, k
′

, β, q)

+ 2Cw,kC̃
∗
w,k

′Σ
′2(k, k

′

, β, q)
]

. (3.27)
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The coefficient of the Cw,kC
∗
w,k′

term, Σ2(k, k
′

, β, q) is given by,

Σ2(k, k
′

, β, q) =
1

2

√
qβ

∑

m,n 6=0

[

F1(k, k
′

, n, n)

(2πm)2 + (2n− 1)qβ2
+
F̃1(k, k

′

, n, n)

(2πm)2

]

. (3.28)

This is the one-loop correction to the two point amplitude for the Cw,k modes. Simi-

larly,

Σ̃2(k, k
′

, β, q) =
1

2

√
qβ

∑

m,n 6=0

[

F
′

1(k, k
′

, n, n)

(2πm)2 + (2n− 1)qβ2
+
F̃

′

1(k, k
′

, n, n)

(2πm)2

]

(3.29)

and

Σ
′2(k, k

′

, β, q) =
1

2

√
qβ

∑

m,n 6=0

[

F
′′

1 (k, k
′

, n, n)

(2πm)2 + (2n− 1)qβ2
+
F̃

′′

1 (k, k
′

, n, n)

(2πm)2

]

. (3.30)

The fields Cw,k and C̃w,k for different k and same w are all coupled to each other at

the quadratic order. This is due to the broken translational along the x direction. To

compute the mass-squared correction of any of the modes we should compute the mass

matrix. However this matrix is infinite dimensional. We will be interested in the mass-

squared corrections of the mode C0,0. This we do numerically. In this paper for numerical

simplicity we just compute the correction term Σ2(0, 0, β, q), reserving a more detailed

numerical analysis for the future.

Now, after doing the sum over m in the first term of (3.28),

Σ2(k, k
′

, β, q) =
1

2

∑

n 6=0

[

F1(k, k
′

, n, n)
√

(2n− 1)

(

1

2
+

1

e
√

(2n−1)qβ − 1

)

+
F̃1(k, k

′

, n, n)

(2πm)2

]

= Σ2
vac +Σ2

β .

(3.31)

Σ2
vac is the temperature independent piece. This term is potentially ultraviolet diver-

gent. In the following sections we shall consider the the theory on the intersecting D1

branes. This theory is obtained from a finite N = 8 SYM in two dimensions by giving an

expectation value to one of the scalars Φ3
1 = qx. Supersymmetry in the intersecting D1

brane theory is completely broken by the background. However the action is supersym-

metric and finiteness of the N = 8 theory implies that the the theory on the intersecting

D1 branes must also be ultraviolet finite. We will see that for the two point functions com-

puted later the ultraviolet divergences cancel between the contributions from the boson

and the fermion loops.

There is also an infrared divergence in (3.31) that comes from the second term for

m = 0. The IR divergence is due to the massless D̃m,n modes in the loop. To treat these

divergences we shall follow the procedure outlined in the introduction.

A similar computation leading to (3.28), (3.29) and (3.30) can also be performed as fol-

lows. Expanding both the background and the fluctuation fields using same basis functions
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that are the eigenfunctions of O0 i.e. to the lowest order the fluctuation wave functions,

δAn(x) = An(x), δφn(x) = φn(x), δÃn(x) = Ãn(x) and δφ̃n(x) = φ̃n(x),

S = SB + Sδ

= − 1

2g2

∑

w,k

(

|Cw,k|2(ω2
w+λk)+|C̃w,k|2ω2

w

)

− 1

2g2

∑

m,n

(

|Dm,n|2(ω2
m+λn)+|D̃m,n|2ω2

m

)

+ I + background fields of quartic order (3.32)

where the interaction term I, is

I =− N

2g2

∑

m,m
′
,n,n

′

∑

w,w
′
,k,k

′

(

Cw,kCw′ ,k′Dm,nDm′ ,n′F1(k, k
′

, n, n
′

)

+ Cw,kCw
′
,k

′ D̃m,nD̃m
′
,n

′ F̃1(k, k
′

, n, n
′

) + C̃w,kC̃w
′
,k

′Dm,nDm
′
,n

′F
′

1(k, k
′

, n, n
′

)

+ C̃w,kC̃w
′
,k

′ D̃m,nD̃m
′
,n

′ F̃ ′

1(k, k
′

, n, n
′

) + 2Cw,kC̃w
′
,k

′Dm,nDm
′
,n

′F
′′

1(k, k
′

, n, n
′

)

+ 2Cw,kC̃w′ ,k′ D̃m,nD̃m′ ,n′ F̃ ′′

1(k, k
′

, n, n
′

)
)

δm+m′+w+w′ ,0

where, N =
√
q/β. Here again we have dropped the terms linear in fluctuations as they do

not contribute to the 1PI effective action. The terms cubic in fluctuations have also not

been included as they do not contribute at the one-loop order. The tree-level Dm,n and

D̃m,n propagators are then

〈

Dm,nDm′ ,n′

〉

= g2
δm,−m

′ δn,n′

[ω2
m + λn]

;
〈

D̃m,nD̃m′ ,n′

〉

= g2
δm,−m

′ δn,n′

ω2
m

. (3.33)

With this the one-loop two point amplitudes are same as equations (3.28), (3.29)

and (3.30). Henceforth in the following sections we will denote both the background and

the fluctuation modes as Cw,k.

4 Intersecting D1 branes at finite temperature

We have computed the effective mass-squared of the tachyons as function of temperature in

section 3 for a simplified theory with only one scalar field and no fermions. The corrections

are infrared divergent due to the presence of the tree-level massless modes in the loops.

One way of dealing with the problem is by computing the mass-squared corrections to

the tree-level massless modes C̃w,k, at finite temperature at the one-loop level. With the

mass-squared corrections, the tree-level massless modes become massive at one-loop level

at finite temperature. The temperature-dependent effective mass-squared of the tree-level

massless modes shift their propagator by ω−2
m → (ω2

m + m2(β))−1. Now we can use this

shifted propagator to calculate the finite effective mass-squared of the tree-level tachyons

at finite temperature.

The first amplitude in (3.31) has a purely temperature independent part and a purely

temperature dependent part. The temperature dependent part is exponentially damped,

hence finite even for large values of the momentum n. The temperature independent
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part however has a non-convergent sum over the momentum n and hence give rise to

Ultraviolet divergence. The problem of UV divergence can be dealt with by introducing

suitable regularization scheme but this in turn renders the finite answer for the mass-

squared corrections regularization-dependent. Hence there is no unique answer for the

effective mass-squared of the tachyon. This indicates that the calculation should be done

in a framework where cancellation of UV divergences are possible. Hence we work in the

framework of a originally supersymmetric theory and should consider the contributions

from the bosonic as well as fermionic degrees of freedom. In this set-up the UV divergences

are expected to cancel among the amplitudes containing bosons and fermions in the loop.

In this section we thus study the finite temperature effects for the full D1 brane

theory (A.13). As seen in section 2 an intersecting brane configuration with only one non-

zero angle is given by the background solution Φ3
1 = qx and A = 0. In the following we

will study the tachyon mass-squared as a function of the temperature for the theory (A.13)

including all the other bosonic fields and the fermions. We will compute contribution from

Bosons and the Fermions towards the tachyon mass-squared correction separately below.

4.1 Bosons

In this section we compute the one-loop correction to the tree-level tachyon mass-squared

due to the Bosons in the loop. To do this we must first write the mode expansions for the

individual fields. The mode expansion for (A2
x,Φ

1
1) is given in (3.5) in section 3 using the

eigenfunctions that have been worked out in section 2. The (A1
x,Φ

2
1) fields satisfy the same

mode expansion. The only distinction between this and the earlier mode expansion is the

sign in front of the eigenfunctions Ak(x). Thus

ζ
′

(x, τ) = N1/2
∑

w,k

(

C
′

w,kζk(x)e
iωwτ + C̃

′

w,kζ̃k(x)e
iωwτ

)

= N1/2
∑

w,k

(

C
′

1w,k

(

−Ak(x)

φk(x)

)

eiωwτ + C̃
′

w,k

(

−Ãk(x)

φ̃k(x)

)

eiωwτ

) (4.1)

where ζ
′

(x, τ) =

(

A1
x(x, τ)

Φ2
1(x, τ)

)

.

Similarly since Φ1
I and Φ2

I (I 6= 1) are harmonic oscillators in the x direction and A3
x

and Φ3
I (for all I) are just plane waves, we have the following mode expansions

Φ1
I(x, τ) = N1/2N ′

(n)
∑

m,n

Φ1
I(n,m)e−qx2/2Hn(

√
qx)eiωmτ , {I 6= 1} (4.2)

Φ3
I(x, τ) =

N1/2

√
q

∑

m

∫
dl

2π
Φ3
I(l,m)ei(ωmτ+lx), {I = 1, · · · , 8} (4.3)

A3
x(x, τ) =

N1/2

√
q

∫
dl

2π

∑

m

A3
x(m, l)e

iωmτ+ilx (4.4)

where Hn(
√
qx) are the Hermite polynomials and e−qx2/2Hn(

√
qx) are the harmonic os-

cillator wave functions with eigenvalue γn = (2n + 1)q. The normalization N ′

(n) =

1/
√√

π2nn!.
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The propagators and the interaction vertices are listed in the appendix (C.1). With

these we now write down the contribution to the one loop mass-squared corrections to the

background fields. The bosonic contributions to the one loop mass-squared corrections

at finite temperature can be collected in two groups, namely the ones coming from the

four-point vertices and the ones coming from the three-point vertices.

The bosonic four-point vertices listed in (C.1) together with their corresponding prop-

agators give,

Σ1(w,w
′

, k, k
′

, β, q) =
1

2
N
∑

m

[
∑

n

(

F1(k, k
′

, n, n)

ω2
m + λn

+
F̃1(k, k

′

, n, n)

ω2
m

+
7F2(k, k

′

, n, n)

ω2
m + γn

)

+

∫
dl

(2π
√
q)

(

7F
′

2(k, k
′

, l,−l)
ω2
m + l2

+
F

′

3(k, k
′

, l,−l)
ω2
m + l2

)

+

∫
dl

2π
√
q

F3(k, k
′

, l,−l)
ω2
m

]

δw+w
′ . (4.5)

The Feynman diagrams that constitute the correction (4.5) are given in figure 1. In (4.5)

the first term represented by the Feynman diagram in figure 1(a) consists of the three-point

vertex (C.6) and receives contributions from the Cm,n modes with the propagators (C.1)

while the second term whose Feynman diagram is given is figure 1(b) comes from the

four-point vertex (C.10) and bears contributions from the massless modes C̃m,n in the loop

with propagator (C.2). The third term with the Feynman diagram figure 1(c) comprises

of the four-point vertex (C.8) having the seven massive fields Φ1,2
I (m,n) for I 6= 1 with

propagators given in (C.3). The fourth term in (4.5) is represented by the Feynman diagram

figure 1(d) and is the amplitude for the vertex (C.12) which comprise of the seven fields

Φ3
I , for I 6= 1, with propagator (C.4). The fifth term have contributions from the fields Φ3

1

with propagators (C.4) and is depicted in the Feynman diagram figure 1(f) while the sixth

term bears the massless gauge field A3
x(m, l) in the loop with propagator (C.5) and the

relevant Feynman diagram given in figure 1(e). Similarly, the three-point bosonic vertices

listed in (C.1) combined with their respective propagators constitute the one-loop bosonic

mass-squared corrections at finite temperature, viz.

Σ2(w,w
′

, k, k
′

, β, q) = −1

2
qN
∑

m,n

[
∫

dl

2π
√
q

F4(k, l, n)F
∗
4 (k

′

, l, n)

(ω2
m + λn)ω2

m
′

+

∫
dl

2π
√
q

F̃4(k, l, n)F̃
∗
4 (k

′

, l, n)

ω2
mω

2
m

′

+

∫
dl

2π
√
q

(

7F5(k, l, n)F
∗
5 (k

′

,−l, n)
(ω2

m + γn)(ω2
m′ + l2)

+
F

′

5(k, l, n)F
′∗
5 (k

′

,−l, n)
(ω2

m + λn)(ω2
m′ + l2)

)

+

∫
dl

2π
√
q

F̃
′

5(k, l, n)F̃
′∗
5 (k

′

,−l, n)
(ω2

m)(ω2
m

′ + l2)

]

δw+w
′ (4.6)

where, w = m +m
′

. In (4.6), the first amplitude gets contributions from the fields Cm,n

with propagator (C.1) and A3
x(m

′

, l) with propagator (C.5) in the loop with the three-

point vertex F4(k, l, n) given in (C.19). The corresponding Feynman diagram is given
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′Cw,k
′

Cw,k
′

Cw,k
′Cw,k

′

Cm,n C̃m,n Φ
(1,2)
I (m,n)
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x(m, l) Φ3

1(m, l)

V1 Ṽ1 V2

V
′

2
V3 V

′

3

(a) (b) (c)

(d) (e) (f)

Figure 1. Feynman diagrams for the amplitudes with four-point vertices.

in figure 2(a). In the second amplitude, whose Feynman diagram is given by figure 2(b)

comprises of the three-point vertex F̃4(k, l, n) given in (C.21) which gets contributions from

the massless modes C̃m,n with propagator (C.2) and the massless gauge fields A3
x(m, l).

The third amplitude in (4.6) with the vertices F5(k, l, n), has contributions from the

pairs of fields Φ
(1,2)
I (m,n) with propagator (C.3) and Φ3

I(m, l) with propagator (C.4) and

the Feynman diagram drawn in figure 2(c). The fourth amplitude consisting of the three-

point vertex F
′

5(k, l, n) receives contributions in the loop from Cm,n. and Φ3
1(m, l) with

propagator (C.4), while the fifth one with vertex F̃
′

5(k, l, n) comprises of the loop fields

C̃m,n and Φ3
1(m, l). The Feynman diagrams for the fourth and fifth terms in (4.6) are given

in figure 2(d) and figure 2(e) respectively.

We are interested in the two point function for the w = w
′

= k = k
′

= 0 mode because

this mode is the tachyon with the lowest mass2 value. The finite temperature correction

involves sum over the Matsubara frequency. Upon performing the Matsubara sum (except

on the massless modes), the correction (4.5) for w = w
′

= 0 can be written as

Σ1(0, 0, k, k
′

, β, q) =
1

2

[
∑

n

F1(k, k
′

, n, n)
√

(2n− 1)

(

1

2
+

1

eβ
√

(2n−1)q − 1

)

+N
∑

m

(
∑

n

F̃1(k, k
′

, n, n)

ω2
m

+

∫
dl

2π
√
q

F3(k, k
′

, l − l)

ω2
m

)

+
∑

n

(

7F2(k, k
′

, n, n)
√

(2n+ 1)

(

1

2
+

1

eβ
√

(2n+1)q − 1

))

+

(
∫

dl

2π
√
q

(7 + 1/2)δk,k′

(l/
√
q)

(
1

2
+

1

eβl − 1

))]

. (4.7)
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′
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′

Cw,k
′

Cw,k
′

Cm,n

A3
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Φ3
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Ṽ4 Ṽ ∗
4
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5
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5

Ṽ
′

5 Ṽ
′∗
5

Figure 2. Feynman diagrams for the amplitudes with three-point vertices.

The correction given in (4.6), after the Matsubara sum (leaving out the massless modes)
assumes the form

Σ2(0, 0, k, k
′

, β, q)

= −1

2

∑

n

[
∫

dl

2π
√
q

F4(k, l, n)F
∗
4 (k

′

, l, n)

(2n− 1)

[(
∑

m

√
q

βω2
m

− 1√
2n− 1

(

1

2
+

1

e
√

(2n−1)qβ − 1

))]

+ qN

∫
dl

2π
√
q

∑

m

F̃4(k, l, n)F̃
∗
4 (k

′

, l, n)

ω4
m

+

∫
dl

2π
√
q

[

7F5(k, l, n)F
∗
5 (k

′

,−l, n)
(l/

√
q)2 − (2n+ 1)

(

1√
2n+ 1

(

1

2
+

1

e
√

(2n+1)qβ − 1

)

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

[

F
′

5(k, l, n)F
′∗
5 (k

′

,−l, n)
(l/

√
q)2 − (2n− 1)

(

1√
2n− 1

(

1

2
+

1

e
√

(2n−1)qβ − 1

)

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

F̃
′

5(k, l, n)F̃
′∗
5 (k

′

,−l, n)
(l/

√
q)2

(
∑

m

√
q

βω2
m

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

. (4.8)

In both (4.7) and (4.8), the Matsubara sums give rise to two different kinds of terms,

the zero temperature quantum corrections and the temperature dependent part. While
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the zero-temperature parts are independent of q, the temperature dependent parts are

functions of both β and q. The temperature dependent terms are damped by exponential

factors and are hence finite. The temperature independent parts however have problems

of divergences. We shall discuss these problems in the section 5.

4.2 Fermions

We will now compute the contribution to the tachyon two point amplitude due to fermionic

fluctuations. The fermions in this contribution only appear in the internal loops. Consider

first the free and the part of the action (A.13) in appendix A that couples to Φ3
1. The

corresponding terms are,

L2′

1+1 =
1

2

(
ψaT
L ∂0ψ

a
L + ψaT

R ∂0ψ
a
R + ψaT

L ∂xψ
a
L − ψaT

R ∂xψ
a
R

)

+Φ3
1

(
ψ1T
R αT

1 ψ
2
L − ψ2T

R αT
1 ψ

1
L

)
.

(4.9)

We will now call the components of ψa
L and those of ψa

R as La
i and Ra

i respectively,

where a is the gauge index and i = 1, · · · , 8 is the fermion index. In this notation,

L2′

1+1 =
1

2
(La

i ∂0L
a
i +Ra

i ∂0R
a
i + La

i ∂xL
a
i −Ra

i ∂xR
a
i )

+ Φ3
1

(
ψ1T
R αT

1 ψ
2
L − ψ2T

R αT
1 ψ

1
L

)
.

(4.10)

With the background value of Φ3
1 = qx and putting in the value of α1 from (A.9), we

proceed to diagonalize the action. This amounts to solving for the eigenfunctions of La
i

and Ra
i . We have the following sets of equations from (4.10).

(∂0 + ∂x)L
1
1 + qxR2

8 = 0 (4.11)

(−∂0 + ∂x)R
2
8 + qxL1

1 = 0 (4.12)

(∂0 + ∂x)L
2
1 − qxR1

8 = 0 (4.13)

(−∂0 + ∂x)R
1
8 − qxL2

1 = 0 . (4.14)

There are sixteen such sets of decoupled equations. The eight sets

(L1
1, R

2
8), (L

1
4, R

2
5), (L

1
6, R

2
3), (L

1
7, R

2
2), (L

2
2, R

1
7), (L

2
3, R

1
6), (L

2
5, R

1
4), (L

2
8, R

1
1) (4.15)

satisfy identical coupled equations like (4.11), (4.12). The remaining eight sets

(L2
1, R

1
8), (L

2
4, R

1
5), (L

2
6, R

1
3), (L

2
7, R

1
2), (L

1
8, R

2
1), (L

1
5, R

2
4), (L

1
3, R

2
6), (L

1
2, R

2
7) (4.16)

satisfy coupled equations like (4.13), (4.14). For future convenience we denote the left and

right fermions of (4.15)as L(x, t) and R(x, t) and those of (4.16) as L̂(x, t) and R̂(x, t). Now

we solve the differential equations. The set of coupled differential equations (4.11), (4.12)

satisfied by the set of fermionic fields in (4.15) can be promoted to the status of second

order differential equations as

(−∂20 + ∂2x)L(x, t) + qR(x, t)− q2x2L(x, t) = 0 (4.17)

(−∂20 + ∂2x)R(x, t) + qL(x, t)− q2x2R(x, t) = 0 . (4.18)
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It is important to note that the set of fermions in (4.16) also satisfy the same set of

equations as (4.17), (4.18) with L(x, t) and R(x, t)being replaced by L̂(x, t) and −R̂(x, t)
respectively. Let us discuss the solutions to the equations (4.17), (4.18). Adding (4.17)

and (4.18) and subtracting (4.18) from (4.17) we get the following set of equations

(−∂20 + ∂2x)F (x, t) + qF (x, t)− q2x2F (x, t) = 0 (4.19)

(−∂20 + ∂2x)G(x, t)− qG(x, t)− q2x2G(x, t) = 0 (4.20)

where F (x, t) = L(x, t) + R(x, t) and G(x, t) = L(x, t) − R(x, t). In this context let us

point out that one can construct similar combinational functions with the fields in (4.16)

viz. F̂ (x, t) = L̂(x, t) + R̂(x, t) and Ĝ(x, t) = L̂(x, t) − R̂(x, t), where F̂ = G and Ĝ = F .

As in the case of bosonic fields, the fermionic differential equations can also be analyzed

in the asymptotic limit and the fermionic eigenfunctions can be written as

La
i (t, x) = e−

qx2

2 L̃a
i (x, t) (4.21)

Ra
i (t, x) = e−

qx2

2 R̃a
i (x, t) . (4.22)

Note that although there are two different sets of coupled differential equations; one

being (4.11), (4.12) satisfied by (4.15) and the other (4.13), (4.14) satisfied by (4.16), both

sets of equations when recombined give rise to the same differential equations as (4.17)

for the left moving fermions and (4.18) for the right moving fermions. The eigenfunctions

from (4.17) and (4.18) that also satisfies the first order equations (4.11) are given by

ψn(x) =

(

Ln(x)

Rn(x)

)

. (4.23)

The corresponding eigenvalue is = −i
√
λ′ = −i√2nq. Similarly for the set of fermions

given in (4.16) and obeying the equations of motion (4.13), the eigenfunctions can be

obtained by repeating the above procedure and we get

ψ̂n(x) =

(

L̂n(x)

R̂n(x)

)

=

(

Ln(x)

−Rn(x)

)

(4.24)

where,

Ln(x) = L̂n(x) = NF e
− qx2

2

(

− i√
2n
Hn(

√
qx) +Hn−1(

√
qx)

)

Rn(x) = −R̂n(x) = NF e
− qx2

2

(

− i√
2n
Hn(

√
qx)−Hn−1(

√
qx)

)

.

(4.25)

Hn(
√
qx) are the Hermite Polynomials. The normalization NF =

√√
π2n+1(n− 1)!.

We now list some important relations satisfied by the eigenfunctions

√
q

∫

dx ψ†
n(x)ψn

′ (x) =
√
q

∫

dx
(
L∗
n(x)Ln

′ (x) +R∗
n(x)Rn

′ (x)
)
= δn,n′ . (4.26)

– 20 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
3

√
q

∫

dx L∗
n(x)Ln

′ (x) =
√
q

∫

dx R∗
n(x)Rn

′ (x) =
1

2
δn,n′ (4.27)

√
q

∫

dx ψT
n (x)ψn′ (x) =

√
q

∫

dx
(
Ln(x)Ln′ (x) +Rn(x)Rn′ (x)

)
= 0 (4.28)

√
q

∫

dx ψ†
n(x)ψ

∗
n
′ (x) =

√
q

∫

dx
(

L∗
n(x)L

∗
n
′ (x) +R∗

n(x)R
∗
n
′ (x)

)

= 0 . (4.29)

With the eigenfunctions as defined above, we can now write down the mode expansions for

the sixteen pairs defined in (4.15) and (4.16). For example we write,
(

L1
1(x, τ)

R2
8(x, τ)

)

= N3/4
∞∑

n,m=∞

(

θ1(m,n)e
iωmτ

(

Ln(x)

Rn(x)

)

+ θ∗1(m,n)e
−iωmτ

(

L∗
n(x)

R∗
n(x)

))

(4.30)

where we have used τ = it and N =
√
q/β. For each doublet in (4.15) and (4.16) we have a

corresponding set of modes (θj(m,n), θ
∗
j (m,n)). So the index j on the θ’s run from 1 · · · 16.

Since L3
i and R3

i do not couple to the Φ3
1 = qx background, they just satisfy the plane

wave equations,

(∂0 + ∂x)L
3
i = 0 ; (−∂0 + ∂x)R

3
i = 0 . (4.31)

Hence their mode expansions are

L3
i (x, τ) = N3/4

∑

m

1√
q

∫
dk

(2π)
L3
i (m, k)e

i(kx+ωmτ)

R3
i (x, τ) = N3/4

∑

m

1√
q

∫
dk

(2π)
R3

i (m, k)e
i(kx+ωmτ) for all i = 1, · · · , 8 .

(4.32)

where L3∗
i (m, k) = L3

i (m, k).

Using the orthogonality relations and the mode expansions the quadratic part of the

fermionic action can thus be written as,

Sf =
N1/2

g2





j=16
∑

m,n,j=1

θj(m,n)(iωm −
√

λ′

n)θ
∗
j (m,n)

+
1

2
√
q

∫
dk

2π

i=8∑

m,i=1

L3
i (m, k)(iωm + k)L3∗

i (m, k)

+
1

2
√
q

∫
dk

2π

i=8∑

m,i=1

R3
i (m, k)(iωm − k)R3∗

i (m, k)



 .

(4.33)

With these we can write down the fermionic propagators as listed in the appendix. We

now turn to the interaction terms. These are the terms in the fermionic action (4.10) that

couple to the background fields Φ1
1 and A2

x that we simply call φB and AB respectively

as before.

Lf = φBψ
2T
R αT

1 ψ
3
L − φBψ

3T
R αT

1 ψ
2
L +ABψ

1T
L ψ3

L −ABψ
1T
R ψ3

R . (4.34)
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i (m,n)
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i (m,n)
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7

(a) (b)

(c) (d)

Figure 3. Feynman diagrams for the amplitudes with three-point fermionic vertices V R/L and

their complex conjugates V ∗R/L.

The corresponding vertices have been worked out in appendix. We thus have the

following contribution to the tachyon two-point amplitude.

Σ3(w,w
′

, k, k
′

, β, q) = −(8N)
∑

n,m,m
′

∫
dl

2π
√
q

1

(iωm −
√

λ′

n)
(4.35)

×
[

FR
6 (k, n, l)FR∗

6 (k
′

, n, l)

(iωm
′ + l)

+
FL
6 (k, n, l)F

L∗
6 (k

′

, n, l)

(iωm
′ − l)

+
FL
7 (k, n, l)F

L∗
7 (k

′

, n, l)

(iωm
′ + l)

+
FR
7 (k, n, l)FR∗

7 (k
′

, n, l)

(iωm
′ − l)

+
FR
6 (k, n, l)FL∗

7 (k
′

, n, l) + FR∗
6 (k, n, l)FL

7 (k
′

, n, l)

(iωm
′ + l)

+
FL
6 (k, n, l)F

R∗
7 (k

′

, n, l) + FL∗
6 (k, n, l)FR

7 (k
′

, n, l)

(iωm
′ − l)

]

δw+w
′

where w = m + m
′

. In (4.35) the Matsubara frequency ωm = mπ/β and m is an odd

integer due to anti-periodic boundary conditions along the time-cycle for the fermions and

ω−m = −ωm. The various diagrams contributing to the amplitude is shown in figures 3

and 4. Figure 4 shows the contractions between R2
i -L

1
9−i and L2

i − R1
9−i as they are

expanded with the same θ’s. The first term within 3rd bracket in (4.35) is represented by

the Feynman diagram in figure 3(a), while the second term by figure 3(b). The third and

fourth terms are represented by figure 3(c) and figure 3(d) respectively.

The fifth and sixth terms in (4.35) results from the “cross”-contraction between the

right-moving and left-moving fermions and are depicted in the Feynman diagrams in fig-

ures 4(a), 4(b) respectively. The functions F
R/L
6 and F

R/L
7 are all given in eqns (C.32),

– 22 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
3

Cw,kCw,k Cw,k
′Cw,k

′
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Figure 4. Feynman diagrams showing the cross terms in the amplitude with fermions in the loop.

(C.31) and (C.34). The massive fermions namely L
(1,2)
i and R

(1,2)
i have their propaga-

tors given by (C.28). The propagators for the massless fermions which are the 3rd gauge

component of the fermionic fields namely L3
i and R3

i are given in (C.29).

After performing the Matsubara sum in (4.35), the fermionic contribution to the one-

loop mass-squared corrections for the tree-level tachyon can be written as

Σ3(0, 0, k, k
′

, β, q) = (8N)
∑

n





∫
dl

2π
√
q




−β tanh

(
βl
2

)

− β tanh
(
1
2β

√
2nq

)

2
(
l +

√
2nq

)



 (4.36)

[

FR
6 (k, n, l)FR∗

6 (k
′

, n, l) + FL
7 (k, n, l)F

L∗
7 (k

′

, n, l)

+FR
6 (k, n, l)FL∗

7 (k
′

, n, l) + FR∗
6 (k, n, l)FL

7 (k
′

, n, l)
]

+

∫
dl

2π
√
q




−β tanh

(
βl
2

)

+ β tanh
(
1
2β

√
2nq

)

2
(
l −√

2nq
)





+
[

FL
6 (k, n, l)F

L∗
6 (k

′

, n, l) + FR
7 (k, n, l)FR∗

7 (k
′

, n, l)

+FL
6 (k, n, l)F

R∗
7 (k

′

, n, l) + FL∗
6 (k, n, l)FR

7 (k
′

, n, l)
]
]

.

As found in the case of bosonic amplitudes the fermionic counterpart given by (4.36)

also can be regrouped into two different parts the zero-temperature quantum corrections

and the finite temperature pieces. The amplitudes containing fermions in the loop are in-

frared finite because of anti-periodic boundary conditions imposed on the fermions whereby

they pick up temperature dependent mass at tree-level. However the fermionic ampli-

tudes (4.36) are ultraviolet divergent. The divergence come from the temperature inde-

pendent pieces in (4.36). We shall discuss this problem in details in the following section.

5 The ultraviolet and infrared problems

Each integral as well as the terms bearing the contribution from the massless modes Cw,k

in (4.7) and (4.8) are infrared divergent for (ωm = 0, l = 0). Moreover the sums over the

momentum n do not converge and integral over the momentum l are log divergent. These

give rise to ultraviolet divergence in each term in the two-point functions in (4.7), (4.8)

and (4.36). We deal with the ultraviolet problem first.
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5.1 Ultraviolet finiteness of tachyonic amplitudes

As mentioned above, every term in the two-point functions (4.5), (4.6) and (4.35) is ul-

traviolet divergent. In the present scenario supersymmetry is completely broken by choice

of background, namely, 〈Φ3
1〉 = qx, however the equality in the number of bosonic and

fermionic degrees of freedom still holds good in the intersecting brane configuration. In

the ultraviolet limit the degeneracy in the masses of the bosons and fermions is restored

and the ultraviolet divergences from the bosonic terms cancel with that from the fermionic

terms. We now proceed to show this cancellation.

After performing the Matsubara sum (see appendix F), the temperature independent

part of the bosonic propagators can be written as

1

ω2
m + λn

→ 1

2
√
λn

(5.1)

1

ω2
m + γn

→ 1

2
√
γn

(5.2)

1

ω2
m + l2

→ 1

2l
(5.3)

1

(ω2
m + λn)(ω2

m + γn′ )
→ 1

γn′

√
λn(γn′ +

√
λn)

. (5.4)

Let us now look at the various four-point and three-point vertices. We compute the

UV limit of the amplitudes for external momentum k = 0 = k
′

. This computation gives rise

to Gamma functions summed over their arguments. For UV behaviour we take asymptotic

expansion of the Gamma functions. We first compute the four-pont vertices in the bosonic

corrections (4.5) in the limit n→ ∞. For one-loop calculation n = n
′

. We use the following

properties of Γ(∗) functions:

lim
n→∞

Γ (n+ 1) ∼
(n

e

)n√
2πn (5.5)

Γ

(

n+
1

2

)

=
2n!

4nn!

√
π . (5.6)

Also the asymptotic expansion of the Hermite Polynomials for n→ ∞ gives

e−
x2

2 Hn(x) ∼
2n√
π
Γ

(
n+ 1

2

)

cos
(√

2nx− n
π

2

)

. (5.7)

With this asymptotic expansions at our disposal, we can now compute the four-point

bosonic vertices. The four-point vertex F1(0, 0, n, n) can be written as (using the results

of appendix B, C)

F1(0, 0, n, n)=
N 2(n)

2
√
π

∫ ∞

∞
dx e−2

√
qx2 (

6Hn(
√
qx)Hn(

√
qx)−8n2Hn−2(

√
qx)Hn−2(

√
qx)
)
.

(5.8)
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Using the asymptotic expansion of the Hermite polynomials given in (5.7), we get

F1(0, 0, n, n) =
N 2(n)

√
q

2
√
π

∫ ∞

−∞
dx e−2

√
qx2 (

6(Hn(
√
qx))2 − 8n2(Hn−2(

√
qx))2

)

=
22n+1N 2(n)Γ2

(
n+1
2

)

2π

√
q

∫ ∞

−∞
dx e−

√
qx2

cos2
(√

2nqx− n
π

2

)

=

(

1 +
(−1)n

e2n

)
22n
(
Γ
(
n+1
2

))2

π22n(4n− 2)n(n− 2)!
. (5.9)

In the ultraviolet limit the vertex function F1(0, 0, n, n) reduces to

F1(0, 0, n, n)|n→∞ =

((

1 +
(−1)n

e2n

)
22n
(
Γ
(
n+1
2

))2

π22n(4n− 2)n(n− 2)!

)

|n→∞ =
1

2π
√
2n
. (5.10)

The vertex F̃1(0, 0, n, n) has a similar form and in the ultraviolet limit also reduces to

F̃1(0, 0, n, n)|n→∞ =

((

1 +
(−1)n

e2n

)
22n
(
Γ
(
n+1
2

))2

π22n(4n− 2)(n− 1)!

)

|n→∞ =
1

2π
√
2n
. (5.11)

Putting the external momenta k = k
′

= 0, the four-point vertex function F2(0, 0, n, n) in

the limit n→ ∞ can be written as

F2(0, 0, n, n) =
1

2n+1
√
πn!

√
q

∫ ∞

−∞
dx e−2

√
qx2

(Hn(
√
qx))2 (5.12)

=

(

1 +
(−1)n

e2n

)
22n
(
Γ
(
n+1
2

))2

π22n+1n!
. (5.13)

In the UV limit the vertex function (5.12) reduces to

F2(0, 0, n, n)|n→∞ =

(

1 +
(−1)n

e2n

)
22n
(
Γ
(
n+1
2

))2

π22n+1n!
|n→∞ =

1

π
√
2n

. (5.14)

The remaining four-point bosonic vertex functions namely F
′

2(0, 0, l,−l), F3(0, 0) and

F
′

3(0, 0, l,−l) are independent of n. Therefore for a fixed value of the external momenta,

namely k = k
′

= 0 they can be exactly computed and found to be,

F
′

2(0, 0, l,−l) = 1 (5.15)

F
′

3(0, 0, l,−l) =
1

2
(5.16)

F3(0, 0, l,−l) =
1

2
. (5.17)

The three-point bosonic vertices contain both the continuous momentum l coming from

the massless fields as well as the discrete momentum n coming from the fields coupled to the

background
〈
φ31
〉
= qx. The UV-limit must be taken unambiguously for each term in the

amplitude Σ2(0, 0, 0, 0, β, q). Let us first try to compute the amplitude for the three-point
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vertices F4(0, l, n) and F̃4(0, l, n) with external momenta k = 0. The three-point vertex

F4(0, l, n) can be written as

F4(0, l, n) =
N (n)
√

2
√
π

√
q

∫

dx e−qx2

eilx4nHn(
√
qx) (5.18)

where N (n) are the normalization factors for the eigenvectors ζn(x) and the factor eilx

can be attributed to the presence of the massless field A3
x(m, l) in the loop. Hence the

integral in (5.18) is simply the Fourier transform of the Hermite polynomials weighted by

Gaussian factor.

The Fourier transform of a single Hermite Polynomial is given by
∫ ∞

−∞
dx(eilxe−x2

Hn(x)) = (−1)nin
√
πe−

l2

4 ln . (5.19)

In the following analysis we will set q = 1 and will restore factors of q only in the final

expressions. Using (5.19) in (5.18) the three-point vertex F4(0, l, n) can be written as

F4(0, l, n) =
√
π(−1)n−1in−1




4ne−

l2

4 ln−1

√

2n+1π(4n2 − 2n)(n− 2)!



 . (5.20)

We decompose the corresponding propagator into partial fraction (for reference see the

first term in (4.6) and the Feynman diagram in figure 2(a)).

1

ω2
m(ω2

m + λn)
=

1

λn

(
1

ω2
m

− 1

(ω2
m + λn)

)

. (5.21)

The amplitude comprising of the vertex F4(0, l, n) given in (4.6) is given by

∑

m,n

∫
dl

2π




16n2e−

l2

2 l2n−2

2n+1(4n2 − 2n)(n− 2)!

1

λn

1

ω2
m

− 16n2e−
l2

2 l2n−2

2n+1(4n2 − 2n)(n− 2)!

1

λn(ω2
m + λn)



 .

(5.22)

In the first term in (5.22) we perform the sum over n and take the UV limit l →
∞. In the second term we first compute the integration over l and then expand the

resulting expression asymptotically about n = ∞. The leading order contribution to the

UV divergence obtained from this amplitude is thus

∑

m

∫
dl

2π
√
q

1

2ω2
m

−
∑

m,n

1

2π
√
2n

1

ω2
m + λn

. (5.23)

The three-point vertex F̃4(0, l, n) vanishes for all n. Hence the corresponding ampli-

tude vanishes. The two-point functions corresponding to the three-point vertices F5(0, l, n),

F
′

5(0, l, n) and F̃
′

5(0, l, n) (obtained from (C.22), (C.24) and (C.26)) contain propagators

with momentum l as well as those containing the momentum n. The amplitude bearing the

three-point vertex F5(0, l, n) contains contributions from the fields Φ1,2
I (m,n) and the mass-

less fields Φ3
I(m, l) in the loop. Therefore the propagators contain both the mass-squared
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eigenvalues γn = (2n+ 1)q of the basis functions of the fields Φ1,2
I and the momentum l of

the massless field Φ3
I . Similarly F

′

5(0, l, n) has contributions from the fields Cm,n and the

massless fields Φ3
1(m, l). Therefore the propagators in the corresponding two-point func-

tion has both the mass-squared eigenvalues λn = (2n− 1)q and the momentum l. In both

these amplitudes we first perform the integration over l and then asymptotically expand

the resulting expressions about n = ∞. As for the two-point function for the three-point

vertex F̃
′

5(0, l, n) the fields participating in the loop are the massless modes C̃m,n as well

as Φ3
1(m, l). In this case we first decompose the mixed propagator into two parts. We then

sum over n and then take the limit l → ∞. Throughout the computations the external

momentum is kept fixed at k = 0. All the three-point vertices F5(0, l, n), F
′

5(0, l, n) and

F̃
′

5(0, l, n) has the factor eilx due to the presence of massless fields in the loop. As in the

cases of F4(0, l, n), the integrals over the world-volume coordinate x in these vertex func-

tions amount to evaluating the the Fourier transform of the various Hermite polynomials

constituting the vertex functions.

Using the result from (5.19) in computing the vertex functions (C.22), (C.24)

and (C.26) for k = 0, we arrive at the following expressions

F5(0, l, n) = −(−1)n+1i(n+1)e−
l2

4

(
l(n+1) + 2nl(n−1)

)

√
2n+1πn!

(5.24)

F
′

5(0, l, n) = (−1)n+1i(n+1)e−
l2

4
3l(n+1) + 4n(n− 2)l(n−3)

√

2n+2π(4n2 − 2n)(n− 2)!
(5.25)

F̃
′

5(0, l, n) = (−1)n+1i(n+1)e−
l2

4
3l(n+1) − 4n(n− 2)l(n−3)

√

2n+2π(4n− 2)(n− 1)!
. (5.26)

The amplitude for the three-point vertex F5(0, l, n) can be written as

∑

m,n

∫
dl

2π

F5(0, l, n)F
∗
5 (0, l, n)

(ω2
m + γn)(ω2

m + l2)
=
∑

m,n

∫
dl

2π

e−
l2

2

(ω2
m + γn)(ω2

m + l2)

(
l(n+1) + 2nl(n−1)

)2

2n+1πn!

(5.27)

where the second line in (5.27) is obtained by plugging in (5.24) in the first line. After

performing the integral over l , we asymptotically expand the result about n = ∞ This

results into

∑

m,n

∫
dl

2π

F5(0, l, n)F
∗
5 (0, l, n)

(ω2
m + γn)(ω2

m + l2)
(5.28)

=
1

2

∑

m,n

1

(ω2
m + γn)








2
√
2
√

1
n

π
−
((
−7 + 4ω2

m

)) (
1
n

)3/2

2
(√

2π
) +O

(
1

n

)2




+ 2−n
( e

n

)n (
ω2
m

)n
sec(nπ)




−

e
ω2
m
2

√
2
πn

3/2

ω3
m

+
e

ω2
m
2

(
24ω2

m + 2
)√

n

12
√
2πω3

m

+O
(
1

n

)0









 .

In the above expression the terms with odd power of ωm vanishes under summation

over m over {−∞,∞}. The leading order term in the amplitude contributing to UV
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divergence is
∑

m,n

4

2π
√
2n

1

(ω2
m + γn)

. (5.29)

Similarly using the result of Fourier Transform in (5.25), the amplitude for the three-

point vertex F
′

5 can be written as

∑

m,n

∫
dl

2π

F
′

5(0, l, n)F
′∗
5 (0, l, n)

(ω2
m+λn)(l2 + ω2

m)
=
∑

m,n

∫
dl

2π

e−
l2

2

(ω2
m+λn)(l2 + ω2

m)

(
3l(n+1)+4n(n−2)l(n−3)

)2

2(n+2)π(4n2−2n)(n−2)!
.

(5.30)

After integrating the amplitude in (5.30) over l and expanding about n = ∞ we get the

expansion

∑

m,n

∫
dl

2π

F
′

5(0, l, n)F
′∗
5 (0, l, n)

(ω2
m + λn)(l2 + ω2

m)

=
1

2

∑

m,n

1

(ω2
m + λn)








2
√
2
√

1
n

π
+O

(
1

n

)1




+ 2−n
( e

n

)n
(

1

ω2
m

)−n

sec(nπ)




−

e
ω2
m
2

√
2
πn

7/2

ω7
m

+O
(
1

n

)3









 . (5.31)

The terms with odd powers of ωm vanishes under the sum over m over {−∞,∞}. The

leading order term in the expansion of the amplitude (5.31) that contributes to the UV

divergence is
∑

m,n

4

2π
√
2n

1

(ω2
m + λn)

. (5.32)

As for the amplitude containing the three-point vertex F̃
′

5(0, l, n) we have

∑

m,n

∫
dl

2π

F̃
′

5(0, l, n)F̃
′∗
5 (0, l, n)

ω2
m(ω2

m + l2)
(5.33)

=
∑

m,n

∫
dl

2π

e−
l2

2

ω2
m(ω2

m + l2)

(
3l(n+1) − 4(n− 1)(n− 2)l(n−3)

)2

2(n+2)π(4n− 2)(n− 1)!
.

We rewrite the propagators as

1

ω2
m(ω2

m + l2)
=

1

l2

(
1

ω2
m

− 1

(ω2
m + l2)

)

(5.34)

we thus have the following expression,

∑

m

∫
dl

2π

e−
l2

2

l2

(
1

ω2
m

− 1

ω2
m + l2

) (
3l(n+1) − 4(n− 1)(n− 2)l(n−3)

)2

2(n+2)π(4n− 2)(n− 1)!
. (5.35)
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In the first term of the above expression we perform the integral over l and then take

the n→ ∞ limit. The first term gives
∑

m,n

1

2π
√
2n

1

ω2
m

(5.36)

In the second term we perform the sum over n, which gives

−
∑

m

∫
dl

2π

e−
l2

2

l2

(
1

ω2
m+l2

)

(

−128+96l4−18l8−9l10+8e
l2

2

(
16−8l2−10l4+6l6+l8

)
)

16l6
.

(5.37)

The divergent piece in the last line is

−1

2

∑

m

∫
dl

2π
√
q

(
1

ω2
m + l2

)

. (5.38)

Let us now look at the fermionic amplitudes in (4.35). We first note that the mass-

less fermionic fields namely R3
i and L3

i has propagators (iωm ± l)−1 where the “+”-sign

stands for R3
i and the “−”-sign for L3

i . However while computing the two-point functions

one needs to perform integrations with respect the momentum l over the entire range of

{−∞,∞}. Hence to analyze the UV behaviour it suffices to consider only one one sign for

the propagators. For our purpose we consider the following propagator and decomposed

it into

1

(iωm −
√

λ′

n)(iωm + l)
=

1

2

(

− 1

ω2
m + λ′

n

− 1

ω2
m + l2

+
l2 + λ

′

n

(ω2
m + λ′

n)(ω
2
m + l2)

)

(5.39)

where we have dropped the terms with odd powers of ωm and l, because they are odd

functions of ωm and l and will vanish with respect to sum over m over {−∞,∞} as well

as integral over l over the same interval. The fermionic vertices are all three-point vertices

with contributions from the massless fermions L3
i and R

3
i respectively in the loop. As found

in the bosonic amplitude the integrals in (C.31), (C.32) and (C.34) at k = 0 also amounts

to computing the Fourier transform the Hermite polynomials from the massive fermions

which in turn produce the vertex functions in terms of l and n. The fermionic vertices an

thus be written as

FL
6 (0, n, l) = FL

7 (0, n, l) = (−1)n+1i(n+1)e−
l2

4

( ln√
2n

− l(n−1))
√

2
√
π
√

2n+1
√
π(n− 1)!

(5.40)

FR
6 (0, n, l) = FR

7 (0, n, l) = −(−1)n+1i(n+1)e−
l2

4

( ln√
2n

+ l(n−1))
√

2
√
π
√

2n+1
√
π(n− 1)!

. (5.41)

Combining the equations (5.39) with (C.32), (C.31) and (C.34), the total fermion

two-point functions for the tree-level tachyon at finite temperature is given by

Σ3(0, 0, 0, 0, β, q) (5.42)

= (8)
∑

m,n

∫
dl

2π

1

2

(

− 1

ω2
m + λ′

n

− 1

ω2
m + l2

+
l2 + λ

′

n

(ω2
m + λ′

n)(ω
2
m + l2)

)

(

e−
l2

2

2( ln√
2n

− l(n−1))2 + 2( ln√
2n

+ l(n−1))2 + 4( ln√
2n

− l(n−1))( ln√
2n

+ l(n−1))

2n+2π(n− 1)!

)

.
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Combining all the fermionic vertices, eq. (5.42) can be finally written down as

Σ3(0, 0, 0, 0, β, q) = (8)
∑

m,n

∫
dl

2π

1

2

[

− 1

ω2
m + λ′

n

(

e−
l2

2
l2n

2n+1πn!

)

− 1

ω2
m + l2

(

e−
l2

2
l2n

2n+1πn!

)

+
l2 + λ

′

n

(ω2
m + λ′

n)(ω
2
m + l2)

(

e−
l2

2
l2n

2n+1πn)!

)]

. (5.43)

The first term in (5.43) upon integration over the momentum l and in the n → ∞
limit yields the leading order fermionic contribution

− 1

2
(16)

∑

m,n

1

2π
√
2n

1

ω2
m + λ′

n

. (5.44)

In the second term in (5.43) we sum over n and then take the l → ∞ limit and extract

the leading order term as

−1

2
(8)

∫
dl

2π
√
q

∑

m

1

ω2
m + l2

. (5.45)

In the 3rd and last term we integrate over l and the leading order term in the large

n-expansion is given by
1

2
(8)
∑

m,n

4

2π
√
2n

1

ω2
m + λ′

n

. (5.46)

The total leading order contribution to the UV divergence from the bosonic side is

1

2

∑

m,n

1

2π
√
2n

1

ω2
m + λn

+
1

2

∑

m,n

7× 2

2π
√
2n

1

ω2
m + γn

︸ ︷︷ ︸

amplitudes involving F1(0, 0, n, n) and F2(0, 0, n, n)

+
∑

m,n

1

2π
√
2n

1

2ω2
m

︸ ︷︷ ︸

F̃1(0, 0, n, n)

−
∫

dl

2π
√
q

∑

m

1

2ω2
m

+
1

2

∑

m,n

1

2π
√
2n

1

ω2
m + λn

︸ ︷︷ ︸

amplitude involving F4(0, l, n)

+

∫
dl

2π
√
q

∑

m

1

2ω2
m

︸ ︷︷ ︸

F3(0, 0, l,−l)

+

(

1

2
(7)

∫
dl

2π
√
q

∑

m

1

ω2
m + l2

+
1

2
× 1

2

∫
dl

2π
√
q

∑

m

1

ω2
m + l2

)

︸ ︷︷ ︸

amplitudes involving F
′

2
(0, 0, n, n) and F

′

3
(0, 0, n, n)

+
1

2
× 1

2

∫
dl

2π
√
q

∑

m

1

ω2
m + l2

−
∑

m,n

1

2π
√
2n

1

2ω2
m

︸ ︷︷ ︸

amplitude involving F̃
′

5
(0, l, n)

−
(

1

2
(7)
∑

m,n

4

2π
√
2n

1

ω2
m + γn

+
1

2

∑

m,n

4

2π
√
2n

1

ω2
m + λn

)

︸ ︷︷ ︸

amplitudes involving F5(0, l, n) and F
′

5
(0, l, n)

. (5.47)
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The total leading order contribution to the UV divergence from the amplitudes con-

taining fermions in the loop is

− 1

2
(16)

∑

m,n

1

2π
√
2n

1

ω2
m + λ′

n
︸ ︷︷ ︸

1st term in Σ3(0, 0, 0, 0, β, q)

− 1

2
(8)

∫
dl

2π
√
q

∑

m

1

ω2
m + l2

︸ ︷︷ ︸

2nd term in Σ3(0, 0, 0, 0, β, q)

+
1

2
(8)
∑

m,n

4

2π
√
2n

1

ω2
m + λ′

n
︸ ︷︷ ︸

3rd term in Σ3(0, 0, 0, 0, β, q)

(5.48)

As n → ∞, we see that γn = λn = λ
′

n = 2nq. Comparing (5.47) with (5.48), we see that

the leading order terms from bosonic sides cancel with that from the fermionic side. In

this method of proving UV finiteness of the finite temperature corrections to the tree-level

tachyon mass-squared the UV divergence in l or n is thus softened by the fact that the

Matsubara sum is left untouched. The large n expansion is valid under the assumption

that m < n. This assumption restricts our proof to a corner in the phase space. However

the counting of the degrees of freedom on the bosonic and fermionic sides still match which

in turns forces the divergences to cancel out. We expect the finiteness of the two-point

functions to hold for large values of m also because higher order terms in the expansion is

heavily suppressed by Gaussian factors.

5.2 Infrared problem

We now address the problem of infrared divergences. The appearance of IR divergence is

due to the presence of massless fields namely C̃w,k, A
3
x and Φ3

I (for I = 1 · · · 8) in the loop.

To compute the IR-finite two-point Cw,k amplitude we shall follow a two step procedure

as mentioned in the introduction. In the first step we compute the temperature corrected

masses-squared of the massless fields by integrating over the modes in the internal lines

with an IR cutoff. The next step is to introduce these masses in the propagators for the

massless fields. This is equivalent to summing over an infinite set of diagrams which is

illustrated in figure 5. In the figure, the χ field stands for the modes with tree-level mass

zero. The bold line is the corrected propagator for the χ field due to the sum of an infinite

set of diagrams on the right.

At each temperature the sums and the integrals are now IR-finite because all fields in

the loops are now massive. Thus we can compute the mass-squared corrections and obtain

the temperature corrected effective masses-squared of the tree-level tachyon as a function

of q and β.

In the following few sections we compute the two-point functions for the massless

modes of the doublet of fields (Φ1
1, A

2
x) namely the C̃ ′

w,ks and the other massless fields

namely Φ3
1,Φ

3
I , A

3
x at finite temperature.

5.3 Two-point functions for the C̃w,k modes

In this section we compute the two point function for the C̃w,k modes. During these

computations we note that there are no normalizable eigenfunctions Ãn(x) and φ̃n(x) (see

eqn (2.24)) for n = 0.
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a1

∞∑

n=0

χ
χ

1
2

n

=

Cw,k Cw,kCw,k′ Cw,k′

Figure 5. Diagram showing the correction to the propagator for the χ field due to mass insertions.

The amplitudes with bosons in the loop and consisting of the four-point vertices for

the one-loop masses-squared of the massless modes are given by

Σ1
H(w,w

′

, k, k
′

, β, q) =
1

2
N
∑

m

[
∑

n

(

H1(k, k
′

, n, n)

ω2
m + λn

+
H̃1(k, k

′

, n, n)

ω2
m

+
7H2(k, k

′

, n, n)

ω2
m + γn

)

+

∫
dl

(2π
√
q)

(

7H
′

2(k, k
′

, l,−l)
ω2
m + l2

+
H

′

3(k, k
′

, l,−l)
ω2
m + l2

)

+

∫
dl

2π
√
q

H3(k, k
′

l,−l)
ω2
m

]

δw+w
′ , (5.49)

where w = m+m
′

. Here ‘H’ denotes the vertices corresponding to the finite temperature

two-point functions for the massless modes C̃w,k’s. The Feynman diagrams comprising

the four-point vertices that contribute to the mass-squared corrections to the massless (at

tree-level) modes C̃w,k are depicted in figure 6.

The amplitudes arising from three-point interaction vertices for the massless modes

C̃w,k are collected into

Σ2
H(w,w

′

, k, k
′

, β, q) = −1

2
qN
∑

m,n

[
∫

dl

2π
√
q

H4(k, l, n)H
∗
4 (k

′

, l, n)

(ω2
m + λn)ω2

m
′

+

∫
dl

2π
√
q

H̃4(k, l, n)H̃
∗
4 (k

′

, l, n)

ω2
mω

2
m

′

+

∫
dl

2π
√
q

(

7H5(k, l, n)H
∗
5 (k

′

,−l, n)
(ω2

m + γn)(ω2
m

′ + l2)
+
H

′

5(k, l, n)H
′∗
5 (k

′

,−l, n)
(ω2

m + λn)(ω2
m

′ + l2)

)

+

∫
dl

2π
√
q

H̃
′

5(k, l, n)H̃
′∗
5 (k

′

,−l, n)
(ω2

m)(ω2
m

′ + l2)

]

δw+w
′ (5.50)

where w = m + m
′

. The Feynman diagrams for the three-point interactions are given

in figure 7. The various four-point and three-point vertices are given in appendix (D.1).

Note that the one-loop mass-squared corrections to the massless modes have the same
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C̃w,kC̃w,kC̃w,k

C̃w,kC̃w,kC̃w,k

C̃w,k
′C̃w,k

′C̃w,k
′

C̃w,k
′

C̃w,k
′C̃w,k

′

Cm,n C̃m,n Φ
(1,2)
I (m,n)

Φ3
I(m, l)

A3
x(m, l) Φ3

1(m, l)

VH1
ṼH1

VH2

V
′

H2

VH3 V
′

H3

(a) (b) (c)

(d) (e) (f)

Figure 6. Feynman diagrams for the two-point C̃w,k amplitudes with four-point vertices.

C̃w,k

C̃w,kC̃w,k

C̃w,k
C̃w,k

C̃w,k
′

C̃w,k
′C̃w,k

′

C̃w,k
′

C̃w,k
′

Cm,n

A3
x(m, l)

C̃m,n

A3
x(m, l)

Φ
(1,2)
I (m,n)

Φ3
I(m, l)

Cm,n

Φ3
1(m, l)

C̃m,n

Φ3
1(m, l)

VH4
V ∗
H4

VH4
V ∗
H4

VH5
V ∗
H5

ṼH5
Ṽ ∗
H5

Ṽ
′

H5
Ṽ

′∗
H5

(a) (b)

(c)

(d) (e)

Figure 7. Feynman diagrams for the two-point C̃w,k amplitudes with three-point vertices.
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structure as the tachyonic amplitudes. This is because they originate from the same set of

interactions for the doublet ζ(x, τ) in the action. The only difference between (4.5), (4.6)

and (5.49), (5.50) is that the momentum modes in the external legs of the Feynman dia-

grams for the latter are now the massless modes C̃w,k. Upon performing the Matsubara

sums, the bosonic amplitudes namely (5.49) and (5.50) can be recast as

Σ1
H(0, 0, k, k

′

, β, q) =
1

2

[
∑

n

H1(k, k
′

, n, n)
√

(2n− 1)

(

1

2
+

1

eβ
√

(2n−1)q − 1

)

+N
∑

m

(
∑

n

H̃1(k, k
′

, n, n)

ω2
m

+

∫
dl

2π
√
q

H3(k, k
′

, l − l)

ω2
m

)

+
∑

n

(

7H2(k, k
′

, n, n)
√

(2n+ 1)

(

1

2
+

1

eβ
√

(2n+1)q − 1

))

+

(
∫

dl

2π
√
q

(7 + 1/2)δk,k′

(l/
√
q)

(
1

2
+

1

eβl − 1

))]

(5.51)

Σ2
H(k, k

′

, β, q)

=−1

2

∑

n

[
∫

dl

2π
√
q

H4(k, l, n)H
∗
4 (k

′

, l, n)

(2n− 1)

[(
∑

m

√
q

βω2
m

− 1√
2n−1

(
1

2
+

1

e
√

(2n−1)qβ
−1

))]

+ qN

∫
dl

2π
√
q

∑

m

H̃4(k, l, n)H̃
∗
4 (k

′

, l, n)

ω4
m

+

∫
dl

2π
√
q

[

7H5(k, l, n)H
∗
5 (k

′

,−l, n)
(l/

√
q)2 − (2n+ 1)

(

1√
2n+ 1

(

1

2
+

1

e
√

(2n+1)qβ − 1

)

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

[

H
′

5(k, l, n)H
′∗
5 (k

′

,−l, n)
(l/

√
q)2 − (2n− 1)

(

1√
2n− 1

(

1

2
+

1

e
√

(2n−1)qβ − 1

)

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

H̃
′

5(k, l, n)H̃
′∗
5 (k

′

,−l, n)
(l/

√
q)2

(
∑

m

1

ω2
m

− 1

(l/
√
q)

(
1

2
+

1

elβ − 1

))]

. (5.52)

respectively. Similarly using the various vertex functions given in appendix (D.2), the finite-

temperature contribution due to fermions in the loop to the mass-squared corrections for

the massless modes is given by equation (5.53). The relevant Feynman diagrams are listed

in figure 8 and figure 9.

Σ3
H(w,w

′

, k, k
′

, β, q) = −(8N)
∑

n,m,m
′

∫
dl

2π
√
q

1

(iωm −
√

λ′

n)
(5.53)

×
[

HR
6 (k, n, l)H

R∗
6 (k

′

, n, l)

(iωm
′ + l)

+
HL

6 (k, n, l)H
L∗
6 (k

′

, n, l)

(iωm
′ − l)
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+
HL

7 (k, n, l)F
H∗
7 (k

′

, n, l)

(iωm
′ + l)

+
HR

7 (k, n, l)H
R∗
7 (k

′

, n, l)

(iωm
′ − l)

+
HR

6 (k, n, l)H
L∗
7 (k

′

, n, l) +HR∗
6 (k, n, l)HL

7 (k
′

, n, l)

(iωm
′ + l)

+
HL

6 (k, n, l)H
R∗
7 (k

′

, n, l) +HL∗
6 (k, n, l)HR

7 (k
′

, n, l)

(iωm
′ − l)

]

δw+w
′

where w = m +m
′

. After performing the Matsubara sums the amplitude (5.53) assumes

the following form.

Σ3
H(0, 0, k, k

′

, β, q) =

(8N)
∑

n





∫
dl

2π
√
q




−β tanh

(
βl
2

)

− β tanh
(
1
2β

√
2nq

)

2
(
l +

√
2nq

)





[HR
6 (k, n, l)H

R∗
6 (k

′

, n, l) +HL
7 (k, n, l)H

L∗
7 (k

′

, n, l)

+HR
6 (k, n, l)H

L∗
7 (k

′

, n, l) +HR∗
6 (k, n, l)HL

7 (k
′

, n, l)]

+

∫
dl

2π
√
q




−β tanh

(
βl
2

)

+ β tanh
(
1
2β

√
2nq

)

2
(
l −√

2nq
)





+ [HL
6 (k, n, l)H

L∗
6 (k

′

, n, l) +HR
7 (k, n, l)H

R∗
7 (k

′

, n, l)

+HL
6 (k, n, l)H

R∗
7 (k

′

, n, l) +HL∗
6 (k, n, l)HR

7 (k
′

, n, l)]



 . (5.54)

At this point we recall that there is no normalizable eigenfunction for the massless

modes C̃w,0. Hence the counting starts from k = 1. These massless modes appear as the

fluctuations C̃m,n with k replaced as n in the one-loop diagrams for the tree-level tachyon

(see figures 1 and 2) where we need to sum over all n. As mentioned before the two point

functions for all the Cw,k and the C̃w,k modes are coupled to each other at the one loop level

giving rise to an infinite dimensional mass-matrix. To get the corrected spectrum we must

re-diagonalize the mass matrix. Since our approach is to get the final finite values of the

masses-squared numerically, for simplicity we shall work with a finite dimensional matrix

for the C̃w,k modes. Like the two point amplitude for the Cw,k, the two-point functions of

the massless modes also have contributions from the massless fields Φ3
1, Φ

3
I ; I 6= 1 and A3

x

in the loop hence has the problem of infrared divergence and will be addressed in the way

as mentioned before. The UV finiteness of the amplitudes for the two-point functions of

the fields C̃w,k can be checked using the method used for the tachyonic case.

5.4 Two point function for Φ3

1

Using the vertices computed in appendix E.1 we first write down the two point amplitude

for Φ3
1. The Feynman diagrams involving the four-point vertices is depicted in figure 10.

The one-loop two-point functions involving the four-point vertices given in section E.1

contributing to the finite-temperature mass-squared corrections to the tree-level massless
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C̃w,k

C̃w,k

C̃w,k

C̃w,k

C̃w,k
′

C̃w,k
′

C̃w,k
′

C̃w,k
′

R2
i (m,n)

L3
9−i(m, l)

L2
i (m,n)

R3
9−i(m, l)

R1
i (m,n)

R3
9−i(m, l)

L1
i (m,n)

L3
9−i(m, l)

V R
H6

V R∗
H6 V L

H6
V L∗
H6

V R
H7

V R∗
H7 V L

H7
V L∗
H7

(a) (b)

(c) (d)

Figure 8. Feynman diagrams for the amplitudes with three-point fermionic vertices V
R/L
H and

their complex conjugates V
∗R/L
H .

C̃w,kC̃w,k C̃w,k
′C̃w,k

′

R2
i L1

9−i

L3
9−i L

3
9−i

L2
i R1

9−i

R3
9−iR

3
9−i

V R
H6

V L∗
H7 V L

H6
V R∗
H7

(a) (b)

Figure 9. Feynman diagrams showing the cross terms in the amplitude with fermions in the loop.

Φ3
1(w, l)

Φ3
1(w, l)Φ3

1(w, l)
Φ3
1(w

′

, l
′

)Φ3
1(w

′

, l
′

)
Φ3
1(w

′

, l
′

)

Φ
(1,2)
I (m,n) Cm,n C̃m,n

V 1
1

V 1
2 Ṽ 1

2

(a) (b) (c)

Figure 10. Feynman diagrams for the amplitudes with four-point bosonic vertices V 1
1 , V

1
2 , Ṽ

1
2 .
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Φ3
1(w, l)

Φ3
1(w, l)

Φ3
1(w, l)

Φ3
1(w, l)

Φ3
1(w

′

, l
′

)

Φ3
1(w

′

, l
′

)

Φ3
1(w

′

, l
′

)

Φ3
1(w

′

, l
′

)

Φ
(1,2)
I (m,n)

Φ
(1,2)
I (m,n)

Cm,n

Cm,n

C̃m,n

C̃m,n

Cm,n

C̃m,n

V 1
1 V 1∗

1
V 1
3 V 1∗

3

Ṽ 1
3 Ṽ 1∗

3 Ṽ 1′
3

Ṽ 1′∗
3

(a) (b)

(c) (d)

Figure 11. Feynman diagrams with three-point bosonic vertices V 1′

1 , V 1
3 , Ṽ

1
3 , Ṽ

1′

3 .

field Φ3
1 can be collected into

Σ1
Φ3

1
−Φ3

1

=
1

2
N
∑

m,n

[

(7× 2)
G1

1(l, l
′

, n, n)

(ω2
m + γn)

+ (2)
G1

2(l, l
′

, n, n)

(ω2
m + λn)

+ (2)
G̃1

2(l, l
′

, n, n)

(ω2
m)

]

δw+w
′

(5.55)

The first term in (5.55) has contributions from the massive fields Φ
(1,2)
I , I 6= 1 in the

loop with four-point vertex and propagator given in (C.3) and the corresponding Feynman

diagram is given by figure 10(a). The second term bears contributions from the fields

Cm,n with propagator (C.1) and depicted in the Feynman diagram in figure 10(b). The

third term involves the massless fields C̃m,n in the loop with propagator (C.2) and corre-

sponding Feynman diagram in figure 10(c). Similarly the three-point bosonic interactions

contributing to the finite temperature corrections to the massless field Φ3
1(w, l) are collected

in the mass-squared correction (5.56). The corresponding Feynman diagrams are given in

figure 11.

Σ2
Φ3

1
−Φ3

1

= −1

2
qN

∑

m,n,n
′

[

(7× 2)
G1′

1 (l, l
′

, n, n)

(ω2
m + γn)(ω2

m
′ + γ

′

n
′ )

+ (2)
G1

3(l, n, n
′

)G1
3(l

′

, n, n
′

)

(ω2
m + λn)(ω2

m′ + λn′ )

+ (2)
G̃1

3(l, n, n
′

)G̃1
3(l

′

, n, n
′

)

(ω2
m)(ω2

m′ )
+ (2)

G̃1′
3 (l, n, n

′

)G̃1′
3 (l

′

, n, n
′

)

ω2
m(ω2

m′ + λn′ )

]

δw+w′ (5.56)

where w = m
′

+m. The first term in (5.56) comprising the three-point vertex G1′
1 (l, n, n

′

)

involves the fields Φ
(1,2)
I , I 6= 1 in the loops and is represented by the Feynman diagram in
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replacemen

Φ3
1(w, l)Φ3

1(w, l) Φ3
1(w

′

, l
′

)Φ3
1(w

′

, l
′

)

θi(m,n)
θi(m,n)

θi(m,n)θi(m,n)

V 1
f V 1∗

f
Ṽ 2
f Ṽ 2∗

f

(a) (b)

Figure 12. Feynman diagrams involving three-point vertices V 1
f , V

2
f .

figure 11(a). Similarly the second term in (5.56) involving the vertex G1
3(l, n, n

′

) comprises

of the fields Cm,ns in the loop. The corresponding Feynman diagram is given in figure 10(b).

The third term has contributions from C̃m,ns with Feynman diagram in figure 10(c), while

the fourth term represented in figure 10(d) has contributions from the fields Cm,n and C̃m,n.

Figure 12 shows the amplitude involving the fermions in the loop. The corresponding

expression is

Σ3
Φ3

1
−Φ3

1

=
1

2
N
∑

m,n,n′



(16× 2)
G1

f (l, n, n
′

)G1∗
f (l

′

, n, n
′

)

(iωm −
√

λ′

n)(iωm
′ −
√

λ
′

n
′ )

− (16)
G2

f (l, n, n
′

)G2∗
f (l

′

, n, n
′

)

(iωm −
√

λ′

n)(−iωm
′ −
√

λ
′

n
′ )



 δw+w
′ (5.57)

with w = m
′

+m. The first and the second term in (5.57) are depicted in the Feynman

diagrams given in figures 12(a) and 12(b) respectively. The various vertices given in sec-

tion E.1 that are involved in the two-point functions realizing the mass-squared corrections

to the tree-level massless field Φ3
1 can be exactly computed using the orthogonality relation

for Hermite Polynomials. Setting the external momenta l = l
′

= w = w
′

= 0, we can write

down the various vertices as

G1
1[0, 0, n, n

′

] = δn,n′ , G1
2[0, 0, n, n

′

] =
1

2
δn,n′ , G̃1

2[0, 0, n, n
′

] =
1

2
δn,n′ , (5.58)

G1′

1 [0, n, n
′

] =
√
2nδn−1,n

′ , G1
3[0, n, n

,] = 2

√

2n(n− 1)(n− 2)

(2n− 1)(2n− 3)
δn−1,n

′ , (5.59)

G̃1
3[0, n, n

′

] = 0, (5.60)

G̃1′

3 [0, n, n
′

] = −
( √

2(n− 1)(n+ 1)
√

(2n− 1)(2n+ 1)
δn+1,n

′ −
√
2n(n− 1)

√

(2n− 1)(2n− 3)
δn−1,n

′

)

(5.61)

G1
f [0, n, n

′

] = − i

4

(

2δn−1,n
′

)

, G2
f [0, n, n

′

] = − i

2

(

δn+1,n, + δn−1,n
′

)

. (5.62)

To prove the ultraviolet finiteness of the mass-squared corrections (5.55), (5.56)

and (5.57), we set the external momenta (l, l
′

, w) = 0 and compute the vertices in the

– 38 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
3

large n limit. The vertices can be evaluated using the orthogonality condition for Hermite

polynomials. The various four-point vertices given in (5.58) in the large n limit assume

the forms

G1
1(0, 0, n, n) = 1 ; G1

2(0, 0, n, n) = G̃1
2(0, 0, n, n) =

1

2
(5.63)

where we have used the Kronecker delta’s to set n = n
′

. The three-point vertices given

in (5.59) in the large n limit become

G1′

1 (0, n, n
′

) ∼
√
2n

2
[2δn′ ,n−1] ; G1

3(0, n, n
′

) ∼
√
2n

8
[8δn′ ,n−1] . (5.64)

The three-point bosonic vertex G̃1
3(0, n, n

′

) is found to be identically zero for all values n

in (5.60). Moreover the fermionic three-point vertices are exact for all values n. Hence the

remaining three-point bosonic vertex (5.61) in the limit n→ ∞ can be written as

G̃1′

3 (0, n, n
′

) ∼
√
2n

8
[4δn′

,n−1 − 4δn′
,n+1] . (5.65)

The ultraviolet contribution to the amplitude can now be written down by putting

these asymptotic values of the vertices into (5.55), (5.56), (5.57). We get the following

from the bosonic fields in the loop

Σ1
Φ3

1
−Φ3

1

∼ 1

2
N
∑

m,n

[

(7× 2)
1

(ω2
m + γn)

+ (2)
1/2

(ω2
m + λn)

+ (2)
1/2

(ω2
m)

]

(5.66)

Σ2
Φ3

1
−Φ3

1

∼ −1

2
qN
∑

m,n

[

(7× 2)
2n

(ω2
m+γn)2

+(2)
2n

(ω2
m + λn)2

+(2)
(2n)/2

ω2
m(ω2

m + λn)

]

. (5.67)

Noting that in the large n limit, λn = γn ∼ 2nq,

Σ1
Φ3

1
−Φ3

1

+Σ2
Φ3

1
−Φ3

1

∼ N
∑

m,n

[

(8)
1

(ω2
m + 2nq)

− (8)
2nq

(ω2
m + 2nq)2

]

(5.68)

∼
∑

n

2√
2n

. (5.69)

In the last line we have done the sum over the Matsubara frequencies m and omitted

all the finite temperature dependent pieces. Similarly the asymptotic form of the fermionic

contribution is,

Σ3
Φ3

1
−Φ3

1

∼ −N
∑

m,n

[

(4)
1

(ω2
m + λ′

n)
− (4)

1

(iωm −
√

λ′

n)
2

]

∼ −
∑

n

2√
2n

. (5.70)

Thus the one-loop Φ3
1 − Φ3

1 amplitude is ultraviolet finite.

One can exactly compute the various amplitudes in (5.55), (5.56) and (5.57) using

the various vertices presented in (5.58)–(5.62) and their corresponding propagators (see

appendix (F)). In particular one can write down the effective mass-squared for the field Φ3
1

as a function of q and β as

m2
Φ3

1

(q, β) = m2
10 +m2

1(q, β) (5.71)
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where m2
10 denotes the zero temperature quantum corrections which is made dimensionless

by dividing the physical m2
10 by g2 and m2

1(q, β) denotes the temperature dependent mass-

squared corrections for the massless field Φ3
1. The zero temperature quantum corrections

for all n can be written as

m2
10 =

[ ∞∑

n=0

7

2
√
2n+ 1

+
∞∑

n=2

1

4
√
2n− 1

− 7

2

∞∑

n=1

(
n√

2n− 1
− n√

2n+ 1

)

+
∞∑

n=2

(

(n−1)

(2n−1)
5

2

(
(n+1)2

(2n+1)
+
n(n−1)

(2n−3)

)

−2
n(n−1)(n−2)

(2n−1)(2n−3)

(
1√

2n−3
− 1√

2n−1

))]

−
∞∑

n=1

4√
2n+

√
2n− 2

. (5.72)

The zero temperature quantum correction given by (5.72) can be evaluated numerically.

The convergent value is given by

m2
10 = 1.579 (5.73)

The temperature dependent part in (5.71) can be written as

m2
1(q, β) =





∞∑

n=0

7√
2n+ 1

1
(

e
√

(2n+1)qβ − 1
) +

∞∑

n=2

1

2
√
2n− 1

1
(

e
√

(2n−1)qβ − 1
)

− 7

∞∑

n=1




n√

2n− 1

1
(

e
√

(2n−1)qβ − 1
) − n√

2n+ 1

1
(

e
√

(2n+1)qβ − 1
)





− 4

∞∑

n=1

n(n− 1)(n− 2)

(2n− 1)(2n− 3)




1√

2n− 3

1
(

e
√

(2n−3)qβ − 1
) − 1√

2n− 1

1
(

e
√

(2n−1)qβ − 1
)





+ 2

∞∑

n=2




(n− 1)

(2n− 1)
5

2

(
(n+ 1)2

(2n+ 1)
+
n(n− 1)

2n− 3

)
1

(

e
√

(2n−1)qβ − 1
)





+

(

1

2
− 2

∞∑

n=2

(
(n− 1)

(2n− 1)

(
(n+ 1)2

(2n+ 1)2
+
n(n− 1)

(2n− 3)2

))) ∞∑

m=−∞

√
qβ

4π2m2

]

+

[
∞∑

n=1

((

4
1

(
√
2n+

√

2(n− 1))
+2

(
√

2(n+1)+
√

2(n−1)−2
√
2n)

(
√
2n−

√

2(n−1))(
√

2(n+1)−
√
2n)

)

1
(
e
√
2nqβ+1

)

+

(

4
1

(
√
2n+

√

2(n− 1))
− 2√

2n−
√

2(n− 1)

)

1
(

e
√

2(n−1)qβ + 1
)

+
2

√

2(n+ 1)−
√
2n

1
(

e
√

2(n+1)qβ + 1
)







 . (5.74)

5.5 Two point function for Φ3

I (I 6= 1)

Let us now write down all the amplitudes that constitute the finite temperature one-loop

mass-squared corrections to the tree-level massless fields Φ3
I(m, l), where I 6= 1. The

computation of the vertices involving the fermions in this section has been done explicitly
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replacemen

Φ3
I(w, l)

Φ3
I(w, l)Φ3

I(w, l)
Φ3
I(w

′

, l
′

)Φ3
I(w

′

, l
′

)
Φ3
I(w

′

, l
′

)

Φ
(1,2)
I (m,n) Cm,n C̃m,n

V I
1

V I
2 Ṽ I

2

(a) (b) (c)

Figure 13. Feynman diagrams with four-point vertices V I
1 , V

I
2 , Ṽ

I
2 .

Φ3
I(w, l)Φ3

I(w, l)
Φ3
I(w

′

, l
′

)Φ3
I(w

′

, l
′

)

Φ
(1,2)
I (m,n)

Cm,n

Φ
(1,2)
I (m,n)

C̃m,n

V I
3V I

3 V I∗
3V I∗

3

(a) (b)

Figure 14. Feynman diagrams with the three-point vertices V I
3 , Ṽ

I
2 .

for I = 2. However the SO(7) invariance of the theory implies that the two point function

is the same for all I = 2 · · · 8. Using the vertices listed in appendix E.2 we write below the

expressions for the two point function. The Feynman diagrams involving the four-point

bosonic interactions are depicted in the figure 13.

Σ1
Φ3

I
−Φ3

I
=

1

2
N
∑

m,n

[

(6× 2)
GI

1(l, l
′

, n, n)

(ω2
m + γn)

+ (2)
GI

2(l, l
′

, n, n)

(ω2
m + λn)

+ (2)
G̃I

2(l, l
′

, n, n)

ω2
m

]

δw+w′

(5.75)

The three terms in (5.75) are represented by the Feynman diagrams in figures 13(a),

13(b) and 13(c) in the same order. The first term involves the fields Φ
(1,2)
I , I 6= 1, the

second term involves the fields Cm,n and the third term comprises of the fields C̃m,n.

Similarly the three-point bosonic interactions of Φ3
I(m, l) are represented in the Feynman

diagrams in figure 14. The two-point function involving the bosonic three-point vertices

and contributing to the one-loop finite temperature mass-corrections for the field Φ3
I , I 6= 1

is given by

Σ2
Φ3

I
−Φ3

I
=−1

2
qN

∑

m,n,n′

[

(2)
GI

3(l, n, n
′

)GI
3(l

′

, n, n
′

)

(ω2
m + γn)(ω2

m
′ + λn′ )

+ (2)
G̃I

3(l, n, n
′

)G̃I
3(l

′

, n, n
′

)

(ω2
m + γn′ )ω2

m
′

]

δw+w
′

(5.76)
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Φ3
I(w, l) Φ3

I(w
′

, l
′

)

θi(m,n)

θi(m,n)

V I
f V I∗

f

Figure 15. Feynman diagram with three-point vertex V I
f and its complex conjugate.

where w = m
′

+m. The first term in (5.76) involving the three-point vertex GI
3(l, n, n

′

)

involves the fields Φ
(1.2)
I , I 6= 1 and Cm,ns. The corresponding Feynman diagram is shown in

figure 14(a). Similarly the second term in (5.76) involving the three-point vertex G̃I
3(l, n, n

′

)

involves the fields Φ
(1.2)
I , I 6= 1 and C̃m,ns. The relevant Feynman diagram is shown in

figure 14(b). The Feynman diagram involving the three-point vertex with fermions is drawn

in figure 15.

The corresponding amplitude is

Σ3
Φ3

I
−Φ3

I
= N

∑

m,n,n
′



(8)
GI

f (l, n, n
′

)GI∗
f (l

′

, n, n
′

)

(iωm −
√

λ′

n)
(

iωm′ −
√

λ
′

n′

)



 δw+w
′ (5.77)

where w = m
′

+m. As in the case of Φ3
1, we can use the orthogonality relation for Hermite

Polynomials to compute exactly, the various vertices given in section E.2 and constituting

the mass-squared corrections (5.75), (5.76) and (5.77). We do these computations after

setting the external momenta l = l
′

= w = w
′

= 0.

GI
1[0, 0, n, n

′

] = δn,n′ (5.78)

GI
2[0, 0, n, n] = δn,n′ (5.79)

G̃I
2[0, 0, n, n

′

] = δn,n′ (5.80)

GI
3[0, n, n

′

] = 0 (5.81)

G̃I
3[0, n, n

′

] =
√
2n− 1δn−1,n′ (5.82)

GI
f [0, n, n

′

] = iδn,n′ . (5.83)

We now proceed to establish the UV finiteness of finite temperature mass-squared

corrections to Φ3
I . We first analyze the large n-behaviour of the various vertices for the

one-loop mass-squared corrections (5.75), (5.76) and (5.77). The four-point vertices in

the amplitudes constituting the two-point function (5.75) are associated with only one

kind of propagator. In the large n limit the four-point vertices computed in (5.78), (5.79)

and (5.80) can be written as

GI
1(0, 0, n, n) = GI

2(0, 0, n, n) = G̃I
2(0, 0, n, n) = 1 (5.84)

where we have used the Kronecker deltas to set n = n
′

. Note that the vertex GI
3(0, n, n

′

)

is identically zero for all values of n as shown in (5.81). Furthermore the fermionic vertex
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GI
f (0, n, n

′

) (5.83) can be exactly computed for all n and remains the same in the UV limit.

The remaining three-point bosonic vertex G̃I
3(0, n, n

′

) (5.82) in the UV limit becomes

G̃I
3(0, n, n

′

) ∼
√
2n[δn′

,n−1] . (5.85)

This large n behaviour of the vertices in turn gives rise to the following asymptotic

forms of the two-point functions for the tree-level massless field Φ3
I .

Σ1
Φ3

I
−Φ3

I
∼ 1

2
N
∑

m,n

[

(6× 2)
1

(ω2
m + γn)

+ (2)
1

(ω2
m + λn)

+ (2)
1

(ω2
m)

]

(5.86)

Σ2
Φ3

I
−Φ3

I
∼ −1

2
qN
∑

m,n

[
(2n)

ω2
m(ω2

m + λn)

]

. (5.87)

Thus the total bosonic contribution in the limit n→ ∞ can be written as

Σ1
Φ3

I
−Φ3

I
+Σ2

Φ3
I
−Φ3

I
∼ N

∑

m,n

[

(8)
1

(ω2
m + 2nq)

]

∼
∑

n

4√
2n

. (5.88)

In this large n limit, the contribution from the fermions coming from Σ3
Φ3

I
−Φ3

I

is same

as the right hand side of eqn (5.88) with opposite sign.

Combining the vertices in (5.78)–(5.83) with their respective propagators (see ap-

pendix (F)), the effective mass-squared corrections for Φ3
I , I 6= 1, can be written down

as a function of q and β in the following form;

m2
Φ3

I
(q, β) = m2

I0 +m2
I1(q, β), (5.89)

where m2
I0 and m2

I1(q, β) denote the zero temperature quantum corrections and the finite

temperature corrections respectively to the tree-level massless field Φ3
I , I 6= 1. The zero

temperature quantum correction here is made dimensionless in the same way as in the case

of m2
10 in (5.71) and can be exactly computed as in the case of Φ3

1 and found to be

m2
I0 =

∞∑

n=0

3√
2n+ 1

+
∞∑

n=1

1√
2n− 1

−
∞∑

n=1

4√
2n

(5.90)

for all n, where the first two terms under summation come from the bosonic contributions

and the last term comes from the fermionic contributions. The various sums in (5.90) can

be reorganized and written in terms of the regularized Riemann Zeta function ζ
(
1
2

)
. The

dimensionless zero temperature quantum correction can be evaluated as

m2
I0 = (4(1−

√
2)ζ

(
1

2

)

− 1) = 1.495 (5.91)

Similarly the finite temperature part m2
I1(q, β) can be written as,

m2
I1(q, β) =

∞∑

n=0

6√
2n+ 1

1

e
√

(2n+1)qβ − 1
+

∞∑

n=1

2√
2n− 1

1

e
√

(2n−1)qβ − 1

+
∞∑

n=1

8√
2n

1

e
√
2nqβ + 1

. (5.92)
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A3
x(w, l)

A3
x(w, l)A3

x(w, l)
A3

x(w
′

, l
′

)A3
x(w

′

, l
′

)
A3

x(w
′

, l
′

)

Φ
(1,2)
I m,n Cm,n C̃m,n

V A
1

V A
2 Ṽ A

2

(a) (b) (c)

Figure 16. Feynman diagrams with four-point vertices V A
1 , V

A
2 , Ṽ

A
2 .

5.6 Two point function for A3

x

We give below that expression for the two point one loop amplitude for A3
x. The vertices

are worked out in appendix E.3. The Feynman diagrams comprising the four-point bosonic

interactions is given in figure 16.

The amplitudes that are represented by the Feynman diagrams in figure 16 are collected

together into the two-point finite temperature mass-squared corrections to the tree-level

massless field A3
x in the following equation, namely

Σ1
A3

x−A3
x
=

1

2
N
∑

m,n

[

(7× 2)
GA

1 (n, n, l, l
′

)

(ω2
m + γn)

+ (2)
GA

2 (n, n, l, l
′

)

(ω2
m + λn)

+ (2)
G̃A

2 (n, n, l, l
′

)

ω2
m

]

δw+w
′ .

(5.93)

The first second and third terms in (5.93) are represented by the Feynman diagrams in

figures 16(a), 16(b) and 16(c) respectively. The fields involved in four-point vertices in the

first, second and third terms are Φ
(1,2)
I , I 6= 1, Cm,n and C̃m,n respectively. The Feynman

diagrams depicting the various three-point bosonic interactions including A3
x are presented

in figure 17.

Σ2
A3

x−A3
x
= −1

2
qN

∑

m,n,n
′

[

GA
3 (n, n

′

, l)GA
3 (n, n

′

, l
′

)

(ω2
m + λn)(ω2

m
′ + λn′ )

+
G̃A

3 (n, n
′

, l)G̃A
3 (n, n

′

, l
′

)

(ω2
m)(ω2

m
′ )

+ (2)
G̃A′

3 (n, n
′

, l)G̃A′

3 (n, n
′

, l
′

)

(ω2
m + λn)(ω2

m
′ )

+ (7)
GA

4 (n, n
′

, l)GA
4 (n, n

′

, l
′

)

(ω2
m + γn)(ω2

m
′ + γn′ )

]

δw+w
′ . (5.94)

where w = m
′

+m. The first term in (5.94) comprising the three-point vertex GA
3 (l, n, n

′

)

involves the fields Cm,n and C
′

m,n. in the loops and is represented by the Feynman diagram

in figure 17(a). The second term in (5.94) involving the vertex G̃A
3 (l, n, n

′

) comprises of

the fields C̃m,ns and C̃
′

m,n in the loop. The corresponding Feynman diagram is given in

figure 17(b). The third term has contributions from C̃m,ns and C̃m,n in the loop with

Feynman diagram shown in figure 17(c). Lastly the fourth term depicted in figure 17(d)

has contributions from the fields Φ
(1,2)
I , I 6= 1.
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A3
x(w, l)

A3
x(w, l)

A3
x(w, l)

A3
x(w, l)

A3
x(w

′

, l
′

)

A3
x(w

′

, l
′

)

A3
x(w

′

, l
′

)

A3
x(w

′

, l
′

)

Cm,n

Cm,n

C̃m,n

C̃m,n

Cm,n

C̃m,n

Φ
(1,2)
I m,n

Φ
(1,2)
I m,n

V A
3 V A∗

3 Ṽ A
3 Ṽ A∗

3

Ṽ A′

3 Ṽ A′∗
3 V A

4
V A∗
4

(a) (b)

(c) (d)

Figure 17. Feynman diagrams with three-point vertices V A
3 , Ṽ

A
3 , Ṽ

A′

3 and V 4
3 .

Similarly the amplitude involving fermions in the loop is (5.95). The corresponding

Feynman diagrams are presented in figure 18.

Σ3
A3

x−A3
x
=

1

2
qN

∑

m,n,n
′



(16)
GA1

f (n, n
′

, l)GA1∗
f (n, n

′

, l
′

)

(iωm −
√

λ′

n)
(

iωm
′ −
√

λ
′

n
′

))

−(16)
GA2

f (n, n
′

, l)GA2∗
f (n, n

′

, l
′

)

(iωm −
√

λ′

n)
(

−iωm′ −
√

λ
′

n′

))



 δw+w
′ . (5.95)

where w = m
′

+ m. The fermionic three-point vertex GA1
f (n, n

′

, l) constituting the first

term in the two-point function (5.95) has contributions from the fermionic fields θi(m,n).

The amplitude is represented in the Feynman diagram presented in figure 18(a). The

second term in (5.95) on the other hand involves the fields θi(m,n) and their complex

conjugate θ∗i (m,n) in the vertex GA2
f (n, n

′

, l). The corresponding Feynman diagram is

given in figure 18(b).

The vertices given in section E.3 and participating in the two-point functions that

produce the mass-squared corrections to the tree-level massless field A3
x can be exactly

computed following the same procedure as discussed for Φ3
1 and Φ3

I , I 6= 1.

GA
1 [n, n

′

, 0, 0] = δn,n′ , GA
2 [n, n

′

, 0, 0] =
1

2
δn,n′ , G̃A

2 [n, n
′

, 0, 0] =
1

2
δn,n′ , (5.96)
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x(w, l) A3
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′

, l
′

)A3
x(w

′

, l
′

)

θi(m,n)
θi(m,n)

θi(m,n)θi(m,n)

V A1
f V A1∗

f
Ṽ A2
f Ṽ A2∗

f

(a) (b)

Figure 18. Feynman diagrams involving three-point vertices V A1
f , V A2

f .

GA
3 [n, n

′

, 0] = 2

(√

2n(n+ 1)(n− 1)

(2n− 1)(2n+ 1)
δn+1,n′ −

√

2n(n− 1)(n− 2)

(2n− 1)(2n− 3)
δn−1,n′

)

, (5.97)

G̃A
3 [n, n

,, 0] = 0, (5.98)

G̃A′

3 [n, n
′

, 0] = −
√
2

(

(n+ 1)
√
n− 1

√

(2n− 1)(2n+ 1)
δn+1,n′ +

√
n(n− 1)

√

(2n− 1)(2n− 3)
δn−1,n′

)

, (5.99)

GA
4 [n, n

′

, 0] =
(√

2(n+ 1)δn+1,n′ −
√
2nδn−1,n′

)

, (5.100)

GA1
f [n, n

′

, 0] = − i

2

(

δn+1,n, + δn−1,n′

)

, (5.101)

GA2
f [n, n

′

, 0] = − i

2

(

2δn+1,n, − 2δn−1,n
′

)

. (5.102)

In the same spirit as for Φ3
1 and Φ3

I we now proceed to establish the UV finiteness for

the one-loop two-point functions for the field A3
x. In the large n limit the various vertices

in eqns (5.96)–(5.102) reduce to

GA
1 (n, n, 0)=1 ; GA

2 (n, n, 0)=G̃
A
2 (n, n, 0, 0)=

1

2
(5.103)

GA
3 (n, n

′

, 0)∼
√
2n

8
[8δn′

,n−1−8δn′
,n+1] ; G̃A

′

3 (n, n
′

, 0)∼−
√
2n

8
[4δn′

,n−1+4δn′
,n+1]

(5.104)

G̃A
3 (n, n

′

, 0)=0 ; G̃A
4 (n, n

′

, 0)∼
√
2n[δn′

,n+1−δn′
,n−1]. (5.105)

With these, the amplitudes in the ultraviolet limit is same as the right hand side of

the equations (5.66), (5.66) and (5.70), thus showing that the one-loop A3
x−A3

x amplitude

is ultraviolet finite.

Once again we write down the effective mass-squared for the field A3
x as a function of

q and β as

m2
A3

x
(q, β) = m2

x0 +m2
x1(q, β) (5.106)

where m2
x0 denotes the dimensionless (same as m2

10 and m2I0) zero temperature quantum
corrections and m2

x1(q, β) denotes the temperature dependent mass-squared corrections
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for the tree-level massless field A3
x. The zero temperature quantum corrections can be

written as

m2
x0 =

[
∞∑

n=0

7

2
√
2n+ 1

+

∞∑

n=2

1

4
√
2n− 1

− 7

4

∞∑

n=0

(
1√

2n+ 1
− n+ 1√

2n+ 3

)

− 7

4

∞∑

n=1

n√
2n− 1

−
∞∑

n=2

(
n(n−1)

(2n+1)(2n−3)

1√
2n−1

− n(n+1)(n−1)

(2n−1)(2n+1)

1√
2n+1

+
n(n−1)(n−2)

(2n−1)(2n−3)

1√
2n−3

)

+

∞∑

n=2

(
(n− 1)(n+ 1)2

(2n− 1)
5

2 (2n+ 1)
+

n(n− 1)2

(2n− 1)
5

2 (2n− 3)

)]

−
∞∑

n=1

2√
2n+

√

2(n+ 1)
+

2√
2n+

√

2(n− 1)
. (5.107)

We compute the dimensionless zero temperature quantum corrections given by (5.107)

numerically. The convergent value is,

m2
x0 = 1.514 (5.108)

The temperature dependent part in (5.106) can be written as

m2
x1(q, β) =





∞∑

n=0

7√
2n+ 1

1
(

e
√

(2n+1)qβ − 1
) +

∞∑

n=2

1

2
√
2n− 1

1
(

e
√

(2n−1)qβ − 1
)

− 7

2

∞∑

n=1




1√

2n+ 1

1
(

e
√

(2n+1)qβ − 1
) − n+ 1√

2n+ 3

1
(

e
√

(2n+3)qβ − 1
)





− 7

2

∞∑

n=1

n√
2n−1

1
(

e
√

(2n−1)qβ−1
)−2

∞∑

n=2




n(n−1)

(2n+1)(2n−3)

1√
2n−1

1
(

e
√

(2n−1)qβ−1
)

− n(n+ 1)(n− 1)

(2n− 1)(2n+ 1)
3

2

1
(

e
√

(2n+1)qβ − 1
) +

n(n− 1)(n− 2)

(2n− 1)(2n− 3)
3

2

1
(

e
√

(2n−3)qβ − 1
)





+ 2

∞∑

n=2

(
(n− 1)(n+ 1)2

(2n− 1)
5

2 (2n+ 1)
+

n(n− 1)2

(2n− 1)
5

2 (2n− 3)

)
1

(

e
√

(2n−1)qβ − 1
)

+

(

1

2
− 2

∞∑

n=2

(
(n− 1)(n+ 1)2

(2n− 1)(2n+ 1)2
+

n(n− 1)2

(2n− 1)(2n− 3)2

)) ∞∑

m=−∞

√
qβ

4π2m2

]

+

[
∞∑

n=1

((

2
(2
√
2n+

√

2(n− 1) +
√

2(n+ 1))

(
√
2n+

√

2(n− 1))(
√
2n+

√

2(n+ 1))

+ 8
(
√

2(n+ 1) +
√

2(n− 1)− 2
√
2n)

(
√
2n−

√

2(n− 1))(
√

2(n+ 1)−
√
2n)

)

1
(
e
√
2nqβ + 1

)

+

(

2
√

2(n− 1) +
√
2n

− 8√
2n−

√

2(n− 1)

)

1
(

e
√

2(n−1)qβ + 1
)

+

(

2
√

2(n+ 1) +
√
2n

+
8

√

2(n+ 1)−
√
2n

)

1
(

e
√

2(n+1)qβ + 1
)







 . (5.109)
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In the end the effective masses-squared for the massless fields namely m2
Φ3

1

, m2
Φ3

I

and

m2
A3

x
depend only on the parameter q and temperature. Later in section 6.1, we present

the behaviour of the effective masses-squared with temperature for different values of q.

6 Finite part of effective tachyon mass

Having computed the temperature corrected one-loop mass-squared for the various mass-

less fields, we can now proceed to compute the mass-squared corrections for the tree-level

tachyons. We have already established the UV finiteness of the tachyonic amplitudes

by demonstrating the cancellation of leading order divergences from the zero tempera-

ture bosonic and fermionic quantum corrections to the tree-level tachyon mass-squared.

However given the fairly complicated mathematical form of the various corrections given

in (4.5), (4.6) and (4.7), extracting the finite part of the amplitudes appears to be very

difficult. Hence we are unable to give analytical expressions for the finite part of the zero

temperature quantum corrections to the tree-level tachyon mass-squared. This complica-

tions also prevents us from computing the transition temperature analytically. Given these

handicaps we are compelled to resort to numerical means. In the following section we

present a numerical computation of the transition temperature.

6.1 Numerical results

The computation of the one-loop finite temperature mass-squared for all the tree-level mass-

less degrees of freedom is crucial because these temperature dependent masses modify the

corresponding propagators of the massless fields thereby ensuring infra-red finiteness of the

one-loop effective masses-squared of the tachyons. All the finite temperature corrections to

the tree-level masses-squared are now shown to be UV finite. The tachyonic instability in

the bulk is proposed to give rise to BCS Cooper-pairing instability in the boundary theory

[1]. In this section we demonstrate that the instability is removed by finite temperature ef-

fects. The tree-level tachyon mass-squared is − q
g2
, where g is the dimensionfull Yang-Mills

coupling in (1 + 1)-dimensions. The finite temperature one-loop correction including the

zero temperature quantum corrections is O(1). The temperature-dependent mass-squared

corrections is always increasing and there exists a critical temperature where the effective

mass-squared of the tachyonic fields become zero. Beyond the critical temperature the

effective mass-squared of the tachyon is found to be positive and increasing. This bears

hallmark of a phase-transition from the unstable phase to the stable phase. In the bound-

ary theory this is proposed in [1] to correspond to a superconducting phase-transition.

As mentioned in sections 1 and 6, the critical temperature of phase transition cannot be

computed analytically. We therefore tread a different path. We demonstrate numerically

the behaviour of the masses-squared with varying β as well as T due to zero temperature

quantum corrections + the finite temperature effects without computing them separately.

In all the mass-squared corrections, the UV divergent pieces in the zero temperature cor-

rections from the bosonic side cancel with that from the fermionic side. At large values of

the momenta n and l the finite part of the quantum corrections fall off very sharply and

eventually only the finite temperature corrections dominate. The parameter q provides a
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scale for supersymmetry breaking in the present brane-configuration under study and has

the dimension of mass-squared. It is also related to the angle between the branes as

q =
1

πα′
tan

(
θ

2

)

. (6.1)

The two-point functions for the tachyons have infra-red problem due to the presence of

massless fields in the loops. As mentioned in section 5.2 we need to modify the propagators

of the tree-level massless fields by introducing a mass-squared shift provided by the finite

temperature corrections to their tree-level masses-squared. The leading order behaviour

of the temperature dependent part of the mass-squared corrections in 1 + 1-dimensions is

linear with increasing temperature at high temperatures. The finite temperature effective

mass-squared of the tree-level tachyon in (1 + 1)-dimensions can thus be estimated within

perturbation theory to be (in dimensionless variables)

m2
eff(C0,0) = − q

g2
+







m2

0 +
T√
q

(
∑

n

1

λn
+ · · ·

)

︸ ︷︷ ︸

=x







+O

(
g2

q

)

. (6.2)

The physical mass is thus m2
effg

2 and m2
0 represents the dimensionless zero temperature

quantum corrections independent of q and g2 and collected from all the amplitudes in

equations (4.7), (4.8) and (4.36). In equation (6.2), x is a dimensionless number (indepen-

dent of g2, and q) specifying the temperature dependent contribution. In equation (6.2),

O(g
2

q ) represents the next higher order in quantum corrections given by two-loop Feyn-

man diagrams. The dimensionless zero temperature quantum correction to the tree-level

tachyon mass-squared and is found numerically to be approximately equal to m2
0 = 1.6.

The behaviour of the finite temperature masses-squared of the massless fields as well as the

tachyonic fields are depicted pictorially by plotting the masses-squared against temperature

T and β = 1
T . We proceed to present the plots.

In all the plots we have displayed the one-loop effective masses-squared as multiplied

by g2. The figures 19, 21 and 23 depict the behaviour of the masses-squared namely m2
φ3
1

,

m2
φ3
I

and m2
A3

x
with varying β. The mass-squared decreases with increasing β as expected.

In the figures 20, 22 and 24, m2
φ3
1

, m2
φ3
I

and m2
A3

x
are shown to increase almost linearly with

increasing temperature. This behaviour is expected from finite temperature field theory as

finite temperature corrections are always known to be positive and increasing.

As discussed in section 5.3, we also calculate the mass-matrix for the massless modes

C̃w,k numerically and diagonalize the matrix. Using the temperature dependent masses-

squared of the various massless fields discussed above the effective mass-squared for the

fields C0,0 can be evaluated numerically as a function of β (or T ). The effective mass-

squared for the tree-level tachyon are plotted against β in the figure 25. for three values

of q, namely q = 0.1 and q = 0.2 and q = 0.3 and g2 = 0.01. The plots of the mass-

squared against temperature T for q = 0.1 and q = 0.2 and q = 0.3 are given in figure 26

and figure 27. As expected the finite temperature corrections dominate with increasing
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Figure 19. Plots of the mass-squared correction to the massless field φ31 against β = 1
T for g2 = 0.01

and q = 0.1,0.2,0.3.
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Figure 20. Plot of the mass-squared correction to the massless field φ31 against T for g2 = 0.01

and q = 0.1,0.2,0.3.
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Figure 21. Plot of the mass-squared correction to the massless field φ3I against β = 1
T for g2 = 0.01

and q = 0.1,0.2,0.3.

– 50 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
3

ææææææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

ææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

q=0.1

q=0.2

q=0.3

100 200 300 400 500 600
T

100

200

300

400

500

600

m 2

Φ
3

J

Figure 22. Plot of the mass-squared correction to the massless field φ3I against T for g2 = 0.01

and q = 0.1,0.2,0.3.
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Figure 23. Plot of the mass-squared correction to the massless field A3
x against β = 1

T for g2 = 0.01

and q = 0.1,0.2,0.3.
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Figure 24. Plot of the mass-squared correction to the massless field A3
x against T for g2 = 0.01

and q = 0.1,0.2,0.3.
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Figure 25. Plot of the mass-squared correction to the tree-level tachyon against β = 1
T for

g2 = 0.01, q = 0.1, 0.2 and 0.3.
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Figure 26. Plot of the mass-squared correction to the tree-level tachyons against T for g2 = 0.01,

q = 0.1, 0.2 and 0.3.
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Figure 27. Plot of the mass-squared correction to the tree-level tachyons against T for g2 = 0.01,

q = 0.1, 0.2 and 0.3.
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temperature which is clear from the m2
eff(C0,0) vs T plots in figure 26 where the behaviour

of the mass-squared appears to be almost linear at higher temperatures. The effective mass-

squared m2
eff(C0,0) is equal to zero at a value of temperature (the transition temperature

Tc) where the graphs intersect the β and T -axes in the plots given in figure 25, figure 26

and figure 27. The plots in figure 27 are drawn for smaller range of T in order to show

the critical points (m2
eff(C0,0) = 0) more clearly. Putting m2

eff(C0,0) = 0 in equation (6.2)

we get

Tc =
1

x

[

q
1

2

(
q

g2
−m2

0

)]

(6.3)

where Tc is the dimensionfull transition temperature (having dimension of mass). One

can also define a dimensionless transition temperature by Tc = T̃cq
3

2 /g2. One should note

that the dimensionless tree-level mass-squared of the tachyon for q = 0.1, 0.2 and 0.3 are

q/g2 = 10, 20 and 30 respectively for g2 = 0.01, whereas the quantum correction m2
0 is

much smaller. Now if m2
0 = 0, T̃c = 1

x and is thus independent of q, g2. Thus to a good

approximation one expects that T̃c will be independent of q, g2. One has to note that this

scaling relation for the transition temperature is the dominant term at the level of one-loop.

At the level of higher loops the dependence of the effective mass-squared on temperature

will be much more complicated. However at least in weak coupling, the quantum corrections

at successive higher loops will be smaller and smaller, and the dominant term in T̃c will

still be given by this one loop relation. From the plots given in figure 25 and figure 27,

the numerical values of Tc for g2 = 0.01 and q = 0.1, q = 0.2 and q = 0.3 are Tc = 3.34,

Tc = 9.48 and Tc = 16.73 respectively. This gives T̃c = 1.0562, 1.0599 and 1.0182 for

q = 0.1, 0.2 and 0.3 and g2 = 0.01 respectively, confirming our expectation that when m2
0

is small T̃c is approximately independent of g, q.

7 Discussion and outlook

We have computed the one-loop finite temperature corrections to the tree-level tachyon

mass-squared in intersecting D1-branes in a self consistent manner. We have shown the

UV finiteness (at one loop). We have seen that at high temperatures the tachyonic field

becomes massive as expected and we have computed this critical temperature in a one loop

approximation — improved by incorporating mass-squared corrections to the massless fields

in the spirit of the RG. This takes care of the IR divergences. Thus our calculation has no

UV or IR divergences.

This model resembles the holographic BCS superconductor model discussed in [1]. We

expect that with the techniques developed in this paper it should be possible to tackle

the model in [1] involving higher branes. These techniques should also be useful in other

contexts where D brane constructions are used and supersymmetry spontaneously broken.

The entire computation is done in temporal gauge, Aa
0 = 0. This gauge choice helps

to avoid ghosts in the theory. The original theory describing the world-volume of two D1-

branes is a (1+1)-dimensional supersymmetric SU(2) Yang-Mills theory which is a UV finite

theory. The choice of the background 〈φ3B〉 = qx breaks supersymmetry without tampering

with the other degrees of freedom. Hence we find that the UV behaviour of the amplitudes
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in a broken supersymmetry scenario remains the same as in the supersymmetric case. In

order to establish the UV finiteness of the one-loop corrections we rely on asymptotic

expansion of the vertices and find that the leading order divergent pieces from the bosonic

and fermionic loops cancel among themselves. The effective mass-squared of the tachyon is

found to grow linearly with temperature in accordance to the expected behaviour in (1+1)-

dimensions. The kinetic terms for the bosons are scale independent in (1 + 1)-dimensions.

Hence the zero-temperature one loop quantum corrections are found to be independent

of the supersymmetry breaking scale. The crossing of the m2
eff(C0,0) vs T curves from

negative to positive values indicates two distinct phases. This bears the signature of a

phase transition. We also find that the dimensionless critical temperature (Tcg
2/q3/2)

for this phase transition has very closely placed values namely T̃c = 1.0562, 1.0599 and

1.0182. In order to do the complete stability analysis of the intersecting D1-branes at finite

temperature one has to compute the full tachyon effective action at finite temperature

which rely on higher loop calculations. The results demonstrated in this paper can be

generalized to higher dimensional branes without much difficulty. In particular for two

intersecting Dp-branes the effective mass-squared for the tree-level tachyons is expected to

grow as T p−1.
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A Dimensional reduction of D = 10, N = 1, SU(2) SYM to D = 2

We first write down the action for D = 10, N = 1 SYM,2

S9+1 =
1

g2
tr

∫

d10x

[

−1

2
FMNF

MN + iΨ̄ΓMDMΨ

]

(A.1)

FMN = ∂MAN − ∂NAM − i [AM , AN ] (A.2)

DMΨ = ∂MΨ− i [AM ,Ψ] (A.3)

where M,N = 0, · · ·9 with AM = σa

2 A
a
M , Ψ = σa

2 Ψa
M and,

[
σa

2
,
σb

2

]

= iǫabc
σc

2
;

1

2
tr
(

σaσb
)

= δab (A.4)

2We will use the metric diagonal(+1,−1, · · · ,−1).
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ΓM are 32 × 32 imaginary matrices and. In (9 + 1)-dimensions the gamma-matrix which

anti commutes with all other gamma matrices is

γ11 =

(

I16×16 0

0 −I16×16

)

(A.5)

The chiral projection operator in (9 + 1)-dimensions giving rise to left and right-moving

chiral fermions is given by

P =
1± γ11

2
. (A.6)

Under the chiral projection (A.6), the 32-component Dirac fermions become

Ψ =

(

ΨL

0

)

(A.7)

Ψ is a 32 component Majorana-Weyl spinor with 16 non-zero components.

The 32 dimensional Γ matrices satisfy the Dirac algebra {ΓM ,ΓN} = 2ηMN . Under

the decomposition SO(9, 1) → SO(1, 1) × SO(8), they have to be written in terms of the

16 dimensional spin(8) matrices. For M corresponding to the SO(8) directions (that we

label by I) we call the 16 dimensional spin(8) matrices as γI , (I = 1, . . . , 8). The γI ’s

thus satisfy the spin(8) algebra {γI , γJ} = 2δIJ . They are however reducible and can be

written in terms of the 8 dimensional representations αI as,

γI =

(

0 αI

αIT 0

)

(A.8)

where the αI ’s now satisfy {αI , αJ} = 2δIJ . A representation of the αI ’s can be written

follows [41],

α1 = τ ⊗ τ ⊗ τ α2 = 1⊗ σ1 ⊗ τ (A.9)

α3 = 1⊗ σ3 ⊗ τ α4 = σ1 ⊗ τ ⊗ 1

α5 = σ3 ⊗ τ ⊗ 1 α6 = τ ⊗ 1⊗ σ1

α7 = τ ⊗ 1⊗ σ3 α8 = 1⊗ 1⊗ 1

where τ = iσ2. We can construct one more γ matrix that anti commutes with all the other

γI ’s. It is given by γ9 = γ1γ2 · · · γ8. In matrix form,

γ9 =

(

18 0

0 −18

)

. (A.10)

The nine 32 dimensional ΓM (M = 1, . . . 9) matrices can thus be formed out of the

nine γ matrices. Since there is no tenth γ matrix, we need to construct a tenth Γ matrix

that anti commutes with all the others. Ultimately we can write,

Γ0 = σ2 ⊗ 116 (A.11)

ΓI = iσ1 ⊗ γI

Γ9 = iσ1 ⊗ γ9 .
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With this, the sixteen dimensional ΨL in equation (A.7) can further be written as,

ΨL =

(

ψL

ψR

)

(A.12)

where ψL and ψR are now 8 component fermions. In other words, the sixteen component

ΨL decomposes as 16 = (1, 8)+ (1̄, 8̄). Thus in 1+ 1 dimensions we have 8 one-component

left-moving plus 8 one-component right-moving fermions.

We can now write down the dimensionally reduced action,

S1+1 = S1
1+1 + S2

1+1 (A.13)

S1
1+1 =

1

g2
tr

∫

d2x

[

−1

2
FµνF

µν +DµΦID
µΦI +

1

2
[ΦI ,ΦJ ]

2

]

(A.14)

S2
1+1 =

i

g2
tr

∫

d2x
[
ψT
LD0ψL + ψT

RD0ψR + ψT
LD1ψL − ψT

RD1ψR (A.15)

+ 2iψT
Rα

T
I [ΦI , ψL]

]

where, Dµ = ∂µ − i [Aµ, ⋆] and all the fermions, ψL and ψR are anti commuting.

B Tables of fields, eigenfunctions and normalizations

Dimensionfull constants

q Slope of intersecting brane configuration

β Inverse of temperature T

g2 Yang-Mills coupling constant

Normalizations

N
√
q/β

N (n) 1√√
π2n(4n2−2)(n−2)!

Ñ (n) 1√√
π2n(4n−2)(n−1)!

N ′

(n) 1√√
π2nn!

NF (n)
1√√

π2n+1(n−1)!

Table 1. Dimensionfull constants and normalizations.

The various fields together with their eigenfunctions, momenta and momentum modes are

tabulated below.
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Field Eigenfunction Tree-level Momentum

mass mode

Bosons



A2

x

φ11








An(x)

φn(x)



 =




N (n)e−qx2/2

(
Hn(

√
qx) + 2nHn−2(

√
qx)
)

N (n)e−qx2/2
(
Hn(

√
qx)− 2nHn−2(

√
qx)
)



 λn

g2
= (2n−1)q

g2
Cw,n




A2

x

φ11








Ãn(x)

φ̃n(x)



 =




Ñ (n)e−qx2/2

(
Hn(

√
qx)− 2(n− 1)Hn−2(

√
qx)
)

Ñ (n)e−qx2/2
(
Hn(

√
qx) + 2(n− 1)Hn−2(

√
qx)
)



 λ̃n

g2
= 0 C̃w,n




A1

x

φ21








−An(x)

φn(x)



 =




−N (n)e−qx2/2

(
Hn(

√
qx) + 2nHn−2(

√
qx)
)

N (n)e−qx2/2
(
Hn(

√
qx)− 2nHn−2(

√
qx)
)



 λn

g2
= (2n−1)q

g2
C

′

w,n




A1

x

φ21








−Ãn(x)

φ̃n(x)



 =




−Ñ (n)e−qx2/2

(
Hn(

√
qx)− 2(n− 1)Hn−2(

√
qx)
)

Ñ (n)e−qx2/2
(
Hn(

√
qx) + 2(n− 1)Hn−2(

√
qx)
)



 λ̃n

g2
= 0 C̃

′

w,n

Φa
I , (a = 1, 2) N ′

(n)e−qx2/2
(
Hn(

√
qx)
) γn

g2
= (2n+1)q

g2
Φa
I (w, n)

(I = 2 · · · 8)
Φ3
I eilx 0 Φ3

I(w, l)

(I = 1 · · · 8)
A3

x eilx 0 A3
x(w, l)

Fermions



L1
1

R2
8








Ln(x)

Rn(x)



 =




NF (n)e

−qx2/2
(

− i√
2n
Hn(

√
qx) +Hn−1(

√
qx)
)

NF (n)e
−qx2/2

(

− i√
2n
Hn(

√
qx)−Hn−1(

√
qx)
)



 λ
′

n

g2
= 2nq

g2
θi(w, n)

and for 8 other sets



L1
1

R2
8








L∗
n(x)

R∗
n(x)



 =




NF (n)e

−qx2/2
(

i√
2n
Hn(

√
qx) +Hn−1(

√
qx)
)

NF (n)e
−qx2/2

(
i√
2n
Hn(

√
qx)−Hn−1(

√
qx)
)



 λ
′

n

g2
= 2nq

g2
θ∗i (w, n)

and for 8 other sets



L2
1

R1
8








Ln(x)

−Rn(x)



 =




NF (n)e

−qx2/2
(

− i√
2n
Hn(

√
qx) +Hn−1(

√
qx)
)

−NF (n)e
−qx2/2

(

− i√
2n
Hn(

√
qx)−Hn−1(

√
qx)
)



 λ
′

n

g2
= 2nq

g2
θj(w, n)

and for 8 other sets



L2
1

R1
8








L∗
n(x)

−R∗
n(x)



 =




NF (n)e

−qx2/2
(

i√
2n
Hn(

√
qx) +Hn−1(

√
qx)
)

−NF (n)e
−qx2/2

(
i√
2n
Hn(

√
qx)−Hn−1(

√
qx)
)



 λ
′

n

g2
= 2nq

g2
θ∗j (w, n)

and for 8 other sets

L3
i eilx 0 L3

i (w, l)

(i = 1 · · · 8)
R3

i eilx 0 R3
i (w, l)

(i = 1 · · · 8)

Table 2. Eigenfunctions, Tree-level masses and momentum modes.
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PSfrag

Cw,kCw,k Cw′ ,k′Cw′ ,k′

Cm,n
Cm′ ,n′ Φ1,2

I (m,n) Φ1,2
I (m

′

, n
′

)

V1 V2

Figure 28. V1, V2 vertices.

C Propagators and vertices for computation of two-point Cw,k ampli-

tudes

C.1 Bosons

Propagator for Cm,n

〈

Cm,nCm′ ,n′

〉

= g2
δm,−m

′ δn,n′

ω2
m + λn

. (C.1)

Propagator for C̃m,n

〈

C̃m,nC̃m′ ,n′

〉

= g2
δm,−m

′ δn,n′

ω2
m

. (C.2)

Propagator for the Φ1
I and Φ2

I fluctuations (I 6= 1)are same and is given by

〈

Φ1
I(m,n)Φ

1
I(m

′

, n
′

)
〉

= g2
δm,−m

′ δn,n′

ω2
m + γn

. (C.3)

Propagator for the Φ3
I fluctuations for all I is given by

〈

Φ3
I(m, l)Φ

3
I(m

′

, l
′

)
〉

= g2
δm,−m

′2πδ(l + l
′

)

ω2
m + l2

. (C.4)

Propagator for the A3
x fluctuations assumes the form because there is no term in the

Lagrangian (2.4) with spatial derivatives on A3
x.

〈

A3
x(m, l)A

3
x(m

′

, l
′

)
〉

= g2
δm,−m′2πδ(l + l

′

)

ω2
m

. (C.5)

V1 = − N

2g2
F1(k, k

′

, n, n
′

)δω+ω
′
+m+m

′ (figure 28) (C.6)

F1(k, k
′

, n, n
′

) =
√
q

∫

dx
[
φk(x)φk′ (x)An(x)An

′ (x) + 2Ak(x)φk′ (x)φn(x)An
′ (x)

+ 2φk(x)Ak
′ (x)φn(x)An

′ (x) +Ak(x)Ak
′ (x)φn(x)φn′ (x)

]
(C.7)
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V2 = − N

2g2

[

F2(k, k
′

, n, n
′

)
]

δω+ω′+m+m′ (figure 28) (C.8)

F2(k, k
′

, n, n
′

) =
√
q

∫

dxe−qx2 [
Ak(x)Ak

′ (x) + φk(x)φk′ (x)
] [
Hn(x)Hn

′ (x)
]

(C.9)

Ṽ1 = − N

2g2
F̃1(k, k

′

, n, n
′

)δω+ω
′
+m+m

′ (figure 29) (C.10)

F̃1(k, k
′

, n, n
′

) =
√
q

∫

dx
[

φk(x)φk′ (x)Ãn(x)Ãn
′ (x) + 2Akφk′ (x)φ̃n(x)Ãn

′ (x)

+ 2φk(x)Ak′ (x)φ̃n(x)Ãn′ (x) +Ak(x)Ak′ (x)φ̃n(x)φ̃n′ (x)
]

(C.11)

V
′

2 = − N

2g2

[

F
′

2(k, k
′

, l, l
′

)
]

δω+ω′+m+m′ (figure 29) (C.12)

F
′

2(k, k
′

, l, l
′

) =
√
q

∫

dx
[
Ak(x)Ak

′ (x) + φk(x)φk′ (x)
] [

eilxeil
′

x
]

(C.13)

V3 = − N

2g2
F3(k, k

′

, l, l
′

)δω+ω
′
+m+m

′ (figure 30) (C.14)

F3(k, k
′

, l, l
′

) =
√
q

∫

dx
[

φk(x)φk′ (x)

]

ei(l+l
′

)x (C.15)

V
′

3 = − N

2g2
F

′

3(k, k
′

, l, l
′

)δω+ω
′
+m+m

′ (figure 30) (C.16)

F
′

3(k, k
′

, l, l
′

) =
√
q

∫

dx
[

Ak(x)Ak′ (x)e
ilxeil

′

x
]

(C.17)

V4 = −N
3/2

g2
F4(k, l, n)βδω+m+m

′ (figure 31) (C.18)

F4(k, l, n) =

∫

dx [−φn(x)∂xφk(x) + φk(x)∂xφn(x)− φn(x)Ak(x)(qx)

+ An(x)φk(x)(qx)] e
ilx (C.19)

Ṽ4 = −N
3/2

g2
F̃4(k, l, n)βδω+m+m

′ (figure 31) (C.20)

F̃4(k, l, n) =

∫

dx
[

−φ̃n(x)∂xφk(x) + φk(x)∂xφ̃n(x)− φ̃n(x)Ak(x)(qx)

+ Ãn(x)φk(x)(qx)
]

eilx (C.21)

V5 = −N
3/2

2g2
F5(k, l, n)βδω+m+m

′ (figure 32) (C.22)

F5(k, l, n) =

∫

dxe−qx2/2
[

eilxAk(x)∂xHn(x)− (qx)eilxAk(x)Hn(x)

− (il)eilxAk(x)Hn(x) + (qx)eilxφk(x)Hn(x)
]

(C.23)

V
′

5 = −N
3/2

g2
F

′

5(k, l, n)βδω+m+m
′ (figure 33) (C.24)

F
′

5(k, l, n) =

∫

dx
[

(il)eilxφk(x)An(x) + (il)eilxAk(x)φn(x)

− eilx∂xφk(x)An(x)− eilx∂xφn(x)Ak(x)
]

(C.25)
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PSfrag

Cw,kCw,k Cw′ ,k′Cw′ ,k′

C̃m,n
C̃m′ ,n′ Φ3

I(m, l) Φ3
I(m

′

, l
′

)

Ṽ1 V
′

2

Figure 29. Ṽ1, V
′

2 vertices.

Cw,kCw,k Cw′ ,k′Cw′ ,k′

A3
x(m, l) A3

x(m
′

, l
′

) Φ3
1(m, l) Φ3

1(m
′

, l
′

)

V3 V
′

3

Figure 30. V3 and V
′

3 vertices.

Cw,kCw,k

C
′

n,m

A3
x(l,m

′

)
V4

A3
x(l,m

′

)

C̃
′

m,n

Ṽ4

Figure 31. V4 and Ṽ4 vertices.

Ṽ
′

5 = −N
3/2

g2
F̃

′

5(k, l, n)βδω+m+m′ (figure 33) (C.26)

F̃
′

5(k, l, n) =

∫

dx
[

(il)eilxφk(x)Ãn(x) + (il)eilxAk(x)φ̃n(x)

−eilx∂xφk(x)Ãn(x)− eilx∂xφ̃n(x)Ak(x)
]

(C.27)
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Figure 32. V5 vertex.

Cw,kCw,k

Φ3
1(n,m

′

)

C
′

n,m V
′

5
C̃

′

n,m

Φ3
1(l,m

′

)

Ṽ
′

5

Figure 33. V
′

5 and Ṽ
′

5 vertices.

C.2 Fermions

Propagator for the La
i and Ra

i modes (a = 1, 2),

〈

θj(m,n)θ
∗
k(m

′

, n
′

)
〉

=
g2

N1/2

δjkδm,m′ δn′n′

iωm +
√

λ′

n

(C.28)

λ
′

n = 2nq.

Propagator for the L3
i and R3

i modes.

〈

L3
i (m, l)L

3
k(m

′

, l
′

)
〉

=
g2

N1/2

δikδm,−m
′2πδ(l + l

′

)

iωm + l
〈

R3
i (m, l)R

3
k(m

′

, l
′

)
〉

=
g2

N1/2

δikδm,−m
′2πδ(l + l

′

)

iωm − l
(C.29)

V
R/L
6 = i

N

g2
F

R/L
6 (k, n, l)δw+m+m′ (figure 34) . (C.30)

Where,

FR
6 (k, n, l) =

√
q

∫

dxφk(x)Rn(x)e
ilx . (C.31)
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V L
6

Figure 34. V R
6 and V L

6 vertices.

Cw,kCw,k

R1
i (n,m)

R3
i (l,m

′

)
V R
7

L3
i (l,m

′

)

L1
i (n,m)

V L
7

Figure 35. V R
7 and V L

7 vertices.

There are eight such vertices involving R2
i and L3

(9−i) (i = 1 · · · 8). We also have eight

vertices involving L2
i and R3

(9−i) (i = 1 · · · 8). The corresponding vertices would be given

by replacing Rn(x) with Ln(x). This vertex is thus,

FL
6 (k, n, l) = ∓√

q

∫

dxφk(x)Ln(x)e
ilx . (C.32)

The ∓ is due to the fact that half of the above vertices come with sign opposite to

that of the other half in the Lagrangian. There is no ∓ in (C.31) as the minus sign coming

from the vertices in the Lagrangian is compensated by the ones from the eigenfunctions.

Similarly the other eight vertices involving both R3
i and Ra

i with (a = 1, 2) (or the L

legs) have the same structure.

V
R/L
7 = i

N

g2
F

R/L
7 (k, n, l)δw+m+m

′ (figure 35) (C.33)

FR
7 (k, n, l) = ∓√

q

∫

dxAk(x)Rn(x)e
ilx

FL
7 (k, n, l) =

√
q

∫

dxAk(x)Ln(x)e
ilx . (C.34)

Here the ∓ in the expression for FR
7 (k, n, l) is due to the fact that half of the eigen-

functions come with a sign opposite to the other half and in the Lagrangian all the terms

come with the same sign.
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Cm,n
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I (m

′

, n
′

)

VH1
VH2

Figure 36. VH1
, VH2

vertices.

D Vertices for computation of two-point C̃w,k amplitudes

Since the zero-eigenfunctions are also massless fields we compute their two-point finite

temperature amplitudes. The amplitudes are given in section (5.3). Here we present the

various four-point and three-point vertices that occur in the calculation for the amplitudes

of the zero-eigenfunctions.

D.1 Bosonic vertices

VH1
= − N

2g2
H1(k, k

′

, n, n
′

)δω+ω
′
+m+m

′ (figure 36) (D.1)

H1(k, k
′

, n, n
′

) =
√
q

∫

dx
[

φ̃k(x)φ̃k′ (x)An(x)An
′ (x) + 2Ãk(x)φ̃k′ (x)φn(x)An

′ (x)

+ 2φ̃k(x)Ãk
′ (x)φn(x)An

′ (x) + Ãk(x)Ãk
′ (x)φn(x)φn′ (x)

]

(D.2)

VH2
= − N

2g2

[

H2(k, k
′

, n, n
′

)
]

δω+ω
′
+m+m

′ (figure 36) (D.3)

H2(k, k
′

, n, n
′

) =
√
q

∫

dxe−qx2
[

Ãk(x)Ãk
′ (x) + φ̃k(x)φ̃k′ (x)

]

×
[
Hn(

√
qx)Hn

′ (
√
qx)
]

(D.4)

ṼH1
= − N

2g2
H̃1(k, k

′

, n, n
′

)δω+ω
′
+m+m

′ (figure 37) (D.5)

H̃1(k, k
′

, n, n
′

) =
√
q

∫

dx
[

φ̃k(x)φ̃k′ (x)Ãn(x)Ãn
′ (x) + 2Ãk(x)φ̃k′ (x)φ̃n(x)Ãn

′ (x)

+ 2φ̃k(x)Ãk′ (x)φ̃n(x)Ãn′ (x) + Ãk(x)Ãk′ (x)φ̃n(x)φ̃n′ (x)
]

(D.6)

V
′

H2
= − N

2g2

[

H
′

2(k, k
′

, l, l
′

)
]

δω+ω′+m+m′ (figure 37) (D.7)

H
′

2(k, k
′

, l, l
′

) =
√
q

∫

dx
[

Ãk(x)Ãk
′ (x) + φ̃k(x)φ̃k′ (x)

] [

eilxeil
′

x
]

(D.8)

VH3
= − N

2g2
H3(k, k

′

)δω+ω
′
+m+m

′ (figure 38) (D.9)

H3(k, k
′

l, l
′

) =
√
q

∫

dx
[

φ̃k(x)φ̃k′ (x)

]

eilxeil
′

x (D.10)
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V
′

H3
= − N

2g2
H

′

3(k, k
′

, l, l
′

)δω+ω′+m+m′ (figure 38) (D.11)

H
′

3(k, k
′

, l, l
′

) =
√
q

∫

dx
[

Ãk(x)Ãk
′
(x)e

ilxeil
′

x
]

(D.12)

VH4
= −N

3/2

g2
H4(k, l, n)βδω+m+m

′ (figure 39) (D.13)

H4(k, l, n) =

∫

dx
[

−φn(x)∂xφ̃k(x) + φ̃k(x)∂xφn(x)− φn(x)Ãk(x)(qx)

+ φ̃k(x)An(x)(qx)
]

eilx (D.14)

ṼH4
= −N

3/2

g2
H̃4(k, l, n)βδω+m+m

′ (figure 39) (D.15)

H̃4(k, l, n) =

∫

dx
[

−φ̃n(x)∂xφ̃k(x) + φ̃k(x)∂xφ̃n(x)− φ̃n(x)Ãk(x)(qx)

+ φ̃k(x)Ãn(x)(qx)
]

eilx (D.16)

VH5
= −N

3/2

2g2
H5(k, l, n)βδω+m+m

′ (figure 40) (D.17)

H5(k, l, n) =

∫

dxe−qx2/2
[

eilxÃk(x)∂xHn(
√
qx)− (qx)eilxÃk(x)Hn(

√
qx)

−(il)eilxÃk(x)Hn(
√
qx) + (qx)eilxφ̃k(x)Hn(

√
qx)
]

(D.18)

V
′

H5
= −N

3/2

g2
H

′

5(k, l, n)βδω+m+m
′ (figure 41) (D.19)

H
′

5(k, l, n) =

∫

dx
[

(il)eilxφ̃k(x)An(x) + (il)eilxÃk(x)φn(x)

−eilx∂xφ̃k(x)An(x)− eilx∂xφn(x)Ãk(x)
]

(D.20)

˜VH5

′

= −N
3/2

g2
H̃

′

5(k, l, n)βδω+m+m
′ (figure 41) (D.21)

H̃
′

5(k, l, n) =

∫

dx
[

(il)eilxφ̃k(x)Ãn(x) + (il)eilxÃk(x)φ̃n(x)

− eilx∂xφ̃k(x)Ãn(x)− eilx∂xφ̃n(x)Ãk(x)
]

(D.22)

D.2 Fermionic vertices

The fermionic three-point vertices for the C̃w,k − C̃w
′
,k

′ two-point functions at finite tem-

perature participate in the cancellation of UV divergence as in the case of the tachyonic

amplitudes. The propagators for the fermionic loops are given in appendix (C.2). The

various three-point vertices are given below.

Ṽ
R/L
H6

= i
N

g2
H̃

R/L
6 (k, n, l)δw+m+m

′ (figure 42) (D.23)

H̃R
6 (k, n, l) =

√
q

∫

dxφ̃k(x)Rn(x)e
ilx (D.24)
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I(m, l) Φ3
I(m

′

, l
′

)

ṼH1
V

′

H2

Figure 37. ṼH1
, V

′

H2
vertices.

C̃w,kC̃w,k C̃w′ ,k′C̃w′ ,k′

A3
x(m, l) A3

x(m
′

, l
′

) Φ3
1(m, l) Φ3

1(m
′

, l
′

)

VH3 V
′

H3

Figure 38. VH3
and V

′

H3
vertices.

C̃w,kC̃w,k

C
′

n,m

A3
x(l,m

′

)
VH4

A3
x(l,m

′

)

C̃
′

m,n

ṼH4

Figure 39. VH4
and ṼH4

vertices.

H̃L
6 (k, n, l) = ∓√

q

∫

dxφ̃k(x)Ln(x)e
ilx (D.25)

Ṽ
R/L
H7

= i
N

g2
H̃

R/L
7 (k, n, l)δw+m+m

′ (figure 43) (D.26)

H̃R
7 (k, n, l) = ∓√

q

∫

dxÃk(x)Rn(x)e
ilx

H̃L
7 (k, n, l) =

√
q

∫

dxÃk(x)Ln(x)e
ilx . (D.27)
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Figure 40. VH5
vertex.

C̃w,kC̃w,k

Φ3
1(n,m

′

)

C
′

n,m V
′

5
C̃

′

n,m

Φ3
1(l,m

′

)

Ṽ
′

H5

Figure 41. V
′

H5
and Ṽ

′

H5
vertices.

C̃w,kC̃w,k

R2
i (n,m)

L3
(9−i)(l,m

′

)
V R
H6

R3
(9−i)(l,m

′

)

L2
i (n,m)

V L
H6

Figure 42. V R
H6

and V L
H6

vertices.
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Figure 43. V R
H7

and V L
H7

vertices.

Φ3
1(m, l)Φ3

1(m, l) Φ3
1(m

′

, l
′

)Φ3
1(m

′

, l
′

)

Φ
(1,2)
I m,n Φ

(1,2)
I m

′

, n
′

Cm,n
Cm

′
,n

′

V 1
1 V 1

2

Figure 44. V 1
1 and V 1

2 vertices.

The origin of the ∓ sign is explained in appendix C.2.

E Vertices for computation of two point amplitudes for Φ3

I
and A3

x

E.1 Φ3

1
vertices

We list here all the four-point and three-point bosonic and three-point fermionic vertices

that constitute the two-point functions for Φ3
1 − Φ3

1.

V 1
1 = − N

2g2
G1

1(l, l
′

, n, n
′

)δw+w
′
+m+m

′ (figure 44) (E.1)

G1
1(l, l

′

, n, n
′

) =
√
q

∫

dxe−qx2

Hn(x)Hn′ (x)eilxeil
′

x (E.2)

V 1
2 = − N

2g2
G1

2(l, l
′

, n, n
′

)δw+w′+m+m′ (figure 44) (E.3)

G1
2(l, l

′

, n, n
′

) =
√
q

∫

dxAn(x)An
′ (x)eilxeil

′

x (E.4)

Ṽ 1
2 = − N

2g2
G̃1

2(l, l
′

, n, n
′

)δw+w
′
+m+m

′ (figure 45) (E.5)

G̃1
2(l, l

′

, n, n
′

) =
√
q

∫

dxÃn(x)Ãn
′ (x)eilxeil

′

x (E.6)
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Figure 45. Ṽ 1
2 vertex.

V 1′

1 = − N

2g2
G1′

1 (l, n, n
′

)δw+m+m
′ (figure 46) (E.7)

G1′

1 (l, n, n
′

) =
√
q

∫

dx
[

qxe−qx2

Hn(x)Hn
′ (x)eilx

]

(E.8)

V 1
3 = −N

3/2

g2
G1

3(l, n, n
′

)βδw+m+m
′ (figure 46) (E.9)

G1
3(l, n, n

′

) =

∫

dxeilx
[
qxAn(x)An

′ (x) + ∂xφn′ (x)An(x)− ilAn(x)φn′ (x)
]
(E.10)

Ṽ 1
3 = −N

3/2

g2
G̃1

3(l, n, n
′

)βδw+m+m′ (figure 47) (E.11)

G̃1
3(l, n, n

′

) =

∫

dxeilx
[

qxÃn(x)Ãn
′ (x) + ∂xφ̃n′ (x)Ãn(x)− ilÃn(x)φ̃n′ (x)

]

(E.12)

Ṽ 1′

3 = −N
3/2

g2
G̃1′

3 (l, n, n
′

)βδw+m+m
′ (figure 47) (E.13)

G̃1′

3 (l, n, n
′

) =

∫

dxeilx
[

2qxAn(x)Ãn′ (x) + ∂xφ̃n′ (x)An(x)− ilAn(x)φ̃n′ (x)

+ ∂xφn(x)Ãn
′ (x)eilx − ilÃn

′ (x)φn(x)
]

(E.14)

V 1
f = i

N

g2
G1

f (l, n, n
′

)δw+m+m
′ (figure 48) (E.15)

G1
f (l, n, n

′

) =
√
q

∫

dxeilxRn(x)Ln
′ (x) (E.16)

V 2
f = i

N

g2
G2

f (l, n, n
′

)δw+m+m
′ (figure 48) (E.17)

G2
f (l, n, n

′

) =
√
q

∫

dxeilx
[

Rn(x)L
∗
n′ − Ln(x)R

∗
n′ (x)

]

(E.18)
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Figure 46. V 1′

1 and V 1
3 vertices.

Φ3
1(m, l)Φ3

1(m, l)

C̃m,n

C̃m′ ,n′

Ṽ 1
3

Cn,m

C̃m
′
,n

′
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3

Figure 47. Ṽ 1
3 and Ṽ 1′

3 vertices.

Φ3
1(m, l)Φ3

1(m, l)

θi(m,n)

θj(m
′

, n
′

)
V 1
f

θi(m,n)

θ∗j (m
′

, n
′

)

V 2
f

Figure 48. The fermionic vertices V 1
f and V 2

f for Φ3
1 − Φ3

1 amplitudes.

E.2 Φ3

I , I 6= 1 vertices

We list here the vertices for the one-loop finite temperature mass-squared corrections for

the massless field Φ3
I(m, l), I 6= 1.

V I
1 = − N

2g2
GI

1(l, l
′

, n, n
′

)δw+w
′
+m+m

′ (figure 49) (E.19)

GI
1(l, l

′

, n, n
′

) =
√
q

∫

dxe−qx2

Hn(x)Hn
′ (x)eilxeil

′

x (E.20)
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Figure 49. V I
1 and V I

2 vertices.

V I
2 = − N

2g2
GI

2(l, l
′

, n, n
′

)δw+w
′
+m+m

′ (figure 49) (E.21)

GI
2(l, l

′

, n, n
′

) =
√
q

∫

dx
[
An(x)An

′ (x) + φn(x)φn′ (x)
]
eilxeil

′

x (E.22)

Ṽ I
2 = − N

2g2
G̃I

2(l, l
′

, n, n
′

)δw+w′+m+m′ (figure 50) (E.23)

G̃I
2(l, l

′

, n, n
′

) =
√
q

∫

dx
[

Ãn(x)Ãn
′ (x) + φ̃n(x)φ̃n′ (x)

]

eilxeil
′

x (E.24)

V I
3 = −N

3/2

g2
GI

3(l, n, n
′

)βδw+m+m
′ (figure 51) (E.25)

GI
3(l, n, n

′

) =

∫

dxeilx
[

∂x(e
−qx2/2Hn

′ (x))An(x)− ile−qx2/2An(x)Hn
′ (x)

−qxφn(x)e−qx2/2Hn
′ (x)

]

(E.26)

Ṽ I
3 = −N

3/2

g2
G̃I

3(l, n, n
′

)βδw+m+m
′ (figure 51) (E.27)

G̃I
3(l, n, n

′

) =

∫

dxeilx
[

∂x(e
−qx2/2Hn

′ (x))Ãn(x)− ile−qx2/2Ãn(x)Hn
′ (x)

−qxφ̃n(x)e−qx2/2Hn
′ (x)

]

(E.28)

V I
f = i

N

g2
GI

f (l, n, n
′

)δw+m+m
′ (figure 52) (E.29)

GI
f (l, n, n

′

) =
√
q

∫

dxeilx
[
Rn(x)Ln

′ + Ln(x)Rn
′ (x)

]
(E.30)

E.3 A3

x vertices

In this section we write down the various vertices needed for computing the two point

A3
x amplitude.

V A
1 = − N

2g2
GA

1 (n, n
′

, l, l
′

)δw+w′+m+m′ (figure 53) (E.31)
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Figure 50. Ṽ I
2 vertex.
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Ṽ I
3

Figure 51. V I
3 and Ṽ I

3 vertices.
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Figure 52. V I
f vertex.
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Figure 53. V A
1 and V A

2 vertices.

GA
1 (n, n

′

l, l
′

) =
√
q

∫

dxe−qx2

Hn(
√
qx)Hn

′ (
√
qx)ei(l+l

′

)x (E.32)

V A
2 = − N

2g2
GA

2 (n, n
′

, l, l
′

)δw+w′+m+m′ (figure 53) (E.33)

GA
2 (n, n

′

, l, l
′

) =
√
q

∫

dxφn(x)φn′ (x)ei(l+l
′

)x (E.34)

Ṽ A
2 = − N

2g2
G̃A

2 (n, n
′

, l, l
′

)δw+w
′
+m+m

′ (figure 54) (E.35)

G̃A
2 (n, n

′

, l, l
′

) =
√
q

∫

dxφ̃n(x)φ̃n′ (x)ei(l+l
′

)x (E.36)

V A
3 = −N

3/2

g2
GA

3 (n, n
′

, l)βδw+m+m′ (figure 55) (E.37)

GA
3 (n, n

′

, l) =

∫

dx
[
∂x(φn′ (x))φn(x)− ∂x(φn(x))φn′ (x) (E.38)

+ qxAn
′ (x)φn(x)− qxAn(x)φn′ (x)

]
eilx

Ṽ A
3 = −N

3/2

g2
G̃A

3 (n, n
′

, l)βδw+m+m′ (figure 55) (E.39)

G̃A
3 (n, n

′

, l) =

∫

dx
[

∂x(φ̃n′ (x))φ̃n(x)− ∂x(φ̃n(x))φ̃n′ (x) (E.40)

+ qxÃn
′ (x)φ̃n(x)− qxÃn(x)φ̃n′ (x)

]

eilx

Ṽ A′

3 = −N
3/2

g2
G̃A′

3 (n, n
′

, l)βδw+m+m′ (figure 56) (E.41)

G̃A′

3 (n, n
′

, l) =

∫

dx
[

∂x(φ̃n′ (x))φn(x)− ∂x(φn(x))φ̃n′ (x) (E.42)

+ qxÃn
′ (x)φn(x)− φ̃n′ (x)An(x)

]

eilx

V A
4 = −N

3/2

g2
GA

4 (n, n
′

, l)βδw+m+m′ (figure 56) (E.43)
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Figure 54. Ṽ A
2 vertex.

A3
x(m, l)A3

x(m, l)

Cm,n

Cm
′
,n

′

V A
3

C̃m,n

C̃m
′
,n

′
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Figure 55. V A
3 and Ṽ A

3 vertices.

GA
4 (n, n

′

, l) =

∫

dxe−qx2/2
[

∂x(e
−qx2/2Hn

′ (x))Hn(x) (E.44)

− ∂x(e
−qx2/2Hn(x))Hn

′ (x)
]

eilx

V A1
f = i

N

g2
GA1

4 (n, n
′

, l)βδw+m+m
′ (figure 57) (E.45)

GA1
f (n, n

′

, l) =
√
q

∫

dx
[
Ln(x)Ln′ (x)−Rn(x)Rn′ (x)

]
eilx (E.46)

V A2
f = i

N

g2
GA2

4 (n, n
′

, l)βδw+m+m
′ (figure 57) (E.47)

GA2
f (n, n

′

, l) =
√
q

∫

dx
[

Ln(x)L
∗
n
′ (x)−Rn(x)R

∗
n
′ (x)

]

eilx (E.48)

F Matsubara sums

In this appendix we show some sample computations showing sums over Matsubara fre-

quencies. Let us evaluate the sum over m in the propagator

1

β

∞∑

n=2,m=−∞

1

ω2
m + λn

(F.1)

where ωm = 2mπ/β.
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3 and V A
4 vertices.
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Figure 57. V A1
f and V A2

f vertices.

Following [42] we convert the sum over m into a contour integral as follows. By writing

p0 = iωm, define the function

f(p0) = − 1

p20 − λn
. (F.2)

The function f(p0) does not have poles on the imaginary axis. We multiply it by

a function with simple poles on the imaginary axis at values p0 = 2imπ
β and analytic and

bounded otherwise. A function with this property is coth(p0β/2). The sum over m in (F.1)

can now be reproduced from the contour integral

1

2πiβ

∮

dp0

(
β

2

)

coth

(
p0β

2

)

f(p0) (F.3)

where the contour is the sum over the contours Cn shown in figure 58(a). The Cn’s can

now be deformed into the contour Γ. The contour integral can then be written in terms of

line integrals as

1

2πi

∫ −i∞−ǫ

i∞−ǫ
dp0f(p0)

(

−1

2
− 1

e−p0β−1

)

+
1

2πi

∫ i∞+ǫ

−i∞+ǫ
dp0f(p0)

(
1

2
+

1

ep0β−1

)

(F.4)

since the function f(p0) vanishes for p0 = ±i∞.

In (F.4) the frequency sum separates into the zero-temperature part and the

temperature-dependent part for both the integrals. The line integrals above can now be

evaluated using the contour integrals over the contours Γ1 and Γ2 in figure 58(b). This is

because the line integral over rest of the rectangle vanishes when the length of the sides
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Figure 58. Contours for doing the Matsubara sums.

are taken to infinity. These contour integrals now have contributions only from the poles

of f(p0) at p0 = ±
√
λn. Thus,

1

β

∞∑

n=2,m=−∞

1

ω2
m + λn

=
∑

n=2

1√
λn

(
1

2
+

1

e
√
λnβ − 1

)

. (F.5)

Similarly using the above formula, the several bosonic propagators upon being summed

over the Matsubara frequency ωm are,

1

β

∞∑

n=2,m=−∞

1

ω2
m + γn

=
∞∑

n=2

1√
γn

(
1

2
+

1

e
√
γnβ − 1

)

(F.6)

1

β

∞∑

m=−∞

∫ ∞

−∞

dl

2π
√
q

1

ω2
m + l2

=

∫ ∞

−∞

dl

2π
√
q

1

l

(
1

2
+

1

elβ − 1

)

(F.7)

1

β

∞∑

n=2,n′=2,m=−∞

1

(ω2
m + γn)(ω2

m + λn′ )
=

∞∑

n=2,n
′
=2

1

γn − λn′

(

1

λn′

(

1

2
+

1

e
√

λ
n
′ β − 1

)

− 1√
γn

(
1

2
+

1

e
√
γnβ − 1

))

(F.8)

1

β

∞∑

n=2,m=−∞

∫ ∞

−∞

dl

2π
√
q

1

(ω2
m + l2)(ω2

m + λn)
=

∞∑

n=2

∫ ∞

−∞

dl

2π
√
q

1

l2 − λ

(
1

λn

(
1

2
+

1

e
√
λnβ − 1

)

− 1

l

(
1

2
+

1

elβ − 1

))

(F.9)

1

β

∞∑

n=2,m=−∞

∫ ∞

−∞

dl

2π
√
q

1

(ω2
m + l2)(ω2

m + γn)
=

∞∑

n=2

∫ ∞

−∞

dl

2π
√
q

1

l2 − γn

(
1

γn

(
1

2
+

1

e
√
γnβ − 1

)

− 1

l

(
1

2
+

1

elβ − 1

))

. (F.10)
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The last three propagators in are mixed propagators. So we have decomposed them

into partial fractions and then and have done the sum separately.

The fermions due to their anti-periodic boundary conditions along the Euclidean time

direction have have their propagators with ωm = (2m+1)π
β . The sum over the odd integers

can be performed by converting the sum into a contour integral as above. The only change

here is that we must introduce tanh(p0β/2). Thus,

1

β

∞∑

m=−∞

1

ω2
m + λ′

n

=
1

2πiβ

∮

dp0

(
β

2

)

tanh

(
p0β

2

)

f(p0)

=
1

√

λ′

n

(

1

2
− 1

e
√

λ
′

nβ + 1

)

. (F.11)

Similarly using this result we can do the sum over the Matsubara frequencies for the

following,

∞∑

n=0,m=−∞

∫ ∞

−∞

dl

2π
√
q

1

(iωm +
√
λ′n)(iωm ± l)

=

−
∞∑

n=0,m=−∞

∫ ∞

−∞

dl

4π
√
q

(
1

(ω2
m + λ′

n)
+

1

(ω2
m + l2)

− l2 + λn
(ω2

m + λ′

n)(ω
2
m + l2)

)

. (F.12)

We can now do the sum over each of the terms separately, which gives

∑

n

∫
dl

2π
√
q




−β tanh

(
βl
2

)

+ β tanh
(
1
2β
√

λ′

n

)

2
(

l −
√

λ′

n

)



 . (F.13)
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