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Abstract. The Lovász theta function provides a lower bound for the chromatic
number of finite graphs based on the solution of a semidefinite program. In this
paper we generalize it so that it gives a lower bound for the measurable chromatic
number of distance graphs on compact metric spaces.

In particular we consider distance graphs on the unit sphere. There we trans-
form the original infinite semidefinite program into an infinite linear program which
then turns out to be an extremal question about Jacobi polynomials which we solve
explicitly in the limit. As an application we derive new lower bounds for the mea-
surable chromatic number of the Euclidean space in dimensions 10, . . . , 24 and we
give a new proof that it grows exponentially with the dimension.

1 Introduction

The chromatic number of the n-dimensional Euclidean space is the minimum number
of colors needed to color each point of R

n in such a way that points at distance 1
from each other receive different colors. It is the chromatic number of the graph
with vertex set R

n and in which two vertices are adjacent if their distance is 1. We
denote it by χ(Rn).

A famous open question is to determine the chromatic number of the plane. In
this case, it is only known that 4 ≤ χ(R2) ≤ 7, where lower and upper bounds come
from simple geometric constructions. In this form the problem was considered, e.g.,
by Nelson, Isbell, Erdős, and Hadwiger. For historical remarks and for the best
known bounds in other dimensions we refer to Székely’s survey article [Szé]. The
first exponential asymptotic lower bound is due to Frankl and Wilson [FrW, Th. 3].
Currently the best known asymptotic lower bound is due to Raigorodskii [R] and
the best known asymptotic upper bound is due to Larman and Rogers [LR]:(

1.239 . . . + o(1)
)n ≤ χ(Rn) ≤ (

3 + o(1)
)n

.
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In this paper we study a variant of the chromatic number of R
n, namely the

measurable chromatic number. The measurable chromatic number of R
n is the

smallest number m such that R
n can be partitioned into m Lebesgue measurable

stable sets. Here we call a set C ⊆ R
n stable if no two points in C lie at distance

1 from each other. In other words, we impose that the sets of points having the
same color have to be measurable. We denote the measurable chromatic number of
R

n by χm(Rn). One reason to study the measurable chromatic number is that then
stronger analytic tools are available.

The study of the measurable chromatic number started with Falconer [F], who
proved that χm(R2) ≥ 5. The measurable chromatic number is at least the chromatic
number, and it is amusing to notice that in case of strict inequality the construction
of an optimal coloring necessarily uses the axiom of choice.

Related to the chromatic number of the Euclidean space is the chromatic number
of the unit sphere Sn−1 = {x ∈ R

n : x · x = 1}. For −1 < t < 1, we consider the
graph G(n, t) whose vertices are the points of Sn−1 and in which two points are
adjacent if their inner product x · y equals t. The chromatic number of G(n, t)
and its measurable version, denoted by χ(G(n, t)) and χm(G(n, t)) respectively, are
defined as in the Euclidean case.

The chromatic number of this graph was studied by Lovász [L2], in particular in
the case when t is small. He showed that

n ≤ χ
(
G(n, t)

)
for −1 < t < 1 ,

χ
(
G(n, t)

) ≤ n + 1 for −1 < t ≤ −1/n .

Frankl and Wilson [FrW, Th. 6] showed that(
1 + o(1)

)
(1.13)n ≤ χm

(
G(n, 0)

) ≤ 2n−1.

The (measurable) chromatic number of G(n, t) provides a lower bound for the
one of R

n: After appropriate scaling, every proper coloring of R
n intersected with

the unit sphere Sn−1 gives a proper coloring of the graph G(n, t), and measurability
is preserved by the intersection.

In this paper we present a lower bound for the measurable chromatic number of
G(n, t). As an application we derive new lower bounds for the measurable chromatic
number of the Euclidean space in dimensions 10, . . . , 24 and we give a new proof that
it grows exponentially with the dimension.

The lower bound is based on a generalization of the Lovász theta function [L1],
which gives an upper bound to the stability number of a finite graph. Here we aim at
generalizing the theta function to distance graphs in compact metric spaces. These
are graphs defined on all points of the metric space where the adjacency relation
only depends on the distance.

The paper is structured as follows: In section 2 we define the stability number and
the fractional measurable chromatic number and give a basic inequality involving
them. Then, after reviewing Lovász’ original formulation of the theta function in
section 3, we give our generalization in section 4. Like the original theta function
for finite graphs, it gives an upper bound for the stability number. Moreover, in
the case of the unit sphere, it can be explicitly computed, thanks to classical results
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on spherical harmonics. The material needed for spherical harmonics is given in
section 5 and an explicit formulation for the theta function of G(n, t) is given in
section 6.

In section 7 we choose specific values of t for which we can analytically compute
the theta function of G(n, t). This allows us to compute the limit of the theta func-
tion for the graph G(n, t) as t goes to 1 in section 8. This gives improvements on the
best-known lower bounds for χm(Rn) in several dimensions. Furthermore this gives
a new proof of the fact that χm(Rn) grows exponentially with n. Although this is
an immediate consequence of the result of Frankl and Wilson (and of Raigorodskii,
and also of a result of Frankl and Rödl [FrR]) and our bound of 1.165n is not an im-
provement, our result is an easy consequence of the methods we present. Moreover,
we think that our proof is of interest because the methods we use here are radically
different from those used before. In particular, they can be applied to other metric
spaces.

In section 9 we point out how to apply our generalization to distance graphs
in other compact metric spaces, endowed with the continuous action of a compact
group. Finally in section 10 we conclude by showing the relation between our gen-
eralization of the theta function and the theta function for finite graphs of G(n, t)
and by showing the relation between our generalization and the linear programming
bound for spherical codes established by Delsarte, Goethals, and Seidel [DGS].

2 The Fractional Chromatic Number and the Stability Number

Let G = (V,E) be a finite or infinite graph whose vertex set is equipped with the
measure µ. We assume that the measure of V is finite. In this section we define the
stability number and the measurable fractional chromatic number of G and derive
the basic inequality between these two invariants. In the case of a finite graph one
recovers the classical notions if one uses the uniform measure µ(C) = |C| for C ⊆ V .

Let L2(V ) be the Hilbert space of real-valued square-integrable functions defined
over V with inner product

(f, g) =
∫

V
f(x)g(x) dµ(x)

for f, g ∈ L2(V ). The constant function 1 is measurable and its squared norm is the
number (1, 1) = µ(V ). The characteristic function of a subset C of V we denote by
χC : V → {0, 1}.

A subset C of V is called a measurable stable set if C is a measurable set and if
no two vertices in C are adjacent. The stability number of G is

α(G) = sup
{
µ(C) : C ⊆ V is a measurable stable set

}
.

Similar measure-theoretical notions of the stability number have been considered
before by other authors for the case in which V is the Euclidean space R

n or the
sphere Sn−1. We refer the reader to the survey paper of Székely [Szé] for more
information and further references.

The fractional measurable chromatic number of G is denoted by χ∗m(G). It is the
infimum of λ1 + · · · + λk where k ≥ 0 and λ1, . . . , λk are non-negative real numbers
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such that there exist measurable stable sets C1, . . . , Ck satisfying
λ1χ

C1 + · · · + λkχ
Ck = 1 .

Note that the measurable fractional chromatic number of the graph G is a lower
bound for its measurable chromatic number.
Proposition 2.1. We have the following basic inequality between the stability
number and the measurable fractional chromatic number of a graph G = (V,E):

α(G)χ∗m(G) ≥ µ(V ) . (1)
So, any upper bound for α(G) provides a lower bound for χ∗m(G).

Proof. Let λ1, . . . , λk be non-negative real numbers and C1, . . . , Ck be measurable
stable sets such that λ1χ

C1 + · · · + λkχ
Ck = 1. Since Ci is measurable, its charac-

teristic function χCi lies in L2(V ). Hence
(λ1 + · · · + λk)α(G) ≥ λ1µ(C1) + · · · + λkµ(Ck)

= λ1(χC1 , 1) + · · · + λk(χCk , 1)
= (1, 1)
= µ(V ) . �

3 The Lovász Theta Function for Finite Graphs

In the celebrated paper [L1] Lovász introduced the theta function for finite graphs.
It is an upper bound for the stability number which one can efficiently compute using
semidefinite programming. In this section we review its definition and properties,
which we generalize in section 4.

The theta function of a graph G = (V,E) is defined by

ϑ(G) = max
{ ∑

x∈V

∑
y∈V

K(x, y) : K ∈ R
V×V is positive semidefinite ,

∑
x∈V

K(x, x) = 1 , K(x, y) = 0 if {x, y} ∈ E

}
. (2)

Theorem 3.1. For any finite graph G, ϑ(G) ≥ α(G).
Although this result follows from [L1, Lem. 3] and [L1, Th. 4], we give a proof

here to stress the analogy between the finite case and the more general case we
consider in our generalization Theorem 4.1.
Proof of Theorem 3.1. Let C ⊆ V be a stable set. Consider the characteristic
function χC : V → {0, 1} of C and define the matrix K ∈ R

V×V by
K(x, y) = 1

|C|χ
C(x)χC(y) .

Notice K satisfies the conditions in (2). Moreover, we have
∑

x∈V

∑
y∈V K(x, y)=|C|,

and so ϑ(G) ≥ |C|. �

Remark 3.2. There are many equivalent definitions of the theta function. Possible
alternatives are reviewed by Knuth in [Kn]. We use the one of [L1, Th. 4].



GAFA LOWER BOUNDS FOR MEASURABLE CHROMATIC NUMBERS 649 

If the graph G has a nontrivial automorphism group, it is not difficult to see
that one can restrict oneself in (2) to the functions K which are invariant under the
action of any subgroup Γ of Aut(G), where Aut(G) is the automorphism group of G,
i.e. it is the group of all permutations of V that preserve adjacency. Here we say that
K is invariant under Γ if K(γx, γy) = K(x, y) holds for all γ ∈ Γ and all x, y ∈ V .
If moreover Γ acts transitively on G, the second condition

∑
x∈V K(x, x) = 1 is

equivalent to K(x, x) = 1/|V | for all x ∈ V .

4 A Generalization of the Lovász Theta Function for Distance
Graphs on Compact Metric Spaces

We assume that V is a compact metric space with distance function d. We moreover
assume that V is equipped with a non-negative, Borel regular measure µ for which
µ(V ) is finite. Let D be a closed subset of the image of d. We define the graph
G(V,D) to be the graph with vertex set V and edge set E = {{x, y} : d(x, y) ∈ D}.

The elements of the space C(V × V ) consisting of all continuous functions K :
V ×V → R are called continuous Hilbert–Schmidt kernels; or kernels for short. In the
following we only consider symmetric kernels, i.e. kernels K with K(x, y) = K(y, x)
for all x, y ∈ V . A kernel K ∈ C(V × V ) is called positive if, for any non-negative
integer m, any points x1, . . . , xm ∈ V , and any real numbers u1, . . . , um, we have

m∑
i=1

m∑
j=1

K(xi, xj)uiuj ≥ 0 .

We are now ready to extend the definition (2) of the Lovász theta function to
the graph G(V,D). We define

ϑ
(
G(V,D)

)
= sup

{ ∫
V

∫
V

K(x, y)dµ(x)dµ(y) : K ∈ C(V × V ) is positive ,∫
V

K(x, x)dµ(x) = 1 , K(x, y) = 0 if d(x, y) ∈ D

}
. (3)

Theorem 4.1. The theta function is an upper bound for the stability number, i.e.

ϑ
(
G(V,D)

) ≥ α
(
G(V,D)

)
.

Proof. Fix ε > 0 arbitrarily. Let C ⊆ V be a stable set such that µ(C) ≥
α(G(V,D)) − ε. Since µ is regular, we may assume that C is closed, as other-
wise we could find a stable set with measure closer to α(G(V,D)) and use a suitable
inner-approximation of it by a closed set.

Note that, since C is compact and stable, there must exist a number β > 0 such
that |d(x, y) − δ| > β for all x, y ∈ C and δ ∈ D. But then, for small enough ξ > 0,
the set

B(C, ξ) =
{
x ∈ V : d(x,C) < ξ

}
,

where d(x, C) is the distance from x to the closed set C, is stable. Moreover, notice
that B(C, ξ) is open and that, since it is stable, µ(B(C, ξ)) ≤ α(G(V,D)).

Now, the function f : V → [0, 1] given by
f(x) = ξ−1 · max

{
ξ − d(x,C), 0

}
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for all x ∈ V is continuous and such that f(C) = 1 and f(V \ B(C, ξ)) = 0. So the
kernel K given by

K(x, y) =
1

(f, f)
f(x)f(y)

for all x, y ∈ V is feasible in (3).
Let us estimate the objective value of K. Since we have

(f, f) ≤ µ
(
B(C, ξ)

) ≤ α
(
G(V,D)

)
and ∫

V

∫
V

f(x)f(y)dµ(x)dµ(y) ≥ µ(C)2 ≥ (
α(G(V,D)) − ε

)2
,

we finally have ∫
V

∫
V

K(x, y) dµ(x)dµ(y) ≥ (α(G(V,D)) − ε)2

α(G(V,D))
and, since ε is arbitrary, the theorem follows. �

Let us now assume that a compact group Γ acts continuously on V , preserving
the distance d. Then, if K is a feasible solution for (3), so is (x, y) �→ K(γx, γy) for
all γ ∈ Γ. Averaging on Γ leads to a Γ-invariant feasible solution

K(x, y) =
∫

Γ
K(γx, γy)dγ ,

where dγ denotes the Haar measure on Γ normalized so that Γ has volume 1. More-
over, observe that the objective value of K is the same as that of K. Hence we can
restrict ourselves in (3) to Γ-invariant kernels. If moreover V is homogeneous under
the action of Γ, the second condition in (3) may be replaced by K(x, x) = 1/µ(V )
for all x ∈ V .

We are mostly interested in the case in which V is the unit sphere Sn−1 endowed
with the Euclidean metric of R

n, and in which D is a singleton. If D = {δ} and
δ2 = 2 − 2t, so that d(x, y) = δ if and only if x · y = t, the graph G(Sn−1, D) is
denoted by G(n, t). Since the unit sphere is homogeneous under the action of the
orthogonal group O(Rn), the previous remarks apply.

5 Harmonic Analysis on the Unit Sphere

It turns out that the continuous positive Hilbert–Schmidt kernels on the sphere have
a nice description coming from classical results of harmonic analysis reviewed in this
section. This allows for the calculation of ϑ(G(n, t)). For information on spherical
harmonics we refer to [AAR, Ch. 9] and [VK].

The unit sphere Sn−1 is homogeneous under the action of the orthogonal group
O(Rn) = {A ∈ R

n×n : AtA = In}, where In denotes the identity matrix. Moreover,
it is two-point homogeneous, meaning that the orbits of O(Rn) on pairs of points
are characterized by the value of their inner product. The orthogonal group acts
on L2(Sn−1) by Af(x) = f(A−1x), and L2(Sn−1) is equipped with the standard
O(Rn)-invariant inner product

(f, g) =
∫

Sn−1

f(x)g(x)dω(x) (4)
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for the standard surface measure ω. The surface area of the unit sphere is ωn =
(1, 1) = 2πn/2/Γ(n/2).

It is a well-known fact (see, e.g. [VK, Ch. 9.2]) that the Hilbert space L2(Sn−1)
decomposes under the action of O(Rn) into orthogonal subspaces

L2(Sn−1) = H0 ⊥ H1 ⊥ H2 ⊥ . . . , (5)
where Hk is isomorphic to the O(Rn)-irreducible space

Harmk =
{

f ∈ R[x1, . . . , xn] : f homogeneous , deg f = k ,

n∑
i=1

∂2

∂x2
i

f = 0
}

of harmonic polynomials in n variables which are homogeneous and have degree k.
We set hk = dim(Harmk) =

(
n+k−1

n−1

)−(
n+k−3

n−1

)
. The equality in (5) means that every

f ∈ L2(Sn−1) can be uniquely written in the form f =
∑∞

k=0 pk, where pk ∈ Hk,
and where the convergence is in the L2-norm.

The addition formula (see e.g. [AAR, Ch. 9.6]) plays a central role in the char-
acterization of O(Rn)-invariant kernels: For any orthonormal basis ek,1, . . . , ek,hk

of
Hk and for any pair of points x, y ∈ Sn−1 we have

hk∑
i=1

ek,i(x)ek,i(y) =
hk

ωn
P

(α,α)
k (x · y) , (6)

where P
(α,α)
k is the normalized Jacobi polynomial of degree k with parameters (α, α),

with P
(α,α)
k (1) = 1 and α = (n−3)/2. The Jacobi polynomials with parameters (α, β)

are orthogonal polynomials for the weight function (1− u)α(1 + u)β on the interval
[−1, 1]. We denote by P

(α,β)
k the normalized Jacobi polynomial of degree k with

normalization P
(α,β)
k (1) = 1.

In [S, Th. 1] Schoenberg gave a characterization of the continuous kernels
which are positive and O(Rn)-invariant: They are those which lie in the cone
spanned by the kernels (x, y) �→ P

(α,α)
k (x · y). More precisely, a continuous kernel

K ∈ C(Sn−1 × Sn−1) is O(Rn)-invariant and positive if and only if there exist non-
negative real numbers f0, f1, . . . such that K can be written as

K(x, y) =
∞∑

k=0

fkP
(α,α)
k (x · y) , (7)

where the convergence is absolute and uniform.

6 The Theta Function of G(n, t)

We obtain from section 4 in the case V = Sn−1, D =
{√

2 − 2t
}
, and Γ = O(Rn), the

following characterization of the theta function of the graph G(n, t) = G(Sn−1, D):

ϑ
(
G(n, t)

)
= max

{ ∫
Sn−1

∫
Sn−1

K(x, y)dω(x)dω(y) :

K ∈ C(Sn−1 × Sn−1) is positive , K is invariant under O(Rn) ,

K(x, x) = 1/ωn for all x ∈ Sn−1 , K(x, y) = 0 if x · y = t

}
. (8)

(It will be clear later that the maximum above indeed exists.)
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Corollary 6.1. We have

ωn

/
ϑ
(
G(n, t)

) ≤ χ∗m
(
G(n, t)

)
.

Proof. Immediate from Theorem 4.1 and the considerations in section 2. �

A result of de Bruijn and Erdős [BrE] implies that the chromatic number of
G(n, t) is attained by a finite subgraph of it. So one might wonder if computing the
theta function for a finite subgraph of G(n, t) could give a better bound than the
previous corollary. This is not the case as we will show in section 10.

The theta function for finite graphs has the important property that it can
be computed in polynomial time, in the sense that it can be approximated with
arbitrary precision using semidefinite programming. We now turn to the problem of
computing the generalization (8).

First, we apply Schoenberg’s characterization (7) of the continuous kernels which
are O(Rn)-invariant and positive. This transforms the original formulation (3),
which is a semidefinite programming problem in infinitely many variables having
infinitely many constraints, into the following linear programming problem with
optimization variables fk:

ϑ
(
G(n, t)

)
= max

{
ω2

nf0 : fk ≥ 0 for k = 0, 1, . . . ,

∞∑
k=0

fk = 1/ωn , f0 +
∞∑

k=1

fkP
(α,α)
k (t) = 0

}
, (9)

where α = (n − 3)/2.
To obtain (9) we simplified the objective function in the following way. Because

of the orthogonal decomposition (5) and because the subspace H0 contains only the
constant functions, we have∫

Sn−1

∫
Sn−1

∞∑
k=0

fkP
(α,α)
k (x · y)dω(x)dω(y) = ω2

nf0 .

We furthermore used P
(α,α)
0 = 1 and P

(α,α)
k (1) = 1.

Theorem 6.2. Let m(t) be the minimum of P
(α,α)
k (t) for k = 0, 1, . . . Then the

optimal value of (9) is equal to

ϑ
(
G(n, t)

)
= ωn

m(t)
m(t) − 1

.

Proof. We first claim that the minimum m(t) exists and is negative. Indeed, if
P

(α,α)
k (t) ≥ 0 for all k ≥ 1, then (9) either has no solution (in the case that all

P
(α,α)
k (t) are positive) or f0 = 0 in any solution, which contradicts Theorem 4.1.

So we know that for some k ≥ 1, P
(α,α)
k (t) < 0. This, combined with the fact that

P
(α,α)
k (t) goes to zero as k goes to infinity (cf. [AAR, Ch. 6.6] or [Sz, Ch. 8.22]),

proves the claim.
Let k∗ be so that m(t) = P

(α,α)
k∗ (t). It is easy to see that there is an optimal

solution of (9) in which only f0 and fk∗ are positive. Hence, solving the resulting



GAFA LOWER BOUNDS FOR MEASURABLE CHROMATIC NUMBERS 653 

system
f0 + fk∗ = 1/ωn ,

f0 + fk∗m(t) = 0 ,

gives f0 = m(t)/(ωn(m(t) − 1)) and fk∗ = −1/(ωn(m(t) − 1)) and the theorem
follows. �

Example 6.3. The minimum of P
(α,α)
k (0.9999) for α = (24 − 3)/2 is attained at

k = 1131. It is a rational number and its first decimal digits are −0.00059623.

7 Analytic Solutions

In this section we compute the value

m(t) = min
{
P

(α,α)
k (t) : k = 0, 1, . . .

}
for specific values of t. Namely we choose t to be the largest zero of an appropriate
Jacobi polynomial.

Key for the discussion to follow is the interlacing property of the zeroes of orthog-
onal polynomials. It says (cf. [Sz, Th. 3.3.2]) that between any pair of consecutive
zeroes of P

(α,α)
k there is exactly one zero of P

(α,α)
k−1 .

We denote the zeros of P
(α,β)
k by t

(α,β)
k,j with j = 1, . . . , k and with the increasing

ordering t
(α,β)
k,j < t

(α,β)
k,j+1. We shall need the following collection of identities:

(1 − u2)
d2P

(α,α)
k

du2 − (2α + 2)u
dP

(α,α)
k

du
+ k(k + 2α + 1)P (α,α)

k = 0 , (10)

(−1)kP
(α,α)
k (−u) = P

(α,α)
k (u) , (11)

(−1)k(α + 1)P (α,α+1)
k (−u) = (k + α + 1)P (α+1,α)

k (u) , (12)

(2α + 2)
dP

(α,α)
k

du
= k(k + 2α + 1)P (α+1,α+1)

k−1 , (13)

(2α + 2)P (α,α+1)
k = (k + 2α + 2)P (α+1,α+1)

k − kP
(α+1,α+1)
k−1 , (14)

(2k + 2α + 2)P (α+1,α)
k = (k + 2α + 2)P (α+1,α+1)

k + kP
(α+1,α+1)
k−1 , (15)

(k + α + 1)P (α+1,α)
k = (α + 1)

P
(α,α)
k − P

(α,α)
k+1

1 − u
. (16)

They can all be found in [AAR, Ch. 6], although with different normalization. For-
mula (10) is [AAR, (6.3.9)]; (11) and (12) are [AAR, (6.4.23)]; (13) is [AAR, (6.3.8)],
(14) is [AAR, (6.4.21)]; (15) follows by the change of variables u �→ −u from (14)
and (11), (12); (16) is [AAR, (6.4.20)].

Proposition 7.1. Let t = t
(α+1,α+1)
k−1,k−1 be the largest zero of the Jacobi polynomial

P
(α+1,α+1)
k−1 . Then, m(t) = P

(α,α)
k (t).

Proof. We start with the following crucial observation: From (13), t is a zero of the
derivative of P

(α,α)
k . Hence it is a minimum of P

(α,α)
k because it is the last extremal
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value in the interval [−1, 1] and because P
(α+1,α+1)
k (1) = 1, whence (using (13))

P
(α,α)
k (u) is increasing on [t, 1].

Now we prove that P
(α,α)
k (t) < P

(α,α)
j (t) for all j 	= k where we treat the cases

j < k and j > k separately.
It turns out that the sequence P

(α,α)
j (t) is decreasing for j ≤ k. From (16), the

sign of P
(α,α)
j (t) − P

(α,α)
j+1 (t) equals the sign of P

(α+1,α)
j (t). We have the inequalities

t
(α+1,α)
j,j ≤ t

(α+1,α)
k−1,k−1 < t

(α+1,α+1)
k−1,k−1 = t .

The first one is a consequence of the interlacing property. From (15) one can de-
duce that P

(α+1,α)
k−1 has exactly one zero in the interval [t(α+1,α+1)

k−2,i−1 , t
(α+1,α+1)
k−1,i ] since

it changes sign at the extreme points of it, and by the same argument P
(α+1,α)
k−1

has a zero left to t
(α+1,α+1)
k−1,1 . Thus, t

(α+1,α)
k−1,k−1 < t

(α+1,α+1)
k−1,k−1 = t. So t lies to the

right of the largest zero of P
(α+1,α)
j and hence P

(α+1,α)
j (t) > 0 which shows that

P
(α,α)
j (t) − P

(α,α)
j+1 (t) > 0 for j < k.

Let us consider the case j > k. The inequality [AAR, (6.4.19)] implies that

for all j > k , P
(α,α)
k

(
t
(α+1,α+1)
k−1,k−1

)
< P

(α,α)
j

(
t
(α+1,α+1)
j−1,j−1

)
. (17)

The next observation, which finishes the proof of the lemma, is stated in [AAR,
(6.4.24)] only for the case α = 0:

for all j ≥ 2 , min
{
P

(α,α)
j (u) : u ∈ [0, 1]

}
= P

(α,α)
j

(
t
(α+1,α+1)
j−1,j−1

)
. (18)

To prove it consider

g(u) = P
(α,α)
j (u)2 +

1 − u2

j(j + 2α + 1)

(
dP

(α,α)
j

du

)2

.

Applying (10) in the computation of g′ shows that

g′(u) =
(4α + 2)u

j(j + 2α + 1)

(
dP

(α,α)
j

du

)2

.

The polynomial g′ takes positive values on [0, 1] and hence g is increasing on this
interval. In particular,

g
(
t
(α+1,α+1)
j−1,i−1

)
< g

(
t
(α+1,α+1)
j−1,i

)
for all i ≤ j − 1 with t

(α+1,α+1)
j−1,i−1 ≥ 0 ,

which simplifies to
P

(α,α)
j

(
t
(α+1,α+1)
j−1,i−1

)2
< P

(α,α)
j

(
t
(α+1,α+1)
j−1,i

)2
.

Since t
(α+1,α+1)
j−1,i are the local extrema of P

(α,α)
j , we have proved (18). �

8 New Lower Bounds for the Euclidean Space

In this section we give new lower bounds for the measurable chromatic number of
the Euclidean space for dimensions 10, . . . , 24. This improves on the previous best
known lower bounds due to Székely and Wormald [SzéW]. Table 8.1 compares the
values. Furthermore we give a new proof that the measurable chromatic number
grows exponentially with the dimension.
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For this we give a closed expression for limt→1 m(t) which involves the Bessel
function Jα of the first kind of order α = (n − 3)/2 (see e.g. [AAR, Ch. 4]). The
appearance of Bessel functions here is due to the fact that the largest zero of
the Jacobi polynomial P

(α,α)
k behaves like the first positive zero jα of the Bessel

function Jα. More precisely, it is known [AAR, Th. 4.14.1] that, for the largest zero
t
(α+1,β)
k,k = cos θk of the polynomial P

(α+1,β)
k ,

lim
k→∞

kθk = jα+1 (19)

and, with our normalization (cf. [AAR, Th. 4.11.6]),

lim
k→∞

P
(α,α)
k

(
cos

u

k

)
= 2αΓ(α + 1)

Jα(u)
uα

. (20)

Theorem 8.1. We have

lim
t→1

m(t) = 2αΓ(α + 1)
Jα(jα+1)
(jα+1)α

.

Proof. First we show that

lim
k→∞

P
(α,α)
k

(
t
(α+1,β)
k−1,k−1

)
= 2αΓ(α + 1)

Jα(jα+1)
(jα+1)α

. (21)

We estimate the difference∣∣∣∣P (α,α)
k

(
t
(α+1,β)
k−1,k−1

) − 2αΓ(α + 1)
Jα(jα+1)
(jα+1)α

∣∣∣∣ ,

that we upper bound by∣∣∣∣P (α,α)
k

(
t
(α+1,β)
k−1,k−1

) − P
(α,α)
k

(
cos

jα+1

k

)∣∣∣∣
+

∣∣∣∣P (α,α)
k

(
cos

jα+1

k

)
− 2αΓ(α + 1)

Jα(jα+1)
(jα+1)α

∣∣∣∣ .

The second term tends to 0 from (20). Define θk−1 by t
(α+1,β)
k−1,k−1 = cos θk−1. By

the mean value theorem we have∣∣∣∣P (α,α)
k

(
t
(α+1,β)
k−1,k−1

) − P
(α,α)
k

(
cos

jα+1

k

)∣∣∣∣
≤

(
max

u∈[−1,1]

∣∣∣∣dP
(α,α)
k

du

∣∣∣∣
) ∣∣∣∣cos θk−1 − cos

jα+1

k

∣∣∣∣
≤

(
max

u∈[−1,1]

∣∣∣∣dP
(α,α)
k

du

∣∣∣∣
)(

max
θ∈Ik

|sin θ|
) ∣∣∣∣θk−1 − jα+1

k

∣∣∣∣ ,

where Ik denotes the interval with extremes θk−1 and jα+1

k . Then, with (19),

θk−1 − jα+1

k
= θk−1 − jα+1

k − 1
+

jα+1

k(k − 1)

=
1

k − 1
(
(k − 1)θk−1 − jα+1

)
+

jα+1

k(k − 1)
= o

(
1
k

)
,

and for all θ ∈ Ik

|sin θ| ≤ |θ| ≤ jα+1

k
+

∣∣∣∣θk−1 − jα+1

k

∣∣∣∣ = O

(
1
k

)
.
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From (13),

max
u∈[−1,1]

∣∣∣∣∣dP
(α,α)
k

du

∣∣∣∣∣ ∼ k2.

Hence we have proved that

lim
k→∞

∣∣∣∣P (α,α)
k

(
t
(α+1,β)
k−1,k−1

) − P
(α,α)
k

(
cos

jα+1

k

)∣∣∣∣ = 0 ,

and (21) follows.
Since the zeros t

(α,β)
k,k tend to 1 as k tends to infinity, to prove the theorem it

suffices to show that limt→1 m(t) exists. This follows from (21) and the following
two facts which hold for all k ≥ 2:

P
(α,α)
k

(
t
(α+1,α+1)
k−1,k−1

) ≤ m(t) for all t ≥ t
(α+1,α+1)
k−1,k−1 (22)

and
m(t) ≤ P

(α,α)
k+1

(
t
(α+1,α)
k,k

)
for all t ∈ [

t
(α+1,α+1)
k−1,k−1 , t

(α+1,α+1)
k,k

]
. (23)

Fact (22) follows from (18) and [AAR, (6.4.19)]. For establishing fact (23) we argue
as follows: As in the proof of Proposition 7.1, we use (15) to show that P

(α+1,α)
k has

exactly one zero in the interval
[
t
(α+1,α+1)
k−1,k−1 , t

(α+1,α+1)
k,k

]
, namely t

(α+1,α)
k,k . From (16)

we then see that t
(α+1,α)
k,k is the only point in this interval where P

(α,α)
k and P

(α,α)
k+1

coincide. Now it follows from the interlacing property that P
(α,α)
k is increasing in

the interval and that P
(α,α)
k+1 is decreasing in the interval, and we are done. �

Corollary 8.2. We have

χm(Rn) ≥ 1 +
(jα+1)α

2αΓ(α + 1)|Jα(jα+1)| ,

where α = (n − 3)/2. �

We use this corollary to derive new lower bounds for n = 10, . . . , 24. We give
them in Table 8.1. For n = 2, . . . , 8, our bounds are worse than the existing ones
and for n = 9 our bound is 35 which is also the best-known one.

In fact Oliveira and Vallentin [OV] show, by different methods, that the above
bound is actually a bound for χm(Rn−1). This then gives improved bounds starting
from n = 4. With the use of additional geometric arguments one can also get a new
bound for n = 3 in this framework.

We can also use the corollary to show that our bound is exponential in the di-
mension. To do so we use the inequalities (cf. [AAR, (4.14.1)] and [W, §15.3, p. 485])

jα+1 > jα > α

and (cf. [AAR, (4.9.13)])
|Jα(x)| ≤ 1/

√
2

to obtain
(jα+1)α

2αΓ(α + 1)|Jα(jα+1)| >
√

2
αα

2αΓ(α + 1)
,

and with Stirling’s formula Γ(α + 1) ∼ ααe−α
√

2πα we have that the exponential
term is (e/2)α ∼ (1.165)n.
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best lower bound new lower bound
n previously known for χm(Rn) for χm(Rn)
10 45 48
11 56 64
12 70 85
13 84 113
14 102 147
15 119 191
16 148 248
17 174 319
18 194 408
19 263 521
20 315 662
21 374 839
22 526 1060
23 754 1336
24 933 1679

Table 8.1: Lower bounds for χm(Rn).

9 Other Spaces

In this section we want to go back to our generalization (3) of the theta function and
discuss its computation in more general situations than the one of the graph G(n, t)
encountered in section 6. We assume that a compact group Γ acts continuously
on V . Then, the computation only depends on the orthogonal decomposition of the
space of L2-functions (24).

9.1 Two-point homogeneous spaces. First, it is worth noticing that all re-
sults in section 6 are valid – one only has to use the appropriate zonal polynomials
and appropriate volumes – for distance graphs in infinite, two-point homogeneous,
compact metric spaces where edges are given by exactly one distance.

If one considers distance graphs in infinite, compact, two-point homogeneous
metric spaces with s distances, then it is helpful to consider a dual formulation
of (9). It is an infinite linear programming problem in dimension s + 1 which in the
case of the unit sphere has the following form:

min
{
z1/ωn : z1 + zt1 + · · · + zts ≥ ω2

n ,

z1 + zt1P
(α,α)
k (t1) + · · · + ztsP

(α,α)
k (ts) ≥ 0 for k = 1, 2, . . .

}
,

where t1, . . . , ts are the inner products defining the edges of our graph.

9.2 Symmetric spaces. Next we may consider infinite compact metric spaces V
which are not two-point homogeneous but symmetric. Since the space L2(V ) still has
a multiplicity-free orthogonal decomposition one gets a linear programming bound,
but with the additional complication that one has to work with multivariate zonal
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polynomials. The most prominent case of the Grassmann manifold was considered
by the first author in [B] in the context of finding upper bounds for finite codes.

9.3 General homogeneous spaces. For the most general case one would have
multiplicities mk in the decomposition of L2(V ) which is given by the Peter–Weyl
theorem:

L2(V ) = (H0,1 ⊥ . . . ⊥ H0,m0) ⊥ (H1,1 ⊥ . . . ⊥ H1,m1) ⊥ . . . , (24)
where Hk,l are Γ-irreducible subspaces which are equivalent whenever their first
index coincides. In this case one uses Bochner’s characterization of the continuous,
Γ-invariant, positive kernels given in [Bo, § III] which yields a true semidefinite
programming problem for the computation of ϑ.

10 Second Generalization

In this section we first show how our generalization relates to the theta function
of finite subgraphs of G(n, t). We prove that computing the theta function for any
finite subgraph of G(n, t) does not give a better bound than the one of Corollary 6.1.
For this we introduce a second generalization of the theta function. Then we show
how our second generalization relates to the linear programming bound of Delsarte.

10.1 Finite subgraphs. To compute a bound for the measurable chromatic
number of the graph G(n, t) we compute ϑ(G(n, t)), which is an upper bound for
α(G(n, t)), and then ωn/ϑ(G(n, t)) is a lower bound for χm(G(n, t)).

When G = (V,E) is a finite graph, this approach corresponds to computing ϑ(G)
and using |V |/ϑ(G) as a lower bound for χ(G). However, this is in general not the
best bound we can obtain for χ(G) from the theta function. Indeed, for a finite
graph G, the so-called sandwich theorem says that

α(G) ≤ ϑ(G) ≤ χ(G)
(Theorem 3.1 only gives the first inequality, Lovász [L1, Proof of Cor. 3] gives the
second), where G is the complement of G, the graph with the same vertex set as G
and in which two vertices are adjacent if and only if they are nonadjacent in G.

Moreover, for a finite graph G = (V,E), we have
ϑ(G)ϑ(G) ≥ |V | (25)

(cf. [L1, Cor. 2]). For some graphs (e.g. stars), this inequality is strict, hence in these
cases ϑ(G) would provide us with a better lower bound for χ(G) than |V |/ϑ(G)
would. But when V is homogeneous we actually have equality in (25) (cf. [L1,
Th. 8]). In this case, both bounds for χ(G) coincide.

Something similar happens for our infinite distance graph G(n, t). The comple-
ment of G(n, t) is the graph in which any two distinct points on the unit sphere
whose inner product is not t are adjacent. We cannot use our generalization of
the theta function to define ϑ(G(n, t)). However, we may use a different (and for
finite graphs, equivalent) definition of ϑ (cf. [L1, Th. 3]), which for a finite graph
G = (V,E) is

ϑ(G) = min
{
λ : K ∈ R

V×V is positive semidefinite ,
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K(x, x) = λ − 1 for all x ∈ V ,
K(x, y) = −1 if {x, y} ∈ E

}
. (26)

The generalization of this definition, applied to G(n, t) and with the symmetry
taken into account, is described below. We choose to write ϑ(G(n, t)) instead of
ϑ(G(n, t)) to emphasize that the two ways to define the theta function are not
equivalent for our infinite graph. So we have

ϑ(G(n, t)) = min
{
λ : K ∈ C(Sn−1 × Sn−1) is positive ,

K is invariant under O(Rn) ,

K(x, x) = λ − 1 for all x ∈ Sn−1 ,
K(x, y) = −1 if x · y = t

}
. (27)

By decomposing the kernel K with the help of the Jacobi polynomials as done
in section 6, we may compute the optimal value of the optimization problem (27),
and in doing so we find out that

ϑ
(
G(n, t)

)
ϑ
(
G(n, t)

)
= ωn ,

so that we have the analogue of ϑ(G)ϑ(G) = |V | for our infinite distance graph on
the unit sphere.

This also provides us with the connection to the theta function of finite sub-
graphs of G(n, t) claimed in section 6. If H = (V,E) is a finite subgraph of G(n, t),
then ϑ(H) provides a lower bound for χ(H), which in turn is a lower bound for
χm(G(n, t)). It could be that for some finite subgraph H of G(n, t) this lower bound
would be better than the one provided by ϑ(G(n, t)). This is, however, not the case.
Indeed, if K is an optimal solution for (27), the restriction of K to V ×V is a feasible
solution to the optimization problem (26) defining ϑ(H), hence ϑ(H) ≤ ϑ(G(n, t)),
which is our bound for χm(G(n, t)).

10.2 Delsarte’s linear programming bound. The second generalization ϑ of
the theta function is closely related to the linear programming bound for finite codes
established by Delsarte in [D] and put into the framework of group representations,
which we use here, by Kabatiansky and Levenshtein in [KL]. Here we devise an
explicit connection between these two bounds. The connection between the linear
programming bound and the theta function was already observed by McEliece, Ro-
demich, Rumsey Jr. in [MRR] and independently by Schrijver in [Sc] in the case of
finite graphs.

Consider the graph on the unit sphere where two distinct points are adjacent
whenever their inner product lies in the open interval [−1, t]. We denote this graph
by G(n, [−1, t]). Stable sets in the complement of this graph are finite and consist
of points on the unit sphere with minimal angular distance arccos t.

Now the second generalization (26) applied to G(n, [−1, t]) is
ϑ
(
G(n, [−1, t])

)
= inf

{
λ : K ∈ C(Sn−1 × Sn−1) is positive ,

K is invariant under O(Rn) ,

K(x, x) = λ − 1 for all x ∈ Sn−1 ,
K(x, y) = −1 if x · y ∈ [−1, t]

}
. (28)
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We safely write inf instead of min here because we do not know if the infimum is
attained.
Proposition 10.1. Let C ⊆ Sn−1 be a subset of the unit sphere such that every
pair of distinct points in C has inner product lying in [−1, t]. Then its cardinality
is at most ϑ(G(n, [−1, t])).

Proof. Let K be a kernel satisfying the conditions in (28). Then, by the positivity
of the continuous kernel K it follows that

0 ≤
∑

(c,c′)∈C2

K(c, c′) =
∑

c

K(c, c) +
∑
c �=c′

K(c, c′) ≤ |C|K(c, c) − |C|(|C| − 1
)
,

so that |C| − 1 ≤ K(c, c) and we are done. �
We finish by showing how the original formulation of the linear programming

bound can be obtained from (28). Using Schoenberg’s characterization (7) the
semidefinite programming problem (28) simplifies to the linear programming prob-
lem

inf
{

λ : f0 ≥ 0, f1 ≥ 0, . . . ,

∞∑
k=0

fkP
(α,α)
k (1) = λ − 1 ,

∞∑
k=0

fkP
(α,α)
k (u) = −1 for all u ∈ [−1, t]

}
.

We can strengthen it by requiring
∑∞

k=0 fkP
(α,α)
k (u) ≤ −1 for all u ∈ [−1, t]. By

restricting f0 = 0 the infimum is not effected. Then, after simplification, we get the
linear programming bound (cf. [DGS], [KL]).

inf
{

1 +
∞∑

k=1

fk : f1 ≥ 0, f2 ≥ 0, . . . ,

∞∑
k=1

fkP
(α,α)
k (u) ≤ −1 for all u ∈ [−1, t]

}
.

By Proposition 10.1 it gives an upper bound for the maximal number of points on
the unit sphere with minimal angular distance arccos t.
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