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Abstract We define a formal model of dynamic programming algorithms which we
call Prioritized Branching Programs (pBP). Our model is a generalization of the
BT model of Alekhnovich et al. (IEEE Conference on Computational Complexity,
pp. 308–322, 2005), which is in turn a generalization of the priority algorithms model
of Borodin, Nielson and Rackoff. One of the distinguishing features of these models
is that they not only capture large classes of algorithms generally considered to be
greedy, backtracking or dynamic programming algorithms, but they also allow char-
acterizations of their limitations. Hence they give meaning to the statement that a
given problem can or cannot be solved by dynamic programming. After defining the
model, we prove three main results: (i) that certain types of natural restrictions of
our seemingly more powerful model can be simulated by the BT model; (ii) that in
general our model is stronger than the BT model—a fact which is witnessed by the
classical shortest paths problem; (iii) that our model has very real limitations, namely
that bipartite matching cannot be efficiently computed in it, hence suggesting that
there are problems that can be solved efficiently by network flow algorithms and by
simple linear programming that cannot be solved by natural dynamic programming
approaches.
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1 Introduction

Formalizing algorithmic paradigms can improve our methodology as computer sci-
entists in many ways. If we were able to say precisely what we mean by terms like
greedy algorithms, dynamic programming, network flow algorithms, local-search,
etc., then, when confronted with a new problem, we could hope to either find an al-
gorithm for it by placing it in one of these models, or show that it doesn’t fit the
model and move on to the next model. If a problem doesn’t fit any of our common
paradigms, then it is in some sense a problem we don’t already know how to solve.
From this point of view, knowing how these models relate to each other and whether
they always give rise to tractible algorithms is important. Of course, this line of re-
search can also help with our theoretical agendas. For example, it seems much easier
to show that NP problems cannot be efficiently solved by common types of algo-
rithms than it is to separate it from all of P .

Much work has been conducted along these lines. Just to name a few, [16] formal-
ized various local search paradigms, [4, 5] looked at general methods for generating
linear relaxations for boolean optimization problems (specifically vertex cover), and
[10] defined a general scheme for branch-and-bound algorithms and applied it to
Knapsack.

When it comes to dynamic programming, the body of work is particularly dense.
Some of the original formalizations of dynamic programming are from Bellman [6]
and Karp and Held [15]. Helman and Rosenthal, among others, refine and examine
these models [13, 14, 19]. These models are extremely expressive (most problems can
be formulated to fit the context), but also extremely powerful. That is, it is difficult to
identify problems that can be formulated appropriately but are hard to compute. Nev-
ertheless, Helman and Rosenthal succeed in getting weak lower bounds for problems
such as shortest directed acyclic path in staged graphs, iterated matrix multiplication
and optimal binary search tree. Woeginger [20], on the other hand, defines a model
called DP-simple in which only problems susceptible to a dynamic programming FP-
TAS can be expressed. An interesting goal is to try to maximize expressibility while
maintaining a notion of computational limitation.

We build on the framework established by Borodin, Nielsen and Rackoff [7],
called priority algorithms, and subsequently studied and generalized by [1, 2, 8, 9,
12, 17], among others. Various versions of these models succeed in capturing large
classes of greedy, dynamic programming, backtracking, and primal-dual algorithms,
but they also allow either impossibility results or strong complexity lower bounds to
be proven for natural problems that should not intuitively fit the models. They even
have the potential to make fine distinctions between related techniques, and to get
tight bounds on the trade-off between resources and solution quality in their models.

One modest, but lucid example comes from [2], which first made the connection
between priority algorithms and dynamic programming. The best known algorithm
for interval scheduling on m machines is due to [3] and uses network flow to achieve a
running time of O(n2 logn). Given the elegant and fast dynamic programming algo-
rithm for interval scheduling on one machine, a natural question is whether dynamic
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programming can offer a solution for m-machines that is simpler than [3], but doesn’t
sacrifice running time (or maybe even improves it). [2] prove that the complexity of
any algorithm for this problem in their basic model, which captures, among many
other things, the 1-machine algorithm, grows as �(nm) (as we shall see, the complex-
ity measure of this model is fundamentally related to the number of partial solutions
that need to be maintained during the course of the algorithm). This suggests that the
answer to the question is no.

In this paper, we introduce a new model that simulates the previous formal models
of priority algorithms [7] and the BT model for backtracking and dynamic program-
ming algorithms introduced by [2] (we rename the BT model pBT for prioritized
Branching Tree, which is more suggestive of its syntactic properties and makes the
connection to priority algorithms. BT originally stood for backtracking). Although a
large class of dynamic programming algorithms were known to fit the pBT model,
others, like the classic Bellman-Ford algorithm for the single source shortest path
problem in graphs with negative weights edges, could not be seen to fit the model
(and in fact, we prove here that it doesn’t, at least without some extensions). Our
model, pBP, for prioritized Branching Program, is meant to capture the defining char-
acteristics of a larger range of classical dynamic programming algorithms.

Priority algorithms were defined as a formal framework for greedy algorithms. In
this framework an instance is represented as a set of items. The algorithm orders the
data items from the instance according to a priority function that is independent of
the instance and, once it observes a data item, it has to commit to a decision which
is irrevocable. For example consider the vertex cover problem. The graph can be rep-
resented as a set of data items, each one containing the name and adjacency list of
one vertex. The algorithm begins with no knowledge of the contents of these items,
but it can provide a general rule for ordering the items. In each step, the top item in
the ordering is revealed and the algorithm makes a decision about it (e.g. including
or excluding the current vertex in the vertex cover). This decision-making process re-
stricts the algorithm to maintain a single partial solution during its computation. The
pBT model generalizes the priority framework by allowing the algorithm to maintain
a tree of partial solutions. A natural measure of the complexity of a pBT algorithm
is the width of its tree. Various levels of adaptivity in how the algorithm chooses
its ordering rule define a hierarchy of models: fixed, adaptive and fully adaptive. [2]
were able to show a variety of non-trivial lower bounds. They showed an exponential
separation between the power of fixed and adaptive pBT algorithms, they also proved
exponential lower bounds for 3-SAT for the fully-adaptive model. Clearly, priority
algorithms can be simulated without overhead by restricted pBT algorithms whose
computation tree is a line and [2] showed a separation between width-1 and width-2
algorithms.

Our model, like the pBT model, maintains multiple partial solutions, but also
allows memoization, which seems essential to the concept of dynamic program-
ming. Consider the following intuitive definition [11]: “Dynamic-programming al-
gorithms typically take advantage of overlapping subproblems by solving each sub-
problem once and then storing the solution in a table where it can be looked up when
needed. . . . There is a variation of dynamic programming that offers the efficiency
of the usual dynamic-programming approach while maintaining a top-down strategy.
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The idea is to memoize.” The Prioritized Branching Programs (pBP) algorithms com-
bine the power of branching with the power of memoization. Branching allows mul-
tiple partial solutions to be maintained, while merging allows different branches of
the computation to memoize the solution to common subproblems for later reuse (so
in a sense pBP = BRANCH + MERGE). Any discrete optimization problem can be
solved by a pBP algorithm, although possibly not an efficient one. The computation
of a pBP algorithm consists of three phases. On a given input instance the algorithm
generates a directed acyclic graph top-down successively as it sees more and more of
the input. It then traverses the DAG bottom-up to obtain the value of the best solution
it computed, and then finds the actual solution with one more top-down traversal. The
number of states in the computational DAG (size) is closely related to the quality of
the solution an algorithm finds. In particular, if we allow an exponential size we can
solve any optimization problem.

Branching was shown to give pBT algorithms extra power which separates them
from priority algorithms. This raises the analogous question for pBT versus pBP.
Does merging make pBP more powerful than pBT? What kind of problems can a
pBP algorithm solve efficiently? What are the limitations of the pBP model? These
are the kinds of questions we address in our paper.

Our Results

Simulations Although merging is expected to make the model stronger we show
that a natural subclass of pBP algorithms can be simulated by pBT algorithms (see
Sect. 3). Essentially we show that full adaptivity is required to see the benefit of
merging.

Shortest Paths We show that the promise problem of finding shortest paths in graphs
with negative weights but no negative cycles can be solved by a pBP algorithm using
O(n3) states: on promise instances the algorithm outputs the shortest path while on
graphs containing negative weight cycles the algorithm would output some arbitrary
set of edges, still using at most O(n3) states. On the other hand, we define a new and
simple technique for proving negative results for pBT algorithms and use it to show
that every pBT algorithm for the promise problem requires width �(2n1/9

) on some
instance, although it could be one containing a negative weight cycle. Although the
two results do not exactly separate the pBP and pBT models they give strong evidence
that the pBP model properly contains the pBT model. (See Sects. 2.3, where we fully
define the problem and the give the upper bound, and 4, where we give the lower
bound.)

pBP Lower Bounds We develop a general technique for proving lower bounds on
the number of states required by a natural restriction of pBP algorithms that com-
pute using limited numeric precision, and instantiate it to prove an exponential lower
bound on the size of any such pBP algorithm for maximum bipartite matching. In-
formally, it seems unusual for a dynamic programming algorithm to make use of nu-
meric precision well beyond that of the optimization function defining the problem. In
light of this, our result suggests that, not only can we not use dynamic programming



942 Algorithmica (2011) 60: 938–968

to improve the involved (though still polytime) network flow or linear programming
algorithms for this problem, but we can’t even approach the same running time (see
Sect. 5).

2 The pBP Model: Definitions and Examples

We begin with formal definitions and then illustrate them with examples. Our defini-
tions of problems and instances follow those of [7]. We will define infinite problems
P as a collection of finite problems {Pn|n ∈ N}, where n is a size parameter. When
n is understood, we will drop the subscripts. Algorithms will also be non-uniform,
in that the size parameter is known to the algorithm, and we will not enforce any
connection between the algorithms for different size parameters n (although we note
that all upper bounds we present are highly uniform).

For each n, the problem Pn is specified by the following ingredients:

1. A universe of possible data items, D = Dn. There is a special element end /∈ D

which is a marker to halt the computation before all data items are seen. So in a
sense end signals the absence of unseen items.

2. A collection of valid instances, where each valid instance I is viewed as a set of
data items, I ⊆ D. Each valid instance contains end.

3. A set � = �n of decision options for each data item.
4. An objective function F = Fn (technically, a family of objective functions, one

for each possible instance size, k, of Pn) which takes an input of the form
(d1, σ1), . . . , (dk, σk) with di ∈ D and σi ∈ � and returns a real number, infinity,
or negative infinity. (Without loss of generality, we can assume that the objective
is to maximize F ; we can model minimization by maximizing −F . We also usu-
ally assume {d1, . . . , dk} is a valid instance; however, we can give F an arbitrary
value such as 0 if not. We can model search and decision problems by picking F

to be a Boolean function which has value 1 on feasible outputs.)

Given an instance of the search/optimization problem I ⊂ Dn the problem is to
find a solution, which is an assignment of an option σi ∈ � to each data item di ∈
I − {end}. So a solution for I = {d1, . . . , dk, end} is a set of the form {(di, σi)|i =
1, . . . , k}, where each σi ∈ �}, and we wish to, given I , find a solution such that
F((d1, σ1), (d2, σ2), . . . , (dk, σk)) is maximized.

For example, in the maximum bipartite matching problem, the universe Dn could
be all possible edges from a bipartite graph with left nodes u1, . . . , un and right nodes
v1, . . . , vn, so Dn = {(ui, vj )|1 ≤ i, j ≤ n}. Any subset of these edges would be a
valid instance. � would be {accept, reject}, representing the choice to either include
an edge in the matching or not. The additional item end has no choices associated
with it, and represents terminating the algorithm when all edges have been labeled. Fn

would return the number of accepted edges if they form a matching, and 0 otherwise.

2.1 Definition of a General pBP Algorithm

In the following, since we allow algorithms to be non-uniformly tuned to the size
parameter, we omit this parameter as a subscript.
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For any P , a pBP algorithm specifies S , a set of computation states (possibly
infinite) and T ⊂ S , a set of terminal states. There is a special empty state S0 ∈ S ,
which is the initial (start) state of any pBP algorithm. (Note that S and T are problem-
specific, but not instance-specific. Intuitively, one can think of each state s ∈ S as
representing a “sub-problem” to be solved recursively, with the terminal states as
the “base cases” of the recursion. The sub-problem might not be determined by s

alone, but also by the unseen or unremembered parts of the input; e.g., S0 always
represents “The complete instance, whatever it is”. Alternatively, like in a memoized
dynamic programming algorithm, one can think of states as encoding the class of
partial solutions to the problem that cause the state to be reached.) Let M(R) be the
set of all monotone functions from R∪{∞,−∞} to R∪{∞,−∞}. Let O(D) be the
set of all total orderings of D.

A pBP algorithm A for a given optimization problem P = (D,�,F ) is defined
by specifying the set of states and three components for each state. In addition, it can
also specify σdef ∈ �, a default option. Let s ∈ S be any state, then the algorithm
defines:

1. A priority ordering,

πs ∈ O(D ∪ {end}).
This is used to determine which data item is branched on in this state.

2. A state transition function

gs : (D ∪ {end}) × � �→ S × M(R) ∪ {⊥}.
If d,σ maps to s′, f , we think of this as defining a directed edge (s, s′) labeled by
(d, σ,f ). We insist that the graph induced on S by {gs}, which we call D A G A, be
a (multi)dag. As we shall see later, this requirement is usually ensured by imposing
a natural layered structure on the graph. We can interpret such an edge intuitively
as: if, recursively, we find a value v solution for the sub-problem at s′, we can
obtain a solution to the sub-problem at s of value f (v) by appending (d, σ ). Also,
any transition where d = end must go to some s′ ∈ T .

3. For s ∈ T , the algorithm defines a value

vs ∈ R ∪ {∞,−∞}.
Intuitively, this represents “The value returned in the base case s”.

The computation of a pBP algorithm on a given instance traces out a subgraph of
the above graph. For a pBP algorithm A, we define the computation of A on instance
I ⊂ D as follows. A pBP computation has three stages: build the (multi)dag, output
the value of the best solution, and output the solution itself.

Stage I Build the pBP DAG.
The algorithm A builds D A G A(I ) top down. Let S1 = {S0} and assume

that at step i ∈ 1,2,3 . . . we have a set of frontier states Si . For each node
s ∈ Si − T , do the following: let d ∈ I be the first item in I according to
the ordering πs . For each σ ∈ �, check if gs(d, σ ) = ⊥; if not, say it equals
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(s′, f ). Then, put s′ in Si+1 and include both s′ and the edge (s, s′) labeled
by (d, σ,f ) in D A G A(I ). It is the algorithm’s responsibility to ensure that
for some finite i, Si is empty and that all sinks in the graph are in T . Note
that the only source in the graph is S0.

Stage II Compute the value of the best solution.
The second stage begins after the D A G A(I ) is fully defined. It deter-

mines the value of the optimal solution. This stage traverses the D A G A(I )

bottom up and successively computes values for each state. The value of
the start state S0 will be the value of the algorithm’s solution. First, con-
sider any sink s in D A G A(I ). Since s ∈ T , the algorithm defines a value
vs . We assign this value to s. Now consider any s in D A G A(I ) that does
not yet have a value but such that all of its children do. Let the outdegree of
s be k and let s1, . . . , sk be its (not necessarily distinct) children. They have
assigned values val(s1), . . . , val(sk). Finally, assume that the edge (s, si),
i ∈ [k], is labeled by the monotone function fi . Now we compute val(s) as

max{f1(val(s1)), . . . , fk(val(sk))}.
When computing the value of each s, we also remember which of its

outgoing edges contributed the maximum value by marking that edge. If
there is a tie, it is broken arbitrarily; that is, the algorithm has no control
over which of the maximum-value edges is chosen. Hence there will be one
marked edge out of every non-sink in D A G A(I ).

Stage III Recover the best solution.
The third stage recovers the actual solution by traversing D A G A top

down by following the marked directed path from S0 until a leaf state is
reached. This path is well-defined and gives, for each of its edges, an as-
signment of a decision to an item. This partial assignment is then extended
to a complete assignment by assigning any unlabeled item the default label,
σdef . The algorithm must ensure that this assignment is consistent (in that
the same data item is not assigned different options), otherwise it outputs
FAIL, and that when the problem’s optimization function FPn

is applied
to this assignment, it yields the same value that the algorithm reported in
Stage II.

The following definition recasts the pBT model in the above framework.

Definition 1 ([2]) A prioritized branching tree (pBT) algorithm (called BT in [2]) is
a pBP algorithm A such that D A G A is a tree and all functions labeling its edges are
the identity. In this case, we often denote D A G A(I ) by TA(I ).

It is clear that the pBP model subsumes the pBT model.
How does this model capture some notion of dynamic programming? Intuitively,

think of each node in the pBP DAG as representing a subproblem of the original
problem, whose optimal solution will tell us something about the optimal solution to
the whole problem. The descendents of that node comprise the computation that will
solve the subproblem and the edges flowing into that node define how the solution to
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that subproblem will be used to solve the entire problem. In the typical implementa-
tion of a dynamic programming algorithm, solutions to subproblems are stored in a
table. Think of phase 1 of the pBP computation as defining the relationship among the
cells of this table and phase 2 as actually computing the cells of the table in the order
in which those computations will be needed. Phase 3 simply traces back to recover
the description of the optimal solution as most dynamic programming algorithms do
after they are finished computing the entire table. We will see how this intuition1

allows us to formalize many known dynamic programming algorithms in this model.
Just as in the pBT case, a pBP algorithm can solve any optimization problem by

considering the items in some fixed order and exploring each possible assignment
of decisions to those items on a separate path. So, similarly to the pBT case, the
complexity measure of interest will be the number of states used in any execution of
the algorithm. More formally, define

sizeAn
= max{|D A G A(I )| : I ⊂ Dn, I is a valid instance of Pn},

where |G| denotes the number of states in G. Call a family of pBP algorithms {An}
polynomial if there exists a polynomial p such that sizeAn

≤ p(n) for all n.
We stress that size is the only complexity restriction on these algorithms. In par-

ticular, the functions gs associated with each state in S and the monotone functions
labeling the edges in the dag are totally arbitrary and need not even be computable
(although, for all the standard dynamic programming examples where we formalize a
dynamic programming algorithm in the pBP model, they will be of low complexity).
The only things stopping the algorithm, then, from being omnipotent are the infor-
mation theoretic constraints: decisions are based only on the part of the input seen so
far; and if multiple paths arrive at the same state, the algorithm cannot “know” which
of these paths it arrived by. It is very important that we force a node to commit to how
its eventual value will contribute to the ultimate solution before we allow that node
to see any new items.

2.2 Submodels of the pBP Model

The pBP model defined above is quite general. Here we will consider several natural
ways to refine the model. These refinements will help us to classify more precisely
various dynamic programming algorithms.

The first four restrictions deal with how many times an algorithm may view the
same data item on a single path and what it may do with that data item. Any valid
algorithm in the model must return a consistent path, but we may want a stronger
consistency requirement.

Definition 2 (Read-Once) Consider any path in the computation DAG from the root
state to a terminal state. Suppose each data item appears at most once on this path,
then this path satisfies the Read-Once (RO) property.

1Perhaps it is more accurate to say that our model resembles the recursive-memoization implementation of
dynamic programming in that we compute solutions only to those subproblems which we definitely need
and the set of states reachable in the DP dag represent exactly those subproblems that are needed during
the computation.
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Definition 3 (Path Consistency) Call a path from the root state to a terminal state of
the DAG consistent if for each data item d ∈ D there are not two edges along the path
labeled (d, σ, . . .) and (d, σ ′, . . .), respectively, where σ �= σ ′.

Definition 4 (Syntactic Consistency) We call a pBP algorithm A syntactically con-
sistent if, for every instance I , every path from the root node S0 to a terminal state in
D A G A(I ) is consistent.

Definition 5 (Semantic Consistency) We call a pBP algorithm A semantically con-
sistent if, for every valid instance I , the optimal path from the root node S0 to a
terminal state in D A G A(I ) is consistent.

Definition 6 (Syntactic RO Property) We call a pBP algorithm A syntactically RO if,
for every instance I , every path from the root node S0 to a terminal state in D A G A(I )

is RO.

Definition 7 (Semantic RO Property) We call a pBP algorithm A semantically RO
if, for every valid instance I , the optimal path from the root node S0 to a terminal
state in D A G A(I ) is RO.

Definition 8 (Honest pBP Algorithm) For the path found in phase 3, our pBP defi-
nition guarantees that the data items and decisions on the edge labels along the path
code a solution which has a value equal to f1(f2(. . . (fk(v)) . . .)), where fi is the
function labeling the i’th edge in the path, and v is the value assigned to the terminal
state the path ends in. Intuitively, this should also be true for non-optimal solutions.
Call an algorithm honest if the same is true for any path from the start state to a
terminal state.

Figure 1 shows natural containments of the subclasses defined above. Let Syn-
Cons, SemCons, SynRO and SemRO denote the class of problems that can be solved
by polynomial pBP algorithms that have the syntactic consistency, semantic consis-
tency, syntactic read-once and semantic read-once properties, respectively. SemCons
is the most powerful because it can trivially simulate the rest. The weakest class of
algorithms is the class of SynRO.

We do not know whether the containments are proper.

Fig. 1 Submodel lattice
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We can also restrict the variety of orderings that the states use. The following
three variants also appeared in the case of the pBT model. Before we describe them,
however, one structural point is in order: given a pBP algorithm An for a problem
Pn, we can create an algorithm A′

n such that DAGA′
n

is leveled where sizeA′
n
≤ n ·

sizeAn
if An is syntactic read-once or sizeA′

n
≤ (maxI depth(DAGAn

(I ))) · sizeAn
≤

(sizeAn
)2 in general. To do this, let d be the depth of DAGAn . The new state space

will be S × [d], where the levels are S × {i} for each i, and we will make each edge
increase exactly one level. Hence, we will often assume that D A GA is levelled.

1. Fully Adaptive (order) pBP algorithms.
Each state can have an entirely arbitrary ordering.

2. Adaptive (order) pBP algorithms.
Consider the DAG D A GA(I ) defined by the algorithm A. Here we require

that for each instance I , all states at the same level use the same ordering. Hence,
in any computation, all paths of the same length from the root will include the
same data items. Note that such algorithms are either syntactic read-once or are
not read-once at all.

3. Fixed (order) pBP algorithms.
All states at the same level have the same ordering and that ordering is the same

as the previous level’s ordering except that the item viewed at the previous level
is moved to the end of the ordering, i.e., the data items after “end” in the ordering
are precisely the previously viewed data items, and the other data items are in the
same order as in the start state. In essence, all states use the same ordering, but
technically that ordering must be updated in each level so that the same input item
isn’t viewed repeatedly forever. Such algorithms are syntactic read-once.

Again, define Fixed pBP, Adaptive pBP and Fully Adaptive pBP, respectively, to
be the classes of problems that can be solved by polynomial pBP algorithms with the
corresponding property. It is clear that Fixed pBP ⊆ Adaptive pBP ⊆ Fully Adaptive
pBP. While we will see strong evidence that this hierarchy is strict, it remains an open
question.

2.3 Examples

Longest Increasing Subsequence (LIS) Consider the following pBP formulation for
the longest increasing subsequence. The instance is an array of integers A of length
n, coded as follows. A data item is a pair (a, i), where a ∈ Z and i ∈ {1, . . . , n} is
the position in the array A, where a appears. A valid instance is a set of n data items
in which each i from 1 to n occurs exactly once. For short we will use array index
notation and will refer to the data item as a[i]. The set of decisions is � = {0,1},
where 0 means that the current number is not chosen to be part of the LIS, and 1
means it is chosen. The objective function is the number of items assigned value 1.

The computation states are all pairs (B, i), where B is a sequence of integers of
length at most n and 0 ≤ i ≤ |B| is a natural number. The intended meaning is that B

is the prefix of the input A viewed so far and i is the index of the rightmost element
of that prefix chosen to be in the LIS. A terminal state is a state which has observed
the full input, therefore is identified with (B, i), where |B| = n and 0 ≤ i ≤ n.
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• The algorithm will use a fixed ordering on the items. That (initial) ordering puts all
items with index 1 first, followed by all items with index 2, etc. Within each index
partition, the items are ordered arbitrarily.

• Consider a state s = (B, i), and a new item (a, j). If j �= |B| + 1, then the
instance is invalid and we may as well terminate. Otherwise, gs((a, j),0) =
((B ◦a, i), f (x) = x). If i = 0 or a ≥ B[i], then gs((a, j),1) = ((B ◦a, j), f (x) =
x + 1); otherwise gs((a, j),1) = ⊥.

• All terminal nodes will have value 0.

Below we give an example of the DAG built by the algorithm for the input
5,1,2,3: The forward edges are labeled with the data item and the decision made
by the algorithm on each data item. The edges are labeled with the function inc
(f (x) = x + 1) if the decision was to accept the data item and id (f (x) = x) oth-
erwise. The best solution has length 3 and the bold backward arrows indicate the
path of the winning solution. Following the bold path from the root to the leaf we can
recover the solution as 1;2;3. Each level will have at most n states in any computa-

Fig. 2 pBP DAG for LIS on instance 5,1,2,3

tion, so the size of the above algorithm is at most n2.
This algorithm can also be implemented in fixed order pBT with the same size.

The reason is that both problems view data items in fixed predetermined order. If
multiple paths would lead to the same state of the pBP algorithm, all but the best
(or a best) of these paths can be pruned in the pBT algorithm. Later we will show a
few general conditions under which a pBP algorithm can be transformed into a pBT
algorithm using this technique. This is a somewhat counter-intuitive feature of the
pBT model, and is due to the fact that we allow unrestricted computational power in
the model, and only restrict access to the instance.
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Single Source Shortest Path (SSSP) in Graphs with Negative Weights, Edge Model
We consider the shortest paths problem where we are interested in finding a shortest
weighted path from a given source s to any destination. Because the solution to the
problem is a subset of edges which form a path, it is natural to use the edge model.
Here each data item is an edge, represented as the names of the two end points and the
weight (u, v, �), where the names of nodes are the numbers in [n]. The set of valid
instances is all directed graphs on [n], but we attach a promise that the graph will
have no negative weight cycles: if it violates this promise, the algorithm is allowed
to output anything, including FAIL. Because the set of valid instances is all graphs,
however, the size of the algorithm is the maximum size achieved over all graphs,
not just the promise instances. The set of decision options is � = {1,0}, meaning
accepted and rejected, respectively. The number of vertices, n, and the name of the
source, s are part of the problem definition and hence are known to the algorithm.
We will implement a version of the well-known Bellman-Ford algorithm in the pBP
model. Note that in the absence of negative weights, a priority algorithm can solve
the problem by implementing Dijkstra’s algorithm [12].

• The default label is 0; all edges not explicitly accepted along the final output path
will be considered rejected.

• A computation state is encoded as the name of the currently reached vertex, u, the
last vertex we rejected going to from u, v (with v = 0 meaning no edges have yet
been rejected), and an upper bound, k, on the length (number of nodes) on the path
from s to the current vertex, which is always less then or equal to n − 1.

The terminal states are a special “no more neighbors” state and states where the
value of k is n − 1.

The start state is (s,0,0).
From the definition it is clear that the cardinality of the set of states is O(n3),

because there are n nodes and the number of possible lengths is n − 1.
• Every terminal node (u, v, k = n − 1) and “no more neighbors” has value 0.
• Consider a computation state a = (u, v, k), where k < n − 1. The order πa will

first put all items of the form (u, v′, �) where n ≥ v′ > v in order of increasing v′
and put all other items after “end”.

• Again, consider state a and assume (u, v′, �), v′ > v is the data item viewed.
Set ga((u, v′, �),0) = ((u, v′, k), f (x) = x), and set ga((u, v′, �),1) =

((v′,0, k +1), f (x) = x + �). Otherwise, the data item viewed is “end”, and we go
to the “no more neighbors” state and terminate, with f (x) = 0 for the transition.

Unlike the LIS example, here it is not obvious how to efficiently implement this
algorithm in the pBT model. Also note that, on promise instances, the computation
will be semantically read-once, but not necessarily syntactically read-once. It seems
difficult to explore paths in a graph using a small number of computation states with-
out allowing for viewing the same edge more than once on a given computation path
because the states cannot encode which nodes have already been visited. It also seems
necessary to use full adaptivity.

It’s clear that there are several variations of the problem that are solved by this
algorithm. We chose the one we did because of some subtleties of the model and
because it mostly closely matched our lower bound (see Sect. 4). The Bellman-Ford
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Fig. 3 Example SSSP instance
graph G

Fig. 4 pBP DAG for instance shown in Fig. 3

algorithm succeeds in finding a shortest path on all graphs when we restrict ourselves
to paths with at most n−1 edges (without negative cycles, all shortest paths will have
at most n−1 edges). In general, however, the solution to this problem might be a non-
simple path, i.e. where some node x has out-degree greater than 1. It doesn’t seem
possible to make this algorithm work in the edge model in pBP because the algorithm
would need the ability to first accept a given edge (one of the edges coming out of
x) and then reject it (the next time the algorithm visits x. Another possibility for
removing the promise is to require the algorithm to find either a shortest simple path
or a negative-weight cycle. Here we do not seem to be able to remember enough state
during the computation to recognize a cycle.

Next we illustrate the computation of the pBP algorithm for SSSP problem with
the following example. Consider the instance graph G = (V ,E), shown on Fig. 3,
where V = {V 1,V 2,V 3,V 4} and E = {e1, e2, e3, e4, e5}. We want to find the short-
est path from s = V 1 to any other vertex in G. Each edge has a label and a weight.
The shortest path in G originating at V 1 is e2, e5, e3 and has a total weight of −16.
Figure 4 shows the computational of a pBP algorithm on the instance G = (V ,E).
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Single Source Shortest Path (SSSP) in a DAG with Negative Weights, Node Model
It seems reasonable that the complexity of a problem in these models should be sen-
sitive to input representation—after all, the only limitations of these algorithms are
information theoretic and the input representation varies the amount of information
revealed in each step. While it’s not clear whether pBT can compute the shortest path
in a DAG efficiently in the edge input model, here we show it can in the node model.

Consider a graph represented in the node model. Here each data item is the name
of a node (in [n]) together with its adjacency list and the weights of its adjacent
edges. A decision will be, given a node, choose which of its out-neighbors will be its
successor in the shortest path starting from s (or null if it is not in the path or is the
end of the path). Note that, unlike the edge model, the items in this input model are
dependent: for example, if v is mentioned as an out-neighbor in item u, then in any
well-formed instance, u will be mentioned as an in-neighbor in item v. We assume s

has no in-neighbors. We show that this problem can be solved by an adaptive order
pBT of size O(n2).

The states will contain both the partial instance seen so far, and the partial solution,
so will be of the form: a set of node items A, and a path Pv within A from s to some
node v �∈ A, from which we can compute the weight of this path w. We will maintain
the following invariant: if any node in A is reachable from u, then u ∈ A.

The start state has an empty set A and a path consisting of the node s itself. At
state (A,Pv) we first check to see whether Pv is the lexicographically first shortest
path in A from s to v. If not, the branch aborts.

We order nodes so that nodes whose in-neighbors are all in A come first (breaking
ties in some consistent manner). Given state (A,Pv) and item u, if u �= v, then we
branch on the null decision (i.e. u is not in the path) and go to state (A ∪ {u},Pv).
If u = v, we branch on the null decision (i.e. the path ends at v) and go to state
(A,Pv◦}), which is a terminal state with value equal to the weight of path Pv . If
u = v, we also branch on each out-neighbor of v, v′, (i.e. v′ follows v in the path)
and go to state (A ∪ {v},Pv ◦ v′). Since every node at a given level of the algorithm’s
computation tree has exactly the same A and sees the same next item, two paths in
the computation tree cannot merge, so the algorithm really is in the pBT model. Also,
in each of the potentially n levels of the tree, for each node v, there will be at most
one active state whose path ends in v, so the size is at most O(n2).

3 Simulations of pBPs by pBTs and Nontrivial Upper Bounds

We show that, under certain natural conditions, fixed/adaptive pBT algorithms can
simulate fixed/adaptive pBP algorithms without an increase in size.

First, a subtle point: our definition of pBT algorithms requires that, for a pBT
algorithm A, D A GA must be a tree. It is not hard to see that, given the weaker condi-
tion that D A GA(I ) is a tree for every instance I , we can create an algorithm A′ that
satisfies the stronger condition without increasing the complexity. More generally, if
two paths merge in D A GA but there is no instance I such that both of those paths
appear in D A GA(I ), then we may as well make two copies of the state where the
merge occurred. The point is that increasing the size of the state space S does not
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hurt the complexity of the algorithm if there is no instance which uses both copies of
the original state.

Lemma 1 Let A be a fixed (respectively, adaptive) order pBP algorithm for opti-
mization problem P . If the monotone functions labeling the edges of D A G A are all
linear functions of the form x + ce, where ce is a constant that depends on the edge e,
then there is a fixed (respectively, adaptive) order pBT algorithm B for P such that,
sizeB ≤ sizeA.

Proof B simulates D A GA, but remembers the following information: the partial in-
stance PI, the partial solution PS, the state in D A GA reached, and the sum of the
weights ce along the transitions on its current path. At depth t , it views the same
input as D A GA at this state, but before simulating a transition, it uses PI, which is
the same along every other path, to simulate all other (t + 1)-step paths of D A GA; if
any of them reach the same state with a larger sum of transition constants, or if a lex-
icographically prior partial solution gives the same sum and the same state, then the
current branch is pruned. If it reaches a terminal state, then it assigns all unassigned
data items the default value, and terminates with value equal to the objective function
at the (now total) solution.

Since B’s states remember PI and PS, they form a tree. If B on I simulated two
paths that arrived at the same state, either one has a smaller sum of transition con-
stants, or both have the same sum, and one has a lexicographically prior partial solu-
tion. Therefore, one of the two will be pruned. Thus, there is at most one unpruned
path in B per reachable computation state in D A GA(I), so the width is at most the
complexity of D A GA. Finally, consider an algorithm that, when two transitions give
a state s the same value, breaks ties according to the lexicographical ordering on the
label. Then in the third phase of the algorithm, if from s0 we reach node v, the chosen
path will always have the highest sum of transition constants among possible paths
from s0 to v (otherwise, whatever value v is assigned, a higher value is assigned to
s0 along the other path) and among such paths, it will be the lexicographically first.
Thus, the optimal solution’s path, which is found in phase 3 of D A GA, is not pruned
in B, so in returning the best of the solutions found at its branches, B will return an
optimal solution. �

As a corollary of this theorem, we see that the LIS and the LCS problems can be
solved by polynomial-width fixed order pBT algorithms.

The following lemmas show another condition under which pBT algorithms can
simulate FIXED or ADAPTIVE pBP algorithms for search problems.

Given a maximization P , let P v denote the same problem except that F P v returns
1 on those solutions where FP is at least v, and 0 otherwise.

Lemma 2 Let A be an honest fixed (respectively, adaptive) order pBP algorithm
for optimization problem P . For any v = v(n), consider the corresponding search
problem P v . Then there is a fixed (respectively, adaptive) order pBT algorithm B for
this search problem such that, sizeB ≤ sizeA.
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Proof B simulates A, remembering the partial instance PI, and the partial solution
PS, as well as the current state in D A GA, and a value vt given by: v0 = v and vt =
f −1

t (vt−1), where ft is the monotone function labeling the transition at time t . As
before, when B simulates the transition, if there is a path reaching the same state of
D A GA and yielding a smaller value of vt or if there is a lexicographically prior such
a path giving an equal value for vt , the path is pruned. When we get to a terminal
node, we give it value 1 if A gives it value at least vt and 0 otherwise. Hence, at most
one path that reaches any given state of D A GA is not pruned, so the total size for B
is at most that of A.

Assume s0 is given value 1 in B. Then phase 3 returns a path in B s0, s1, . . . st with
st a terminal, where all nodes along the path are given value 1. Each transition in B
corresponds to a transition in A, so we can look at the series of functions f1, . . . ft

labeling the edges in this path in A, and the series of values v0, . . . vt defined v0 =
v, vi = f −1

i (vi−1). Then since st is a terminal given value 1, in A, st is assigned
a value ≥ vt . Assume that si+1 is assigned a value in A which is ≥ vi+1. Since
the value of si is the maximum of a number of terms, one of which is fi(v(si+1))

and fi is monotone, si is assigned a value in A at least fi(vi+1) = fi(f
−1
i (vi)) ≥

vi by definition of inverse. Thus, f1(f2(. . . (v(st )) . . .)) ≥ v, which, by the honesty
condition implies that the edges on the path code a solution of value at least v. So if
B claims there is a solution, it successfully solves the search problem.

Then assume there is a solution of value ≥ v. Let s0, . . . st be the path returned by
A in phase 3, coding an optimal solution (and hence one of value ≥ v). Define the
series of values v0, . . . vt by v0 = v, vi = f −1

i (vi−1), where fi labels the transition.
Since B only aborts a path to si when it finds another path where the composition of
the inverse functions on v, wi , along that path is as small, B contains paths to each
state of A with search value wi equal to the smallest such composition of any path
to si . Thus, it will have a path to st of label at most vt , and will thus give st value 1.
Since the value of the root s0 in B is the or of the values of the terminal states, this
means that B returns a 1 in phase 2. By the previous paragraph, this means it finds a
solution of value at least v in phase 3. �

Lemma 3 Let A be a pBP algorithm for a problem P and let V ⊂ R be a finite set
such that, for every instance I and every state s in D A GA(I ), the value of s computed
in phase II is contained in V . Let w be the maximum value in V . There exists a pBP
algorithm B for P w where sizeB ≤ |V |sizeA which uses the identity function as its
only monotone function. Furthermore, if A is fixed (respectively, adaptive) order, then
B will also be fixed (respectively, adaptive) order.

Proof Let S be the state space of A. The state space of B will be ((S \ {S0}) × V ) ∪
{S0}. If t is a terminal state for A that returns value val(t), then for all v ∈ V , (t, v)

will be a terminal state for B that returns 1 if v ≤ val(t) and 0 otherwise. In general,
if there is an edge (s, s′) in D A GA labeled by (d, σ,f ), then, for v, v′ ∈ V , there will
be an edge ((s, v), (s′, v′)) labeled by (d, σ, id) if v ≤ f (v′). The root state of B will
be S0. If there is an edge (S0, s

′) in D A GA labeled by (d, σ,f ), then, for v′ ∈ V ,
there will be an edge (S0, (s

′, v′)) labeled by (d, σ, id) if w ≤ f (v′). If a state (s, v)

in B has no children and s is not a terminal state in A, then make (s, v) a terminal
state in B with value 0.
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Given any instance I , it is clear by induction on the height of a state s in DAGA(I )

that the state (s, v) will achieve value 1 on instance I in B if and only if state
s achieved value at least v on instance I in A. B will choose as its solution an
arbitrary path from S0 to a sink in DAGB(I ) labelled (d1, σ1), . . . , (dk, σk) such
that every state along this path achieves value 1 (if there is such a path). This path
corresponds to a path in A that contributed value w to the state S0. Since every
such path in A must constitute a valid solution of value w (note this is not nec-
essarily true in a non-honest algorithm if w is not the max value), so must this
path. �

Note that, in the previous lemma, if A was fixed or adaptive order, then B satisfies
the assumptions of Lemma 1. Hence there is a pBT algorithm with the same size
computing P w in this case.

We now describe a non-trivial upper bound that seems to rely on the ability of
pBPs to merge paths. Using the above lemmas, however, we will show that it also
applies to pBTs. The phenomenon that yields this upper bound seems to occur for
many problems—intuitively those that have a limited number of subproblems—but
we will illustrate it for maximum independent set, especially as it was inspired by
Robson’s algorithm for that problem [18]. The upper bound would certainly work for
any accept/reject problem on the nodes of a graph.

Consider the maximum independent set problem on a graph with n nodes. We will
represent it in the node model: each item is the name of a node and the names of that
node’s neighbors. The decisions are to accept a node as part of the MIS or to reject
it. The trivial (pBT) upper bound is simply to consider the nodes in some fixed order
and to explore both decisions for each node, yielding an upper bound on size of 2n.
Instead, begin by branching on all decisions for nodes 1 through k. This yields 2k

partial solutions. Any one of them (assuming it is valid) defines a subproblem: find
the MIS on the subgraph induced by those nodes in [n] \ [k] that are not neighbors of
any node accepted in the partial solution. There are at most � = ∑n−k

i=1

(
n−k

i

) = 2n−k

such subproblems. Let T1, . . . , T� be pBP dags, each of size at most 2n−k , solving
each of these subproblems. Each of the at most 2k leaves corresponding to valid
partial solutions from the initial branching on items 1 through k should be identified
with the root of one of the � pBP dags. Hence, the entire dag has size 2k +2n−k ·2n−k .
Setting k = 2n/3 gives an upper bound of O(22n/3).

It is clear that many paths merge in the above pBP. The initial branching has
(potentially) 22n/3 leaves, whereas there are only 2n/3 pBPs on the bottom. Note,
however, that the algorithm can be done in fixed order, and that every edge is
labelled with the function f (x) = x (if we reject the current node) or f (x) =
x + 1 (if we accept it). Hence, we can apply Lemma 1 to get a pBT algo-
rithm.

We conclude this section by observing that most natural implementations of dy-
namic programming algorithms as pBPs seem to satisfy the conditions of Lemmas 1
and 2 (certainly those in Sect. 2 do). This is strong evidence that the separation be-
tween fixed order and adaptive order pBTs given in [2] also holds for pBPs.
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4 Fully Adaptive pBT Lower Bound for the Shortest Path Problem

We present a general technique for proving lower bounds for pBT algorithms and
will obtain an exponential lower bound for fully adaptive pBT algorithms solving the
single source shortest path problem in the edge model, as defined in Sect. 2.3 above
(i.e. where we allow arbitrary edge weights). The lower bound does have one qual-
ification: above we considered a promise version of the problem where the promise
was that the input graph contains no negative cycles. Here we show that any pBT
algorithm that correctly computes a shortest path on the promise instances achieves
exponential width on some instance, although it might be an instance with negative
cycles. Actually, we focus on a simpler subproblem where every edge has weight −1,
which amounts to finding the longest simple path from a source s.

The lower bound technique we define next can be used for problems where the set
of decisions is � = {accept, reject}. Let A be a pBT algorithm for some problem and
consider the tree T = TA(I) for some fixed instance of this problem. Each state s in T

is defined by the partial solution PSs and the partial information PIs = {PIin
s ,PIout

s }.
PIin

s are data items which belong to the instance and are assigned decisions along
the path from the root to s. A data item e belongs to PIout

s , if there is a state s′
along the path from the root to s, and the ordering function at the state s′ is π(s′) =
{. . . , e, . . . , e′ . . .} such that e′ is the first data item in the total order π(s′) which
belongs to the instance I . If e ∈ PIout then it is the case that e /∈ PIin. PSs is that
subset of PIin

s that has been accepted.

Definition 9 (Consistency) We call an instance I consistent with a partial informa-
tion PIs = {PIin

s ,PIout
s } if (PIin

s ⊆ I ) and (I ∩ PIout
s = ∅).

Definition 10 (Unique Extension) Let PSs be the set of data items accepted along a
branch. Then PSs is uniquely extendible with respect to PIs if there is an instance Is

consistent with PIs such that, the only solutions to the problem on Is are equal to PSs

when restricted to PIs .

Definition 11 (Agreeable Data Item) A new item e agrees with the partial informa-
tion PIs and the partial solution PSs if there is a valid instance Is consistent with PIs

which has some optimal solution consistent with PSs that contains e.

Definition 12 (Competing Data Item) If a data item is not agreeable then it is com-
peting.

The lower bound is defined as a game played by a Solver and an Adversary, which
we call the Q-improbability game. The game proceeds in rounds.

1. The Adversary privately selects an instance I , which might not be a valid instance.
Then sets Q0 ← 1; i ← 1.

The Solver initializes empty revealed information and partial solution:
PIin

0 ,PIout
0 ,PS ← ∅.

2. Round i begins
(a) The Solver picks a data item di /∈ PIi−1.
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(b) The Adversary reveals whether di ∈ I or not.

• If di /∈ I then the Solver updates PIout
i ← PIout

i−1 ∪ {di} and next round be-
gins.

• If di ∈ I , then the Solver updates PIin
i ← PIin

i−1 ∪{di}. The Adversary picks
probability qi .
With probability qi , PS ← PS ∪ {di}; Qi ← Qi−1 × qi ;
With probability 1 − qi , PS remains unchanged; Qi ← Qi−1 × (1 − qi);

round i ends; i ← i + 1.
3. The game ends when, at the end of some round t , Qt ≤ Q. Let PI and PS denote

the partial information and solution at the end of the game.
4. The Adversary wins if there exists a valid instance I ′ consistent with PI so that

every optimal solution in I ′ agrees with PS; otherwise the Solver wins.

Lemma 4 Let �n be a problem with a finite set of data items Dn. If there is a width
w pBT algorithm for �n, then the Adversary wins with probability at most Qw.

Proof Let A be a width w pBT algorithm for �n. Solver simulates A to pick the next
data item as follows: Initially, Solver runs A and obtains the ordering πS0(D). Let d

be the first data item in the ordering, then Solver sets d1 = d . At round i, the Solver
maintains PIin

i ,PIout
i , and PSi . PSi and PIin

i uniquely define a branch of the pBT tree
and a state in it; if not, then the Solver has clearly won since, if there were an instance
I ′ witnessing the Adversary’s victory, then A would fail on that instance. Therefore,
let the state defined by PSi and PIi be s. The Solver then uses πs and picks di to be
the first item in the ordering. The game ends when the probability of the current path
(determined uniquely by PI = PIin,PIout,PS) falls below Q.

The Adversary loses if the branch corresponding to PS and PI at the end of the
game is not part of the pBT tree TA(I ), Since A is width w algorithm and each
branch has probability at most Q at this point, the probability the branch defined by
PS and PI is in the tree is at most Qw. �

We now begin instantiating this general technique for the shortest path problem
in the edge model. According to the definitions above, an edge (u, v) is competing
with respect to a given partial solution PS if there exists edge (u, x) ∈ PS or there
exists edge (w,v) ∈ PS. Otherwise it is agreeable. A competing edge cannot be part
of the solution because, adding such an edge to PS will destroy its validity (PS will
no longer be a simple path).

Now we describe the strategy for the Adversary for the shortest path in graphs
with negative weights but no negative cycles. Let t and p parameters which depend
on n such that t = n1/9 and p = n−3/4. The Adversary picks an instance I at random
from G(n,p). Each edge if present has a weight of −1. Let PIi = PIin

i ,PIout
i and

PSi be the revealed information and the partial solution after round i has finished. At
round i + 1 the Solver selects an edge e: If e is competing with PIin

i then qi+1 = 0.
Otherwise qi+1 = 1/2. Then at the end of the round we have Qi+1 = 1

2ti+1
, where ti+1

is the number of agreeable edges seen so far. Without loss of generality, we assume
that the Solver views all competing edges after each edge e is added to PS. The Q-
improbability game is played for Q = 1

2t . In what follows we show that, with high
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probability over the random instance I and the random choices of the Adversary, PSi

remains uniquely extendible with respect to PIi until t agreeable edges have been
viewed, establishing an exponential lower bound on the width of any pBT algorithm
for the shortest path problem.

Lemma 5 Let PI = (PIin,PIout) be the partial information and PS be the partial
solution. If they satisfy the following three invariants, then PS is uniquely extendible
with respect to PI:

[P.1] PIin contains no cycles even in the undirected sense.
[P.2] |PIin| is o(

√
n).

[P.3] Any node with in(out)-degree 0 in PS has in(out)-degree o(n) in PIin ∪ PIout.

Proof We will exhibit a set of edges M such that, M is disjoint from PI and PS ∪ M

is the unique longest path starting at s in PIin ∪ M .
Since PIin contains no cycles then PIin is a directed acyclic graph. View PS as a

set of disjoint simple directed paths, let those be P1, . . . ,Pk such that, Pi goes from,
say, ui to vi . If PS doesn’t touch s, then we assume P1 begins at u1 and ends at v1,
where u1 = v1 = s; otherwise, u1 = s and let v1 �= s be the end of the path in PS
leaving s. Since PIin is a directed acyclic graph it defines a partial order on the paths
Pi . Let ≺ be a total order on the paths P1, . . . ,Pk consistent with the partial order
defined by PIin such that, Pi ≺ Pj ⇒ i < j . Let V ′ be the nodes not touched by PIin,
and let E′ be the set of all possible edges minus those in PIin ∪ PIout . We construct
k disjoint simple directed paths Q1, . . . ,Qk such that, Qi goes from vi to ui+1 for
i < k and Qk goes from vk to some node in V ′. The set of simple paths {Q1, . . .Qk}
satisfies the following conditions:

• |Qi | > |PIin|,∀i = 1, . . . , k,
• the intermediate nodes of each Qi are from V ′,
• the edges of each Qi are all from E′.

M will be the set of all edges in {Qi}. Note that PIin ∪ M is cycle free because the
paths Qi respect the order ≺.

Claim 6 P = PS ∪ M is the unique longest path in PIin ∪ M from s.

Proof Let P ′ be any other path P ′ �= P . They both must originate at s and since they
are distinct they must diverge at some node d ∈ V (P1 ∪ · · · ∪ Pk). It could not be the
case that d ∈ {Q1 ∪ · · · ∪ Qk} because each Qi is a simple path. Suppose d ∈ Pi . Let
(d,u) be the edge in P ′ then (d,u) ∈ PIin. If the path P ′ never rejoins with P , then it
must skip at least one Qi , but |Qi | > |PIin|, hence P ′ is shorter than P . The path P ′
cannot rejoin P within the segment Pi because PIin has no cycles. Also note that P ′
cannot rejoin P at some segment Pm, for m < i because this would imply a directed
cycle in PIin ∪ M . On the other hand if the section of P ′ after node d rejoins with P

then it must be at a segment Pj with j > i, thus missing all edges in Qi , and because
|Qi | > |PIin| then P ′ is shorter. �

To construct the paths {Qi} from E′ we need the following claim:
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Claim 7 Let H = (S,E(S)) be a graph of order m such that2 |�(u)out| > m
2 and

|�(v)in| > m
2 , then there exists at least one node w such that (u,w) ∈ E and (w,v) ∈

E.

Proof By the pigeon hole principle. �

Initially H = (V ′ ∪ {ui, vi}ki=1,E
′). By invariant [P.2], |V ′| = (1 − o(1))n. By

invariant [P.3], let |PIin| = L ∈ o(
√

n) and assume that L is even (if not, increment it
by one). We need to construct k paths of length L+1, where k ≤ t +1 and kL ∈ o(n).

We construct paths Q1, . . . ,Qk , such that Qi = vi,w
i
1, . . . ,w

i
L,wi

L+1, ui+1. We

begin with Q1. Choose w
j

1 for j even arbitrarily. Starting with j = 2, apply Claim 7
to obtain w1

1 such that (v1,w
1
1), (w

1
1,w

1
2) ∈ E′. Remove v1,w

1
1 from H and proceed

to apply the Claim to obtain w1
3,w

1
5, . . . . When finished with Q1, build Q2 in the

same way, etc. Note that the Claim will always apply because at any point we will
have removed at most o(n) edges from H .

Our goal is to show that at the end of the Q-improbability game PI and PS satisfy
invariants [P.1], [P.2], [P.3] with high probability. Edges which were rejected but were
agreeable with the current partial solution PS are denoted by R. Whenever A accepts
an edge (u, v) and adds it to PS, then all edges of G out of u or into v are revealed.
Those edges are called competing with PS and are denoted by C. At the end of the
Q-improbability game the edges present in the graph are PIin = R ∪ C ∪ PS and
the revealed information PI = PIin,PIout. Define t = |R| + |PS| (t is the number
of agreeable items seen at the end of the Q-improbability game). We show tight
bounds on the sizes of the sets of edges PS,R,C, and PIout. Recall that t = n1/9 and
p = n−3/4. The Adversary stops the game when t reaches n1/9.

Consider the partial solution PS. Let Xi for i = 1, . . . , t be a family of indicator
random variables such that Xi = 0 if the i-th edge was in PS and 0 otherwise. By the
Adversary’s strategy Pr[Xi = 0] = Pr[Xi = 1] = 1/2. Then the expected number of
accepted edges is:

Exp[|PS|] = Exp

[
t∑

i=1

Xi

]

=
t∑

i=1

Pr[Xi = 1] = t

2
.

Because X1, . . . ,Xt are independent, we can apply Chernoff’s bound: for any suffi-
ciently large constant δ, Pr[|PS| > (1+δ) t

2 ] < e−�(t). The same argument establishes
the same bound on the size of R.

Now we consider the set C of edges competing with PS (revealed after an agree-
able edge is accepted by A). Let Di for i = 1, . . . , t be the number of edges incident
to the nodes of the i-th edge. Then, for all i = 1, . . . , t we have Exp[Di] = 2np and,
for any sufficiently large constant δ Pr[Di > (1 + δ)2np)] < e−�(np). Therefore,

Pr

[
t∑

i=1

Di > (1 + δ)2tnp

]

< e−�(tnp).

2We use the standard mathematical notation: �(x)in is the set of neighbors of x such that (u, x) ∈ E and
�(x)out is the set of neighbors of x such that (x,u) ∈ E.
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The number of competing edges is |C| ≤ ∑t
i=1 Di .

Finally, we look at the number of edges in PIout that agree with PS; call this set A.
Each such edge is revealed when the Solver proposes an edge and the Adversary
reveals that it is not present in the graph. Each time this happens, the edge has prob-
ability p of being in the graph. The probability that the game has (1 + δ)t/p rounds,
then, before t agreeable edges are added to PIin is e−�(t/p) (again for sufficiently
large constant δ) again by Chernoff. Therefore, with at most this probability, A con-
tains more than (1 + δ)t/p edges.

We prove the validity of the invariants out of order.

Lemma 8 With probability 1 − o(1) invariant [P.2] holds and |PIin| ∈ o(
√

n).

Proof PIin = R ∪ PS ∪ C. The above argument establishes that the sum of the sizes
of these sets are at most (1 + δ)(t + t + 2tnp) ∈ o(

√
n) by our choices of t and p. �

Lemma 9 ([P.1]) With probability 1 − o(1), PIin is cycle free (in the undirected
sense).

Proof Consider growing PIin as the game proceeds. We bound the probability that
the final PIin contains a cycle by taking the union bound over the probabilities that,
each time we add new vertices to PIin, there is an edge in I connecting any of these
new endpoints with each other or with previous endpoints (excluding, of course, those
pairs of endpoints that were added because they are connected by an edge). Invariant
[P.2] implies that, with high probability, the eventual size (number of edges) of PIin

is at most (1 + δ)(2t + 2tpn), for sufficiently large constant δ, which is at most 3tpn

since, by our choice of p and t , t ∈ o(pn). Hence there are at most 6tpn endpoints. By
the end of the game, the union bound will amount to at most

(6tpn
2

)
p < 36t2p2n2p =

36(tn)2p3 = 36n−1/36 ∈ o(n). �

Lemma 10 With probability 1 − o(1) invariant [P.3] holds true.

Proof Consider a node x that has out-degree 0 in PS (the in-degree 0 case is similar).
Edges coming out of x in PIin ∪ PIout consist of those edges in PIin, those edges in
PIout that are agreeable (which we called A above) and those edges in PIout that are
competing with PS. We’ve established that, with high probability, |PIin| ∈ o(

√
n) and

|A| ∈ O(t/p) = o(n), so the number of edges in these categories coming out of x is
certainly o(n). Those edges in PIout that are competing with PS must have their other
endpoint in PS, so there are at most t of them coming out of x. In total, then, x has
out-degree at most o(n) in PIin ∪ PIout. �

Lemma 11 Let p = n−3/4 and t = n1/9. Consider the Q-improbability game, for
Q = 1

2t , played by the Solver and the Adversary for the shortest path problem on a
random graph G ∼ Gdir(n,p). The probability, over random G and the random coin
tosses of the Adversary, that PS is not uniquely extendible with respect to PI is o(1).

Proof By Lemma 5 the partial information and solution at the end of the Q-
improbability game is uniquely extendible if all three invariants [P.1], [P.2], [P.3]
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are satisfied. By Lemmas 9, 8, and 10 the probability that the partial information PI
and the partial solution PS will violate any of the invariants is: e−�(t) + e−�(t) +
e−�(tpn) = o(1). Hence with probability 1 − o(1) at the end of the Q-improbability
game the partial instance is uniquely extendible. �

Theorem 12 Any fully adaptive pBT algorithm for shortest path with negative
weights and no negative cycles on graphs of size n requires width �(2n1/9

).

Proof Lemma 11 guarantees a single graph G for which the result of the 2n1/9
-

improbability game is uniquely extendible with probability 1 − o(1). The theorem
now follows directly from Lemma 4. �

5 Lower Bounds for Perfect Matching Problem in Bipartite Graphs

In this section we define a general technique for proving lower bounds for fully adap-
tive pBP algorithms which use values {0,1} on the states computed in stage II, and
will use it to prove an exponential lower bound on the number of states of such
pBP algorithms for the decision problem of perfect matching in bipartite graphs. By
Lemma 3, this implies an exponential lower bound on the size of pBP algorithms for
the optimization problem maximum bipartite matching, provided that the algorithm
uses a limited (subexponential) number of different values in stage II. Since any pBT
algorithm for maximum bipartite matching on a graph of size n could never use more
than n different values, this immediately implies a lower bound on all fully adaptive
pBT algorithms for maximum bipartite matching. And, in fact, we will see that the
lower bound we present for pBP is a natural extension of the technique used for pBT.

Consider the DAG built by any pBP algorithm. Unlike the pBT model a pBP
algorithm can merge paths, so intuitively in proving lower bounds we want to show
that a family of instances exists such that, for any algorithm, there exists an instance
on which merging paths is rare. The framework we use is as follows. Let A be a pBP
algorithm using values {0,1} on states defined in stage II, for some problem � as
defined in Sect. 2.1. Let H be a valid instance of �. For a given path in D A GA(H),
as before, let PIin and PIout, be the set of data items observed, and the set of data items
known to not be present in the instance, respectively, and denote PI = PIin ∪ PIout

be the revealed information and PS ⊆ PIin be the partial solution, or data items that
have been accepted. The ingredients for the lower bound are:

1. A distribution on instances H.
2. A path picking strategy S defines rules for walking in D A GA(H), where H is a

valid instance.
Let γ ∈ D be a data item, and D� be the space of probability distributions on

� then

S : PI × PS × D → D�

Note that 2 imposes a distribution on paths in D A GA(H):
Run A on H but always use S to pick the next state (The path is considered to

go to a null state if there is no consistent transition in D A GA(H).
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3. A property alive of a path. No path that is alive should be at a null state (for a
correct algorithm).

To establish the lower bound on the number of states we consider the width w of the
DAG built by the algorithm (recall that we can assume the DAG is levelled) and want
to show that it is highly unlikely for two alive paths of the same length to reach the
same state in D A GA(H). Say that two such paths “merge”. Each alive path of a given
length is at one of w states in D A GA(H), hence, if we pick p1,p2 independently
according to the distribution above,

Pr(p1 and p2 merge | p1 and p2 are alive)

= Pr((p1 and p2 merge) ∧ (p1 and p2 are alive))

Pr(p1 and p2 are alive)
≥ 1

w
.

Therefore,

w ≥ Pr(p1 and p2 are alive)

Pr(p1 and p2 merge ∧ p1 and p2 are alive)
.

Thus to prove a lower bound on w, we need to show that (a) almost all paths are
“alive” and (b) the probability that two “alive” paths merge is small.

Lemma 13 Let p1,p2 be paths that are alive in D A GA(H), where A is a correct
algorithm for the problem, with revealed information PI1 and PI2, respectively, and
partial solutions PS1 and PS2. Assume that there exists an instance H ′ with H ′ con-
sistent (see Definition 9) with PI1 ∪ PI2, so that H ′ has a unique solution, which is
consistent with PS1 but not with PS2. Then p1 does not merge with p2.

Proof Consider D A GA(H). By the definition of merge, p1 and p2 lead to the same
state v. Let PS be the unique solution of H ′. Since PS1 is consistent with PS then
PS1 ⊆ PS and let PS′ = PS \ PS1. v must be on the path from the root to the unique
solution in H ′, and the value returned along this path must be 1. But then the path
that leads to v via PS2 and then proceeds to a leaf via PS′ will also be labelled with
1, and hence could be output by the algorithm as a solution for H . But that cannot be
correct since the unique solution of H ′ is not consistent with PS2. �

Note that this technique is a generalization and extension of the lower bound tech-
nique used for pBT algorithms. We use the move of the Adversary to define the dis-
tribution on instances and essentially the path picking strategy determines the moves
of the Solver. However, being alive can place restrictions on both paths and instances,
unlike the condition of “unique extensibility” which is mainly a property of the path.
Similarly as the pBT lower bounds this technique is mainly suited for problems where
data items are independent from each other (such as edges in a graph).

We now apply the technique to the matching problem.
The following claim will be used repeatedly later.

Claim 14 Let G be a bipartite graph on nodes L and R where both halves are of
order n, in which every vertex has degree at least n

2 . Then G has a perfect matching.



962 Algorithmica (2011) 60: 938–968

Proof We claim that the necessary and sufficient condition of Hall’s theorem holds
true, namely for each set of nodes X, |�(X)| ≥ |X|. If not, there exists a set X ⊆ L

such that |�(X)| < |X|. Because each node in L is incident to at least half of the nodes
on the opposite side, it has to be the case that |X| > n

2 . Now consider R −�(X). Each
node in R − �(X) has neighbors only in L − X, so has degree at most n − |X| < n

2 ,
a contradiction. �

Now we will apply the framework above to obtain an exponential lower bound on
pBP algorithms on the perfect matching problems in bipartite graphs.

1. The distribution on instances H we use is the space of all random bipartite graphs
with independent edge probability q = n−5/6, G(n × n,q).

2. The path picking strategy is defined as follows. Let PI = PIin ∪ PIout be the re-
vealed information learned by A along the path p and PS ⊆ PIin be partial so-
lution. An edge which can legally extend the current partial solution PS is added
with probability 1/2 and is rejected with the same probability. Let γ be the next
data item observed, then we define the path picking strategy as follows:

S(PI,PS, γ ) =
{

Pr(γ is accepted) = 1
2 , if PS ∪ {γ }is a valid matching;

Pr(γ is accepted) = 0, if PS ∪ {γ } is NOT a valid matching;

3. A path p = (PS,PI) is alive if the following two conditions are satisfied: (1) There
exists a graph H ′, consistent with PI (PIin ⊆ H and PIout ∩ H = ∅), so that H ′
has a unique perfect matching and this matching is consistent with PS. (2) PIin is
cycle free.

Given any pBP algorithm A the Adversary builds the D A GA on an instance H ∈H
G(n × n,q). Let p be the path in D A GA(H) picked by the strategy S . We call an
edge that could be added to PS and have the result be a partial matching at the step it
was examined an agreeable edge. Edges that were rejected but were agreeable with
the current partial solution PS are denoted by R. We can assume without loss of
generality that whenever A accepts an edge (u, v) and adds it to PS, it examines and
rejects all edges of H incident to u and v. Those edges are called competing with PS
and cannot become a part of the solution on this branch. We denote this set of edges
as C. Then the path is defined by the edges present in the graph PIin = R∪C∪PS and
the edges known not to be present PIout. We terminate the game when |R| + |PS| =
t = n1/8. Edges not in PIin nor in PIout are called unexamined.

We want to estimate the probability that a random path p is alive. To do that we
define a set of invariants that imply that the path p is alive. Let S be the set of nodes
matched in PS, T the set of nodes not in S but incident to some edge in PIin, and U

be the set of nodes with no incident edges in PIin.

1. (P.1) PIin is cycle free.
2. (P.2) Every node in S has at most O(qn) neighbors in H .
3. (P.3) Every node in T ∪ U has n − o(n) unexamined incident edges.

Lemma 15 If invariants (P.1), (P.2), and (P.3) hold true then path p is alive.
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Proof Assume the invariants above hold true for graph H . We produce a new graph
H ′ such that there is a unique solution consistent with the path p as follows. The
edges of H ′ consist of PIin

t and a matching for T ∪ U which we construct next (and
no edges from PIout are in H ′).

Note that |S| ≤ 2t by construction, and by (P.2), |T | ≤ O(t + qn|S|) = O(qnt) =
o(n) (since every node in T is either incident to one of the at most t agreeable edges
examined, or is a neighbor of a node in S).

Since PS is a partial matching in a bipartite graph, it has equal numbers of matched
nodes in the two sides. Therefore, T ∪ U also has equal numbers of nodes on each
side. Consider the graph on T ∪U , whose edges are the unexamined edges excluding
edges between two nodes in T . By (P.3) and the above bound on the size of T , every
node in this graph has at least n− o(n) ≥ 1

4 |T ∪U | edges incident to it. By Claim 14,
we can find a matching, M in this graph. Note that M has no edges from PIin ∪ PIout.
Let the edge set of H ′ be M ∪ PIin.

Now we argue that H ′ has a unique perfect matching. PS ∪ M is a matching in
H ′, since PS is a perfect matching on S and M is a perfect matching on T ∪ U . Note
that any node in U has exactly one incident edge in H ′, to the node it is matched
to in M . Therefore, all edges in M incident to nodes in U must be included in any
matching. But since all nodes in T are matched to nodes in U , this is all of M . Thus,
the remaining part must be a matching on S. But all edges incident to nodes in S in
H ′ are in PIin, so if there were two such matchings, PIin would contain a cycle. �

We need to prove that invariants (P.1), (P.2), and (P.3) hold true for most paths.
We’ll start with (P.2). We’ll show something stronger: with high probability, every
node has degree O(qn) in H . Since H is a random bipartite graph with edge prob-
ability q , the degree of a node is the sum of n i.i.d. Boolean random variables with
expectation q . Therefore, by Chernoff bounds, the probability that a node has degree
2qn is at most exp(−qn) = exp(−n1/6) and the probability that there is such a node
is at most n exp(−n1/6) = o(1).

We’ll use this to show that (P.1) holds with high probability (although not expo-
nentially high). Along any path where PIin contains a cycle, consider the last edge
e = {u,v} of the first cycle to be created. At the time that e was examined, the other
edges in the cycle incident to u,v were already in PIin, so u,v ∈ S ∪ T at that time.
So we can bound the probability that there is a cycle in PIin by the probability that
an unexamined edge between nodes already in S ∪ T is in H . If (P.1) happens,
|S| + |T | = O(qnt) (and S ∪ T only grows along the path, so the final sizes are
all nodes ever in S ∪ T .) So the number of times an edge between nodes in S ∪ T is
examined is at most O(q2n2t2). For each, since H is a random graph, the probability
that the edge is in H is q . Thus, the probability that there is ever such an edge is
O(q3n2t2 = n−5/2n2n1/4) = O(n−1/4) = o(1).

Finally, we prove the third invariant holds with high probability:

Lemma 16 (P.3) With probability at least 1 − o(1) the number of examined edges
incident to any node in T ∪ U is o(n).

Proof Fix a node u. We’ll bound the probability that at least 2t + 2n1/8/q = o(n)

edges incident to u have been examined and u �∈ S. Note that, since there are only 2t



964 Algorithmica (2011) 60: 938–968

nodes ever in S, at most 2t of the edges incident to u can be competing. The rest were
agreeable at the time they were examined. For each agreeable edge, independently,
the edge is in H with probability q , and, if so, added to PS with probability 1/2 by
the strategy. Thus, if the above number of edges were examined, there would be at
most a probability (1 − q/2)2n1/8/q ≤ e−n1/8

probability that none of them are in PS,
and hence that u �∈ S. The lemma then follows by a union bound over all n nodes u,
for a total probability of ne−n1/8 = o(1). �

Now we can conclude that with probability 1 − o(1) over the random choice of
H and the randomness of the path picking strategy S , there exists a graph H ′ which
has a unique solution, consistent with the partial solution PS and PIin is cycle free.
Therefore the probability that a random path is alive is 1 − o(1).

To prove Lemma 13 we need to bound the probability that two random paths p1

and p2 are both alive and can merge. Remember that by definition of being alive,
such paths have no cycles in PIin. Let p1 and p2 be two alive paths picked by the
path picking strategy S and defined by the sets of edges PS1,R1,C1,PIout

1 , and
PS2,R2,C2,PIout

2 , respectively.3 Because p1 and p2 are alive then PIin
1 is cycle free

and PIin
2 is cycle free.

We will show that, with very high probability, there exists a graph H ′ that is con-
sistent with PI1 and PI2 and H ′ has a unique perfect matching consistent with P1,
but not with P2, or vice versa.

The framework is as before: (1) We define a set of invariants that a random H ∈H
G(n×n,p) satisfies. (2) We show how this set of invariants implies we can construct
from H another graph H ′ which has a unique solution consistent with one of the
paths, but not the other. (3) Then we show that the set of invariants hold true with
extremely high probability.

Consider first simulating the algorithm along randomly chosen path p1 and then
backing up and picking path p2 (on the same underlying graph H ). Edges that were
examined in p1 must be given the same values along p2, but unexamined edges are
still independent. Let S1 be the set of matched vertices in PS1, T1 be the set of un-
matched vertices that are adjacent to some edge in PIin

1 , and U1 be the remaining set
of vertices that are not adjacent to any edge in PIin

1 . Let S2 be the set of matched
vertices in PIin

2 . Let s ∈ S2 − S1 and u ∈ U1. We say that u is a unique neighbor of
s if the edge {u, s} is the only edge incident to u in PIin

2 (and by definition of U1, no
such edges will exist in PIin

1 .) Let U be the set of nodes that have no incident edges in
either PIin

1 nor PIin
2 , i.e., U = U1 ∩ U2. We call an edge unexamined at a given stage

in p2 if it is unexamined in p1 (ever), and unexamined up to that point in p2. An edge
is unexamined in p1,p2 if it is unexamined in both p1 and in p2.

We’ll show that with all but exponentially small probability, p1 and p2 satisfy:

1. PS1 �= PS2.
2. Every node not in S1 ∪ S2 has n − o(n) unexamined edges to nodes in U .

3As before, PIin
1 = PS1 ∪ R1 ∪ C1, where |R1| + |PS1| = t and PIout

1 define p1. Likewise for p2. PI1 =
PIin

1 ∪ PIout
1 and PI2 = PIin

2 ∪ PIout
2 .
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3. Every node in S2 −S1 has t +1 unique neighbors in U1, and every node in S1 −S2
has t + 1 unique neighbors in U2.

The following lemma is an instantiation of Lemma 13.

Lemma 17 Suppose the above invariants hold, and p1 and p2 are both alive. Then
there exists a graph H ′ such that p1 and p2 are consistent with H ′, H ′ has a unique
perfect matching, and exactly one of PS1 and PS2 are consistent with this matching.

Proof Since p1 and p2 are both paths for the same graph H , and PS1 �= PS2, there
had to be a first place where the paths diverged, which had to be an edge e where one
accepted e, and the other rejected e. Without loss of generality, assume e ∈ PS2 but
e �∈ PS1.

Construct H ′ by first including PIin
1 and PIin

2 . Then we add the following addi-
tional edges: For each s ∈ S2 − S1, we choose a unique neighbor u of s in U1, and
add the edge {s, u}. Since there are t + 1 such unique neighbors for each node, and
at most t edges in R1, we can do so in a way that does not include any edge re-
jected along p1 (and, in particular, e.) Call these edges M . Let U ′ be the set of nodes
still without incident edges. |U ′| ≥ |U | − 2t , so since every node not in S1 ∪ S2 has
n − o(n) edges to nodes in U , the same is true for U ′. Also, note that PS1 and the
edges we have just added form a perfect matching on S1 ∪S2 ∪ (U −U ′), so there are
equal numbers of nodes on both sides within that set, and hence within the remaining
nodes. All nodes in U ′ ∪ (V − U − S1 − S2) have n − o(n) unexamined edges to
U ′, so by Lemma 14, there is a perfect matching N of such nodes using unexamined
edges where at least one endpoint is in U ′. Let H ′ = PIin

1 ∪ PIin
2 ∪ M ∪ N .

Note that PS1 ∪M ∪N is a perfect matching in H ′. On the other hand, every node
in U ′ has a unique incident edge in H ′, the edge in N . Thus, in any matching all
edges in N must be used. Also, for each edge {s, u} in M , u was a unique neighbor of
s, and so had no other edges in PIin. Thus, all edges in M must be used. This covers
all nodes except for S1. So any matching must be M ∪ N and a perfect matching on
S1. Since the algorithm examines all competing edges once an edge is added to PS1 ,
every edge incident to a node in S1 is in PIin

1 . Therefore, if there were two matchings
on S1 in PIin, there would be two such matchings in PIin

1 , and hence a cycle in PIin,
contradicting the assumption that p1 is alive.

Therefore, H ′ has a perfect matching. Note that this matching is consistent with
PS1, since we include all edges in PS1, and have not included any edge in R1. (M
avoids such edges, and N only contains unexamined edges.) It is not consistent with
PS2, since it does not contain e. �

Next we estimate the probabilities that the invariants hold true. Since we are look-
ing at paths for the same graph, the probability that PS1 = PS2 is equal to the prob-
ability that the branching strategy makes the same sequence of decisions. Since we
make t random decisions along the two paths, this is exactly 2−t .

The second invariant is similar to the previous lemma. Fix a node u. At most
O(t) edges incident to u are competing (along both paths). Every agreeable edge
is in H with probability q , and then put in PSb (if we are in path pb when
the edge is examined) with probability 1/2. Thus, the probability that more than
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O(t + n1/8/q) = o(n) edges are examined but u �∈ S1 ∪ S2 is exponentially small in
n1/8. Since |U1| = n − o(n), as is |U2|, most of the n − o(n) unexamined edges must
be to nodes in U .

Finally, we prove the third invariant. Consider the first time a node s in S2 −
S1 is added to S2. At this time, there are (for the reason given before) with very
high probability, n − o(n) unexamined edges from s to U = U1 ∩ U2. With all but
exponentially low probability in �(qn) there are �(qn) such nodes adjacent to s.
Call this set of nodes D. These are currently unique neighbors of s in U1, and only fail
to be unique neighbors at the end if some incident edge is later added to PIin

2 . Thus,
the number of edges later added to PIin incident to nodes in D bounds the number of
nodes in D that are no longer unique neighbors of s. Such edges are either agreeable
or competing edges. There are at most t agreeable edges considered, and at most 2t

competing edges incident to each node in D will be examined (one per node added to
S2.) Each such edge is in PIin

2 independently with probability q . Thus, the expected
number of competing edges incident to D is q|D| and the probability that it is greater
than |D|/2 is exponentially small in the size of |D| = �(qn). Thus, with probability
1 − O(exp(−�(qn) = 1 − exp(−�(n1/6)), u will have �(qn) − t = �(qn) > t + 1
unique neighbors in U1. We then take a union bound over all nodes s ∈ S2 − S1, and
by symmetry, the same will hold with the same probability for all s ∈ S1 − S2.

Thus, all invariants hold except with probability

O
(
max{2−t ,2n exp(−�(n1/6)), exp(−�(n1/8))}) = O(exp−�(n1/8)).

Next we estimate the bound on the width of pBP with values on states {0,1}. We
showed that the probability a random path is alive is 1 − o(1) together with the result
of Lemma 17 we conclude the following theorem.

Theorem 18 Any fully adaptive pBP algorithm A with values on states computed in
stage II in {0,1} will require sizeAn

≥ e�(n1/8) for the perfect matching problem in
bipartite graphs of order n.

Applying Lemma 3, we get

Corollary 19 Any fully adaptive pBP algorithm for maximum bipartite matching that
uses a subexponential number of values in stage II will require exponential size.

Corollary 20 Any fully adaptive pBT algorithm A requires size(An) ≥ �(en1/8
) for

the maximum matching problem in bipartite graphs of order n.

6 Future Work

There are many directions in which we would like to extend the current work. Here
we briefly mention a few:

1. While most dynamic programming algorithms we have encountered fit into our
model, some don’t. Perhaps most notable is the optimal binary search tree algo-
rithm and the matrix chain multiplication algorithm. It would seem that extending
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our model to allow nondeterministic branching and partitioning of the set of items
would allow us to compute it.

2. Our bipartite matching lower bound suggests that there are problems that can be
computed by a simple application of linear programming but not by dynamic pro-
gramming. Can we formulate an interesting result (perhaps along the lines of [5])
in the other direction? Perhaps knapsack is a good candidate as there is a dynamic
programming FPTAS, but the integrality gap of the obvious linear relaxation can
be arbitrarily bad.

3. Does it help a pBP algorithm to use high precision in the state-values computed
in stage II of the computation? Of course this question is related to whether our
lower bound holds for the general case and whether our results separate the fixed,
adaptive and fully adaptive versions. Does rounding these values lead to some sort
of approximation algorithm?

4. In general, can we find any algorithm that fits this model which we did not hereto-
fore consider dynamic programming?

5. Can we separate fully adaptive pBT and pBP without the “promise” issue de-
scribed above.
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