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Abstract

Background: In the framework of periodic homogenization, the conduction problem
can be formulated as an integral equation whose solution can be represented by a
Neumann series. From the theory, many efficient numerical computation methods and
analytical estimations have been proposed to compute the effective conductivity of
composites.

Methods: We combine a Fast Fourier Transform (FFT) numerical method based on the
Neumann series and analytical estimation based on the integral equation to solve the
problem. Specifically, the analytical approximation is used to estimate the remainder of
the series.

Results: From some numerical examples, the coupling method have shown to
improve significantly the original FFT iteration scheme and results are also superior to
the analytical estimation.

Conclusions: We have proposed a new efficient computation method to determine
the effective conductivity of composites. This method combines the advantages of the
FFT numerical methods and the analytical estimation based on integral equation.

Keywords: NIH approximation; Fourier transform; Effective conductivity; Neumann
series

Background
Composite materials can exist in nature or be fabricated by purpose. Due to their techno-
logical importance, micromechanical approaches are developed to determine the overall
behavior of composites from the properties of their constituents. The general procedure
comprises two steps: the construction of a representative model, containing information
on heterogeneities (morphologies, inclusion shape, volume fraction, local physical prop-
erties, etc.), and the analysis of the model by some mathematical methods. Analytical
methods are often based on a simplification of inclusion shapes and potential theory,
spherical harmonic functions, etc. Many exact and approximate closed-form solutions
have been derived by such methods for materials having a linear behavior [1-7]. How-
ever, if the microstructure is known in all its complexity, numerical methods must be
used. Among the numerical methods, finite element method (FEM) and boundary ele-
ment method (BEM) are widely used for homogenization problems. These methods have
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been reported in numerous works [8-12]. A more recent method, introduced in the 1990s
and described thereafter, uses extensively the Fourier transform and the introduction of a
‘reference material’.
From a theoretical point of view, the introduction of a reference material allows

formulation of the localization problem in the form of a Lippman-Schwinger-Dyson-
type integral equation, whose solution can be represented by a Neumann series.
The most convenient way to solve this integral equation is its formulation using
Fourier transform of the equations governing the localization problem [13-19]. Some
notable variants and improvements of this method can be found in the literature
[18,20-23]. However, it is known that fast Fourier transform (FFT) iterative schemes
are very sensitive to the contrast ratio between the phases and may not con-
verge for infinite contrasts. Therefore, an important step when using FFT iterative
schemes is to estimate the remainder of the Neumann series whose sum is com-
puted up to a finite number of terms. This paper is devoted to this fundamental
question.
In this paper, the remainder of the Neumann series is estimated by a combination

between FFT schemes and the Nemat-Nasser-Iwakuma-Hejazi (NIH) [24,25] estimation
of the effective properties. For two-phase systems with spherical inclusions, the NIH
estimation in thermal problems leads to closed-form solutions which agree with numer-
ical results for a large range of volume fractions. However, the NIH estimation departs
from the sum of the Neumann series at high concentrations of inclusions. Since both
NIH approximation and FFT schemes are based on integral equations, we use the former
to estimate analytically the remainder of the Neumann series and derive the improved
effective properties.
The present paper contains four parts. After a brief introduction of the paper’s con-

text, the ‘Methods’ Section is dedicated to the computational methods. The problem
statement, FFT methods, and the FFT-NIH coupling are also presented in this section.
Implementations of the coupling are discussed in the ‘Results and discussion’ Section.
Finally, concluding remarks are given in the ‘Conclusions’ Section.

Methods
Problem statement and integral equation formulation

A periodic composite material is constructed by repeating infinitely a unit rectangular
cell V of dimensions a1, a2, a3 along three directions x1, x2, x3. The homogenization of its
thermal conductivity is reduced to solving the periodic heat transfer problem defined by
the system of equations:

q(x) = K(x)e(x) ∀x ∈ V

e(x) = −∇T(x), ∀x ∈ V

∇ · q = 0, ∀x ∈ V

T − E · x periodic,

q · n antiperiodic. (1)

In (1), q(x) is the flux vector, T(x) the temperature, e(x) the (minus) temperature gra-
dient, K(x) the local second-order conductivity, and n the outward normal vector on the
surface of the unit cell. Solution of (1) allows computation of the volume averages of e and
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q, denoted, respectively, by E andQ and finally the overall conductivity Keff. In summary,
we can write

Q = KeffE, E = 〈e〉V , Q = 〈q〉V . (2)

Here and from now on, we use the angular brackets 〈.〉V to denote the volume average
over V, for example,

〈φ〉V = 1
V

∫
V

φdx. (3)

Instead of solving the system of (1), the integral equation approach reformulates the
boundary value problem using a reference material with arbitrary conductivity K0. This
allows the introduction of the free gradient e∗ through the following formula:

q(x) = K0(e(x) − e∗(x)) or K0e∗(x) = δKe(x) (4)

with

δK = K0 − K(x). (5)

Since any V -periodic function φ can be represented by a Fourier series,

φ(x) =
∑

ξ

φ̂(ξ)eiξ ·x, φ̂(ξ) =
〈
φ(x)e−iξ ·x〉

V
, (6)

applying Fourier analysis to (1) and (4) yields an integral equation for e∗(x):

δK

⎡⎣E +
∑
ξ �=0

eiξ ·x�̂0
(ξ)K0̂e∗(ξ)

⎤⎦ = K0e∗(x),

or δK
[
E + �0 ∗ K0e∗(x)

] = K0e∗(x). (7)

The Green tensor �̂
0
(ξ) in (7), the Fourier representation of the periodic Green

operator �0, is defined by the following formula:

�̂
0
(ξ) = ξ ⊗ ξ

ξ · K0ξ
. (8)

The infinite sums in (6) and (7) involve all vectors ξ with components ξi satisfying the
conditions

ξi = πni
ai

, ni = 0,± 1, . . . , ± ∞, i = 1, 2, 3. (9)

Method of resolution

Full field solution of (1) and the effective properties can be determined by FFT-based
methods at any accuracy. By recasting (7), a more convenient form is obtained [18,26,27]:

e(x) = E + �0 ∗ δKe(x). (10)

A classical way of solving the integral equation is to sum the Neumann series

e(x) =
∞∑
j=0

(�0 ∗ δK)jE, (11)

under the condition that the Neumann series is convergent, which is achieved for a
specific range of admissible values of K0. To solve (10), iterative schemes are usually
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employed. For example, starting from the initial value e0(x) = E, one can repeatedly
compute e1, e2, . . . ,eN via the recurrence relation

eN+1 = E + �0 ∗ δKeN . (12)

Stopping the recurrence at N0 iterations produces the sum of the N0 first terms in the
Neumann series (11). It is worthwhile mentioning that relation

e = E + �0 ∗ K0e (13)

holds for all rotational free vector e and leads to another equivalent form of (12):

eN+1 = eN − �0 ∗ qN , qN = KeN . (14)

Although the FFT-based methods produce e(x) at convergence, the main concern is the
convergence rate at high contrast ratio. The basic iterative scheme described in (12) and
(14) is called the primal iterative scheme (PIS). In the literature, there have been numerous
works to improve the convergence of the basic method such as dual iterative scheme (DIS)
[20,28], polarization-based iterative scheme (PBIS) [21,22], accelerated scheme (AS) [18],
augmented Lagrangian scheme (ALS) [16], etc.
Instead of finding the full field solution of (1), the mean value of e∗ and the effective

thermal conductivity Keff can be estimated from (7) with NIH approximation [24,25].
Such an approximation has been shown to predict very well the overall elastic and ther-
mal properties of two-phase composites for a large range of volume fractions of inclusions
[25,29]. However, it fails at higher concentrations. Generally, the estimation of Keff

requires only the computation of a lattice sum which admits closed-form expressions in
many cases, as seen thereafter.

Residual integral equation and estimation of the remainder of the Neumann series

The main scope of this paper is to combine the advantages of the analytical approxima-
tion and FFT numerical methods to improve the prediction of the effective properties.
The material under consideration is a two-phase matrix-inclusion composite with con-
ductivity of both phases beingKM (matrix) andKI (inclusion). The volume fraction of the
inclusions is f , and the distribution of the inclusions in the unit cell is taken to be general
at this stage.
Starting with any conventional FFT method (e.g., PIS, PBIS), we assume that after N

iterations, we have obtained eN which is an estimation of the exact solution ẽ. In the
coupled method, we consider the residual rN at step N defined by

rN = [
K(x) − KM]

(̃e − eN ). (15)

Knowing the average of rN allows computation of the macroscopic flux Q̃ associated to
ẽ. Indeed, by averaging (15) over V and accounting for the following properties:

〈̃e〉V = E, rN = 0 outside �, (16)

we can deduce that

f 〈rN 〉� = Q̃ − QN − Q∗, QN = 〈KeN 〉V ,
Q̃ = 〈K̃e〉V , Q∗ = KM[E − 〈eN 〉V ] . (17)

When eN is computed from the primal iterative scheme, 〈eN 〉V = E is always true
and Q∗ always vanishes (for other schemes, this quantity is known). The other terms QN
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and Q̃ in (17), respectively, are the macroscopic flux calculated by the conventional FFT
method and the real flux. They are different by a correcting term f 〈rN 〉� which will be
estimated through the NIH approach. Substituting (15) into (10) with the matrix as the
reference material and accounting for (12), we obtain the following integral equation for
rN :

rN = wN−[K(x) − KM]�M ∗ rN , (18)

in which wN is known from the expressions

wN = [
K(x) − KM]

[ ε − eN ] , ε = E − �M ∗ [
K(x) − KM]

eN . (19)

Since the convolution �M ∗ rN admits the Fourier representation

�M ∗ rN =
∑
ξ �=0

eiξ ·x�̂M
(ξ )̂rN (ξ), (20)

averaging both sides of (18) over the inclusion � yields

〈rN 〉� = 〈wN 〉� − [
KI − KM] ∑

ξ �=0
〈eiξ ·x〉��̂

M
(ξ )̂rN (ξ). (21)

Next, the NIH approximation is applied to r̂N (ξ) as follows:

r̂N (ξ) = 1
V

∫
V
rNe−iξ ·xdx � f 〈e−iξ ·x〉�〈rN 〉�. (22)

By denoting I(ξ),P(ξ) the following shape functions:

I(ξ) = 〈eiξ ·x〉�, P(ξ) = fI(ξ)I(−ξ), (23)

we can now obtain the average of the residual term 〈rN 〉� through the new relation

〈rN 〉� =
⎡⎣I+[KI − KM]

∑
ξ �=0

P(ξ)�̂
M

(ξ)

⎤⎦−1

[KI − KM] 〈ε − eN 〉�. (24)

Substituting (24) back into (17), we obtain QN
cor, an improved estimation of the macro-

scopic flux Q̃. It is noteworthy that if we apply the property at convergence (13) to eN in
(19), the term ε − eN can be computed from the expression

ε − eN = −�M ∗ qN , qN = KeN . (25)

The method presented in this paper can be used in coupling with any FFT-based itera-
tive scheme. An algorithm presenting the implementation with the basic scheme (PIS) is
presented in Algorithm 1 and used later in this work. In the following, this scheme will be
stopped before convergence, in view to evaluate the performance of the estimation of the
remainder of the series.

Algorithm 1 Algorithm of the iterative scheme PIS coupled with NIH approximation
e0(x) = E

qN (x) = K(x).eN (x)
q̂N (ξ) = F(qN (x))

compute 〈wN 〉�, 〈rN 〉�,QN
cor

convergence test
êN+1(ξ) = êN (ξ) − �̂

0
(ξ).̂qN (ξ)

eN+1(x) = F−1(̂eN+1(ξ))
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Although the original NIH estimation is obtained by making approximation to (7)
instead of (10), the NIH estimation can also be recovered as a special case of (24). Indeed,
by replacing eN with a zero field 0 and repeating the same steps to derive QN

cor, the final
result is the fluxQNIH defined by

QNIH = KME + f

⎡⎣I+[KI − KM]
∑
ξ �=0

P(ξ)�̂
M

(ξ)

⎤⎦−1

[KI − KM]E, (26)

It is clear that, from (26), the effective conductivity is obtained in the same form as in the
previous work [25].

Coupled method in special cases

The coupled algorithm is significantly accelerated if the shape functions I(ξ) or P(ξ) are
determined from closed-form expressions, for example, in the case of ellipsoidal inclu-
sions. Firstly, it is no longer necessary to compute numerically the Fourier transform of
the characteristic function [28]. Secondly, the lattice sum

∑
ξ �=0 P(ξ)�̂

M
(ξ) can also be

estimated by a closed-form expression.
To illustrate these ideas, we consider the special cases where the spherical inclusions of

radius R are located at the lattice points of cubic lattice systems (see Figure 1). The matrix
and inclusions are assumed to be isotropic with conductivities kM and kI :

KM = kMI, KI = kII, (27)

with I being the identity tensor. The Green tensor associated to thematrix admits a simple
form:

�̂
M

(ξ) = ξ̄ ⊗ ξ̄/kM, ξ̄ = ξ/|ξ |. (28)

By considering the symmetry with respect to ξi = 0 planes and the permutation
invariance, the lattice sum

∑
ξ �=0 P(ξ)�̂

M
(ξ) can be simplified into∑

ξ �=0
P(ξ)�̂

M
(ξ) = I

3kM

∑
ξ �=0

P(ξ). (29)

Finally, the improved estimationQN
cor is reduced to

QN
cor = QN − fkM〈�M ∗ qN 〉�

kM
kM−kI − 1

3
∑

ξ �=0 P(ξ)
. (30)

Figure 1 Unit cell of cubic lattice structures (from left to right: simple cubic, body-centered cubic,
face-centered cubic).
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The macroscopic flux from NIH approximation (26) has also a simple form:

QNIH =
(
kM − fkM

kM
kM−kI − 1

3
∑

ξ �=0 P(ξ)

)
E, (31)

where the term inside the parenthesis is the effective conductivity keff predicted by the
approach. Since P(ξ) decays rapidly with |ξ |, the infinite sum

∑
ξ �=0 P(ξ) can be esti-

mated by keeping several initial terms and approximating the remainder with an improper
integral:∑

ξ �=0
P(ξ) �

∑
0<|ξ |<ξc

P(ξ) + a3

2π2

∫ ∞

ξc
P(ξ)ξ2dξ . (32)

The parameter ξc defines the number of initial terms of the sum that we keep in the
approximation formula. The final analytical expression is given in the following:

• Simple cubic system

P(ξ) = P(ξ) = 9f (η cos η − sin η)2

η6
,

∑
ξ �=0

P(ξ) �
∑

0<|ξ |<ξc

P(ξ) + 3 − cos 2ηc
πηc

+ 2 sin2 ηc
πη3c

− 2 sin 2ηc
πη2c

− 2
π
Si(2ηc) + 1, η = ξR, ηc = ξcR, (33)

with Si(η) being the sine integral

Si(η) =
∫ η

0

sin η′

η′ dη′. (34)

• Body-centered cubic system

P(ξ) = 9f
4
[ η cos η − sin η]2

η6
[ 1 + cosπ(n1 + n2 + n3)]2 ,∑

ξ �=0
P(ξ) �

∑
0<|ξ |<ξc

P(ξ) + 3 − cos 2ηc
πηc

+ 2 sin2 ηc
πη3c

− 2 sin 2ηc
πη2c

− 2
π
Si(2ηc) + 1. (35)

• Face-centered cubic system

P(ξ) = 9f
16

[ η cos η − sin η]2

η6
[ cosπn1 + cosπn2 + cosπn3

+ cosπ(n1 + n2 + n3)]2 ,∑
ξ �=0

P(ξ) �
∑

0<|ξ |<ξc

P(ξ) + 1
4

[
3 − cos 2ηc

πηc
+ 2 sin2 ηc

πη3c

−2 sin 2ηc
πη2c

− 2
π
Si(2ηc) + 1

]
. (36)

Results and discussion
In this section, we study the results coming from the implementation of the coupled
method for the case of a simple cubic system. The representative cell is a cube with the
spherical inclusion located at its center (the first figure from the left in Figure 1). The
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Figure 2 Estimation of the effective conductivity after 5 iterations (N=5). PIS, PIS/NIH coupling at N = 5
and NIH approximation for kI/kM = 10.

periodic problem with prescribed temperature gradient E is solved by three approaches:
the NIH approximation (31), the conventional PIS, and the coupled method. The last two
methods are based on the same iterative scheme, and in the coupled method, the reeval-
uation of the effective conductivity after each iteration is done using (30). All results are
compared with the results coming from the conventional PISmethod at convergence. The
analytical expression of

∑
ξ �=0 P(ξ) described in (33) is used to accelerate the computation

and to improve the accuracy. Regarding the iterative scheme, the number of harmonic
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Figure 3 Estimation of the effective conductivity after 8 iterations (N=8). PIS, PIS/NIH coupling at N = 8
and NIH approximation for kI/kM = 10.
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Figure 4 Estimation of the effective conductivity after 10 iterations (N=10). PIS, PIS/NIH coupling at
N = 10 and NIH approximation for kI/kM = 10.

terms retained in the Fourier series is limited to 128*128*128, i.e., |ni| < 128, i = 1, 2, 3,
and the precision of the computation ε = 0.001 is adopted. Different contrast ratios kI/kM
ranging from 0.1 to 50 are considered in this work, and the results of the three approaches
are discussed and compared.
From Figures 2,3,4, all curves, associated to the first case kI/kM = 10, are quite close at

small volume fraction f but separate at high f. The significant improvement of the coupled
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Figure 5 Relative error induced by different approaches at kI/kM=10. PIS, PIS/NIH coupling at
N = 5, 8, 10, kI/kM = 10. Case study: simple cubic system.
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Figure 6 Relative error induced by different approaches at kI/kM=50. PIS, PIS/NIH coupling at
N = 10, 15, 20, kI/kM = 50. Case study: simple cubic system.

method can be found at a small number of iterations, e.g., N = 5. In all cases under
consideration, the coupling reduces significantly the difference between the conventional
FFT method and the exact solution (see Figures 5,6,7). The coupled method results are
also much more accurate than those issued from the pure NIH approximation which fails
at high f.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Volume fraction f

R
el

at
iv

e 
er

ro
r

PIS scheme (N=1)
PIS/NIH coupling (N=1)
PIS scheme (N=2)
PIS/NIH coupling (N=2)
PIS scheme (N=5)
PIS/NIH coupling (N=5)

Figure 7 Relative error induced by different approaches at kI/kM=0.1. PIS, PIS/NIH coupling at
N = 1, 2, 5, kI/kM = 0.1. Case study: simple cubic system.
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Numerical examples at different contrast ra tios kI/kM also demonstrate a consid-
erable improvement of the coupling in comparison with the basic FFT method. More
particularly, for small kI/kM = 0.1, it generates a very good approximation of keff even at
N = 1, 2, where the error of the FFT method is of order 20%. At high kI/kM = 50, the
coupling performs less well but still reduces the relative error, the effect being important
for lower number of iterations.

Conclusions
A coupled method is developed for computing the effective conductivity of periodic com-
posites. The method uses a FFT iterative scheme to solve the localization problem and
the NIH approximation to estimate analytically the remainder at any iteration N of the
Neumann series. As a result, a new expression for the effective conductivity is derived
on the basis of the current flux and temperature gradient field. Numerical tests on var-
ious cases have shown that the expression coming from the coupled method improves
considerably the results issued from the uncoupled methods for small numbers of itera-
tions. The contribution of the coupling improves the results at any contrast ratio and any
volume fraction.
The application domain of the coupled method is large. Although the numerical exam-

ples given in this work concern the PIS scheme and spherical inclusions, the method can
be applied to any existing FFT-based methods and arbitrary inclusion shapes to improve
the accuracy of the predicted properties. The method can be extended to deal with other
physical problems such as elasticity, piezoelectricity, etc.
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