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1 Introduction

There has been great progress recently in applications of holography [1–3] to condensed

matter systems such as superconductors following the pioneering works of [4] and [5]. These

authors managed to find a simple gravitational background in Einstein-Maxwell gravity

coupled to a complex scalar field where a second order normal-to-superfluid type transi-

tion occurs at finite temperature. The basic interest behind application of holographic ideas

to condensed matter theory (CMT) lies in the hope that the strongly correlated condensed

matter systems may secretly possess a gravitational description. Indeed, computations of

certain observables in the gravity picture, such as conductivity provides supporting evi-

dence, see [6–8] for reviews. It is a considerable possibility that [9] the underlying dynam-

ics behind the phase transition in high Tc superconducting materials is a strongly coupled

quantum phase transition at zero T. Then the hope is that, a dual gravity description of

the strongly coupled field theory around this critical point may also shed light over the

finite temperature transition in the quantum critical region.

On the other hand, there are several issues of fundamental importance in the proposed

gravity-CMT models, such as the role of the large N limit and the notion of weak-strong

duality, that are not entirely clarified. We have a much better understanding in the holo-

graphic constructions of gauge theories, thanks to the basic example [1–3] of the N = 4

super Yang-Mills theory where the D3 brane picture provide the link between the gauge side

and the gravity side. Such a “top-bottom” approach is missing in the gravity-CMT models.

In this work, we entertain the possibility that such a link may be established under

certain assumptions, at least for certain simple condensed matter systems, i.e. spin models,

by analogy with the better understood gauge-gravity case.
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The building blocks of such a connection are already present in the well-known liter-

ature. First of all, we recall the famous equivalence between lattice gauge theories (LGT)

and spin-models (SpM) [10, 11]: integrating out the gauge invariant degrees of freedom

in the partition function of a LGT with gauge group G, one arrives at an effective action

for the lowest lying mode, namely the Polyakov loop P . This effective action is invariant

under the leftover center symmetry C = Center(G) of the original gauge invariance. Iden-

tifying the Polyakov loop P with a spin field ~s, one then obtains the partition function

of a spin-model with the global spin invariance C. Using this equivalence between lattice

gauge theories and spin-models Polyakov and Susskind were able to show the existence of

confinement-deconfinement phase transition on the lattice, long time ago. Based on these

works, than Svetitsky and Yaffe [12] further proposed that, if continuous critical phenom-

ena prevails in the continuum limit of a certain lattice gauge theory, then it should fall in

the same universality class as the corresponding spin-model.

It is interesting to employ the same idea in the opposite direction in order to study a

spin-model that is strongly coupled at criticality. In particular, one would like to compute

the critical exponents, the transition temperature Tc, certain thermodynamic functions

etc., by analytic methods. If one is lucky enough to find a gauge-theory that corresponds

to the spin-model under the aforementioned equivalence, then one may be able to study

the strongly coupled phenomena by the gauge-gravity correspondence.

One purpose of this paper is to emphasize that this chain of dualities may provide a

well-defined setting in understanding fundamental issues in the gravity-CMT correspon-

dence. In particular, if one can figure out the relevant D-brane configuration that describes

the gauge theory which arises in the continuum limit of the LGT under question, then one

may be able to take the decoupling limit and obtain a gravity description of the LGT —

and of the equivalent spin model — around criticality. Despite being abstract, in princi-

ple this provides a top-bottom approach to the problem. In particular, such an approach

would hopefully provide a microscopic description that is long sought for in holographic

applications to CMT.

Another purpose of this paper is to provide a concrete realization of these ideas in a

simple setting. For this purpose we consider SU(N) gauge theory in d-dimensions (with

possible adjoint matter) in the strictN → ∞ limit. In this limit the center C becomes U(1).1

We imagine that the adjoint matter is arranged such that the deconfinement transition of

the gauge theory is of continuous type. This transition is then in the same universality

class with the order-disorder transition in the corresponding U(1) rotor model in d − 1

dimensions — that is sometimes called the XY model. The XY-models — and their O(n)

generalizations — provide canonical examples of superfluidity that arises as spontaneous

breaking of the global U(1) symmetry in a continuous phase transition.

To realize this phenomenon in the dual gravity setting we consider the NS-NS sector of

non-critical string theory in d+1 dimensions with Euclidean time direction x0 compactified.

It was shown in [15] that this theory in the two-derivative sector exhibits a continuous

1This idea in the AdS/CFT context was considered before [13], see also [14] and [12] for earlier discus-

sions.
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Hawking-Page transition at some finite temperature Tc. The background is of the type

AdSd+1 near the boundary and linear-dilaton in the deep-interior. Building upon the ideas

in [13], we argue that the U(1) symmetry (in the strict N → ∞ limit) corresponds to the

shift symmetry
∫

M B →
∫

M B + const where B is the NS-NS two-form field and M is

the (r, x0) subspace of the background geometry. The only objects that are charged under

this symmetry are string states winding the time circle. In the thermal gas phase these

states have infinite energy and cannot be excited, hence the symmetry is unbroken and this

phase corresponds to the normal phase of the spin system. In the black-hole phase on the

other-hand they have finite energy (with an appropriate regularization) and the black-hole

corresponds to the superfluid phase.

It was further observed in [15] that the geometry becomes exactly linear-dilaton in

the transition region. Therefore, we argue that the transition region of the XY model

is governed by the linear-dilaton CFT on the string side. Although in general the α′

corrections can not be ignored in the type of backgrounds that we will consider in this

paper,2 one can still perform calculations in the critical regime, precisely because the

linear-dilaton background is known to be an α′-exact background in non-critical string

theory [16]. In particular the calculations that involve probe strings can be performed

by employing the exact CFT description of the linear-dilaton background, (in the limit

gs → 0).

The spin operator ~s(x) is related to a fundamental string that wraps the time-circle

and connected to the boundary at point x. Consequently one can compute correlation

functions of the operator ~s by studying the string propagation in the linear-dilaton CFT in

the (single) winding sector. We perform such calculations in a semi-classical limit where

we only take into account the contribution of the lowest-lying string states. It is shown

that in this approximation, one obtains mean-field scaling near Tc. We find that the

“magnetization” behaves as

M ∼ (T − Tc)
1
2 , as, T → Tc.

A similar calculation with string propagation connecting the points x and y on the (spatial)

boundary corresponds to the spin two-point function. We show that the expected behavior

of the spin-system arises in the large |x−y| limit near Tc indeed arises from this calculation

in a non-trivial manner. In particular, in order to show that the correlation length ξ diverges

at Tc, one has to identify the transition with the Hagedorn temperature where the lowest

lying single-winding mode becomes massless [17]. With such an identification one indeed

finds the expected behavior

ξ ∼ (T − Tc)
− 1

2 , as, T → Tc,

again in a semi-classical approximation.

2We recall that in the case of N = 4 sYM theory the α′ corrections can be ignored both for the bulk

and the string computations at strong ’t Hooft coupling λ. In the theories we consider here we do not have

a similar modulus that serves as a parameter to suppress the α′ corrections. Generally, the string scale and

the scale of the background geometry may be of the same order.

– 3 –



J
H
E
P
1
2
(
2
0
1
0
)
0
6
2

One can also study scaling of the speed of second sound that is associated with the

Goldstone mode in the superfluid phase. This mode is identified with fluctuations of the

zero-mode of the NS two-form field B. We find that the speed of sound indeed vanishes

at Tc precisely with the expected mean-field scaling,

c2s ∼ (T − Tc), as T → Tc

in a second order Hawking-Page transition. We also argue that this finding is not altered

by possible α′ corrections.

The identification of spin operators with the F-strings suggest a similar identification

between the vortex configurations — that play an important role in the 2D XY model

— with D-strings in the gravity dual. We study correlation functions of such D-string

configurations and find that they exhibit the expected behavior in the spin-model.

The paper is organized as follows. In the next section, we review basic ideas in the

past literature which indicate a general duality between spin-systems and gravity. We first

focus on the case of SU(N) in the N → ∞ limit and postpone the general discussion

to section 6. Section 3 reviews the Einstein-dilaton system that was studied in [15]. In

section 4 we argue that the IR limit of the model is described by a linear-dilaton CFT

and review basic features of such CFTs. Section 5 contains main technical results of this

paper. We first review the basic statistical mechanics results that are relevant in what

follows. Then we propose the precise identification between the F-string configurations

and the spin correlation functions. We calculate the one-point and two-point functions

near criticality in the semi-classical approximation making use of the linear-dilaton CFT.

Finally we present calculations related to vortex configurations. In section 6 we take a first

step in formulating a gravity spin-model duality in general. In the last section we discuss

various issues and possible future directions of research.

Several appendices detail our presentation. In appendix A, we review the simplest ex-

ample od the equivalence between lattice gauge theories and the spin-systems. In appendix

B, we review the connection between non-critical string theory and the linear-dilaton back-

ground. Appendix C provides some basic background material in statistical mechanics of

the XY models for the unfamiliar reader. Finally, appendices D and E contain details of

our calculations in section 5.

2 Gravity - spin model duality

Our goal in this section is to propose a particular approach to the gravity-CMT corre-

spondence that relates the spin-models in CMT to gravity by a two step procedure: The

first step is to employ a well-known equivalence between spin-models and lattice gauge

theories [10, 11] followed by a second step that is to utilize the gauge-gravity duality to

relate the (continuum limit) of the lattice gauge theory to a dual gravitational background.

2.1 Correspondence between gauge theories and spin systems

Existence of the confinement-deconfinement phase transition in lattice gauge theories at

strong coupling is rigorously proved [10, 11] long time ago. The proof is based on an
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equivalence between lattice gauge theories (LGT) and spin systems with nearest-neighbor

ferromagnetic interactions, [10–12]. In the original papers of Polyakov and Susskind, this

equivalence was established for the cases of U(1) and SU(2) gauge theories. Subsequently it

was generalized to general Lie groups.3 We shall refer to this equivalence as the LGT-spin

model equivalence. We review how the spin systems arise from the lattice gauge theories in

the Hamiltonian formalism, and in the simplest case of U(1) gauge group in appendix A.

This equivalence has profound implications in the continuum limit: As argued and

verified with various examples by Svetitsky and Yaffe [12], the critical phenomena — if

exists — in the continuum limit of the LGT, should be in the same universality class with

the corresponding spin model. Therefore, a continuous order-disorder type transition in a

d−1 dimensional spin-model with global symmetry group C is directly related to a continuous

type confinement-deconfinement transition of the gauge theory with gauge group G where

C = Center(G).4

Let us briefly review the argument of [12]. The basic observation is that the magnetic

fluctuations are always gapped both in the high and the low T limit of the lattice gauge

theory. Therefore, they are expected to be gapped for any T on a trajectory crossing the

phase boundary in figure 1. This means that the magnetic fluctuations should not play

an essential role at criticality in the vicinity of a continuous confinement-deconfinement

transition. Integrating these short-range fluctuations, one indeed obtains an effective theory

that only involves the Polyakov loops, which in turn can be mapped on a spin model.

Therefore the critical phenomena, e.g. the critical exponents etc. of the lattice gauge theory

around a continuous transition should be governed by the corresponding spin model.

The magnetic sector is gapped at low T by assumption. We assume that the (bare)

coupling constant is large enough (see figure 1) so that the low T theory is confined. The

argument at high T is as follows. In the Lagrangian formulation of the LGT one can take

the action to be,

Algt =
∑

~r

Re







βt
∑

i

TrU~r,0i + βs
∑

ij

TrU~r,ij







; U~r,µν = U~r,µU~r+µ̂,νU
†
~r+ν̂,µU

†
~r,ν (2.1)

where ~r labels sites on the square lattice, U~r,µν are the product of link variables on a

plaquette with corner ~r. The first term in the action above corresponds to the electric

contribution and the second to the magnetic. The electric and magnetic coupling constants

are related to the bare coupling constant of the LGT and the temperature as follows:

2

g2
= a4−d√βtβs, T =

√

βt
βs

1

Nta
(2.2)

where a is the lattice spacing and Nt is the number of the lattice sites in the Euclidean

time direction. One observes that, at fixed coupling, βt ∼ T . Then, for sufficiently high T,

only configurations with vanishing electric flux contributes in the partition function. This

reduces the system to static configurations at high T, hence the theory can be thought of

3See [18] for a recent presentation of how the map works in a general case.
4Of course, not all of the spin-models exhibit continuous transitions. See [12] for a list of examples.
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Figure 1. Typical phase diagram of a lattice gauge theory with non-trivial center. Low T phase is

confining with vanishing expectation value for the Polyakov loop P and high T phase is de-confined.

We assume that (at least a portion) of the phase boundary that separates these phases is of second

or higher order. Then the critical phenomena around the phase boundary is determined by the

corresponding spin-model.

a d− 1 dimensional LGT at zero T, with a coupling constant g2
d−1 = g2

dT . Any such LGT

with a non-trivial center is confined and exhibits magnetic screening at strong coupling [12].

As mentioned before, the equivalence to the spin-models can be shown exactly at strong

coupling, [10, 11].

Svetitsky and Yaffe [12] were able to make reliable predictions concerning the critical

phenomena of a wide range of lattice gauge theories making use of this connection and the

well-known results on the critical phenomena of the corresponding spin-models.

First of all, they correctly predicted that the 2nd order transition in the pure SU(2)

theory in 4D is in the same universality class with the 3D Ising model (see e.g. [19] and

references therein). As another check of these arguments [12] presents the example of

SU(N) theory for d− 1 = 2, N > 4 where the dual spin model is again ZN symmetric and

exhibit a BKT type continuous transition. In this case, it was argued that for large N , the

theory approximates that of a U(1) LGT in 2+1 and the corresponding spin-model should

be the XY-model in 2D. It was explicitly checked in [12] that, for the U(1) LGT the critical

phenomena is in the same universality class as that of the 2D XY model. More generally,

if the d = 2 + 1 SU(N) gauge theory — or a suitable deformation with additional adjoint

matter — involves continuous critical phenomena than it should be the BKT type.

A particularly interesting case concerns SU(N) gauge theory in d − 1 > 2 spatial

dimensions with N > 4 (that includes the large N) where the dual spin model is ZN
symmetric. We then consider the large N limit that is most relevant for the gauge-gravity

duality. It is reasonable to believe that in the strict N → ∞ limit (with or without adjoint

matter), the center ZN is promoted to U(1). See [13] for an argument in favor of this,

– 6 –
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in the case of N = 4 SYM at strong-coupling.5 Another indication that this happens in

ZN invariant LGT at d = 2 is explained in [12]. Therefore, by the universality arguments

above, if there exist a continuous phase transition it should be governed by a U(1) invariant

spin model.6

We review how the equivalence of LGTs and spin-systems work at strong coupling in

appendix A for the unfamiliar reader. Here we shall mention two salient features.

• The temperature of the spin-system is inversely related to temperature in the original

gauge theory:

Ts ∼ T−1
l . (2.3)

Consequently, the low temperature (confined) phase of the gauge theory corresponds

to the high temperature (disordered) phase of the ferromagnet, whereas the high tem-

perature (de-confined) phase of the gauge theory corresponds to the low temperature

(ordered) phase of the ferromagnet.7

• Quite generally, the LGT-spin model equivalence can be generalized to incorporate

(adjoint) matter. This is mainly because the basic ingredient in the calculation i.e.

the center symmetry of the LGT remains intact upon addition of adjoint matter.

See [14] for a related recent discussion.

2.2 Holographic superfluidity

Here and until section 6, we specify to the particular case of U(1) invariant spin-models.

Continuous critical phenomena in such models include the interesting case of superfluidity,

that requires spontaneous breaking of the global U(1) symmetry. As reviewed above this

transition is directly connected to the confinement-deconfinement transition in the gauge

theory. In the original derivation of [10, 11], the de-confined phase of the U(1) invariant

LGT was understood as an ordered phase of the U(1) spin model. This is clear from the

discussion of section 2, as the center of U(1) is U(1) itself.

Instead, here we shall adopt an alternative approach where the U(1) factor arises

from the large N limit of an SU(N) gauge theory (pure or with adjoint matter). In this

case the deconfinement transition can be understood in the gravity dual as a Hawking-

Page transition by a generalization of the arguments in [13]. Assuming that the following

assumptions hold,

5See however [20] which shows that the U(1) symmetry is expected to arise only in the strict N → ∞

limit.
6One can ask whether there is any evidence, for or against criticality at N = ∞. There are two

independent arguments that argue for a second order transition [21–23] in the case of pure YM in 3+1

dimensions. On the other hand, there is the usual argument against a continuous transition at large N

that claims, since the number of degrees of freedom in the system changes from O(1) to O(N2) in a

confinement-deconfinement transition, latent heat should be finite. In [15] we presented a counter-example

to this reasoning, albeit in a gravitational setting: although the degrees of freedom change abruptly as the

graviton gas deconfines in the black-hole phase, the entropy difference may vanish at the transition. See [14]

for other examples of second order transitions at large N. Finally, even if the transition is first-order for

pure YM, the situation may change when one adds adjoint matter.
7In d = 2, IR divergence of the spin waves prevent ordinary long range order. Instead, a topological

long-range order in terms of the vortex-anti-vortex pairs arises [24–26]. The gauge theory partition function

is capable of describing the vortex configurations [12].
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• There exists a suitable SU(N) lattice gauge theory with coupling to adjoint mat-

ter chosen such that, at large N it flows to an IR fixed point with a continuous

confinement-deconfinement transition,

• Gauge-gravity correspondence holds and maps this to a Hawking-Page type transi-

tion,

then one should be able to map the normal-to-superfluid transition in the XY model to a

continuous Hawking-Page type transition on the gravity side.

The U(1) symmetry of the spin-model follows on the GR side from the shift symmetry

ψ → ψ + const. where ψ is the flux of the B-field

ψ =

∫

M
B = const. (2.4)

on the subspace M of the BH geometry that is spanned by the coordinates r and x0. In this

paper we consider gravitational set-ups where the B-field is either constant or pure gauge

B = dξ so that it does not back-react on the solution with H = dB = 0. Of course such a

B-field has no visible effect on the gravitational solution and in the second case it can be

removed by a gauge transformation. This ceases to be the case in presence of objects that

are charged under this shift symmetry.

In the classical approximation where one keeps only the low-lying gravity fields, there

are no bulk fields that carry the extra B charge. However, strings that wind around

the time-circle couple to the B-field through the term iψ, thus they are charged under

the shift symmetry with the identification ψ ∼ ψ + 2π. We shall denote this topological

U(1) symmetry as U(1)B
8 Therefore a non-vanishing string one-point function signals a

breakdown of the U(1)B symmetry. On the spin-model side this corresponds to an order-

disorder transition upon identification of the U(1)B symmetry with the U(1) spin symmetry

of the spin-model. Below, we would like to review these ideas in more detail.

2.3 Spontaneous breaking of U(1)B , the Goldstone mode and the second speed

of sound

For simplicity, let us consider the (critical or non-critical) bosonic string theory on a back-

ground with U(1)×E(d−1) isometry where the U(1) corresponds to the temporal S1, and

E(d − 1) to translations and rotations on the spatial part. The general background with

these symmetries is of the form9

ds2 = A(r,Ω)dx2
0 +B(r,Ω)dK2 + C(r,Ω)dr2 +D(r,Ω)dΩ; Φ = Φ(r,Ω) H = dB = 0,

(2.5)

8This symmetry should be broken down to ZN for finite N by quantum effects, see [20]. However we

only consider the N → ∞ limit in this paper.
9In order to distinguish the dilaton and the scalar field that appears in the Einstein-frame potential,

which is related to the dilaton by some rescaling, we denote the former (dilaton itself) by Φ and the latter

(rescaled dilaton) by Φ.
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where x0 ∼ x0 + 1/T , K is the d − 1 dimensional transverse part, and Ω is some internal

compact manifold. There can be additional bulk fields but we are only interested in the

NS-NS sector.

Most of the following traces the arguments in [13]. The order parameter for the

transition is the vev of the Polyakov loop, 〈P [C]〉, where C is a loop isomorphic to the

time-circle. This maps to the expectation value of the F-string path integral,

〈P [C]〉 ∝ 〈WF 〉SG (2.6)

where WF denotes the F-string path integral over all of the string configurations with the

boundary ending on C, and the final averaging is path integral over the super-gravity fields

that couple to the string. The string path integral is

WF =

∫

DXµDhab e−
R

(G+iB+ΦR(2)), (2.7)

where R(2) is the Ricci scalar on the sub-manifold M that the F-string wraps and Xµ

denotes the matter fields. We also use the short-hand notation

G ≡
√

det hab h
ab∂aX

µ∂bX
νGµν , B ≡

√

det hab ǫ
ab∂aX

µ∂bX
νBµν . (2.8)

One has to make sure that W is finite by an appropriate regularization of infinite volume

of the space time10 and factoring out diffeo-Weyl gauge volume a la Faddeev-Popov.

In the original discussion of [13] W is dominated by the classical saddles that minimize

the action in (2.7). The boundary condition for these classical strings is such that at τ = 0,

Xµ(σ, τ) ends on the temporal circle x0, some point x in K and at the cut-off of the radial

coordinate r = ǫ.

The string path integral is dominated by classical saddles when ℓ/ℓs ≫ 1 where ℓ

is the typical curvature of the target space and ℓs is the string length. In the original

AdS/CFT correspondence this ratio is proportional to the t ’Hooft coupling of the dual

N = 4 SYM theory, ℓ/ℓs ∝ λ
1
4 and indeed the classical strings dominate in the limit of

strong interactions. In the general case here one has to consider the full path integral.

The vev of P [C] is given by the path integral of WF over the super-gravity fields

that couple the F-string, weighted by the SG action. The non-trivial SG fields are the

space-time metric Gµν , the B-field Bµν and the dilaton Φ. Thus one has,

〈P [C]〉 ∝
∫

DGµν DBµν DΦ e−AsgWF , (2.9)

where Asg is the gravity action. As we are interested in the large N limit of the dual field

theory, we can send the string coupling gs → 0 and the SG path integral is dominated by

the classical saddles of Asg. For given asymptotic boundary conditions of G, Φ and B,

the saddles of interest involve only two type of solutions, the thermal gas (TG) and the

black-hole (BH). At an arbitrary temperature T (that partially determines the asymptotic

10A cut-off in r that we call ǫ close to the boundary would suffice for the sake of the discussion here. We

elaborate on this regularization in appendix D.1.
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boundary condition for G), only one of these saddles will dominate the SG path integral

as a result of the classical limit gs → 0. Let us assume that TG dominates at T < Tc
and BH dominates at T > Tc. Let us also assume that the BH solution only exists

above a certain temperature Tmin. Backgrounds that exhibit confinement generically satisfy

Tc ≥ Tmin [27, 28]. As explained in detail in [15] and reviewed in the next section, only in

the case Tmin = Tc the transition is second or higher order.

On the TG phase, the classical world-sheet M has infinite area. Therefore the string

path-integral WF , hence 〈P [C]〉 in (2.9) vanishes. One concludes that the TG solution is

U(1)B symmetric and the center in the dual gauge theory is unbroken. This means that

the dual spin-model is in the normal (disordered) phase. This is precisely as one expects

from the behavior of the dual spin model in the high temperature phase, recalling that the

temperature of the spin model is inversely proportional to the temperature on the gravity

side Ts ∝ T−1.

On the BH solution T > Tmin however, the classical string saddle M has finite area

and one has to evaluate (2.9) carefully. One has to include all of the configurations over

the classical fields G,B and Φ with the same on-shell value of the SG action.

The path integral over G and Φ in (2.9) is replaced by the classical solution (2.5) that

is a BH in this case. Sum over these saddles include the following important contribution

from the B-field. In the black-hole case the sub-manifold M has finite area11 and the B-field

has a flux ψ =
∫

M B. ψ in (2.7) has angular nature because it appears with a factor of i

and it can attain any value in the range ψ ∼ ψ + 2π. This identification yields the U(1)B
invariance.12 The sum over classical saddles then should include various different values of

ψ. As dB = 0 all different values of ψ yield the same on-shell gravity action.

We can thus write,

P [C] ∝
∫

Dψe−Ssg [ψ]

∫

DXµ Dhab eiψ e−
R

M (G+ΦR(2)), (2.10)

where Ssg now is evaluated on the saddle solution and is only a functional of ψ. On the

other hand the ψ path integral includes the classical saddle ψ = const and the fluctuations

δψ(K) around it.

When K is non-compact and dim(K) > 2, then the fluctuations δψ(K) viewed as a

massless bosonic field on K has long-range order, hence ψ should condense.13 Thus, on the

black-hole solution the U(1)B symmetry breaks down.14 This happens exactly at the point

where the black-hole forms, right above Tmin. As a result, the fluctuation δψ in (2.10)

becomes a Goldstone mode on the transverse space K.

11The divergence near boundary is regularized in the familiar way, cf. appendix D.1.
12In the critical IIB theory this identification arises as a result of discrete gauge transformations that

shift the value of ψ by a multiple of 2π [13].
13The situation at dim(K) = 2 exactly parallels the analogous situation in the 2D dual field theory, where

IR divergences kill long-range order.
14As a technical aside, in the computation above, one should check that the dilaton term in the action

does not spoil the arguments. In the particular case of the geometries considered in this paper, Φ diverges

in the deep interior, hence this check especially becomes important. We check in appendix D.1 that this

term indeed remains finite in our case.
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6

T

Tc

Lattice gauge theory Gravity Spin model

Deconfined, U(1)C/ Black-hole, U(1)B/ Superfluid , U(1)S/

Confined, U(1)C Thermal gas, U(1)B Normal phase, U(1)S
?

T

T−1

c

Table 1. Correspondence of different phases in the gravity/spin-model duality.

Considering the wave equation for δψ one expects to find,

ω2 = c2ψ(T ) q2 + O(q4), (2.11)

where cψ is the speed of sound of ψ and there is no mass term for ψ for T > Tc. It is

well-known that (see appendix C for a review, and section 5.6 for a holographic derivation

in gravity), the speed of sound cψ of the Goldstone mode vanishes continuously as one

approaches the transition temperature Tc from above, only if the transition is of continuous

type. This is exactly what happens in super-fluidity, where the “second speed of sound”,

i.e. the speed of sound associated with the entropy waves vanish as one approaches Tc of

the XY model from below (recall that temperature in gravity and in the XY model are

inversely related). In order to mimic this property of the spin model, we should require

that the Hawking-Page transition in gravity is of continuous type, hence Tc = Tmin [15].

In section 5.6 we show by an explicit gravity calculation that indeed the second sound

vanishes with the expected mean-field exponents.

Our conclusion is: whenever a second order (or higher order) Hawking phase transition

occurs in the gravitational background, it is natural to associate it with super-fluidity.

Here the thermal gas phase is dual to the normal phase of the system, and the black-hole

phase is dual to the super-fluid. The “first speed of sound” i.e. the sound of the density

waves is associated with the graviton fluctuations (that we are considered in [15]), and the

“second speed of sound” is associated with the fluctuations of the B-field that we consider

in section 5.6.

One can summarize the various phases of the theories as in table 1. The various U(1)

factors in this table are as follows: The U(1)B is the dual symmetry that arises from

compactifying the B field on the temporal circle. The U(1)C is the center symmetry of

the corresponding lattice gauge theory that is proposed to arise in the large N limit of

SU(N) (with or without) adjoint matter. Finally the U(1)S is the spin symmetry of the

corresponding XY model. The arrow of increasing T is the same for the LGT and gravity

picture and opposite in the spin model picture.

3 A model based on Einstein-scalar gravity

The arguments put forward in favor of a gravity-spin model correspondence above are gen-

eral. In this section we would like to introduce a simple set-up which allows for computa-

tions of quantities such as the scaling of magnetization and spin-spin correlation function on

the gravity side. The model is inspired by non-critical string theory and it becomes precisely

non-critical string theory in the interesting regime near the continuous phase transition.
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3.1 The model

The action in the Einstein frame reads,

A =
1

16πGN

∫

dd+1x
√−g

(

R− 4

d− 1
(∂Φ)2 + V (Φ) − 1

12
e−

8
d−1

ΦH2 + · · ·
)

+ G.H.

(3.1)

where the kinetic terms of the dilaton15 and the B-field H = dB are inspired by non-critical

string theory in d + 1 dimensions. The ellipsis denote higher derivative corrections. The

last term in (3.1), that we shall not need to specify here, is the Gibbons-Hawking term on

the boundary.

We allow for a non-trivial dilaton potential V (Φ) that should be specified by matching

the thermodynamics of the dual field theory. In the case of non-critical string theory in

d+ 1 dimensions the potential is given by,

Vnc(Φ) =
δc

ℓ2s
e

4
d−1

Φ, (3.2)

where ℓs is the string length and δc is the central deficit, see section 3.3 for more detail.

GN in (3.1) is the Newton’s constant in D = d + 1 dimensions. It is related to N of the

dual field theory16 by,
1

16πGN
= Md−1

p N2, (3.3)

where Mp is a “normalized” Planck scale, that is generally of the same order as the typical

curvature of the background ℓ. The limit of large N corresponds to classical gravity as

usual. One should be careful in attaining this classical limit: The correct way of achieving

this is described in section 3.3. On the gravity side the parameter N arises from the RR-

sector, where it is the integration constant of a space-filling F(d+1) form, F(d+1) ∝ N . Then

the large N limit is defined as sending this value to infinity and sending the boundary value

of the dilaton Φ0 to −∞ such that N exp(Φ0) remains constant and yields Mp in (3.3). We

refer to section 3.3 for details.

In what follows we shall only consider solutions with either constant or pure-gauge

B-field whose legs are taken to lie along r and x0 directions:

Bµν = Br0, (3.4)

In this case H = 0 in (3.1) and the B-field contributes to neither the equations of motion

nor the on-shell value of the action. However, it contributes the F-string and D-string

solutions as we study in section 5.

There are only two types of backgrounds at finite T (with Euclidean time compactified),

with Poincaré symmetries in d − 1 spatial dimensions, and an additional U(1) symmetry

in the Euclidean time direction. These are the thermal graviton gas,

ds2 = e2A0(r)
(

dr2 + dx2
d−1 + dx2

0

)

, Φ = Φ0(r), (3.5)

15The scalar field Φ here is related to the original dilaton of the non-critical string Φ by some rescaling

that is defined in section 3.3. By Φ we will always mean the “rescaled dilaton” throughout the paper.
16As explained above, N may either be the number of colors in SU(N) gauge theory or the number of

spin states at each site in a ZN spin-model.
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and the black-hole,

ds2 = e2A(r)
(

f−1(r)dr2 + dx2
d−1 + dx2

0f(r)
)

, Φ = Φ(r). (3.6)

We define the coordinate system such that the boundary is located at r = 0. For the

potentials V that we consider in this paper, there is a curvature singularity in the deep

interior, at r = rs. In (3.5), r runs up to singularity rs. In (3.6) there is a horizon that

cloaks this singularity at rh < rs where f(rh) = 0. x0 is the Euclidean time that is identified

as x0 ∼ x0 + 1/T . This defines the temperature T of the associated thermodynamics. In

the black-hole solution, the relation between the temperature and rh is obtained in the

standard way, by demanding absence of a conical singularity at the horizon:

4πT = −f ′(rh). (3.7)

This identifies T and the surface gravity in the BH solution.

In the r-frame defined by (3.5) and (3.6) one derives the following Einstein and scalar

equations of motion from (3.1):

A′′ −A′2 +
ξ

d− 1
Φ

′2 = 0, (3.8)

f ′′ + (d− 1)A′f ′ = 0, (3.9)

(d− 1)A′2 +A′f ′ +A′′f − V

d− 1
e2A = 0. (3.10)

One easily solves (3.9) to obtain the “blackness function” f(r) in terms of the scale factor as,

f(r) = 1 −
∫ r
0 e

−(d−1)A

∫ rh
0 e−(d−1)A

. (3.11)

Then the temperature of the BH is given by eq. (3.7):

T−1 = 4πe(d−1)A(rh)

∫ rh

0
e−(d−1)A(r)dr. (3.12)

The difference between the entropy densities of the BH and the TG solutions is given by

the BH entropy density up to 1/N2 corrections17 that we ignore from now on [15]:

∆S =
1

4GNN2
e(d−1)A(rh). (3.13)

The difference in the free energy densities can be evaluated by integrating the first law of

thermodynamics, [28]:

∆F (rh) = − 1

4GNN2

∫ rh

rc

e(d−1)A(r̃h) dT

dr̃h
dr̃h, (3.14)

where rc is the value of the horizon size that corresponds to the phase transition tempera-

ture T (rc) = Tc, at which the difference in free energies should vanish.

17We choose to normalize the thermodynamic quantities by an extra factor of 1/N2 so that the entropy

on the BH becomes O(1) and on the TG it becomes O(1/N2).
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3.2 Scaling of the free energy

In [15] we showed that there exists a continuous type Hawking-Page transition between

the TG and the BH solutions when the black-hole horizon marginally traps a curvature

singularity: rh = rc → ∞. This happens only when the IR asymptotics of the dilaton

potential is chosen such that,

V (Φ) → V∞ e
4

d−1
Φ (1 + Vsub(Φ)) , Φ → ∞ (3.15)

where V∞ is a constant and Vsub denote subleading corrections that vanish as Φ → ∞. It is

also shown in [15] that the transition temperature Tc that follows from (3.12) with rh → ∞
stays finite.

Given the asymptotics in (3.15) one solves the equations of motion (3.8) and (3.8) to

obtain the IR behavior, as r → ∞,

Φ(r) →
√
V∞
2

r + · · · (3.16)

A(r) → −
√
V∞

d− 1
r + · · · (3.17)

where the subleading terms vanish in the limit.

Depending on Vsub there are various different possibilities for types of transitions. We

consider only two classes of potentials with:

Case i : Vsub = C e−κΦ, κ > 0, Φ → ∞ (3.18)

Case ii : Vsub = C Φ−α, α > 0, Φ → ∞ (3.19)

Defining the normalized temperature,

t =
T − Tc
Tc

, (3.20)

the scaling of thermodynamic functions with t can be found from the following set of for-

mulae: The reduced temperature directly follows from the subleading term in the potential,

t = Vsub(Φh), (3.21)

where Φh is the value of the dilaton at the horizon. Then the free-energy as a function of

t follows from by (3.14) as,

∆F (t) ∝
∫ t

0
dt̃ e(d−1)A(t̃). (3.22)

Here, the dependence of the scale factor on t should be found by inverting (3.21), and

comparing the (leading term) asymptotics of the scale factor A(r) with the dilaton Φ(r) [15].

In the cases (3.18) and (3.19) one finds that,

Case i : A(t) =
2

κ(d− 1)
log(t/C) + · · · , t→ 0+ (3.23)

Case ii : A(t) = − 2

κ(d− 1)
(t/C)−

1
α + · · · , t→ 0+. (3.24)
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The free energy then follows from (3.22) as :

Case i : ∆F (t) ∝ t
2
κ
+1, t→ 0+ (3.25)

Case ii : ∆F (t) ∝ eC
′t−

1
α t1+

1
α , t→ 0+, (3.26)

where C ′ = 2C
1
α in the second equation. We see that F vanishes, as it should, for arbitrary

but positive constants ξ, κ and α. Other thermodynamic quantities such as the entropy,

specific heat, speed of sound etc, all follow from the free energy above [15].

In the special case of

κ =
2

n− 1
, (3.27)

in (3.25) one finds an nth order phase transition. On the other hand, the special case of

α = 2 in (3.19) corresponds to the BKT type scaling.18

One can also obtain the value of the transition temperature Tc in terms of the coefficient

of the dilaton potential in the IR as [15]:

Tc =

√
V∞
4π

. (3.28)

Finally, we should note the following issue. As mentioned above, the transition region

t ≈ 0 generically coincides with the singular region Φh ≫ 1 in this setting. We do not need

to worry about the α′ corrections because they vanish in the interesting region r ≫ 1 in

the interesting limit rh ≫ 1 [15]. However, one should worry about the string loops. In a

generic situation the higher string loops cannot be ignored near the transition region. We

are however interested in the situation with gs → 0 (N → ∞) that corresponds to the U(1)

invariant spin-model. This can be achieved by sending the boundary value of the dilaton

to −∞. We will now dwell on this point in more detail.

3.3 The large N limit and string perturbation theory

The effective Einstein frame action in (3.1) is supposed to arise from a (fermionic) non-

critical string theory which also involves an RR-sector. The string frame action is,

As =
1

g2
sℓ
d−1
s

∫

dd+1x
√−gse−2Φ

(

Rs + 4(∂Φ)2 +
δc

ℓ2s
− 1

12
H2

(3)

)

− 1

2(d+ 1)!
F 2

(d+1) + · · ·
(3.29)

The ellipsis denote higher derivative (α′) corrections, subscript s denote string-frame ob-

jects and δc is the central deficit that — depending on the fermionic or the bosonic string

theory — reads,19

δc = cf (9 − d), fermionic; δc = cb (25 − d), bosonic. (3.30)

18Very recently holographic realizations of (quantum) BKT scalings were obtained in [29] and [30].
19The constants cf , cb depend on the particular CFT on the world-sheet as there are various possibilities

for the boundary conditions and GSO projections on the world-sheet fermions possible twisted or shifted

boundary conditions for the scalar matter Xµ [31]. In the case of bosonic world-sheet with periodic scalars,

one has cb = 2/3 which is indeed what one obtains from solving (3.10) with the asymptotics (3.17) and (3.16).

See the next section for details of the IR CFT.
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F(d+1) is a space filling RR-form whose presence is motivated by holography: it should

couple to the Dd−1 branes that are responsible for producing the SU(N) gauge group. As it

is space-filling, its effect in the theory can be obtained by replacing it in the action by its on-

shell solution [32]. This solution in general will be very complicated as the higher derivative

corrections will also depend on F(d+1). Let us ignore these higher derivative solutions for

the moment in order to be definite — the following discussion will not qualitatively depend

on the higher derivative corrections.

The equation of motion for F(d+1) is d ∗ F(d+1) = 0. The solution is

F(d+1) =
cFN

ℓ2s

ǫ(d+1)√−gs
, (3.31)

where ǫ(d+1) is the Levi-Civita symbol in d+ 1 dimensions and cF is some O(1) constant.

We chose the integration constant to be proportional to N motivated by the fact that F

should couple to N Dd−1 branes before the decoupling limit. Inserting the solution in the

action gives (we ignore the NS-NS two-form in the following discussion),

As =
1

g2
s ℓ
d−1
s

∫

dd+1x
√−gse−2Φ

(

Rs + 4(∂Φ)2 +
δc

ℓ2s

)

+
c2F
2ℓ2s

N2 + · · · (3.32)

Now we define a shifted dilaton field

Φ = Φ + logN, (3.33)

and go to the Einstein frame by

gs,µν = e
4

d−1
Φgµν . (3.34)

We obtain,

A =
N2

g2
sℓ
d−1
s

∫

dd+1x
√−g

(

R− 4

d− 1
(∂Φ)2 + V (Φ)

)

+ · · · (3.35)

where the dilaton potential becomes,

V (Φ) =
1

ℓ2s

(

δc e
4

d−1
Φ +

c2F
2
e

2(d+1)
d−1

Φ + · · ·
)

(3.36)

We denote the corrections coming from the higher-derivative terms by the ellipsis. This is

what one would obtain by ignoring the higher derivative terms.20

On the other hand the solution of the dilaton equation of motion follows from (3.29)

generically involves an integration constant that we shall denote as Φ0. For example in the

kink solutions of [15] this corresponds to the boundary value of the dilaton on the AdS

boundary. One can write

Φ = Φ0 + δΦ(r) (3.37)

20In the phenomenological approach that we adopted in the previous section, one assumes that there

exist a string theory that would produce a potential of the form (3.15) instead of (3.36). In particular the

leading term with exponent 2(d+ 1)/(d − 1) should either be absent or renormalized to 4/(d− 1).
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to make explicit the integration constant. Now, we are ready to define the large-N limit.

We send N → ∞, Φ0 → −∞ such that the shifted dilaton in (3.33) remains constant

eΦ0N → λ =⇒ eΦ = λeδΦ (3.38)

where λ is some O(1) constant.

The shifted dilaton Φ is the one that we used in the previous section to discuss ther-

modynamics and it is what we will refer in the next sections to study the observables of the

spin-system from the gravity point of view. Whether Φ is large or small does not matter

neither for the loop-counting of strings nor for the strength of gravitational interactions:

The latter is determined by the coefficient in the action (3.35). Identification with (3.1)

yields the Newton’s constant

GN =
g2
sℓ
d−1
s

16πN2
, (3.39)

which shows that the gravitational interactions among the bulk fields can be safely ignored

in the large N limit. This equation also defines the “rescaled” Planck energy that was

introduced in (3.3) in terms of gs and ℓs as,

Mp = ℓ−1
s g

− 2
d−1

s . (3.40)

The string loops on the other hand are counted by the coupling of the original dilaton Φ

to a world-sheet M with genus g as,

e−
1
4π

R

M

√
hR(2)Φ = e−Φ0χ(M)e−

1
4π

R

M

√
hR(2)δΦ = Nχ(M)e−

1
4π

R

M

√
hR(2)Φ, (3.41)

where χ(M) = 2(1 − g) is the Euler characteristic. We observe that the above definition

of the large N limit does the job and suppresses the strings with higher genus.

One might still worry about the viability of the string perturbation expansion if the

additional term proportional to
∫

M

√
hR(2)Φ in (3.41) becomes very large in some limit.

Indeed, as we argued above the interesting physics concerns the region Φ ≫ 1 which

corresponds to the vicinity of the phase transition. We check in appendix D.1 and D.2

that for all of the string paths that we consider in this paper the world-sheet Ricci scalar

suppresses the linear divergence in Φ. For example in case of (3.18) one finds that in the

transition region
√
hR(2) ∼ exp(−κΦ).

All of the discussion we presented above can be understood in the following equivalent

way. To be definite let us consider the simplest effective (rescaled) dilaton potential that

corresponds to case 3.18:

V (Φ) = V∞ e
4

d−1
Φ (1 + Ce−κΦ

)

. (3.42)

It was shown in [15] that this potential has a kink solution that flows from the AdS

extremum at

eΦ0 = C
1
κa (3.43)

—where a is some number independent of C—to the linear dilaton geometry in the IR

Φ → ∞. Then the subleading term in the potential can be written as,

Vsub(Φ) = a−κeκΦ0−κΦ = a−κeκΦ0e−κΦ (3.44)
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where we used (3.33). The statement that “the transition region corresponds to large dila-

ton” now can be quantified. What we really mean by this is that the reduced temperature

t (3.20) is small enough, so that the scaling behavior of observables set in. Now, from (3.21)

we see that this is given as,

t = a−κeκΦ0e−κΦ. (3.45)

On the other hand the large N limit (3.38) involves Φ0 → −∞, therefore we see that in

order for t to be small, one needs not the actual dilaton Φ but the difference δΦ = Φ−Φ0

to be large. The same reasoning can be generalized to general potentials that involve an

AdS extremum.

To conclude, we can safely ignore higher string loops in the computations below.

3.4 Parameters of the model

In the model constructed above there are various parameters. Here we shall list the pa-

rameters without derivation and refer to [28] for a detailed discussion.

• Parameters of the action: In the weak gravity limit, GN → 0, N → ∞ and M1−d
p =

16πGNN
2 = fixed., there are two parameters in the action: Mp and the overall

size of the potential ℓ. The latter fixes the units in the theory. One can construct

a single dimensionless parameter from the two: Mpℓ which determines the overall

size of thermodynamics functions in the dual field theory and it can be fixed e.g.

by comparison with the value of the free energy at high temperatures, see [28]. In

the present paper we are only interested in scaling of functions near Tc, thus this

parameter will play no role in what follows.

• Parameters of the potential: We have not specified the potential apart from its IR

asymptotics. The IR piece will be enough to determine the scaling behaviors and also

the transition temperature through equation (3.28). Therefore we have only three (di-

mensionless) parameters: V∞ℓ2, C and κ or α that appear in (3.15), (3.18) and (3.19).

The first determines the (dimensionless) transition temperature Tcℓ through (3.28),

the second one is related to the boundary value of the dilaton (cf. the discussion

above), and the third one determines the type of the transition. For example κ = 2

for a second order transition, equation (3.27).

• Integration constants: In [15] we solve the Einstein-dilaton system and work out the

thermodynamics in the reduced system of “scalar variables” that is a coupled system

of two first order differential equations. One boundary condition can be interpreted as

the value of T , and the other is just regularity of the solution at the horizon. Therefore

the only dimensionless parameter that arise among the integration constants is Tℓ.21

21In the fifth order system of (3.8)–(3.9) it is a little harder to work out the non-trivial integration

constants. There it works as follows [28]: in (3.9), one requires f → 1 as r → 0. This fix one constant,

and the other is gives T. In the rest, one is fixed by requirement of regularity at the horizon, one is just

a reparametrization in r, and the last is fixed either by the asymptotic value of the dilaton in the case

Φ(r) = Φ0 is constant at the boundary, or the integration constant Λ that determines the running of the

dilaton near the boundary Φ ∼ log(− log(Λr)) near r → 0. In either case the thermodynamic functions can

be shown to be independent of this constant [28].
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4 Non-critical string theory and the IR CFT

4.1 Linear-dilaton in the deep interior

The leading asymptotics (3.15) of the dilaton potential which follows from the requirement

of a continuous Hawking-Page transition is precisely the same as the potential that follows

from d+ 1 dimensional non-critical string theory. This is easily seen by transforming (3.1)

with the potential (3.15) to string frame with gs,µν = exp(2Φ/(d − 1))gµν . Not only that

but we also have the asymptotics (3.16), which imply that the asymptotic solution in the

IR corresponds to a linear-dilaton background that is — very conveniently — an α′ exact

solution to (3.29) and corresponds to an exact world-sheet CFT. Indeed, in [15] it is shown

that, with the subleading terms of the form (3.15), the string-frame curvature invariants

both on the TG and the BH backgrounds vanish in the deep interior region near criticality

i.e. for rh → ∞, (T → Tc). Hence the higher derivative terms denoted by ellipsis in (3.29)

become unimportant in the IR theory.

This implies that the dynamics in the transition region should be governed by the

linear-dilaton CFT. More precisely, we expect that quantities that receive dominant contri-

butions from the deep interior region near criticality should be determined by the linear-

dilaton CFT.

In the next section we shall make use of this observation to argue that the various

observables in the corresponding spin-model scale precisely with the expected critical ex-

ponents near Tc.

Another implication of this is that an asymptotically linear dilaton geometry (with

corrections governed by the subleading terms in (3.15) develops an instability at a finite

temperature Tc into formation of black-holes. It is quite reasonable to expect that in the

limit of weak gs this point coincides with the Hagedorn temperature of strings on the

linear-dilaton background [17]. We have more to say on this in section 5.4.2.

Finally, we note that in the case when the model is embedded in non-critical string

theory, all of the parameters in the model are entirely fixed. To illustrate this let us assume

that the entire potential is given by the leading term, ignoring the sub-leading terms etc.

Then the coefficient V∞ in (3.15) and the transition temperature would be given as,

V∞,nc =
cb(25 − d)

ℓ2s
, Tc,nc =

1

4πℓs

√

cb(25 − d), (4.1)

in the case of bosonic world-sheet CFT and

V∞,nc =
cf (9 − d)

ℓ2s
, Tc,nc =

1

4πℓs

√

cf (9 − d), (4.2)

in the case of fermionic world-sheet CFT. These results follow from (3.30) and (3.28). Of

course, in reality these numbers should be renormalized because the theory is not just

given by the leading piece: a potential with only the leading exponential behavior do not

possess any phase transition. The corrections will depend on the UV physics where the α′

corrections kick in and renormalize these coefficients. We shall argue for another way to

fix these numbers in section 5. We will also show in that section that the scaling exponents

are also determined completely, once the CFT is fixed.
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4.2 The CFT in the IR

The arguments presented above point towards the conclusion that, on the string side the

criticality of the dual spin-system should be governed by a linear-dilaton CFT. Here we

want to spell out some of the salient features of this IR CFT. We start with the bosonic

case and then mention generalization to fermionic CFT in the end.

We reviewed the intimate connection between non-critical string theory and the linear-

dilaton background in appendix B. Utilizing this relation one can obtain the stress-tensor

of the (bosonic) linear-dilaton CFT as [31],

T (z) = − 1

α′ : ∂Xµ∂Xµ : +vµ∂
2Xµ (4.3)

for the left-movers, with an analogous expression for the right movers. vµ are the propor-

tionality constants in the dilaton solution Φ = vµX
µ. The indices are raised and lowered by

the flat metric. The total central charge of the theory (including the ghost sector) vanishes

for vµ satisfying (B.5). In our case we have,

vµ =

√
V∞
2

δµ,r ≡ m0 δµ,r. (4.4)

The reason for denoting this constant m0 will be clear when we analyze the spectrum

of fluctuations in this geometry, see appendix E. The total central charge of the theory

(including ghosts) vanishes only for,

m2
0 =

{

25−d
6ℓ2s

bosonic
8−d
4ℓ2s

fermionic
(4.5)

for the bosonic and fermionic CFT’s, [33].

Now we discuss the spectrum in the case we are interested in: The Euclidean d + 1

dimensional world sheet with (4.4) and the Euclidean X0 dimension compactified on a

radius R = 1/2πT . There are various ways to obtain the spectrum. Both the light-cone

and the covariant quantization is discussed in [31, 33]. Here we trivially extend these results

in our case.

The Virasoro generators are now

Lm =
1

2

∞
∑

n=−∞
: αµm−nαn,µ : +i

√
α′

√
2

(m+ 1)m0α
r
m. (4.6)

The center-of-mass momenta are related to the zero mode oscillators as usual, pµL =
√

2
α′α

µ
0

and pµR =
√

2
α′ α̃

µ
0 . Decomposing into components one has,

p0,L = 2πTk +
w

2πTα′ , p0,R = 2πTk − w

2πTα′ , (4.7)

pi,L = pi,R = pi, pr,L = pr,R = pr. (4.8)

In the first line the integer k denotes the Matsubara frequency and the integer w denotes

the winding number on the time-circle. As a result of the linear piece in the zeroth level
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Virasoro generator (4.6) one obtains the following mass-shell conditions (we adopt the

definition of mass in [31]) in the light-cone gauge:

−m2
d+1 = p2

⊥ + p2
r + 2im0pr + (2πkT )2 +

( w

2πTα′

)2
= − 2

α′ (N + Ñ − 2), (4.9)

0 = kw +N − Ñ , (4.10)

where p⊥, N and Ñ denote the center-of-mass momentum, the left (right) number of

oscillations in the space transverse to motion, respectively,

N =

∞
∑

n=1

α⊥,−n · α⊥,n, Ñ =

∞
∑

n=1

α̃⊥,−n · α̃⊥,n. (4.11)

In (4.9) m2
d+1 denote the d + 1 dimensional mass. One important difference between

the linear-dilaton and the flat case is that the definition of the mass of the string excitations

in terms of their momentum gets modified [31] due to the linear oscillator piece in (4.3).

The flat case follows by setting m0 = 0, hence sending dilaton to constant.

Once the modified definition of mass is attained, the physical spectrum of the linear

dilaton is exactly the same as the critical string: the lowest level N = Ñ = 0 is a tachyon

with mass −4/α′, the next level is massless and corresponds to the fluctuations of the

metric, the B-field and the dilaton, etc. [31].

All of these results are readily extended to the fermionic case with N = 1 world-sheet

supersymmetry [31]. In the light-cone gauge, one obtains the following spectra for the NS

and Ramond sectors,

m2
d+1 = N +

∑

q>0

qb⊥−qb
⊥
q − 1

2
, (NS) (4.12)

m2
d+1 = N +

∑

q>0

qb⊥−qb
⊥
q , (R), (4.13)

where N denotes the number of bosonic oscillations in the transverse space (4.11) and

q ∈ Z for the R-fermions and q ∈ Z+ 1
2 for the NS-fermions. This is again the same spectra

that one finds in the critical super-string.

However one finds crucial differences at the one-loop level: Modular invariance does

not allow for NS-R fermions except in particular dimensions given by multiples of 8. This

is quite convenient for our holographic purposes, because we do not want any fermionic

operators in the dual spin-model. Thus in a generic dimension d+ 1 < 8 one has only two

sectors R-R and NS-NS. Furthermore, in the generic case, there is no analog of the GSO

projection of the superstring. Therefore the tachyon in the NS-NS sector survives.

Existence of tachyon in the physical spectrum is a very generic feature of the linear-

dilaton CFT in any dimensions. The mass of the tachyon changes depending on which

particular CFT chosen. With the definition of mass adopted above it is given by m2
T =

−4/α′ for the bosonic case, m2
T = −2/α′ for the NS-NS fermions, m2 = −15/4α′ for an
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orbifold in the r-direction, etc., but we stress that the ground state for k = w = 0 in

linear-dilaton CFT in arbitrary dimensions is always a tachyon.22

This fact renders the linear-dilaton theory unattractive from many perspectives. In our

case however, it is a desired feature of the IR CFT. We recall that the background geometry

becomes asymptotically linear-dilaton only in the transition region T ∼ Tc and only in the

large r region. We do not expect that the complete sigma-model which corresponds to

the black-hole for an arbitrary T have tachyon as a ground state. This would imply that

the black-hole geometry is unstable at any temperature. Instead the linear dilaton CFT

describes the physics near the transition and we do expect instability in this region. In

fact, as we show in sections (5.3.2) and (5.4.2), it is the presence of the tachyon which

guarantees vanishing of magnetization as M ∼ (T − Tc)
β and divergence of the correlation

length as ξ ∼ |T − Tc|−ν at the transition!

5 Spin-model observables from strings

F-strings and D-branes are important probes in the standard examples of the gauge-gravity

correspondence. In case of the holographic models for QCD-like theories, the phase of the

field theory at finite temperature, the quark-anti-quark potential, the force between the

magnetic quarks etc, can all be read off from classical F-string and D-string solutions

in the dual gravitational background. In this section we argue that the probe strings

constitute indispensable tools also in the spin-model-gravity correspondence. In particular,

the Landau potential, the correlation length, the various critical exponents, the scaling

of order parameters near the transition, the phase of the system, spin-spin correlation

function, etc. can all be computed from the probe strings in the dual background. In this

section we discuss how to obtain the various observables of the spin-model from the probe

string solutions.

5.1 What can we learn from the Gravity-Spin model duality?

In order to answer this question, one has to identify the Landau and the mean-field ap-

proximations on the gravity side. The Landau approach is based on integrating out the

“fast” degrees of freedom in the spin-model in order to obtain a free-energy functional for

the “slow” degrees of freedom, i.e. the order parameter ~M . We refer to appendix C for a re-

view of the statistical mechanics background and in particular a description of the Landau

approach. This is exactly analogous to integrating out the gauge invariant states to obtain

an effective action for the Polyakov loop on the LGT side, as illustrated in appendix A. In

the context of the gauge-gravity correspondence, this is, in essence, very similar to keeping

only the lowest lying degrees of freedom in string theory, i.e. the supergravity multiplet. It

is tempting to think that the complicated step of integrating over the spin configurations

in (C.4) to obtain (C.5) can be side-stepped by use of the gravity-spin model duality.23

22With a more conventional definition of mass [33], one finds a tachyon only for d > 1 in a d+1 dimensional

theory. In our case, the equivalent statement is that if we consider propagation of the tachyonic mode, we

find a smooth propagation for d ≤ 1 but oscillatory behavior for d > 1.
23We note a very interesting paper [34] that dwells on these issues. In this paper Headrick argues that

one can generate the Landau functional at strong coupling in terms of classical string solutions.
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In the most general case, the correspondence between the spin model and gravity

should relate the Landau functional (C.5) with the string path integral:24

ZL = Zst. (5.1)

As in the original gauge-gravity duality we expect that there is a simple corner of the

correspondence where both sides of (5.1) become classical and one approximates the path

integrals by the classical saddles.

This is the large N limit: On the l.h.s. this is given by the Landau approximation (C.6).

On the r.h.s. , it is given by the saddle-point approximation to the string theory where one

can ignore string interactions gs → 0. Then (5.1) reduces to,

e−βFL = e−Ast , (5.2)

where the action on the r.h.s. is the full target-space action including all the α′ corrections,

evaluated on the classical saddle. It is the effective action for all excitations of a single

string25 and in principle it can be obtained from the sigma model on the world-sheet.

At this point, it is clear that scaling of any quantity on both side of (5.2) near Tc should

be characterized by the mean-field scaling. This is just a consequence of the saddle point

approximation. Therefore, any operator in the spin-model that is given by a fluctuation

of Ast should obey the standard mean-field scaling. We shall refer to these operators as

local operators. The only possible exceptions to this — within the classical approximation

of (5.2)—are operators that can not be obtained as fluctuations of Ast. These correspond

to non-local operators on the gauge theory, they are governed by probe F-strings or D-

branes on the string side. Yet, as we will show in the next section, they can correspond

to quite ordinary quantities such as the magnetization on the spin-model side. Thus,

magnetization is an example of a non-local operator. Even for the “non-local observables”

though the mean-field scaling is expected to hold in a semi-classical approximation, where

one only keeps the lowest-lying string excitations in string path integrals. These excitations

correspond to bulk gravity modes (levels N = 0 and N = 1 of the string spectrum). We

confirm this expectation in the sections (5.3.2) and (5.4.2) below.

In practice, it is usually very hard to reckon with (5.2), and one further considers the

weak-curvature limit where one can replace the r.h.s. with the (super)gravity action:

1

T
FL ≈ TVd−1Lgr. (5.3)

Here, Lgr is the (super)gravity action evaluated on-shell, on the classical saddle. We also

assumed a trivial dependence on the spatial volume and made use of the fact that the

temperatures on the spin-model and the gravity sides are inversely related, cf. appendix A.

Influenced by the standard lore of the gauge-gravity correspondence, we expect that

the weak curvature limit corresponds to strong correlations on the spin-model side. On

24We shall be schematic in what follows.
25It is important to note that this is not a string field theory action, the excitations governed by Ast are

particles, rather than strings.
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the other hand, one quantifies “strong correlations” by the Ginzburg criterion in the spin-

model, as reviewed in section C. Quite generally, the system will be in a regime of strong

correlations around the phase transition where the mean-field approximation usually breaks

down. Therefore, one may hope that the gravity side provides a better description in (5.3)

precisely within this interesting region. This can be checked explicitly by computing cur-

vature invariants in the string frame. Even though one show that the Ricci scalar (and the

various contractions of Ricci two-form and the Riemann tensor) vanish in the limit (see [15])

there exists invariants such as dΦ2 that asymptote to a constant that is generically the same

order as the string length scale ℓ−2
s . Therefore, in a generic case one is forced to include the

higher derivative corrections. Luckily this can be done precisely in the interesting critical

regime, because the background asymptotes to a linear-dilaton theory.

What observables can we actually calculate on the gravity side? Because going beyond

the large N limit is very hard, one can (at present) only hope to obtain results in the Landau

approximation. The main observables then include the Landau coefficients26 α0(T ), α1(T ),

α2(T ), the basic scaling exponents β, ν, η, γ etc., and the spin correlation functions.

Moreover, the scaling exponents of operators that are dual to fluctuations of the bulk fields

in Lgr in (5.3) are necessarily given by the mean-field scaling. Therefore one can only hope

to obtain results beyond mean-field in the scaling exponents of operators dual to stringy

objects, such as magnetization or the spin-spin correlator.

Once again, we would like to emphasize the distinction between “mean-field scaling”

and the “mean-field approximation”. The former is unavoidable for local operators in the

Landau approximation (large N). On the other hand, gravity description is expected to go

beyond the latter. Therefore for quantities such as Tc, the Landau coefficients at Tc, etc.,

and correlation functions of the non-local observables we expect gravity to provide better

answers than the mean-field approximation.

One may still ask the question, what is the use gravity-spin-model duality if one can

compute all of these quantities by employing Monte-Carlo simulations, or RG techniques?

First of all, the RG techniques are limited in the case of strong correlations. Secondly, the

calculations on the gravity side are much easier to perform, much easier than the Monte-

Carlo simulations, and one can usually obtain analytic results. However a more fundamen-

tal reason is that, there are situations where applicability of the Monte-Carlo simulations

are limited. The well-known examples are the computation of real-time correlators or spin-

models with fermionic degrees of freedom. By the gravity-spin-model correspondence, one

expects to overcome such fundamental difficulties.

5.2 Identification of observables

The duality between the lattice gauge theories and spin-models [10, 11] relate the magneti-

zation directly to the Polyakov loop. On the other hand, the Polyakov loop is related to the

classical F-string solution as discussed in section 2.3. Therefore we propose the following

chain of relations:

〈P (x)〉 ↔ 〈~m(x)〉 ↔ e−SNG[Cx]. (5.4)

26We refer to appendix C for a definition of these coefficients.
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Here the boundary condition Cx for the string is just a point x in the spatial part and a

loop on the temporal circle.

The spin field is valued under U(1)S . Similarly the Polyakov loop is valued under the

center C = ZN that becomes a U(1) in the large N limit. One should think of this as the

exponents becoming angles in the transformation,

P → e2πi
k
N P, k = 1, 2 · · ·N

at large N. We shall denote this U(1) as U(1)C . Similarly, as discussed in section 2.2 at

length, the F-string that winds the time-circle is charged under the U(1)B ,27 because it

couples to the B-field. Thus one should identify

U(1)S = U(1)C = U(1)B . (5.5)

as in table 1 in section 2.3.

One should work out the identification in (5.4) carefully. In particular the first entry

is a complex number and the second entry is a vector in 2D spin space. The precise

identification of the two is provided with the standard isomorphism between U(1) and O(2)

representations. We imagine the vector ~m on the XY plane represented by the magnitude

|~m| and the phase ψ. Then the simplest option is to set mx = Re(P ) and my = Im(P ).

There is a little complication though, because in fact the identification should depend

on the value of ψ. This is because the physically preferred reference frame is set by the

direction of the magnetization vector vi in (C.16). All of the correlation functions should be

decomposed into components parallel and perpendicular to vi. Represented by the phase,

the direction of magnetization reads

~v = (cos(ψ), sin(ψ)). (5.6)

Thus, the naive identification mentioned above is correct only for ψ = 0. For a dif-

ferent value of ψ one should obtain the correct identification by a U(1) rotation: P =

exp(iψ)(mx + imy). Thus, in general we have,

Re(P ) = m‖ = cos(ψ)mx − sin(ψ)my, Im(P ) = m⊥ = sin(ψ)mx + cos(ψ)my, (5.7)

where

m‖,i = ~v · ~m vi, m⊥,i = (δij − vivj)mj. (5.8)

The identification of the second and the third entries in (5.4) is straightforward. One

can schematically write,

〈P [C]〉 = 〈e−
R

G+i
R

B〉, (5.9)

using (2.7) and (2.9), where we dropped the dilaton coupling.28 Thus the magnitude of

P is determined by the space-time metric and the phase is determined by the B-field as

27The charge is determined by the winding number. Here we are only interested in strings that wind the

time circle once.
28We check in appendix D.1 that this contribution is sub-leading and do not contribute to the scaling

near Tc.
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explained in section 2.3 and one should identify the ψ angle defined in (2.4) and the angle

defined in (5.6).

In this picture the spin correlation function should be given by a fundamental string

solution that ends on two separate points x and y:

〈mi(x)mj(y)〉 ↔ e−SNG[Cxy]. (5.10)

The boundary condition is such that the string ends on the points x and y on the spatial

parts and wraps the temporal circle.

Again, one has to be careful in the identification (5.10) and has to split the correlator

into the parts perpendicular and parallel to the magnetization vector vi as in (C.19):

〈mi(x) mj(0)〉 = 〈~m‖(x) · ~m‖(0)〉vivj + 〈~m⊥(x) · ~m⊥(0)〉(δij − vivj). (5.11)

On the other hand one has the identification,

〈~m(x) · ~m(0)〉 = 〈P ∗(x)P (0)〉. (5.12)

Given the identification (5.7) one obtains,

〈~m‖(x) · ~m‖(0)〉 = | ~M |2 + 〈~s‖(x) · ~s‖(0)〉 = 〈Re P (x)Re P (0)〉, (5.13)

〈~m⊥(x) · ~m⊥(0)〉 = 〈~s⊥(x) · ~s⊥(0)〉 = 〈Im P (x)Im P (0)〉 , (5.14)

where we also decomposed the magnetization ~M and the fluctuations ~s according to (C.14),

assuming that ~M is isotropic. This is of course in the black-hole phase. In the thermal-gas

phase | ~M | vanishes and any direction vi is identical.

5.3 One-point function

Having identified the observables on the spin model side with the observables on the gravity

side, we are ready to determine the magnetization ~M of the spin model on the gravity side

by a one-point function calculation. As we argued in the previous section the magnetization

should be given by the real part of the F-string solution that wraps the time circle. As a

warp-up exercise, we shall first assume that the string path integral is dominated by the

classical saddle and obtain the resulting scaling law for the magnetization. After this, we

will loosen the assumption and perform the same calculation in a semi-classical regime in

section 5.3.2.

5.3.1 Warm-up: classical computation

The definition of the Polyakov action and the boundary conditions are given in detail in

section 2.2. In appendix D we prove that in all of the cases we consider in this paper, the

dilaton coupling term in SNG, that is given by ΦR(2) gives finite contributions, hence do

not alter the scaling. Also, the effect of the B-field is discussed in detail in section 3.2.

Thus we shall only restrict our attention to the area term (see eq. (5.9)):

| ~M | = |〈P [C]〉| ∝ 〈e−
R

G〉 (5.15)
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and replace the fundamental string action with the Nambu-Goto action.

To compute the energy of the string, we fix the gauge σ = x0, τ = r where (τ, σ) are the

coordinates on the world-sheet, x0 is the Euclidean time that is identified as x0 ∼ x0 +1/T

and r is the radial variable in the coordinate system given by (3.6). Then,

SNG =
T (rh)

−1

2πℓ2s

∫ rh

ǫ
dr
√

det hab, hab = ∂ax
µ∂bx

νgsµν , (5.16)

where ℓs is the string length, gs is the BH metric in the string frame:

ds2s = e2As(r)
(

f−1(r)dr2 + dx2
d−1 + dt2f(r)

)

, As(r) = A(r) +
2

d− 1
Φ(r), (5.17)

and ǫ is a point near the boundary.29

In passing we review the discussion in section 3.3. There we introduced the rescaled

field Φ in relation to the “real” dilaton as in equation (3.33) as Φ = Φ + logN = Φ0 +

δΦ + logN = log λ + δΦ the last two lines follow from (3.37) and (3.38). The constant λ

is O(1). Thus, when large, Φ just corresponds to the difference of the real dilaton and its

boundary value Φ0. Large Φ does not mean large Φ when Φ0 is chosen very small. This

choice indeed corresponds to the large N limit in the gravity language. Therefore we can

safely ignore the loop corrections here, and in the next sections.

On the TG solution one replaces f → 1, A(r) → A0(r) and Φ(r) → Φ0(r) in the above

formulae. As described in section appendix D.1 the exponential of −SNG vanishes on the

TG solution. Thus,
~MTG = 0. (5.18)

This confirms our discussion in section 2.3, that indeed the TG phase of the gravity corre-

sponds to the disordered phase of the spin model.

Let’s turn to the BH phase. It is shown in (D.1) that (5.16) is finite, unless d = 2. In

the latter case the fluctuations of the zero mode of the B-field in the 2D transverse space

makes it vanish — see the discussion in section 2.3. Thus one finds,

~MBH 6= 0 (d > 2), ~MBH = 0 (d = 2), (5.19)

and the black-hole solution indeed corresponds to the ordered phase of the spin-model for

d > 2. One also confirms on the gravity side, that no long-range order in the spin field is

possible in d = 2.

We would also like to see how ~M scales near the phase transition (as one approaches

from below in the spin model). Using eqs. (3.17) and (3.16), one finds that the scale factor

vanishes As(r) → 0 as r → ∞, see (D.8). Thus the integrand in (5.16) becomes constant in

the limit rh → ∞. Using also the fact that T → Tc in this limit one finds, (see appendix D.1

for details),

SNG → T−1
c

2πℓ2s
rh, T → Tc. (5.20)

29The target space metric typically diverges on the boundary and this cut-off guarantees finiteness

of (5.16). One can remove the dependence on ǫ by some renormalization procedure, however we do not

need this as we are only interested in the dependence of SNG on rh in the limit rh → ∞ that corresponds

to T → Tc. We provide an appropriate renormalization scheme in appendix D.1.
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In order to determine the scaling of SNG with the reduced temperature t, one needs to find

the dependence of rh on t . This is done in appendix D.1. Define the dimensionless constant:

Vs = V∞ℓ
2
s = (4πTcℓs)

2, (5.21)

where V∞ is defined in (3.15) and (3.28) is used to relate it to Tc. Then the result is,

Case i : ~MBH = e−SNG ∝ t
4

κ Vs t→ 0 (5.22)

Case ii : ~MBH = e−SNG ∝ e−
4

Vs
( t

C )
− 1

α

, t→ 0, (5.23)

where the constants α, κ and C are defined in (3.18) and (3.19).

We note that (5.23) is valid strictly for d > 2. As mentioned before, for d = 2 we obtain
~M = 0 below and above the transition.

Let us now specify to the case of second-order transitions. Then the coefficient κ is

given by (3.27) with n = 2:

κ = 2, second − order transition. (5.24)

Then, comparison of (5.22) with (C.21) yields the critical exponent of the magnetization as,

β = 2V −1
s , (5.25)

where Vs is given by (5.21).

Finally, we note that the mean-field scaling | ~M | ∼ t
1
2 corresponds to a particular value

of the parameter Vs:

VMF
s = 4. (5.26)

It seems like a contradiction that one does not automatically obtain the mean-field scaling

for | ~M | directly from the gravity action. However, it is not. As explained in section 5.1, the

magnetization is a “non-local operator” which maps onto a non-local object in the string

theory side, i.e. the expectation value of the F-string that wraps the time-circle. Therefore

the classical string computation is not bound to produce the mean-field result.

On the other hand, we remind the reader that this section is just meant to be a warm-

up exercise. The classical computation is not at all guaranteed to be self-consistent. In

particular it assumes that the string path integral is dominated by classical saddles, which

only holds when ℓ/ℓs is parametrically large. This is not guaranteed in the backgrounds

that we discuss in this paper. Below, we consider the semi-classical computation and argue

that the classical result is altered non-trivially due to large quantum fluctuations. We shall

observe that the mean-field scaling arises as a result of the semi-classical computation.

5.3.2 Semi-classical computation

In principle the classical saddle dominates the path integral only in a regime where the

typical curvature radius of the geometry — that is determined by the asymptotic AdS

radius ℓ—is much larger than the string length ℓ/ℓs ≫ 1. This is indeed the case for a

pure AdS black-hole geometry when the dual N = 4 theory is at strong coupling, because
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the AdS/CFT prescription relates the ratio ℓ/ℓs to the ’t Hooft coupling λt of the dual

gauge theory as ℓ2/ℓ2s ∝
√
λt. In the theories we are interested in, when there is no tunable

moduli like λt, this assumption will generically fail — unless there is some physical reason

for ℓ/ℓs to be large. In this section we consider a full path integral computation.

What kind of a string propagator do we want to compute? In the classical approxi-

mation of the previous section, the recipe [13, 38, 39] to compute 〈P [C]〉 can be described

as follows. Consider a string that stretches between the boundary at r = 0 and a probe

D-brane just outside the horizon at r = rh − ǫ. The boundary operator wraps the time-

circle, hence the string that couples to it also should. In the Euclidean BH the length

of the time circle measured by an observer sitting at r goes to zero as r → rh thus the

string world-sheet wraps a 2D ball, and yields a finite answer when the UV divergence

regularized properly. This string world-sheet is the classical saddle of the Nambu-Goto

action and it provides the correct answer for ℓ≫ ℓs. We can generalize this picture to the

case ℓ ∼ ℓs simply by considering a string that stretches between the boundary and the

horizon, wrapping the time circle, but this time computing the full path integral including

all quantum fluctuations on the string. This is similar to an open-string annulus diagram.

It is very hard to compute this however because the string stretches over the entire range

between the boundary and the horizon and one needs the full CFT that governs the physics

everywhere on the target-space. Instead one can think of this diagram as propagation of

a closed string that is created at the boundary, travels the distance from r = 0 to r = rh
on the BH and absorbed at the horizon. This is easier to handle because, at least we

know the CFT close to rh in the limit rh → ∞, which corresponds to the phase transition

regime. This is the linear-dilaton CFT described in section 4. Indeed, this CFT will prove

important in determining the critical exponents of the corresponding spin system.

Then the idea is to divide the closed string paths into two parts: from the boundary

to a point rm and from rm to the horizon rh. The point rm should be chosen such that the

string propagation from rm to rh be governed by the IR CFT, see figure 3. What is meant

by “semi-classical approximation” will be to consider the contribution of the lowest mass

string states at levels N = 0 and N = 1 in the IR CFT.

Field theory analogy. It is helpful to introduce the idea first in a similar situation in

quantum-field theory. Generalization to the string will then be clear. First consider the

correlator of a free massive scalar field with mass m2 in flat d + 1 dimensions 〈φ(0)φ(y)〉.
This can easily be given a point-particle interpretation,30

〈φ(x)φ(y)〉 =

∫ ∞

0
dτ〈0, 0|τ, y〉op (5.27)

where the integrand is just the propagator of a point-particle in proper time τ with Hamil-

tonian p2 +m2.

Now let us consider the more general situation of computing the propagator of a field

φ in curved space time. The field should be specified with some quantum numbers such

as momenta, charge etc. determined by the isometries of the background. We assume

30We consider Euclidean case for simplicity.
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that there are no self-interactions, hence no Feynman loops. We also assume that the

back-reaction on gravity can be ignored. Finally we consider a background geometry of

the “domain-wall type” 3.6 where one coordinate r is singled out. We denote the d + 1

coordinates as (r, ~x). Now, 〈φ(0,~0)φ(r, ~y)〉 can still be formulated in proper-time as in (5.27)

but this time the one-particle Hamiltonian will be much more complicated.

However, let us consider a situation when the background geometry simplifies in some

asymptotic region, when r ≫ 1, where we know how to write down the one-particle Hamil-

tonian. Then the idea is to divide one-particle paths in (5.27) from 0 to rm and from rm
to rh, where rh > rm ≫ 1. For this purpose we decompose the correlator as,

〈φ(0,~0)φ(rh, ~y)〉 =

∫ ∞

0
dτ

∫

drddxm〈0; 0,~0|τm; r, ~xm〉〈τm; r, ~xm|τ ; rh, ~ym〉 (5.28)

≈
∫ ∞

0
dτ

∫

dτm Jm ddxm〈0; 0,~0|τm; rm, ~xm〉〈τm; rm, ~xm|τ ; rh, ~ym〉IR,

where in the second line we exchanged the integral over the intermediate point r with an

integral over τm producing a Jacobian Jm.31

In the second line of (5.28) the propagator in the region 0 ≤ r ≤ rm is governed by

an unknown one-particle Hamiltonian HUV that is the full Hamiltonian valid everywhere

on the target-space. The second propagator is governed by HIR for which we assume

the knowledge of the spectrum. The two should be continuously connected at rm. The

approximation in the second line is to replace the full Hamiltonian in the second propagator

with this IR Hamiltonian. The entire procedure will in general depend on the matching

point rm. But, if we are interested in how the object scales as a function of the end-point

rh, this dependence will be irrelevant.

A technical but crucial point is that the division of the paths as in the second line

of (5.27) makes sense only for the paths with ṙ(τ) > 0. This will certainly be satisfied for

“slight deformations” from the classical path, if the classical path itself satisfies ṙ(τ)cl > 0.

It is reasonable to assume that these are the paths that dominate because they minimize

the kinetic energy in the one-particle lagrangian Lop ∝ ṙ2 + · · · . The procedure can be

extended to non-monotonic paths in an interesting way. Let us consider one-dimensional

case for simplicity (the generalization to arbitrary dimensions is trivial). Suppose that we

want to divide the path integrals in two different regions in space, for r ≤ rm and r > rm.

Then, one has to classify all of the paths according to their “crossing number” cm that

is defined as the number of solutions to r(τ) = rm. The monotonic paths have crossing

number cm = 1. This is obviously an odd number and the next case have cm = 3, see

figure 2. All of the paths from r = 0 to r = rh > rm are classified by cm. For non-trivial

paths, with cm > 1 one can apply the same procedure by defining τm to be the greatest

solution to r(τm) = rm. Then, the procedure applies smoothly. For sake of the argument

31This is achieved by making use of the freedom to choose τm anywhere in between 0 and τ and inserting

inside the integral 1 =
R

dτm
δ(r(τm)−rm)

dr

dτ

˛

˛

r(τ)=rm

a la Faddeev-Popov. This is not to be confused with the usual

re-parametrization invariance of the relativistic point-particle. Here we describe propagation of a quantum

field in the Schwinger’s proper-time formulation, not a relativistic particle. In particular the Lagrangian

that generates the propagation is not re-parametrization invariant.
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Figure 2. Division of the one-particle paths that contribute to the QFT correlation function into

regions with r < rm and r > rm. The paths are classified according to their crossing number cm.

For crossing cm > 1, τm should be chosen as the greatest node.

here, we will restrict only to the paths with cm = 1. This can be achieved by choosing rm
to be close enough to rh. This is indeed the case in the physical situation we are interested

in, because the region where the CFT on the string is governed by the IR CFT corresponds

to rm . rh for rh ≫ 1.

At this point it is helpful to switch to canonical formulation and express the propagators

in terms of the eigenstates of HUV and HIR that we denote as ξ′ and ξ respectively:

〈φ(0, 0)φ(rh, ~y)〉 =

∫ ∞

0
dτ

∫

dτmJmd
dxm

∑

ξ′∈HUV

Ψ̃ξ′(0,~0)Ψ̃∗
ξ′(rm, ~xm)e−τmHUV (ξ′)

×
∑

ξ∈HIR

Ψξ(rm, ~xm)Ψ∗
ξ(rh, ~y)e

−(τ−τm)HIR(ξ), (5.29)

where H denote the Hilbert spaces of the respective Hamiltonians. Ψξ and Ψ̃ξ′ denote the

wave-functions of the eigenstates ξ and ξ′ of HIR and HUV respectively.

One can now carry out the integration at the matching subspace r = rm over ~xm. This

integration will produce the overlap of the wave function Ψ̃ of the UV Hamiltonian with

the wave function Ψ of the IR Hamiltonian:32

Cξξ′ =

∫

ddxmΨ∗
ξ(xm)Ψ̃ξ′(xm). (5.30)

One can further sum over the UV HIlbert space, by defining the overlap function

Aξ(0, τm) =
∑

ξ′∈HUV

Cξξ′Ψ̃ξ′(0)e
−HUV (ξ′)τm . (5.31)

This is the amplitude for production of a state ξ of the IR Hamiltonian at τm. Thus one has

〈φ(0, 0)φ(rh, ~y)〉 =

∫ ∞

0
dτ

∫

dτmJm
∑

ξ∈HIR

Aξ(0, τm)Ψ∗
ξ(rh, ~y)e

−(τ−τm)HIR(ξ). (5.32)

32We do not assume that the Hilbert spaces of the UV and the IR Hamiltonians have same dimensionality,

the overlap matrix may be rectangular.
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Now one can carry out the τ integral; this will produce HIR(ξ) in the denominator and

then the sum over the IR states ξ will only get contribution from the on-shell state ξ∗ with

HUV (ξ∗) = 0. This is the analog of the on-shell state p2 + m2 = 0 in the free-field case.

Therefore our final expression is,

〈φ(0, 0)φ(rh, ~y)〉 =

(
∫

dτmJmAξ∗(0, τm)eτmHIR(ξ∗)

)

Ψ∗
ξ∗(rh, ~y) (5.33)

Dependence on the matching point rm of the UV and IR regions is hidden in the Jacobian

Jm. Our ignorance about the UV region of the target space is summarized by the function

Aξ∗(0, τm). More generally this may be replaced by a sum over the on-shell states ξ∗ as

will be the case for the string propagation below.

Closed string case. Having outlined the procedure for the simpler case of quantum field

theory, let us now consider the closed string propagation. As we argued in the beginning

of this section, the one-point function 〈P [0]〉 is given by the propagator 〈Ψi, 0,~0|Ψf , rh, ~xf 〉
with some initial state Ψi on the boundary that corresponds to the Polyakov loop at the

transverse point ~0, and some final state Ψf at the horizon at a transverse point ~xf . In the

end of the computation everything that is not determined by the boundary condition at

r = 0 should be summed over. In particular we should integrate over ~xf . When comes to

Ψf the situation is as follows: In the CFT language, the path integral we want to compute is

a sphere diagram with two insertions of vertex operators VΨi(σ1, τ1) and VΨf
(σ2, τ2). These

operators should be defined in the full CFT. Quite generally, the PSL(2,MC) invariance

of the sphere 1) allows to fix locations of the insertion points (σ1, τ1) and (σ2, τ2); 2) it

restricts the conformal weights (hf , h̃f ) of the operator VΨf
in terms of the ones of the

initial state (hi, h̃i). Therefore the final state will be fixed automatically. However, we will

still have a sum because the matching procedure described above will effectively yield a

decomposition of Ψf in terms of the spectrum of the IR CFT.

What do we know about the initial string state Ψi? It should correspond to the

Polyakov loop on the boundary gauge theory. Clearly it should be a winding w = 1 state

in the full CFT with zero transverse momentum ~p⊥ = 0 and zero Matsubara frequency

k = 0.33 Apart from these we cannot say much. In particular we do not know the precise

form of the vertex operator that corresponds to this state, as we do not know the details

of the full CFT. However, this ignorance will not affect our final result.

Gauge fixing. One important complication in comparison to the QFT case above is that

now we have two re-parametrization + one Weyl invariance on the world-sheet that should

be gauge fixed. String paths are parametrized by the world-sheet coordinates (σ, τ) with

σ ∼ σ+2π. In the path integral we can fix the two re-parametrizations by fixing the world-

sheet metric to be of the form hab = ĥabe
σL with some reference metric ĥ. The remaining

freedom σL is the Liouville mode, which can be left as unfixed. It is well-known that

under quantum effects σL becomes a space-like dimension and the target space becomes

flat with one additional dimension plus a linear dilaton. It was further shown in [31] — see

33It is also reasonable to assume that it corresponds to a state with no string excitation numbers but we

will not assume this.
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appendix B for a review — that for non-critical strings on flat d − 1 dimensional target-

space to make sense at higher genera, one is forced to introduce an extra world-sheet field

φ that couples to the world-sheet Ricci scalar. Then, after fixing the re-paratmetrization

invariance, the Liouville field σL combines with φ to produce two extra dimensions on the

target space plus a linear dilaton field. Thus the end-result is non-critical string theory in

d+1 dimensional flat target-space with a linear dilaton Φ, which is exactly what we have in

the IR in the model of section 3 for rh ≫ 1. Another option is to make sure that the CFT

has vanishing total central charge. In this case σL decouples and one has fixed the entire

gauge symmetry on the world-sheet. The background becomes linear-dilaton in the range

r ≫ 1 for rh → ∞. The two options are totally equivalent and for definiteness let us adopt

the latter option. Then we start with d+ 1 dimensions and we fix both re-parametrization

and Weyl.

At this point there are two options that one can choose to work with. One can either

keep the ghosts that arise from the re-parametrization fixing or one can ignore them and

include only the transverse string fluctuations in the canonical formalism and treat the

propagation in the light-cone gauge. In the asymptotic linear-dilaton regime it is known

that the ghosts exactly cancel the excitations of the string along the r and the x0 directions

in the linear dilaton background, just like the flat case [31]. We will assume that this is

true also in the more general case when we have the correction terms in (3.15).

The calculation becomes more transparent in the light-cone gauge which can easily be

generalized to the linear-dilaton background [31, 33]. Here, one ignores the contribution

of the re-parametrization ghosts and fixes the metric hab = ĥabe
σL by hand. There is a

residual freedom from the combination of diffeo-Weyl that leaves ĥ invariant which can be

fixed by,

X+ = p+τ + x+, X± =
1√
2
(X0 ± r). (5.34)

X− is also fixed through the Virasoro constraint and one is left with only the transverse

oscillators along Xi.

Calculation. For the purpose of identifying the contribution from the IR region we

divide the propagation into two parts. The procedure we outlined for the field-theory

case to separate the paths in the two different regions and to sew the propagators at the

matching region r = rm has a direct generalization to the closed string propagation in our

background: One only has to

1. replace the Hamiltonians in (5.29) with the Virasoro generators H = L0 + L̃0;

2. extend the integration over τ to a complex parameter w = τ + iσ whose imaginary

part couples to L0 − L̃0, hence the integral over it produces the left-right matching

of the on-shell states;

3. replace the wave-functions Ψξ and Ψ̃ξ′ of the IR and UV Hamiltonian with vertex

operators in the CFTs.
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Figure 3. The string world-sheet that wraps the time-circle and hangs from the boundary to the

horizon as the dual of the one-point function of the Polyakov loop. The Euclidean time is identified

as indicated by the dashes. We insert a complete set of string states χ at an intermediate point rm
chosen close enough to rh, for large rh, such that the IR CFT description holds for r > rm.

Formally we first decompose the path integral from τ = 0 to τm and τm to ∞:

〈Psii, 0|Ψf ,∞〉 ≡ 〈Ψi, 0,~0|Ψf , rh, ~xf 〉 =

∫

bci,bcf

DXµe−A[X]−A[σL] (5.35)

=

∫

dXµ
m(σ)

∫

bci,bcm

DXµe−A[X]

∫

bcm,bcf

DXµe−A[X],

where the boundary conditions are defined by the sets,

bci =

{

Xµ(0, σ) = Xµ
i (σ) : X0

i (σ + 2π) = X0
i (σ) +

1

T
; ~Xi,0 = r0 = 0

}

(5.36)

bcm = {Xµ(τm, σ) = Xµ
m(σ)} (5.37)

bcf = {Xµ(∞, σ) = Xµ
f (σ) : ~Xf,0 = ~xf , r0 = rh}. (5.38)

Quantities with subscript 0 refer to the center-of-mass positions in the first and the

last lines.

The r-component of the intermediate string rm(σ) has a center-of-mass piece

r(τm, σ) =

∫ 2π

0

dσ

2π
r(τm, σ) + · · · ≡ r0 + · · · (5.39)

Just as in the field theory computation above, we can use the freedom to choose τm to

replace the integration over r0 with an integration over τm by inserting

1 =

∫

dτmδ(r0(τm) − rm)Jm, J−1
m =

dr0
dτ

∣

∣

r0(τ)=rm
(5.40)

inside the integral over Xµ
m(σ). Now, we assume that only the paths with crossing number

cm = 1 dominate the path integral. This is certainly the case for rm chosen close enough34

34We remind that the “crossing number” was defined in the field theory analogy above. This assumption

can be lifted as explained in the field theory analogy above by modifying the procedure of dividing paths.
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to rh for rh ≫ 1. This means that,

r(τ ′) > r(τ), τ ′ > τ, for τ ≥ τm, (5.41)

where

r(τ) ≡
∫ 2π

0

dσ

2π
r(τ, σ). (5.42)

Therefore we achieved the division of path integrals from r0 = 0 to r0 = rm and r0 = rm to

r0 = rh. We will approximate the second class of paths by replacing the action with that

of the linear-dilaton CFT:

〈Ψi, 0|Ψf ,∞〉 ≈
∫ ∞

0
dτmJm

∫

dX
′µ
m (σ)PI(0, τm)PIIR(τm,∞), (5.43)

where the first path integral is

PI(0, τm) =

∫

bci,bcm

DσLDXµe−A[X], (5.44)

with A the full world-sheet action and the second one is

PIIR(τm,∞) =

∫

bc′m,bcf

DXµe−AIR . (5.45)

The primes in (5.43) and (5.45) denote omission of the center-of-mass piece in r(τm) as it

is fixed to rm by (5.40).

The approximation in (5.43) is two-fold: First of all we approximate the action in the

region r(τ) > rm by the IR CFT:

AIR =
1

4πα′

∫ 2π

0
dσ

∫ ∞

τm

dτ
√

ĥ
[

ĥab∂aX
µ∂bX

νηµν + 4α′vµX
µR̂+ 2α′bab∇acb

]

, (5.46)

where we idsplay explicitly the reparametrization ghosts. The proportionality factor in

the dilaton in our case is given by (4.4). We consider the bosonic linear-dilaton theory

for definiteness; the final result (in the semi-classical approximation that is to be defined

below) is independent of the particular linear-dilaton CFT chosen.

The second approximation is that we restrict the analysis to the cm = 1 paths. Both

of these approximations become better as the point rm is chosen closer to rh. In fact, the

second assumption is automatically satisfied in the light-cone gauge (5.34) where the role

of r(τ) is played by X+(τ).

Now, we focus on the second path integral PIIR. In the canonical formalism this can

be written as,

PIIR(τm,∞) =
∑

χ∈H⊥

〈Vχ(Xm, τm)V ∗
χ (Xf ,∞)〉∆IR(χ), (5.47)

This is an unimportant detail however, which has no effect on the final result. Here we just restrict the

analysis to cm = 1 paths for simplicity.

– 35 –



J
H
E
P
1
2
(
2
0
1
0
)
0
6
2

where χ runs in the transverse Fock space of the linear-dilaton CFT and Vχ(X, τ) denotes

the vertex-operator for creating a closed string X at world-sheet time τ in the χ eigenstate

of the Hamiltonian L0 + L̃0 [40]:

Vχ(X, τ) =

∫ 2π

0

dσ

2π
VL(χ,XL(τ − σ))VR(χ,XR(τ − σ)). (5.48)

The eigenstates χ of our linear-dilaton CFT are labelled by the center-of-mass momenta in

r and transverse directions pr, ~p⊥, the Matsubara frequency k and the left (right) oscillator

numbers N (Ñ).

The propagator of a state χ(pr, p⊥, k, w,N, Ñ ) is then given by

∆IR(χ) =

∫

|z|<1

d2z

|z|2 z
L0(χ)−1z̄L̃0(χ)−1, (5.49)

where the Virasoro generators are given by (4.6). In the propagator (5.49), the integral

over z projects the states on the mass-shell (4.9), (4.10).

The IR path integral (5.47) contains the rh dependence that we seek for, inside the

vertex operator for the final state. It is contained in the center-of-mass position term in

the r-direction, see (5.36). Let us make it explicit by factoring out

V ∗
χ (Xf ,∞) = e−iprrhV

∗
χ(X,∞), (5.50)

where V contains no dependence on rh. On the other hand, the sum over χ in (5.47) contain

integrals over pr and p⊥ and sums over k, w N and Ñ . Noting also that the integral over z

in (5.49) projects onto the mass-shell states (4.9) and (4.10) one can directly perform the

integral over pr in (5.47) and find,

PIIR(τm,∞) =
∑

χ

Cχe
−ip∗r(χ)(rh−rm), (5.51)

where the constant Cχ does not depend on rh and p∗r(χ) denotes the solution of the mass-

shell condition (4.9):

p∗r = −im0

(

1 +

√

1 +
m2∗(χ)

m2
0

)

, (5.52)

m2
∗ ≡ 2

α′

(

N + Ñ − 2
)

+ p2
⊥ + (2πkT )2 +

( w

2πTα′

)2
. (5.53)

Substituting (5.51) in (5.43) we find that the entire rh dependence of the Polyakov

loop becomes,

〈P [0]〉 ∝
∑

χ

C(χ)e−ip
∗
r(χ)rh , (5.54)

where the states χ have zero transverse momenta and C is some c-number whose value is

independent of rh. This result can be thought of a direct generalization of the field theory

analog in (5.33). The exponential term above is the analog of the wave-function Ψχ∗ and

the coefficient Cχ above is the analog of the expression inside the brackets in (5.33). The
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important difference is that here we have an infinite sum over all possible on-shell states

of the string.

The expression inside the square-root in (5.52) has the following behavior for the

various physical states. For any state other than the tachyon (N = Ñ = k = w = 0) it is

larger than 1. For the tachyon it equals,

1 +
m2

∗
m2

0

=
1 − d

25 − d
. (5.55)

Thus it is negative for any non-zero spatial dimension d − 1. For a “winding tachyon”

N = Ñ = 0, k > 0, its sign is determined by the value of the temperature T . This latter

case will prove important in the evaluation of the correlation length in section 5.4.2. Here,

the important point is to realize that (5.54) is always dominated by the tachyonic ground

state in the limit r → rh because all of the higher states result in bigger suppression in

the exponential.

For the tachyon on the other hand the square bracket in (5.52) is oscillatory, thus it

gives an imaginary contribution to the exponent in (5.54) and the modulus of 〈P [0]〉 is

determined by the first term in (5.52),

lim
rh→∞

|〈P [0]〉| ∝ e−m0rh . (5.56)

We can now translate the variable from rh to the reduced temperature t using (D.13) near

the transition region,

e−m0 rh = t
1
κ . (5.57)

Consequently, we obtain the scaling of magnetization as,

| ~M | ∝ |P [C]| ∝ t
1
κ . (5.58)

In particular, for the second order transition κ = 2 one obtains the mean-field scaling,

| ~M | ∝ t
1
2 . (5.59)

This provides a non-trivial check on the proposed duality. Although this is a stringy

computation in principle, we observe that the scaling exponent is determined by the lowest

lying fluctuation of the string that always correspond to the tachyon in a linear-dilaton

CFT in arbitrary dimension. As this is a gravity mode, it is quite reasonable to expect

mean-field scaling by the arguments in section 5.1. The computation above confirms this

expectation non-trivially.

It can also be shown that all of the arguments that we made throughout the derivation

readily extends to the other linear-dilaton CFTs, including the fermionic ones. This is

because there always exists a tachyon in the spectrum for which the square-root in (5.52)

becomes imaginary, whereas it becomes real for all of the other states in the physical

spectrum. This result can easily be understood intuitively: in the transition region T ≈ Tc
where the linear dilaton CFT governs the scaling behavior, the existence of the tachyon

signals instability, hence phase transition, and it is this tachyonic state which dominates and
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(a) (b) (c)

Figure 4. The classical string saddles that contribute the spin-spin two point function in the

ordered phase of the ferromagnet. (a) The disconnected diagram. Strings are falling on the horizon.

Its value is proportional to the square of the magnetization expectation value | ~M |2. (b) Connected

string diagram. (c) A bulk-mode exchanged between two disconnected strings.

determines the scaling law of observables. In section (5.4.2) we provide another example

of this phenomenon.

There are various possible modifications of the mean-field result. First of all, it would

be interesting to see whether going beyond the semi-classical approximation would modify

the critical exponent. For this one has to sum over all of the string states instead of

focusing only on the dominant tachyonic contribution. It will be very interesting to obtain

corrections to mean-field scaling as a result of this computation. We hope to investigate

this issue in the future.

Second type of possible modification involves the 1/N corrections. In the calculation

above we assumed that the boundary value of the dilaton can be tuned strictly to zero, so

that we can ignore gravitational interactions. One expects that the 1/N corrections modify

the mean-field scaling as,

| ~M | ∝ t
1
2
+O(N−2). (5.60)

5.4 The two-point function

As explained in section 5.2, the spin-spin correlation function is represented by an F-string

solution on the gravity side, (5.10) that wraps the Euclidean-time circle and is connected

to two separate points on the boundary that we take as x and 0. As in (5.3.1), we first

compute this quantity classically as a warm-up exercise. We then generalize to the realistic

case where one has to consider the full path integral. The classical computation was first

carried out in the case of AdS black-holes in [35, 36] (see also [37]).

5.4.1 Warm-up: classical computation

We will perform the computation in the black-hole phase (that corresponds to the super-

fluid phase in the XY-model). The computation in the TG phase is very similar and as we

are essentially interested in how the correlator scales near Tc, the two results will yield very

similar results. Although all of the NS-NS fields Gµν , Bµν and Φ couple to the F-string, we

show that the G-coupling yield the dominant term in appendix D.2. Thus one can replace

the F-string action with the Nambu-Goto action in this section, unless specified otherwise.

There are three string embeddings that contribute [37], see figure 4:
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1. Disconnected diagram. This consists of two straight strings that connect to the

boundary at points x1 = L = |x| and x1 = 0 and hang from the boundary to the

horizon. The result is twice the NG action in (5.16), thus it is finite as long as T > Tc.

As T → Tc it diverges as in (5.20), that corresponds to the fact that the magnetization

vanishes smoothly as T → Tc. Thus the disconnected contribution yields,

〈~m(x) · ~m(0)〉dis = 〈|P |〉2 = | ~M |2 = finite, T > Tc. (5.61)

We are not interested in the actual value of the disconnected piece, it depends on

the normalization of the Polyakov loop. As mentioned before this piece is absent

in the TG phase. As it is disconnected, this piece is actually O(g−2
s ) enhanced

with respected to the interesting connected contributions [37] that should be handled

separately.

2. Connected diagram. This is a differentiable world-sheet whose end-points are

connected to the boundary at points x and 0. To compute its on-shell action we fix

the gauge τ = x1, σ = x0 where x1 is the coordinate on the boundary on which the

end-points of the string L and 0 lie. The result is (see appendix D.2):

SconNG =
1

2πℓ2sT

∫ rf

ǫ
dr

e2As(r)

√

1 − e
4As(rf )

f(rf )

e4As(r)f(r)

, (5.62)

where rf < rh is the turning point of the string that corresponds to dr/dx1 = 0 and

ǫ is a cut-off near the boundary.35 As denotes the scale factor of the metric in the

string-frame, see (5.17).

The length between the end-points of the string L is given by,

L = 2

∫ rf

ǫ
dx1 = 2

∫ rf

ǫ
dr

1
√

f(r)

√

e4As(r)f(r)

e
4As(rf )

f(rf )
− 1

. (5.63)

Eqs. (5.62) and (5.63) parametrically define the function SconNG(L). One can easily

show that L is monotonically increasing in rf . When the distance L reaches a certain

value that corresponds to rf = rh, the connected string solution falls into the horizon,

thus ceases to exist. Beyond this point this diagram gets replaced by the “exchange

diagram” that we discuss below.

We are eventually interested in the scaling of the spin-spin correlation function near

Tc. Therefore let us focus on the limit rh ≫ rf ≫ 1. In this limit T is very close to

Tc and at the same time L is large. One can easily compute the function SconNG in this

limit (see appendix D.2) and finds,

SconNG → mT L+ · · · , mT ≡ 1

2πℓ2sTc
, (T → Tc) (5.64)

35For the sake of the discussion here, we do not need to renormalize the action by subtracting counter-

terms. This can be done in a standard way, if desired.
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where mT (t) defines an effective mass term, that stays finite at all T and whose value

in the limit t → 0 is shown above. The ellipsis denote contributions that are sub-

leading in L. Thus, we can identify the first contribution to the spin-spin correlator:

〈~m(x) · ~m(0)〉con ∼ e−mT L+··· (5.65)

Comparing with (C.17), one indeed finds qualitative agreement where m−1
T gives a

finite contribution to the spin-spin correlation length ξ, that stays finite even at Tc.

On the other hand, we expect ξ to diverge at Tc. To see how this divergence arises

one has to perform the full path integral computation that we turn in section 5.4.2.

3. Exchange diagram. When the curvature on the string world-sheet becomes strong,

one should also take into account the fluctuations of the string, that are no-longer

negligible. It was first observed in [37] that this contribution yields a crucial correction

to the Polyakov correlator, that actually resolved a puzzle that was encountered

in [35, 36]: As the connected contribution above ceases to exist beyond rf = rh, one

may naively think that the connected part of the correlator 〈P ∗(L)P (0)〉 vanishes

beyond a certain value of L. This is in contradiction with a generic QFT as the

connected piece of a generic correlator should be a convex function which smoothly

decreases with increasing L.

The missing contribution, in fact, comes from the world-sheet fluctuations that be-

come crucial in the regions where the world-sheet curvature R(2) becomes large. In

appendix D.2 we show that R(2) indeed becomes large near the horizon, hence an-

other type of connected diagram that arise from world-sheet fluctuations become

more dominant at rf = rh. This diagram can be calculated in the limit L becomes

large. In this limit, the contribution is given by the diagram that consists of two

disconnected world-sheets connected by the exchange of gravity modes. In the large

L limit, the exchange is dominated by the gravity mode with lowest mass. Thus, in

this limit exp−SNG is given by the propagator of the lowest mass gravity mode in

d− 1 dimensions:36

e−SNG ∼ e−mmin L

Ld−3
, (5.66)

where mmin is the lowest mass bulk mode.

Now, it is crucial to figure out which gravity modes contribute to which parts of

the correlator. As explained in [37], in the gauge theory, only the CT -even modes

couple to the real part of P [C], and CT -odd modes to the imaginary part. Here

τ denotes reflections in Euclidean time. The analogous statement in gravity is that

only the CT + bulk modes are exchanged in the part of SexcNG that corresponds to

〈Re PRe P 〉 and the CT − bulk modes are exchanged in the part that corresponds

to 〈Im PIm P 〉. Using the identification (5.13) and (5.14), we find that,

〈~m‖(x) · ~m‖(0)〉exc ∼ e−m+ L/Ld−3, (5.67)

〈~m⊥(x) · ~m⊥(0)〉exc ∼ e−m− L/Ld−3, (5.68)

36The exchange mode propagates in d− 1 dimensions because the propagator is fixed at a certain value

of r and it’s compactified on the time-circle.
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where L = |x|, the m± are the lowest masses of the bulk modes in the CT ± channels

and the result is valid in the limit L≫ 1.

The NS-NS modes in the CT + channel with their JCT designations are, G00 (0++),

GTTij (2++), Φ (0++), Bij 1−−, Gii (0++). One should solve the fluctuation eqs. on

the BH background in order to figure out the lowest mass one.

This is done in appendix E, where we showed that all of the masses that correspond

to gravitational fluctuations are bounded from below and non-zero, i.e. there is a

mass-gap in the CT + channel that is given by m0 =
√
V∞/2, equation (E.6). Hence,

in the large distance limit L≫ 1 the exchange diagram gives the contribution,

〈~m‖(x) · ~m‖(0)〉exc ∼
e−mo L+···

Ld−3
, L≫ 1. (5.69)

On the other hand, the NS-NS modes in the CT − channel with their JCT designations

read, Gi0 (1+−), Bi0 (1−+) and Br0 0−+. Here, the crucial observation is that, as

explained in section 2.2, the zero-mode of the latter is nothing other than the field ψ

in (2.4) that was identified with the Goldstone mode! Thus the lowest lying mass in

the CT − channel is the zero mode of the Br0 field and it is zero: m− = 0. Thus we

find no attenuation term in the corresponding part of the spin correlation function:

〈~m⊥(x) · ~m⊥(0)〉exc ∼
e−m−(t) L

Ld−3
=

1

Ld−3
, (5.70)

where the result is valid for large L = |x|, and at any temperature T > Tc which

corresponds to the ordered phase in the corresponding spin-system (we recall that

the temperature on the gravity side and the spin-model side are inversely related to

each other).

Combining (5.61), (5.65), (5.69) and (5.70) we arrive at the total result for the spin

correlation function (in the large L limit):

〈~m(x) · ~m(0)〉 ∼ ~M2 + c1 e
−mT L+··· + c2

e−m0 L

Ld−3
+

c3
Ld−3

, (5.71)

where ci are some constants.

Comparison with the mean-field spin-model result (C.17) shows perfect qualita-

tive agreement for temperatures T > Tc (which corresponds to the low T regime of

the super-fluid).

However, we also observe that the classical computation fails to reproduce a very crucial

feature of the spin-model at Tc. Namely, the longitudinal component of the two-point

function should in fact have a vanishing exponent as T → Tc:

〈~m‖(x) · ~m‖(0)〉 ∼
e−m‖(t) L+···

Ld−3
, with m‖(t) ∼ tν , as t→ 0. (5.72)

This corresponds to the fact that the longitudinal correlation length also diverges at Tc.

On the other hand, in our classical string computation we found an exponent m‖ bound

from below as m‖ → min(mo,mT ) where m0 and mT are given by (E.6) and (5.64). We

will argue below that the full path integral computation of the two-point function yields

the desired result.
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5.4.2 Semi-classical computation

Now, we look at the more generic situation when the assumption ℓ/ℓs ≫ 1 fails — as

expected in non-critical string theory — and the string path integral that corresponds to

the two-point function 〈P ∗(x)P (0)〉 = 〈~m(x) · ~m(0)〉 is given by the full string path integral.

As in section 5.3.2 we shall calculate this quantity in the semi-classical approximation where

we focus on the dominant contribution of only the lowest lying string states at levels N = 0

and N = 1.

One can again classify the string paths according to the three classes as in figure 4.

The contribution of disconnected paths will be just as in section 5.3.2. In the TG phase

they vanish because the area of the string paths are infinite and in the BH phase they yield

the square of the one-point function found in section 5.3.2. In addition one also have to

consider the disconnected paths corrected by bulk-exchange diagrams as in figure 4. We

shall consider the contribution of these latter diagrams in the end of this section. First we

focus on the connected string paths, see figure 5.

The connected path integral of the string is given by summing over all paths the string

can travel between the space-time points (r, x1, ~x⊥) = (0, 0,~0) and (r, x1, ~x⊥) = (0, x,~0).

Here ~x⊥ denote the coordinates transverse to r and x. We denote these points as Iin and

Iout respectively. As displayed in figure 5 for the connected classical saddle, in the limit

L≫ 1 these paths can naturally be divided into three parts, see figure 5:

1. The paths between the space-time points Iin = (0, 0,~0) and Ii.

2. The paths between the points Ii and If .

3. The paths between the points If and Iout = (0, x,~0).

This division of path integrals into separate regions in space-time is a non-trivial op-

eration that is described at length in section 5.3.2. Here we will not go through the same

derivation again but only highlight the computation.

Just as in section 5.3.2 we write formally divide the full path integral by inserting

complete set of states at Ii and If as,

〈P ∗(x)P (0)〉conn ≈
∫

dIidIf
∑

χ∈H⊥

F(χ,Ψi, Ii)∆IR(χ, Ii, If )F∗(χ,Ψf , If ), (5.73)

where Ψi and Ψf denote the initial and final string-wave functions and the sum is over the

physical string states in the Fock-space of the string. The function F(χ,Ψi, Ii) denotes the

overlap of the string state Ψi at the point Iin and the state χ at the point Ii. Similarly

F(χ,Ψf , If ) denotes the overlap of the string state Ψf at the point Iout and the state χ at

the point If . The approximation in (5.73) is due to the assumption that the propagation in

the intermediate paths between Ii and If are governed by the IR CFT as in section 5.3.2.

The properties of this IR CFT are specified in section 4.2.

The propagation of the string in the paths 1st and 3rd class depend on the full CFT,

hence we cannot calculate. However, in the limit rh → ∞ (T → Tc) and for large values

of L, the dependence of the two-point function on L is determined by the paths in the
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Figure 5. Quantum mechanical calculation of the spin-spin correlator. The string paths are divided

into three separate paths by insertion of complete set of string states at Ii and If . For large L and

rh intermediate paths are governed by the IR CFT.

2nd class where the propagation takes place in the region where the IR CFT can safely

be approximated by the linear-dilaton CFT of section 4.2. Let us therefore concentrate on

the evaluation of this part of the path integral.

As discussed in section 5.4.1, one has to consider the two parts of the correla-

tor separately:

〈P ∗(x)P (0)〉conn = 〈ReP (x)ReP (0)〉conn + 〈ImP (x)ImP (0)〉conn. (5.74)

Only the CT + (CT −) string states contribute in the real (imaginary) parts. First of all,

we are interested in determining the scaling of the longitudinal correlation length ξ(t) near

Tc. For this purpose we focus on the real part in what follows and return to the imaginary

part in the end.

Thermal gas phase. The propagation of closed string state χ from a point x = 0 to37

x = L in the linear-dilaton CFT is given by

∆IR(χ, 0, L) ∝
∫

dpx e
−ipx(χ)L

∫

|z|<1

d2z

|z|2 z
L0(χ)−1z̄L̃0(χ)−1, (5.75)

where px(χ) denotes the momentum of the state χ in the x direction. The exponential

factor in (5.75) arise from the center-of mass part of the vertex operator insertions at

x = 0 and x = L, see section 5.3.2.

The integral over z restricts to the mass-shell states (4.9) and (4.10) on which the

momentum px becomes,

p∗x = −i
(

2

α′

(

N + Ñ − 2
)

+ p2
⊥ + p2

r + 2im0pr + (2πkT )2 +
( w

2πTα′

)2
)

1
2

, (5.76)

37We drop the subscript in x1 for notational convenience.
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where p⊥ now denotes the momenta transverse to the x-direction in the spatial dimensions.

As mentioned before the boundary condition for the closed string restricts only to the states

with winding number w = 1. This cannot change along the propagation in the limit gs → 0,

unless the string paths fall onto the horizon, that does not happen for the connected string

diagram. We therefore focus on the case w = 1. One should of course satisfy the level-

matching condition (4.10), N − Ñ + k = 0.

In order to read off the scaling of the correlation length from the real part of the

propagator then one has to consider the contribution of all CT + states that has winding

w = 1. The propagation amplitude of a state χ in this region is given by

∆IR(χ, 0, L) ∝
∫

dprd
d−2p⊥e

−ip∗x(χ)L. (5.77)

The momenta pr and p⊥ in (5.76) are to be integrated over after substituting (5.75)

in (5.73). This can easily be seen to produce a factor of Ld−3. The correlation length

then can be obtained by state χmin for which the expression −ip∗x in (5.76) for pr = p⊥ = 0

is minimum.

ξ(t)−1 = ip∗x(χmin)

∣

∣

∣

∣

p⊥=pr=0

(5.78)

Consequently, in the thermal gas (disordered) phase the correlation length is given by

ξ−1
TG =

(

2

α′

(

N + Ñ − 2
)

+

(

1

2πTα′

)2
)

1
2
∣

∣

∣

∣

min

. (5.79)

The minimum CT + state is clearly given by the tachyon N = Ñ = 0. Level matching then

sets k = 0 and one obtains

ξ−1
TG =

(

− 4

α′ +

(

1

2πTα′

)2
)

1
2

. (5.80)

For an arbitrary temperature this is a positive number. However we observe that it vanishes

precisely at the temperature when the winding tachyon mode38 becomes massless:

T bH =
1

4πℓs
. (5.81)

For critical strings in flat space-time, this special radius was shown to correspond to

the Hagedorn temperature of the string. Furthermore [17] argued that upon turning on

an infinitesimal gs this point becomes a first order phase transition in the string parti-

tion function.

Here, similar arguments combined with our finding section 3 that the linear-dilaton

with mild subleading corrections has a continuous transition would imply that, in the

case of a linear-dilaton background rather than the flat space, the same point indicates

38This is a misnomer as the “winding tachyon” is actually massive for an arbitrary temperature above

Hagedorn.
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a continuous transition into formation of black-holes. In the limit of vanishing gs, this

argument thus determines the phase transition temperature as,

Tc

∣

∣

∣

∣

gs→0

= T bH =
1

4πℓs
. (5.82)

From (5.80) it is also clear that one obtains mean-field scaling for the correlation length,

ξTG(t) → ℓs

2
√

2
|t|− 1

2 , as t→ 0, (5.83)

in the bosonic linear-dilaton CFT. (We recall the definition t = (T − Tc)/Tc.)

In case of the fermionic CFT a similar calculation in the NS-NS sector yields a

limiting temperature that we again propose to coincide with the continuous Hawking-

Page transition:

T fH = Tc

∣

∣

∣

∣

gs=0

=
1

2
√

2πℓs
, (5.84)

with similar mean-field scaling of the correlation function. On can consider variants of

the CFT by applying non-standard boundary conditions on the r-direction, but the result

does not change. As long as there exists a winding tachyon one obtains mean-field scaling

provided that one identifies the transition temperature with the Hagedorn temperature.

Our result for the real part of the connected contribution is then summarized as,

〈ReP (x)ReP (0)〉TG ∝ e
− L

ξTG(t)

Ld−3
, (5.85)

where the correlation length near Tc is given by (5.83).

Now, we consider the imaginary part in (5.74). The only difference is that now we

have to sum over the intermediate states with CT − quantum numbers and with winding

w = 1. The lowest lying such state is given by the NS-NS two-form fluctuations in the

N = Ñ = 1 level. For the w = 1 state, level matching again requires k = 0. It becomes

clear that this contribution is subdominant with respect to (5.85) in the large L limit:

〈ImP (x)ImP (0)〉TG ∝ e
− L

ξ0(t)

Ld−3
, (5.86)

where ξ0(t) asymptotes to a constant at the transition ξ0(t) → 2πTcℓ
2
s. Using the value of

Tc obtained in (5.82) this constant is,

ξ0(t) →
ℓs
2
, as t→ 0. (5.87)

Recalling that the disconnected diagrams in the thermal gas phase vanish because they

correspond to paths with infinite area, our final result then is,

〈P ∗(x)P (0)〉TG ∝ e
− L

ξTG(t)

Ld−3
+ · · · , (5.88)
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with correlation length near Tc is given by (5.83). The ellipsis denote contributions from

higher mass states in the spectrum such as (5.85).

As an aside we also observe that the classical computation of the previous section gave

“almost” the right answer except that it missed the tachyonic contribution. One can check

this by observing that the contribution from the 1st level mass states is precisely the same

as the classical result (5.65), (5.64). We already calculated this in (5.86) for the B-field,

and one has the same result for the other states at the same level, namely the dilaton and

the graviton fluctuations.

Black-hole phase. Let us now consider the Euclidean black-hole. Here as well, the

winding will be protected along the propagation of the closed string as long as the string

does not fall on the horizon. This is indeed the case for the connected paths. The calculation

of the connected paths is very similar to the thermal gas case above, with one important

difference: here T > Tc and a naive application of (5.79) would give rise to an imaginary

correlation length. There is another important difference though: the BH becomes linear-

dilaton strictly in the limit rh → ∞ and for any temperature less than Tc we expect

additional contributions to the mass spectra.

From the space-time point of view there is a finite horizon for finite rh and the compu-

tation of the mass spectrum — as fluctuations in space-time follow from applying normal-

izable boundary condition at the horizon. This generally gives rise to a discrete spectrum

and one expects a correction to the mass spectra which is supposed to vanish only in the

strict rh → ∞ limit, due to the presence of the horizon. The only invariant quantity

that would be a candidate for such a correction term then is the black-hole mass mBH .

Consequently we expect that the mass spectra be shifted positively by a term proportional

to mBH near rh . ∞. On the other hand it is easy to see that the ADM mass of the

black-hole [28] is proportional to the string-frame Ricci scalar that was computed in [15]

and it was found that,

m2
BH ∝ Rs ∝ eκΦhℓ−2

s ∝ tℓ−2
s , (5.89)

where the last relation follows from (D.12). Consequently, the relation (5.80) should be

modified in the limit rh → ∞ in Euclidean black-hole as,

ξBH →
(

− 4

α′ +

(

1

2πTα′

)2

+ cbht

)
1
2

, as t→ 0+ (5.90)

where cbh > 0 is some constant that we cannot determine unfortunately.39 Thus we find,

ξBH →
√
cbh − 8 t

1
2 , as t→ 0+. (5.91)

It should be checked that cbh > 8 for consistency of the picture we present here. However

we do not have any means to check this at present.

39One can try to obtain an effective action for the winding tachyon on the Euclidean black-hole and

determine its spectrum by applying normalizability both in the UV and near horizon. However, there will

still be undetermined coefficients in the effective action and the constant would not be determined. The

only way to determine it is to construct the small BH as a marginal deformation of the linear-dilaton CFT

and obtain the exact spectrum.
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The result (5.91) summarizes the dominant contribution in the large L limit to the

connected string paths. As the tachyon is a CT + state (5.91) yields the leading term in

the real part of the connected two-point function:

〈ReP (x)ReP (0)〉conn ∝ e
− L

ξBH (t)

Ld−3
, (5.92)

with (5.91).

How about the imaginary part? Just as in the thermal gas case above the leading

connected contribution to the imaginary part is given by the w = 1 NS-NS two-form with

the same answer (5.85):

〈ImP (x)ImP (0)〉conn ∝ e
− L

ξ0(t)

Ld−3
, (5.93)

with ξ0 behaving as (5.87) in the limit t → 0.

Another crucial difference between the black-hole and the thermal-gas is that, for a

finite horizon (any rh other than strict rh = ∞) there are disconnected string paths and

similarly exchange diagrams of the sort we described in section 5.4.1. The two disconnected

string paths that fall into the horizon as in figure 4 give square of the one-point function

that we already calculated in section 5.3.2:

〈P (x)P (0)〉dis ∝ | ~M |2, (5.94)

where | ~M | is given by (5.58) in the limit t→ 0. This contribution is order O(g−2
s ) [37] and

it should be treated separately.

There are also exchange diagram contributions of the form figure 4. These are of the

same order in gs expansion as the connected diagrams and their contribution is simply

given by the sum over all possible bulk modes that can couple to the disconnected string

paths between the boundary and the horizon, see figure 4. As the disconnected string paths

do fall on the horizon, the string with a winding w = 1 boundary condition at r = 0 can

unwind at rh even when gs → 0. Therefore the winding number is not conserved in the

exchange diagrams in the black-hole phase and we should include the contribution from

the non-winding w = 0 states. Contribution of the exchange-diagram in figure 4 is then

given by the propagator of a bulk-mode with a d− 1 dimensional mass m2
⊥:

〈P (x)∗P (0)〉exc,m⊥ ∝ L−(d−3)e−
√

(2πkT )2+m2
⊥L. (5.95)

The dominant contribution is always given by the k = 0 modes, hence we consider the case

k = 0 in what follows. Again we divide this into the real and imaginary parts which receive

contributions from the CT + and CT − bulk states respectively.

We first focus on the imaginary part. The lowest mass CT −contribution is the fluctu-

ations of the B-field that are massless from the d− 1 dimensional point of view: m⊥ = 0.

We refer to appendix E for a derivation. Consequently we obtain

〈ImP (x)ImP (0)〉exc ∝
1

L(d−3)
+ · · · (5.96)
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This is the transverse part of the spin-spin two point function in the superfluid (ordered)

phase and the fluctuation of the B-field in this phase is identified with the Goldstone

mode. There is no analogous term in the thermal gas (disordered) phase because the

disconnected string paths that the exchange mode couple to, have infinite area and this

contribution vanishes.

Now we consider the real part. The lowest mass CT + bulk mode is the tachyon and we

have to compute its mass m⊥ in the d− 1 dimensional point of view. This is a dangerous

mode because contribution of a negative mass state to the two-point function implies non-

unitarity in the dual spin-system. The analysis of the bulk spectrum can easily be turned

into a Strum-Liouville eigenvalue problem, see appendix E. In this appendix we show that,

in the interesting cases of two and three spatial dimensions, the tachyonic mode can be

avoided only when κ = 2. Quite conveniently the case κ = 2 corresponds to a second order

transition — the most interesting case! We conclude that consistency of the entire analysis

can only be established for second order phase transitions in 2D or 3D (spatial).

Let us focus on this interesting case and denote the minimum value of the d − 1

dimensional tachyon spectrum as mg. Then, the dominant contribution to the real part of

the (5.95) is

〈ReP (x)ReP (0)〉exc ∝ L−(d−3)e−mgL. (5.97)

Comparison of (5.92) and (5.97) shows that the former dominates in the large L limit and

near the transition t ≈ 0. One then finds for the final result,

〈ReP (x)ReP (0)〉BH ∝ L−(d−3)e−ξ
−1
BHL + · · · (5.98)

with mean-field scaling of the correlation length (5.91). In the imaginary part, the com-

parison of (5.93) and (5.96) shows that the latter dominates for large L and the final

result is

〈ImP (x)ImP (0)〉BH ∝ 1

L(d−3)
+ · · · (5.99)

One should add to these two, the disconnected contribution (5.94). Comparison with the

spin-model result (C.19), using the identifications (5.13) and (5.14) shows perfect agree-

ment:In the limit of weak gravitational interactions gs → 0, we obtained exactly the same

correlator with the XY model, with mean-field scaling exponents η = 0, β = ν = 1/2. How

the mean-field scaling can be altered will be discussed in section 7.

5.5 D-strings and vortices

In the original picture of [38, 39] and their subsequent generalizations, the relevant field

theory on the boundary is SU(N) gauge theory and the Wilson loop in question traces

the path of an “electrically charged” fundamental field in the theory, i.e. the “electric

quarks”. The motivation to relate the Wilson loops with the open strings is obvious in

the D-brane picture, where the fundamental strings couple to electrically charged fields

on the D-brane. Similar considerations also suggest that the Wilson loop that traces a

“magnetically charged” particle, i.e. the ’t Hooft loop [41], should be related to the D1

branes [13]. Indeed, this picture is very suggestive and the various computations in the

context of QCD-like holographic models confirm the field theoretic expectations [42].
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In the LGT-spin model equivalence, the Polyakov loops are mapped onto the spin

operators on the spin-model side. Similarly, it is very suggestive to relate the vortices,

with the ’t Hooft loops that are dual to the D1 branes on the gravity side. Thus we

propose that the D1 brane configurations are the right tools to probe the vortex dynamics

in spin-models.

In this section we perform some basic checks with the D-strings and show that indeed

one obtains the expected qualitative behavior of the correlation functions. We reviewed

the expected spin-model result in the case of two-dimensions at the end of appendix C. We

denote the operator that creates a vortex that is localized at point x by v(x) and similarly

the anti-vortex by v̄(x). The proposal is the following chain of dualities:

〈v(x)〉 ↔ 〈tr P e−
R

Ã0〉 ↔ e−SD1 (5.100)

where the second object is the ’t Hooft-Polyakov loop in the dual gauge theory and SD1

denotes the on-shell value of the dual D-string configuration.

5.5.1 One-point function

Both in this section and in the next we consider the classical calculation of the D-strings.

A semi-classical calculation in the sense of section 5.3.2 and 5.4.2 is saved for future work.

First of all, we note that the vortex charge in the spin-model should be dual to the

D-brane charge on the string theory side. As mentioned at the end of section C, the total

charge of vortices in a configuration in 2D should vanish. The equivalent statement on the

gravity side would be that the total number of D1s and D̄1s which wrap the sub-manifold

spanned by r, t coordinates should be equal in D = 4. This is indeed the case in D = 4

as the D1s are charged, and the gauge-field that couple them in the flat transverse space

has a log-divergence. This means that when one considers an ensemble of D1 and D̄1s,

the configurations with non-equal numbers of the two species have vanishing Boltzman

weights in the partition function. This provides the first basic check in favor of associating

the vortices in the spin-model by the D-strings. Note that the argument applies equally-well

when the target space is TG or BH geometry. Thus we obtain,

〈v(x)〉TG = 〈v̄(x)〉TG = 〈v(x)〉BH = 〈v̄(x)〉BH = 0, for d− 1 = 2. (5.101)

In higher dimensions the argument above does not apply and one can have configura-

tions with non-trivial charge.40 Therefore, in higher-dimensions the expectation value is

determined by evaluation of the on-shell D-string action.

The boundary condition for a single D-string is just as in the case of F-strings, above: it

ends on the boundary at point x and wraps around the time-circle. The action is given by,

SD1 = −T1

∫

d2σe−Φ (det[hab + bab])
1
2 , (5.102)

where T1 is the D-string tension and we defined,

hab = gsµν∂aX
µ∂bX

ν , bab = Bµν∂aX
µ∂bX

ν . (5.103)

40The dual analogous objects to higher dimensional vortices (vortex lines, planes, monopoles etc) in

higher dimensions are the Dp branes with p = d− 2.
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Here gsµν is the string-frame metric (5.17) in the case of the BH phase. In the TG phase

the metric is given by the replacement f → 1 and A→ A0 in (5.17).41

It is straightforward to find the on-shell action that corresponds to a single D-string

hanging from the boundary to some point rf : from (5.102), (5.103) and (5.17):

SD1 = −2T1

T

∫ rf

ǫ
dre−Φ

√

e4As + b2, (5.104)

where b is the constant value of the B-field on the r-t subspace:42

b ≡ Br0 = const. (5.105)

We compute the on-shell action separately on the TG and the BH geometries for d− 1 > 2

in appendix D.3. In the BH case string hangs down to the horizon rf = rh, whereas in the

TG case rf = ∞. The result is that the on-shell action is finite both on the TG and one

the BH geometry.

〈v(x)〉TG 6= 0, 〈v(x)〉BH 6= 0, for d− 1 > 2. (5.106)

This is unlike the F-string case which diverges on the TG geometry, and yields 〈~m〉 = 0.

The reason for finiteness here is clear in (5.104): the only potential divergence43 would be

in the TG case where the upper limit of the integration is rf = ∞. The factor As → 0 in

that limit, however the action is still finite because exponential suppression provided by the

exp(−Φ) term in the action (5.102); note that Φ grows linearly near the singularity, (3.16).

This provides a second non-trivial check on the proposal. It matches the dual statement

in the XY model is that the vortices play no role in determining the phase of the system

for higher than two-spatial dimensions. We will thus consider the case of d− 1 = 2 below.

5.5.2 Two-point function

As the one-point function vanishes, the first non-trivial object is the two-point function

〈v̄(x)v(0)〉 in d − 1 = 2. This is dual to a connected D1 − D̄1 configuration, completely

analogous to the F-string case described in section 5.4. The boundary conditions are exactly

the same as in that case. Here too, we confine our interest in the classical computation in

order to see whether the association of D-strings with vortices of the spin-systems pass the

basic qualitative tests.

The computation is non-trivial and it is presented in appendix D.3. The result is

as follows:

1. The thermal gas. We denote the difference between the end-points of the D1 − D̄1

configuration as L = |x|. As in section 5.4, one can consider three contributions:

41The D-string also couples to the gauge field on it. In fact the only gauge-invariant combination (under

“big” transformations Aµ → Aµ + αµ) is of the form bab + fab where fab is the pull-back of the gauge-field

strength on the D-brane. One can make the gauge choice Aµ = 0. This choice does not affect the discussion

below.
42As mentioned before we take the B-field to be either pure gauge or constant. Here we entertain the

second possibility.
43The standard UV divergence ǫ→ 0 can easily be cured by adding counter-terms as in appendix D.2.

– 50 –



J
H
E
P
1
2
(
2
0
1
0
)
0
6
2

1) The disconnected D-string contribution. This is given by a disconnected

D1 brane and a D̄1 brane hanging from the boundary and extends up to the

singularity at r = ∞. This contribution is dual to |〈v〉|2 and vanishes in d−1 = 2,

for the reason described above. It is finite for d− 1 > 2.

2) The connected D-string contribution. In appendix D.3, we show that there

is a maximum value Lmax that is independent of T and above which, there exists

no connected D-string solution. Therefore this configuration is replaced by the

exchange diagram directly analogous to the diagram described in section 5.4.

3) The exchange diagram. For L > Lmax this is the only non-trivial contribu-

tion. It is given by a D1 and a D̄1 connected by exchange of bulk modes that

couple to the D1s. For large L it is proportional to the propagator of the lowest

mass bulk mode exp(−mD(T )L). As in section 5.4, this mass is bounded from

below, mD(T ) > 0 for all T < Tc as there are no massless modes.

We learn that the total result on the TG geometry for large L is,

〈v̄(x)v(0)〉TG ∼ e−mDL L≫ 1, d− 1 = 2, (5.107)

where mD should be determined by a study of fluctuations around the TG geometry.

On the spin-model side this means that there is a finite correlation length between

vortices and anti-vortices in the high-T phase. This is in accord with the expectation

that one obtains a plasma of vortices and anti-vortices in the high T phase of the 2D

XY-model.

2. The black-hole. The computation on the BH geometry is completely analogous to

the TG case above: 1) The disconnected configuration vanishes in d − 1 = 2 and is

non-zero for higher dimensions. 2) There exists a Lmax(T ) above which the connected

D-string configuration does not exist. This time, however Lmax is a function of T.

One can show (see appendix D.3) that Lmax is finite for any T . Thus if we are

interested in the qualitative result for large L, then it is again determined by the

exchange diagram. The exchange diagram in the BH case differs than the TG case

above, in that, there exists a massless bulk excitation that couples to the D-string.

It is given by the zero mode of the B-field as in section 5.4. Thus one finds,

〈v̄(x)v(0)〉BH ∼ eO(logL) L≫ 1, d− 1 = 2, (5.108)

which gives a power-law with a T-dependent power. In order to determine the power,

one should calculate the O(logL) terms in the exchange diagram. We postpone this

computation to future work, and content ourselves with the qualitative result (5.108).

All in all, comparison of (5.107) and (5.108) with (C.30) provides a non-trivial check

on the proposal.
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5.6 Vanishing of the second sound

As reviewed in the end of appendix C, the speed of sound that is associated with the phase

fluctuations ψ should vanish linearly in the mean-field approximation as T → Tc in the

ordered phase. The effective action for this Goldstone mode can directly be obtained from

the gravity action (3.1) because it maps onto the B-field on the gravity side. We recall

that in the large N limit, the Landau action is given by the on-shell gravity action (5.3).

Therefore to obtain the effective action of the Goldstone mode we should consider quadratic

fluctuations of the B-field around the on-shell value. We recall that the in the BH phase

the phase of the mean-field acquires an expectation value given by

ψ =

∫

M
B (5.109)

where M is the submanifold of the blackhole spanned by the (r, x0) coordinates. Goldstone

mode corresponds to x-dependendent fluctuations ψ → ψ + δψ(x). It is crucial that this

fluctuation cannot be gauged away by a gauge transformation of the B-field of the form

Br0 → Br0 + ∂rξ0 − ∂0ξr. (5.110)

The shift in ψ corresponds to a “big” gauge transformation, it is a topological symmetry

in the problem [13].44

A technical but important point is to regulate the divergence of the on-shell action

near boundary by subtracting a counter-term action. One can obtain this counter-term

action by the standard methods of holographic renomalization [43] but an easier way —

that is equivalent for our purposes here — is to subtract the on-shell thermal gas action.

Consequently the Landau functional in the large N limit will be given by

FL ∝ ∆A = ABH −ATG (5.111)

This is valid only in the black-hole phase i.e. T > Tc which corresponds to the low T

superfluid phase of the spin system. The energy of the Goldstone mode should be computed

in reference to FL that corresponds to the ground state energy of the spin-model:

FL(ψ + δψ) − FL(ψ) ≡ δψF (ψ) ∝ ∆A(ψ + δψ) − ∆A(ψ). (5.112)

Thus, we substitute

Bµν = Br0 + δψ(x), Br0 = pure gauge. (5.113)

in (3.1) and obtain,

δψFL(ψ) ∝ ∆A0 + Cψ(rh)

∫

dd−1x∂iδψ∂jδψ, (5.114)

where g denotes the BH metric (3.6) and g0 denotes the TG metric (3.5) and ∆A0 is the

difference between the parts of the on-shell values of the action that do not depend on B.

For a second order transition this piece vanishes at criticality as

∆A0 ∼ t2. (5.115)

44I am grateful to Sean Hartnoll for a discussion on the various issues in this section.
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The coefficient Cψ in (5.114) on the other hand contains the desired information on the

sound speed (and the energy of the Goldstone mode). It is given by

Cψ(rh) =

∫ rh

0
dr

√
ge−

8
d−1

Φgijgrrg00 −
∫ ∞

0
dr

√
g0e

− 8
d−1

Φ0gij0 g
rr
0 g

00
0 . (5.116)

On the spin model side, this is proportional to the kinetic term c2ψ
∫

∇δψ ·∇δψdd−1x, hence

the speed of sound for the Goldstone mode is given by the coefficient Cψ(rh). One finds,

c2ψ ∝ Cψ(rh) =

∫ rh

0
dre−

8
d−1

Φ+(d−5)A −
∫ ∞

0
dre−

8
d−1

Φ0+(d−5)A0 (5.117)

First of all, we observe that the energy of the Goldstone mode

Eψ ∝ Cψ

∫

dd−1x∂iδψ∂jδψ, (5.118)

is finite for any rh. This is a crucial requirement to be able to associate the fluctuations of

the B-field with the Goldstone mode.

Secondly, we find that c2ψ indeed vanishes as t → 0 (rh → ∞) because the BH back-

ground (A,Φ) asymptotes to the TG background (A0,Φ0) in the limit rh → ∞ where the

BH mass vanishes. This is a nice check already because it also confirms that c2ψ vanishes

only in a continuous transition which requires that the saddle solutions coalesce in the

transition region.

A more non-trivial check however is to see whether the scaling exponent for the van-

ishing rate is indeed the one expected from the mean-field scaling, i.e. whether c2ψ ∼ t or

not. We recall that45 mean-field scaling is expected whenever an operator in the dual field

theory is related to the fluctuations of the bulk action on the gravity side, in the limit

of weak gravitational interactions gs → 0. Using the asymptotics of the BH background

functions in (3.16) and (3.17) we find that the contributions from A and Φ in the exponent

conspire nicely to produce

c2ψ ∝
∫ ∞

rh

dre−
√
V∞rh ∝ e−

√
V∞rh , rh ≫ 1. (5.119)

Finally, use of (D.13) yields, as t→ 0,

c2ψ ∝
{

t
2
κ , case i,

e−2( t
C )

− 1
α
, case ii.

(5.120)

The case of a second order transition corresponds to κ = 2 in case i, see equation (3.27)

and we indeed find the expected mean-field behavior:

c2ψ ∼ t, as t→ 0. (5.121)

We note that the precise form of the kinetic term for the B-field in (3.1) is crucial in

reproducing the desired behavior. This form stems from the non-critical string action in

45See section 5.1 for a discussion on this issue.
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d+1 dimensions after a Weyl transformation to the Einstein frame. As the physical results

should be independent of the frame, one can of course produce the same result directly in

the string frame.

In fact, the calculation is more transparent in the string frame. The asymptotics as

rh → ∞ are given by the linear-dilaton background, where the string-frame metric becomes

flat [15]

gs,νµ = e
4

d−1
Φgµν → δµν . (5.122)

On the other hand the gravity in the string frame is given by

As ∝
∫

dd+1x
√
ge−2Φ(dB)2. (5.123)

As the metric becomes flat, the scaling of c2ψ is entirely determined by the factor e−2Φ above:

c2ψ ∝ e−2Φh , Φh ≫ 1, (5.124)

where Φh is the value of the dilaton on the horizon. Use of (D.12) now produces the same

result as in (5.120).

It is also easier to investigate possible α′ corrections in the string frame. Higher

derivative corrections to the B-field can be schematically represented as

As ∝
∞
∑

k,l,m=0

cklm

∫

e−2Φ(dB)2kR(l)(dΦ)2m, (5.125)

where cklm are some unknown constants — that are supposed to be determined by the

world-sheet sigma model — and R(l) represents higher curvature invariants, e.g. R(0) = 1

and R(1) = R, R(2) ∼ R2 + RαβγδR
αβγδ etc. Sum over non-trivial cross contractions

between dB, R and dΦ terms are also implied to be included in this schematic expression.

The linear-dilaton solution in the asymptotic region is α′ exact, therefore the form of

the background functions Φ and gs,µ,ν are not subject to α′ corrections in the far IR. All

of the curvature invariants in the string frame vanish as shown in [15]. On the other hand

only the term k = 1 above can contribute to the quadratic term in δψ because the leading

order piece in B is constant, see equation (5.113). Therefore one finds,

δ2As →
∞
∑

m=0

cm

∫

e−2Φ(dδψ)2(dΦ)2m. (5.126)

Finally, we note that all of the dilaton invariants also go over to a constant in the linear-

dilaton background, hence one still obtains (5.117) with a renormalized overall coefficient.

We conclude that we do not expect the α′ corrections change the linear scaling in (5.121).

6 A proposal for gravity-spin model correspondence in the general case

Here, we would like to return the discussion of section 2 and promote the gravity-spin

model duality that we advocated in the case of U(1) models to the general case.
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We are interested in employing gravitational techniques to learn about the dynamics

of the spin model around the transition. We want to map the spin model to a lattice

gauge theory, which than will be related to a gravitational background in the continuum

limit. Unlike the derivation of the spin-model from the LGT as reviewed in appendix A,

the opposite map from the spin model to the gauge theory is non-trivial. There are two

sources of complication:

1. Non-uniqueness. The map may be non-unique. Clearly, there may be many gauge

theories that share the same center symmetry. First of all, this may be due to the

fact that the center symmetry of different gauge groups may be the same. As an

extreme example, the centers of SU(2), Sp(N) with arbitrary N , SO(N) with odd

N and E(7) are all isomorphic to Z2. Thus for example, the critical phenomena (if

exists) in any of these theories should be described by the universality class of the

Ising model in d dimensions. Secondly, the deformation of the pure gauge theory by

addition of any adjoint matter leaves the center symmetry intact. Thus, generally,

the equivalence maps a spin model with symmetry C to a set of LGTs with various

gauge groups G and matter M :

SMC −→ {LGT [G,M ]}, (6.1)

where Center[G] = C.

2. Non-existence. Another source of complication has to do with non-existence of

such a map in the continuum limit. In fact, it is not easy to find continuous critical

phenomena in gauge theories. As an example, among the pure Yang-Mills theories

with gauge group SU(N), only in the case of N = 2, and possibly the case of N = ∞
(see the discussion at the end of 2) exhibit continuous confinement-deconfinement

transition. All the rest is believed to have first order transitions.

Therefore, given the map (6.1), the critical phenomena in the continuum limit of

r.h.s. may be non-existent. Define the subspace (G∗,M∗) of the gauge groups

and adjoint matter (G,M) that appear in (6.1), such that in the continuum limit

LGT [G∗,M∗] → GT [G∗,M∗] the criticality prevails. Then, we can extend the

map (6.1) to the continuum limit:

SMC −→ {LGT [G,M ]} −→ {GT [G∗,M∗]}, (6.2)

where again Center[G∗] = C.

We conclude that, the map (6.2) may or may not exists, and even if exists, it may not

be unique. We observe, however that the non-uniqueness is a positive fact, in the sense that,

it provides us with a greater space of gauge theories to scan in search for continuous critical

phenomena. Indeed, it may be possible to find critical phenomena either by changing the

gauge group G (while keeping the center C intact) or by changing the (adjoint) matter

content M .

Now, the last step of the procedure is to employ the gauge-gravity correspondence

to map the r.h.s. of (6.2) onto a gravitational background GR[G,M ]. Suppose that the
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gauge-gravity correspondence holds for the subspace (G∗∗,M∗∗) of the pairs (G∗,M∗) that

appear in (6.2). Then, we can extend the map as,

SMC −→ {LGT [G,M ]} −→ {GT [G∗,M∗]} −→ {GR[G∗∗,M∗∗]}, (6.3)

where again Center[G∗∗] = C. The last map is the highly non-trivial gauge-gravity corre-

spondence that is assumed to hold for arbitrary N, (not necessarily in the large N limit).

By the standard lore of the gauge-gravity correspondence, the center symmetry C should

correspond to a bulk gauge symmetry C on the gravity side. For continuous C, this can be

a continuous isometry of the gravitational background. In the case C is discrete it may be

a continuous isometry broken down to a discrete subgroup C by stringy effects.

Some comments are in order:

1. Top-bottom approach. From the above procedure it is clear that one arrives at an

operational definition of the gravity-spin model correspondence. Take a spin-model

SMC that exhibits continuous criticality. Then one should scan through all of the

LGTs {LGT [G,M ]} with various adjoint matter M and gauge group G, such that

the critical phenomena persists in the continuum limit. This step, in principle can be

done with Monte-Carlo simulation techniques. The outcome of this step would be the

space of gauge theories {GT [G∗,M∗]} in (6.3). The next step is to construct D-brane

configurations that correspond to these gauge theories. In general this would only

be possible for a subspace of theories (G∗∗,M∗∗). The next step then, is to take the

decoupling limit of the D-brane configurations to find the gravitational backgrounds

{GR[G∗∗,M∗∗]} that appear at the end of (6.3). The final step is to look for the black-

hole solutions and study the Hawking-Page transition at finite temperature. One can

then compute observables of the spin model around criticality, such as the scaling

of the correlation functions of order parameters, critical exponents, the transition

temperature Tc etc. by holographic techniques. This operational definition of the

duality corresponds to the so-called top-bottom approach in the gauge-gravity duality,

that is unfortunately unpractical.

2. Bottom-up approach. Instead, one may adopt a “phenomenological” approach

and search for continuous critical phenomena directly on the gravity side. This is

the approach that we take in this paper. The symmetries, the (bulk) matter content

and various dynamical phenomena (such as spontaneous symmetry breaking) on the

gravity side should then hint at what kind of spin model that the gravity theory

describes. Of course, one should check by computations on the gravity side that the

theory indeed fulfill the basic expectations of the spin model. As a last comment the

bottom-up approach is not necessarily doomed by lack of predictive power. As we

argued in section 4, there exists a notion of universality exactly around the transition

region for models that are based on Einstein-dilaton gravity.

3. The “large-N” limit. The meaning of the “number of colors” and the large-N

limit becomes clear in this approach. On the gravity side, it corresponds to the

small GN limit where one arrives at a classical string theory in which the interactions
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between the bulk fields can be ignored. On the spin-model side in the case C = ZN
for N > 4 the corresponding gauge group can only be SU(N). Then the limit

N → ∞ corresponds to the limit where the ZN invariant spin-model becomes U(1)-

invariant. In this case—“number of colors” correspond to the number of spin states

that the spin vector ~s on a lattice site can attain. Of course the large-color limit exists

only in theories with gauge groups SU(N), Sp(N), SO(N) (with possible additions

of U(1) factors). In the other cases, one cannot study the spin-model in a large-

N approximation.

4. Discrete C. One may then think that it is never possible to study a spin model

with discrete symmetry, by a gravitational theory in the small GN limit. This is not

necessarily the case. As an illustration, consider the Ising model in d-dimensions.

The symmetry group is Z2 and one of the gauge groups that has this, as a center

symmetry is Sp(N) with arbitrary N . Thus the center remains Z2 also in the large-N

limit! Therefore one can make the following proposal for a gravity dual of the Ising

model: Consider a D-brane set up that is dual to YM theory with Sp(N) gauge

group with additional adjoint matter content M chosen such that the theory exhibits

continuous critical phenomena. Then consider the background that is dual to this

configuration. Then the black-hole solution near the Hawking-Page transition should

fall into the same universality class as the Ising model. By this procedure, it may

then be possible to analytically calculate the critical exponents of an Ising model in

any dimension d.

7 Discussion

7.1 Summary

This paper has two related purposes. The first one is to advocate a particular approach

to holography in condensed matter systems. We proposed to establish the link between

certain spin systems and gravity through the better understood case of gauge-gravity cor-

respondence and the IR equivalence between gauge theories and spin-models. The latter is

expected to hold only around criticality (in the continuum limit). Therefore a gravity-spin

model duality is expected to hold only near the phase transition region. In particular one

should not rely on the gravitational description in the UV of the spin-system.

On the other hand, precisely around the critical region, where the spin-system is

strongly correlated, the dual gravity description is expected to simplify as the higher-

derivative corrections become smaller. We showed that this expectation indeed holds in a

specific gravity model based on non-critical string theory.

This example also hints at a kind of universality in the dual gravity theory which only

arises in the transition region: we found that regardless of the details of the gravity theory,

the physics around criticality is governed by a linear-dilaton CFT. Moreover focusing on

the lowest states in the CFT at levels N = 0 and N = 1 imply mean-field scaling —

in the semi-classical approximation where only the lowest lying states are kept in string

propagation — regardless of the matter content of the CFT.
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We emphasize that the approach formulated in the previous section in principle allows

for a top-bottom constructions in AdS/CMT. What more can be learned from gravity

around the critical region is described in section 5.1.

A second purpose of the paper was to construct a model of holographic superfluidity

based on continuous Hawking-Page transitions in gravity. A duality between gravity and

spin-models of the type described above provides motivation for this model but it could

have been constructed with no reference to such arguments. Indeed all one needs from

the phenomenological perspective is a gravitational model 1) with some mechanism of

spontaneous breaking of global U(1) symmetry in a continuous transition and 2) a bulk

field that is charged under this U(1) which would serve as a dual of the order parameter.

In the model that we studied here the U(1) is the topological shift symmetry of the NS-NS

two-form field that breaks down at a continuous Hawking-Page transition and the fields

that are charged under this U(1) are the winding modes of the string around the time-

circle. Viewed from this perspective, one wonders if a gravity model can be obtained in a

more direct fashion by truncating the string down to the bulk dynamics of gravity, dilaton

an Abelian gauge field and the winding modes. In this approach one expects to study an

effective action of the sort,

S ∼
∫

e−2Φ

(

R+
1

2
(∂Φ)2 + V (Φ) +

1

2
|DT |2 − 1

2
m2
T |T |2

)

(7.1)

where T (T ∗) is the winding tachyon with w = +1 (w = −1) and mass −m2
T and it

is minimally coupled to a U(1) gauge field through D = ∂ − iA. The gauge field may

arise either from reduction of the B-field on the time-circle or gauging the aforementioned

topological shift symmetry of the B-field. In this effective theory, the Goldstone mode in

the superfluid phase is given by the phase of the T field. The system would be in the

ordered phase when (the particular mode that corresponds to the order parameter in the

fluctuations of) T becomes normalizable above a certain Tc.

Such models have the same flavor as the ones in [4, 5] and more recently in [44].

One immediate future direction is to understand holographic implications of a model such

as (7.1).

Another immediate future work concerns going beyond the mean-field scaling at crit-

icality. We showed that the lowest mass sector of the linear-dilaton CFT gives rise to

mean-field scaling. We named such a restriction to the lowest lying modes in the tree-

level string path integrals as the “semi-classical” approximation. Then, the question is

what happens beyond the semi-classical approximation? Can one produce exponents be-

yond mean-field scaling in this manner? Can one obtain universal exponents of the 3D

XY-model by summing up contributions of all string states?

Further future directions are listed below.

7.2 Outlook

• Embedding in string theory

Clearly, it is of great interest to look for examples of the proposed correspondence in

a consistent truncation of critical string theory. The very recent papers [45, 46] may
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be relevant for this enterprize.46 Another relevant work is [47, 48] where it was shown

that linear-dilaton type geometry universally arises from non-conformal branes.

Explicitly put, one should find a consistent truncation of string theory which possess

small slack-hole solutions that exhibit continuous Hawking-Page transitions. We

observe that the asymptotic form of the scalar potential in (3.15) and (3.18) is sum

of exponentials that quite generically appears in consistent truncations of IIB and

IIA critical string theory. We shall leave this investigation for future work.

• An explicit D-brane set-up?

Even if one finds examples of continuous Hawking-Page transitions in string theory,

this would not necessarily give control over the microscopic condensed matter system

that we want to describe. On the other hand, the prescription proposed in section 6

in principle goes beyond this and allows for a top-bottom approach.

Therefore, one should search for examples of gauge theories with gauge group G and

adjoint matter such that the theory exhibits criticality at some finite Tc. There are

indeed examples of this. In [14], the authors studied SU(N) with adjoint matter

on S3, in the large N limit and showed that for certain choices of the matter, the

theory exhibits a second order deconfinement transition at finite temperature, at

weak coupling. This happens when the coefficient of the quartic term in the effective

action for the Polyakov loop is negative. Whether this transition prevails in the limit

when the radius of the sphere becomes large (the case relevant here), or whether it is

continuously connected to a transition at strong coupling is unclear, but it is probable.

• Discrete center

We note that, the proposal advocated in this paper can also be applied to spin-models

with discrete symmetry groups in principle. In most of the paper we focused on the

SU(N) LGT in the large N limit. Going beyond the large N limit seems to be a

difficult enterprize at the moment, however one may consider other gauge groups

such as SO(N) and Sp(N) with adjoint matter, in the large N limit. The latter is

particularly interesting, because it has the center Z2 for arbitrary N, hence also in

the large N limit. It is very tempting to employ the ideas developed in this paper to

this particular case to arrive at a gravitational description of the 3D Ising model.

• Other critical exponents

One can also study critical behavior in other quantities. One such quantity is the

susceptibility:

χ = lim
h→0

d| ~M |h
dh

∼ t−γ , as t→ 0. (7.2)

Here h denotes and external magnetic field and the expectation value ~M = 〈~s〉 is

taken in the ensemble with an external magnetic field present, i.e. the Hamiltonian

of the spin model replaced by H → H + ~h ·∑i ~si.

46We thank Yaron Oz for mentioning possible relevance of these works.
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How to generate such an external magnetic field in the gravity picture? One hint

is that the external magnetic field should break the U(1)B invariance explicitly by

analogy with the dual spin-model. This may happen through a Chern-Simons type

coupling in the gravity action
∫

dd+1xB2 ∧ Hd−1 where B2 is the NS-NS two form

and H is an appropriate RR form. The role of the magnetic field would be played by

a constant H-form on the d-1 dimensional space part. It would be very interesting

to investigate this issue in the future and eventually compute the critical exponent γ

in (7.2) by gravitational methods.

• The UV geometry

We observed that most of the interesting scaling behavior in the observables of the

spin-model depend on the IR geometry on the gravity side. We did not have to spec-

ify the UV geometry so far, but we tacitly assumed that it becomes asymptotically

AdS, for consistency in holographic applications. From a practical point of view, the

UV geometry will be important if one desires to obtain the full form of the n-point

functions, not just the scaling with t. In [15] we indeed constructed analytic kink

solutions that fulfill this promise. These solutions interpolate between an asymptot-

ically AdS geometry (with constant dilaton) in the UV towards an asymptotically

linear-dilaton geometry in the IR. It will be very interesting to study correlation

functions holographically obtained from these backgrounds.

The specification of the IR geometry follows from physical requirements of the spin-

model near the transition region Tc. On the other hand, the black-hole with tem-

perature T is argued to correspond to the super-fluid phase with temperature 1/T .

Then, one can ask whether we can also produce the expected behavior of the super-

fluids at very low temperatures, by specifying the high T regime of the black-hole

that corresponds to the UV geometry : One basic feature of the two-fluid model for

super-fluidity is that the (normal) speed of sound, that is associated with fluctuations

in the magnetization vanish as T → 0. This is certainly not a behavior expected from

an asymptotically AdS geometry in the UV which would correspond to a conformal

fluid with c2s = 1/3. We conclude that the kink solution that flows from AdS to

linear-dilaton [15] would not do the job here. One possible way to proceed may be

to consider the non-conformal brane solutions [47, 48] which on one hand allow for a

holographic computation of observables, and on the other, there is a chance to find

backgrounds with c2s → 0 in the UV.

Do we really expect to find a background as a solution to two-derivative Einstein-

dilaton theory, that would produce the desired behavior in the entire range T ∈ (0, Tc)

of the super-fluid? The answer is most probably negative. Let us suppose for a

moment that such a background exists as a solution to the full d + 1 dimensional

non-critical string theory. As we showed in [15], the curvature invariants in the IR

vanish in the string frame, therefore a two-derivative approximation is expected to

work in near the transition T ≈ Tc On the other hand, the invariants away from the

transition region are determined by the intrinsic string scale ℓs. This means that
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in a two-derivative approximation one deals with a background with ℓ/ℓs ∼ 1. To

conclude: we indeed expect non-trivial α′ corrections in the UV region and the two-

derivative approximation presented here is expected to give reliable results only near

the transition region.

• The two fluid model of super-fluidity

We only performed the computation of the speed of sound for the Goldstone mode.

It would be also very interesting to look at the dissipation coefficients associated with

these fluctuations. In the two-fluid model of super-fluidity, one deals with a coupled

system of pressure and entropy waves of the two-component superfluid, cf. [49] for

a recent review. The pressure waves are dual to metric and dilaton fluctuations,

whereas the entropy waves are associated with fluctuations of the B-field. It would be

very interesting to work out this coupled system of fluctuations in order to determine

the associated dissipative fluid dynamics.47

• Spin models with non-Abelian symmetry groups

One fundamental restriction of the approach in section 6 is that the spin symmetry

cannot be non-Abelian as it follows from the center symmetry of the corresponding

lattice gauge theory. On the other hand a very important model for superconductors

involves the O(3) model.48 Whether one can overcome this restriction in our set-up

is an interesting question. In phenomenological models such as [50], one can achieve

this simply by considering black-holes with non-abelian charges.

In our perspective, one idea is to consider the enhanced symmetries of string theory

at special radii [16]. When the sting is compactified on the time-circle one obtains

U(1)G × U(1)B symmetry at an arbitrary radius. The second one is spontaneously

broken in the BH phase. At special a radius T = Ts = (2πℓs)
−1 (in bosonic NCST)

however one obtains an enhanced symmetry SU(2)L × SU(2)R. If this radius corre-

sponds to the transition temperature Tc then one may be able to obtain a model with

the desired behaviour within our set-up.
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A Simplest example of the LGT-spin equivalence

Let us review how the LGT-spin equivalence works in the simplest case of the U(1) lattice

gauge theory in d dimensions. Through this example we will illustrate that the temperature

47It seems that one needs to turn on a Chern-Simons term of the form
R

B∧HRR where HRR is a d-1-form

turned on the spatial directions in order to achieve such a mixing.
48See [30] for a recent proposal for a holographic description of this model.
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of the spin model is inversely related to the temperature of the (lattice) gauge theory which

also holds in the most general case.

In the Hamiltonian formalism, the lattice theory is defined by:

H =
g2

2a

∑

(r,n̂)

E2(r, n̂) − 1

2ag2

∑

Γ

(

V [Γ] + V †[Γ]
)

. (A.1)

Here, g is the coupling constant, a is the lattice spacing. The first sum is over the links

(r, n̂) on a d-dimensional square lattice (r denotes the lattice site, n̂ denotes the direction

of the link that originates from this site) and E denote the electric fields residing on these

links. The first sum above yields the electric energy. The second one is over the elementary

plaquets Γ. The V s denote the Wilson lines on these plaquets. This gives the magnetic

energy. The partition function of gauge invariant states at temperature Tl is given by,

Zlat(Tl) = Tr′e−H/Tl , (A.2)

where the prime reminds us that we have to impose the Gauss’ law on the states in

the ensemble. Consequently, the sum above is over the gauge invariant states |ψ〉 which

should satisfy,

H|ψ〉 = E|ψ〉, Γr|ψ〉 = 0. (A.3)

Here, the second equation imposes the Gauss’ condition on the states; the operator Γr is

the lattice analog of ∇ · E on each lattice site r :

Γr =
∑

n̂

E(r, n̂). (A.4)

In the strong coupling limit, one can drop the magnetic energy term in (A.1).

Now, the sum is only over the electric link variables and the prime can be removed by

a suitable Lagrange multiplier α: (at strong-coupling): [10, 11]

Zlat(Tl) =

∫ π

−π

∏

r

dα(r)
∏

links

∑

E

exp

(

− g2

2aTl
E(r, n̂)2 + i[α(r) − α(r + n̂)]E(r, n̂)

)

.

(A.5)

The integral over α imposes the Gauss’ law. Using the Poisson summation formula,

∑

E

ecE
2+iαE ∝

∑

m

e−
1
4c

(α+2πm)2 , (A.6)

the sum over the E can be performed:

Zlat(Tm) =

∫ π

−π

∏

r

dα(r)
∏

links

∑

mr

exp

(

−aTl
g2

[α(r) − α(r + n̂) + 2πmr]
2

)

. (A.7)

This is the Villain approximation to the Heisenberg model for ferromagnetism in d-

dimensions. It is in the same universality class with the Heisenberg model [11]. In particu-

lar, for d = 2 this becomes the famous XY model in 2 dimensions, where the BKT scaling

was first observed [24, 25].
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The salient feature of the Heisenberg model is that it exhibits order in the low T phase

(that corresponds to the, high T deconfined phase of the Abelian LGT),

〈eiα(R)eiα(0〉 ∝ 1, as, R→ ∞, (A.8)

and disorder in the high T phase (that corresponds to the low T, confined phase of

the LGT),

〈eiα(R)eiα(0〉 ∝ E−R/ξ , as R→ ∞, (A.9)

where ξ defines the correlation length. Some comments are in order:

• The computation can be generalized to the non-Abelian case [10, 11].

• The computation is performed in the strong coupling limit where one can ignore the

magnetic energy in (A.1). This constraint can easily be loosened and the equivalence

prevails also if one considers the magnetic piece [10, 11].

• One can generalize to add adjoint matter, as the center symmetry remains intact

under addition of adjoints.

B Relation between non-critical strings and the linear-dilaton theory

It is long known that the two theories are intimately connected [33]. The connection is

made precise in a beautiful work by Chamseddine [31] which we would like to review here.

For simplicity we consider bosonic matter. Then the non-crirtical string theory in

d − 1 spatial dimensions with flat Euclidean target-space metric can be defined by the

world-sheet action

Aws =
1

πα′

∫

M
d2σ

√
hφ(R+ Λ) + λχ(M) + µ

∫

M
d2σ

√
h+

1

4πα′

∫

M
d2σ

√
hhab∂aX

i∂bX
i,

(B.1)

where we ignored coupling to B-field for simplicity. Here φ is a scalar field introduced

in [31] in order to ameliorate evaluation of higher genera diagrams. Its presence was also

motivated on physical grounds [31]. The matter index runs from i = 1 to i = d − 1.

The manifold M can be with arbitrary genus χ(M) = 2(1 − g), and the constant λ is

determined by the asymptotic value of the dilaton. The constant Λ is a free parameter

and µ and is subject to renormalization. It was argued in [31] that the φ coupling in the

action apparently overcomes the difficulties, “the c=1 problem” encountered in the study of

non-critical strings. The path integral over the world-sheet metric can be performed in the

conformal gauge hab = eσL ĥab and results in the Liouville action for the field σL producing

additional world-sheet terms µeσL and ΛeσL . Then the effective renormalized action after

gauge-fixing involves the matter part as in (B.1), the renormalized gravity action, the ghost

part that arise from the reparametrization fixing and the induced Liouville action:

Aws =
1

2π

∫

M
d2σ

√
hφ(R̂+ ∆ĥσL + Λe2σL) +

1

4πα′

∫

M
d2σ

√
hhab∂aX

i∂bX
i + λχ(M)

+
1

2π

∫

M
d2σ

√
hbab∇acb+

1

π

∫

M
d2σ

√
h

[

a

(

1

2
ĥab∂aσL∂bσL+σLR̂

)

+ µe2σL

]

. (B.2)
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Here a is a constant that vanishes only in the critical case (e.g. a = (25 − d)/12 for

the bosonic case). The world-sheet terms µeσL and ΛeσL can be shown to correspond to

conformal primaries, hence one can treat them as marginal deformations of the theory

with µ = Λ = 0. The full theory can be shown to be free of conformal anomaly and has a

well-defined OPE among the fields Xi(z), φ(z) and σL(z).

The valuable observation of [31] is to interpret (linear combinations of) Φ and the

Liouville-field σL as two new additional dimensions of the target-space. The resulting

theory is described by the new action (for the case µ = Λ = 0),

Aws =
1

π

∫

M
d2σ
√

ĥ vµX
µR̂+

1

4πα′

∫

M
d2σ
√

ĥĥab∂aX
µ∂bX

νηµν +
1

2π

∫

M
d2σ

√
hbab∇acb,

(B.3)

where µ runs from 0 to d and ηµν is the flat Minkowski space metric. The additional

dimensions X0 and Xd is given in terms of σL and φ of the non-critical string as,

X0 =

√

6α′

25 − d
φ, Xd = 2

√

25 − d

6α′ σL +

√

6α′

25 − d
φ, (B.4)

and the coefficient vµ in (B.3) satisfies the condition

vµvµ =
25 − d

6α′ bosonic; vµvµ =
9 − d

4α′ fermionic, (B.5)

where we also show the condition in the fermionic case for reference.This is nothing else

but the linear-dilaton theory that arises in the IR limit of our geometry. Therefore the

non-critical string theory in d − 1 spatial dimensions is equivalent to a d + 1 dimensional

linear-dilaton theory.

The main advantage of mapping the linear-dilaton theory to the non-critical string

theory is that the latter provides a well-defined CFT. The spectrum as well as the arbi-

trary genus path integrals can be evaluated [31]. Another great advantage is that one can

generalize this construction to include fermions on the world-sheet and N = 1 world-sheet

super-symmetry. This opens the Pandora’s box and a rich variety of linear-dilaton theories

can be constructed with various possible GSO projections, twisted or shifted boundaries

for the bosons with various combinations of NS or R fermions including the heterotic case.

C Some background in statistical mechanics

In this section we review some standard background in statistical mechanics that we need

in the following section.

We take the XY model as our example although the approach can be very general.

Consider the spin-model that is described by the Hamiltonian,

H = −J
∑

〈ij〉
~si · ~sj + · · · (C.1)

where J is the interaction strength which is positive for a ferromagnet and negative for

an anti-ferromagnet, ~s is the spin vector that rotates on a plane and 〈ij〉 denotes nearest

neighbor pairs on the lattice. The dimensionality of the system only shows up in the

number of nearest neighbors of a lattice cite.
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C.1 Landau action

The Landau action can be defined from the partition function in a formal way, with no resort

to any approximation, see for example [51]. One first introduces a continuous spin density,

~s(x) =
∑

i

δ(x− xi)si. (C.2)

Than one defines the local magnetization as in the following formal identity

1 =

∫

D~mδ[~m(x) − ~s(x)], (C.3)

inserts the r.h.s. of this identity in the partition function

Z = Tr

[
∫

D~mδ[~m(x) − ~s(x)]e−βH
]

(C.4)

and finally performs the sum over the spin degrees of freedom ~si. This yields,

ZL =

∫

D~me−β FL[~m] (C.5)

that defines the Landau action FL. This is formal but exact. Of course, the last step of sum-

ming over the spin degrees of freedom is practically impossible in most of the spin systems.

C.2 Landau approximation

This corresponds to keeping the most dominant contribution mL in (C.5):

ZL ≈ e−βFL(mL). (C.6)

The most dominant contribution mL is determined by minimizing FL. Furthermore, near

an order-disorder phase transition the total magnetization

~M =
1

Vd−1

∫

dd−1x ~m(x), (C.7)

should go to zero. Then the O(2) symmetry of the XY model dictates the following general

form of the Landau action:

FL =

∫

dd−1x

(

α0(T )|∂ ~m(x)|2 + α1(T )|~m(x)|2 +
1

2
α2(T )|~m(x)|4 + · · ·

)

(C.8)

where the ellipsis stand for higher (even) powers in m.

Basic quantities to be computed, which determine the phase diagram of the spin sys-

tem involve the functions α0(T ), α1(T ), . . . 49 For example the point α1(Tc) = 0, α2(Tc) 6= 0

corresponds to a second order transition. The point α1(Tc) = α2(Tc) = 0 corresponds to

a tri-critical point, etc. A further simplification occurs in the case of positive J (ferro-

magnet), when the ground state of the system should avoid fluctuations in local magne-

tization ~m(x) because they increase the energy of the system, hence one can ignore the

kinetic term in (C.8) and one can set 〈~m(x)〉 = ~M . This means that the ground state has

isotropic magnetization.

49In a more complicated system, for example with a chemical potential, these functions depend on addi-

tional variables.
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C.3 Mean-field approximation

Mean-field approximation is a standard method to compute the Landau action (C.8). One

expands around a mean-field ~si = ~M + δ~si where ~si denotes fluctuations around the mean

value ~M . One substitutes this in the Hamiltonian (C.1). Ignoring the terms of second and

higher order in δs corresponds to the mean-field approximation. One can clearly compute

the partition function, hence the Landau action FL analytically within this approximation.

One immediately obtains,

Z = Tr e−
H
T = e−

FL
T = e−

NzJ
T

| ~M |2 ∏

i

∫ π

−π
dθie

2zJ
T

| ~M | cos(θi) (C.9)

where N is the total number of sites on the lattice and z is the number of nearest neighbors.

Evaluating the integrals one obtains the following Landau action:

FMF
L = −NT log(2π) +NzJ | ~M |2 −N log

[

J0

(

2zJ | ~M |
T

)]

. (C.10)

The first term corresponds to the entropy and can be ignored for our purposes here, as it

is identical on both phases. The rest corresponds to the energy of the system. Expanding

energy near Tc where ~M is small, one obtains,

FMF
L = | ~M |2NJ

(

z − z2J

T

)

+ · · · (C.11)

At the second-order transition the mass term should vanish. Thus one obtains the mean-

field value of the transition temperature:

TMF
c = z J. (C.12)

For a square lattice in d− 1 spatial dimensions z = 2(d− 1).

In the context of Landau approximation,50 the further mean-field approximation means

that the Landau coefficients admit a Taylor series expansion near Tc. For example

α1,MF (T ) = αc(T − Tc) + · · · (C.13)

and the basic data to determine involve the quantities Tc and αc in this case. This linear

dependence is explicit in (C.11).

Clearly, the mean-field approximation is crude and one can compute the aforemen-

tioned observables to a greater accuracy by the renormalization group methods or Monte-

Carlo simulations. We shall see below, how the gravitational techniques can go beyond the

mean-field approximation.

50What we mean by the Landau approximation is summarized by eqs. (C.6) and (C.8) without further

specification of the Landau coefficients α1(T ), α2(T ) etc.
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C.4 Gaussian fluctuations

Fluctuations around the mean value ~M yield crucial information on the spin-model, in

particular the spin-spin correlation function and the associated critical exponents near Tc.

To compute them, one substitutes51

~m(x) = ~M + ~s(x), (C.14)

in (C.8) and expand to second order, ignoring higher order terms in the mean-

field approximation.

One introduces the correlation length as the natural length scale,

ξ(T ) =

√

α0

α1(T )
, (C.15)

in (C.8).52 The calculation of the spin-spin correlation function in the ordered phase

(T < Tc) within this approximation is standard, see for example [51].

The only crucial point is that, in the case of spontaneous symmetry breaking, as in

the XY-model, one has to decompose the correlation function in parts longitudinal and

transverse to the direction of magnetization ~M . Let us denote the components of ~m by

mi. Introducing the unit vector along the direction of magnetization in the system,

vi =
Mi

| ~M |
. (C.16)

Then one finds,

〈mi(x) mj(0)〉 = | ~M |2vivj +
T

4πγ

e−L/ξ(T )

Ld−3
vivj +

T

4πγ

1

Ld−3
(δij − vivj), (C.17)

where the result only depends on the radial distance L = |~x| by rotational symmetry.

Here the first term comes from the disconnected part of the correlator, and it is present

only in the ordered phase. The second and third terms are the pieces longitudinal and

transverse to the magnetization respectively. The longitudinal piece arise from massive

fluctuations in the Mexican hat potential where the typical mass of the fluctuations is

given by ml = ξ−1. This attenuation term is missing in the transverse correlator because

the fluctuations correspond to the massless Goldstone mode.

The result (C.17) is valid in the mean-field approximation where we only treat Gaussian

fluctuations. This approximation will break down if the system is strongly correlated.

Generally in condensed matter systems, strong correlations arise around a phase transition.

Therefore we expect that the gravity dual becomes a good description in the transition

region. The notion of strong fluctuations is quantified by the Ginzburg criterion:

ξ5−d ≪ 4πγ2

α2Tc
, (C.18)

51We drop the δ in front of ~s from here on, for notational convenience.
52Strictly speaking this corresponds to the correlation length for T < Tc. In the low-T regime it differs

by a factor of 1Sqrt2. However, we are mainly interested in the scaling of ξ near Tc and the scaling is the

same in the mean-field approximation, from below and above.
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where α2 and α0 are the Landau coefficients in (C.8). For fluctuations of ~s we see that the

mean-field approximation unavoidably breaks down near the transition where ξ becomes

very large.53

Beyond the mean-field approximation, one has to take into account non-trivial self-

energy corrections to the correlator that generically result in the anomalous exponent η.

Therefore the generic form of the correlator is similar to (C.17) but with the additional

anomalous dimension, in addition to the engineering dimension in the correlator:

〈mi(x) mj(0)〉 = | ~M |2vivj +
T

4πγ

e−L/ξ(T )

Ld−3+η
vivj +

T

4πγ

1

Ld−3+η
(δij − vivj), (C.19)

The mean-field approximation corresponds to η = 0.

Equation (C.19) gives the correlator in the ordered phase that is dual to the black-hole

solution in gravity. Above the transition 〈 ~M 〉 vanishes and there is no Goldstone mode.

Hence, the correlator is given by the second piece of (C.19). This is dual to the thermal

graviton gas phase of gravity.

In a second order phase transition, the correlation length diverges as T → Tc, as

ξ(t) ∼ t−ν, (C.20)

where ν defines a critical exponent. In the mean-field approximation ν = 1/2.

Another important point concerns the scaling of ~M near the transition. It vanishes in

a continuous transition, as it is the order parameter. As explained above one can ignore

the kinetic term in (C.8) in the ground state of a ferromagnetic system. Vanishing of ~M

near Tc is characterized by the critical exponent β:54

~M ∼ tβ. (C.21)

In the Landau theory the expectation value ~M is determined from (C.8) as,

〈~m(x)〉 = ~M =

√

|α1(T )|
α2(T )

. (C.22)

As α2 and α0 stays constant at Tc, we see from (C.15) that, in the mean-field approximation

the scaling of ~M and ξ are inversely related,

~M ∝ ξ−1 ∝ tν . (C.23)

Therefore, it suffices to determine how ~M scales in order to obtain the scaling of ξ in the

mean-field approximation.

53One can be more careful by considering the amplitude and phase fluctuations of ~s separately. In the

former case the coefficients α0 and α2 stay constant at Tc and from (C.18) one finds that strong correlations

are indeed unavoidable in the transition region where ξ diverges. In the latter case also the constant α0

vanishes near the transition, see below. In the mean-field scaling α0 ∼ t and ξ ∼ t−
1
2 . Therefore one finds

that, only for uninteresting dimensions d > 9 the mean-field approximation is expected to be good for the

phase fluctuations.
54Not to be confused with the perimeter of the time-circle β = 1/T . We use the same notation for these

quantities and which one is meant should be clear from the context.
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Futhermore, in the mean-field theory the coefficient α(T ) in (C.8) is assumed to

be linear in t near Tc, (C.13). Comparison with (C.22) and (C.23) then shows that in

this approximation:

βMF = νMF =
1

2
. (C.24)

C.5 Vanishing of the second sound

We note that, the vanishing of ~M as T → Tc from below implies vanishing of the sound

velocity associated with the phase fluctuations. To see this we represent the fluctuations

~s(x) in (C.14) as,

~m(x) →
(

| ~M | + ρ(x)
)

eiψ+iδψ(x). (C.25)

Substituting this in (C.8), one obtains the kinetic term for the phase fluctuations,

δFL ∼
∫

dd−1x
(

γ(T )| ~M |2(δψ(x))2 + · · ·
)

(C.26)

Therefore, the speed of sound associated with the phase fluctuations vanish near Tc,

cψ ∼ t2β, t→ 0, (C.27)

and the rate it vanishes is determined by the critical exponent associated with the magne-

tization (C.21).

In the derivation above, we used the Landau approximation and only kept the leading

terms in fluctuations. Therefore, within this picture the magnetization critical exponent

should be the mean-field one, (C.24). This means that in this picture one obtains,

cψ ∼ t, t→ 0. (C.28)

An important check for the proposed gravity-spin model correspondence here is to derive

the same scaling law on the gravity side. This is done in section 5.6.

C.6 BKT theory

Finally, we consider the XY-model in two spatial dimensions. As well-known, in less than

three dimensions, long-range order is destroyed by the IR divergences in fluctuations of

the order parameter [52–54], i.e. there are no Goldstone bosons. However Berezinskii,

Kosterlitz and Thouless [24, 25] observed that the 2D XY-model still serves as a good

model for superfluidity. The main observation is that, although there is no long-range

order in the standard sense, there exists a topological order below a certain Tc, where the

vortex- anti vortex pairs condense. Above Tc the system is the “deconfined” phase where

the vortex anti-vortex pairs are liberated and one has a plasma of vortices. All of this

is of course very similar to what happens in QCD, with the replacement of quarks with

“magnetic” quarks.

Vortices are charged objects. One assigns vortex charge Qv = ±1 for the vortices and

anti-vortices respectively. The total vortex charge in a configuration should vanish in two-

dimensions because the gauge field has an IR divergence and the energy of an unbalanced

configuration would diverge, hence its Boltzman factor in the ensemble vanishes.
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What do we expect from the behavior of vortex correlation functions above and below

Tc? Let us denote the operator that creates a vortex, localized at point x by v(x) and the

operator that creates an anti-vortex by v̄(x). For the reason described above, one cannot

have any non-trivial expectation value neither below nor above the transition, as it would

break the vortex charge:55

〈v(x)〉TG = 〈v̄(x)〉TG = 〈v(x)〉BH = 〈v̄(x)〉BH = 0. (C.29)

The phase of the system can be probed by the two-point function of the vortex-anti-vortex

pair, however. One finds that the two-point function is exponential in the high T phase,

hence there exists a correlation length, whereas it has power-law in the low T phase:

〈v̄(x)v(0)〉TG ∼ e−L/ξ(T ); 〈v̄(x)v(0)〉BH ∼ Lp(T ). (C.30)

where L = |x| ≫ 1 and p is some power.

In systems with more than two spatial dimensions, one can still consider vortex con-

figurations, however they would not have as significant effects on the phase of the system

as in 2D. The relative objects in higher dimensions would be the vortex-lines, planes etc,

that are analogous to monopole configurations in gauge theories.

D Fundamental string action

Here we fill in the details of the computations in section 5. The F-string action involves

two terms:56

SNG = SG + SΦ (D.1)

where

SG =
1

2πℓ2s

∫ σf

σ0

dσdτ
√
hhab∂aX

µ∂bX
νGµν , (D.2)

SΦ =
1

2π

∫ σf

σ0

dσdτ
√

det hab R
(2) Φ(X(σ)), (D.3)

where ℓs is the string length, rf is some turning point of the string embedding that will

be specified in the following, R(2) is the Ricci scalar that corresponds to the world-sheet

metric hab, and Gµν is the BH metric in the string frame:

ds2s = e2As(r)
(

f−1(r)dr2 + dx2
d−1 + dx2

0f(r)
)

, As(r) = A(r) +
2

d− 1
Φ(r), (D.4)

The on-shell value of the action depends on the boundary conditions of the string. In this

paper we consider three separate cases:

1. The Polyakov loop,

2. The Polyakov correlator (The Wilson loop),

3. The ’t Hooft loop.

55The TG (BH) phase of gravity is dual to the high (low) T phase of the XY-model, whence we denote

the vortex correlators accordingly.
56The role of a non-trivial B-field is already discussed in the test and we shall ignore it here.
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D.1 The Polyakov loop

First of all, we fix the world-sheet diffeo-moprhism invariance as

σ = x0, τ = r, (D.5)

where x0 is the Euclidean time.

We consider two separate geometries that the string is embedded: a) the thermal gas

solution with topology S1×Bd where Bd is a d-dimensional ball and b) the black-hole with

topology D2 ×Bd−1 where D2 is a 2 dimensional disk.

The boundary of Bd is Sd−1 but we are interested in the flat limit where Sd−1 → Rd−1.

Therefore, in both cases the boundary of space-time becomes S1 ×Rd−1. The string ends

on a curve C on the boundary where C = S1 × P , P being a point x on Rd−1 that we

can take as the origin with no loss of generality. In case a, the only string solution with C

as the boundary is the semi-infinite cylinder S1 × R where R is isomorphic to the radial

coordinate r and P is the point that corresponds to the endpoint of the line R at r = 0.

In case b, the only string solution that ends on C is isomorphic to D2, hence it wraps the

entire D2 part of the bulk geometry.

Clearly, the action (D.2) diverges in case a because σf = rf = ∞. Therefore (D.1)

will diverge unless there is some cancellation between (D.2) and (D.3). In the following

we show that (D.3) is finite in all of the cases under consideration. Therefore the result in

case a is that the Polyakov-loop vanishes.

Now, consider the case b, i.e. the black-hole geometry. As explained above, the string

wraps a D2. Then, the radius of D2 is given by rh. Clearly, both (D.2) and (D.3) are finite

hence contribute to the energy for an arbitrary but finite rh. However, we are interested

in the limit T → Tc i.e. rh → ∞ and we ask how do (D.2) and (D.3) scale with rh.

Let us first consider the scaling of SΦ with rh in the limit rh → ∞. The world-sheet

metric h in the gauge (D.5) is given by,

ds2ws = e2As
(

dx2
0f + dr2/f

)

(D.6)

One finds, √
hR(2) = −2A′

s f
′ − 2 f A′′

s − f ′′, (D.7)

where prime denotes d/dr. Using eqs. (3.16) and (D.8) one finds that,

As(r) ∝
{

e−κ
′r, case i,

r−α, case ii,
(D.8)

where κ′ = κV∞/2 and α are positive constants. Thus we find that, even though Φ diverges

linearly as r → ∞, the integrand in SΦ vanishes in this limit. Therefore the contribution

of SΦ is finite in the case b, also in the limit rh → ∞.

Now we consider the scaling of SG with rh. The metric in the string frame is given

by (D.4). From (D.2) one immediately finds that,

SG =
T−1(rh)

2πℓ2s

∫ rh

ǫ
e2As(r)dr. (D.9)
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where ǫ is the UV cut-off that should be removed by a proper counter-term action, but it

will be irrelevant for the scaling of the SG with rh.

In passing we note the trivial result on the TG solution. This corresponds to (D.9)

where rh replaced with ∞ and As replaced with As,0. As As,0 goes to zero in the limit r →
∞ (D.9) is divergent and the magnetization that corresponds to exponential of −S vanishes.

In the limit rh → ∞ in case of the BH, one has SG ∝ limrh→∞ e2As(rh)rh, whence it

diverges linearly, whereas SΦ remains finite as we showed above. Thus, using the fact that

A(rh) → 0 (D.8), one finds,

P [C] ∝ e−SNG ∝ exp

(

−T
−1(rh)

2πℓ2s
rh

)

, rh → ∞ (D.10)

The next task is to express rh in terms of the normalized temperature t (3.20). We know

how Φh can be expressed in t from (3.21). Thus if suffices to find rh in Φh in large Φh

limit. This is given by (3.16):

lim
Φh→∞

Φh =

√
V∞
2

rh. (D.11)

Now, (3.21) yields,

Φh =

{

− 1
κ log(t/C), case i,

(

t
C

)− 1
α , case ii,

(D.12)

Therefore (D.11) gives,

rh =

{− 2√
V∞ κ

log(t/C), case i,

2√
V∞

(

t
C

)− 1
α , case ii.

(D.13)

Substitution of (D.13) in (D.10), use of the fact that T → Tc in the limit rh → ∞ fi-

nally yields

Case i : e−SNG ∝ t
4

κ Vs t→ 0 (D.14)

Case ii : e−SNG ∝ e
4

Vs
( t

C )
− 1

α

, t→ 0, (D.15)

In the arguments above, we ignored the issue of renormalizing the UV divergence in the

action (D.9). The renormalization can be done by subtracting the self-energy of the single

quark that corresponds to a single disconnected string solution that hangs from ǫ to rf .

This renormalization is considered in detail at the end of appendix D.2 below. The counter-

term action is the same (up to a factor of 2) as there. The same conclusion reached there

— that ignoring the renormalization does not affect the leading term in L in the large L

limit — is also valid here.

D.2 The Polyakov loop correlator

We compute the on-shell string action that corresponds to the Polyakov-loop correlator

here. We will consider the BH geometry, and the same problem on the TG geometry can

be obtained from our result below, see below eq. (D.29).
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The fundamental string action is

SF1 =
1

2πℓ2s

∫

dτdσ
√
h
[(

habgsµν + iǫabBµν

)

∂aX
µ∂bX

ν + ℓ2sΦ(X)R(2)
]

, (D.16)

where h is the induced metric, gsµν is the target-space metric of the BH geometry in the

string-frame

ds2s = e2As(r)
(

f−1(r)dr2 + dx2
d−1 + dx2

0f(r)
)

, As(r) = A(r) +
2

d− 1
Φ(r), (D.17)

and R(2) is the world-sheet Ricci scalar. The string that corresponds to the to Polyakov-

loop correlator 〈P ∗(x)P (0)〉 is a connected string solution with end-points x and 0 on the

boundary. With no loss of generality, we take these points to lie on the same axis that

we call x1. The string that connects these points extends towards the deep-interior of the

d + 1 dimensional target-space in the r-direction. Thus, a good choice of the gauge-fixing

is given by σ = x0, τ = x1 where t is the Euclidean time coordinate with perimeter 1/T .

The string should also wind-around the time-circle. As we look for a solution that only

depends on r, the τ -integral factors out and yields a multiplicative factor of 1/T .

First of all, the B-coupling cannot arise here because it yields an imaginary contribu-

tion, whereas the Polyakov-loop correlator is manifestly real. Thus we can drop the second

term in (D.16). Secondly, one can show that the contribution of the dilaton-coupling is

sub-dominant with respect to the first term in (D.16). One can see this as follows. Let

us assume that indeed the dilaton-coupling is sub-dominant. Then, the induced metric is

solely determined by the first term in (D.16)

hab = ∂aX
µ∂bX

νgsµν . (D.18)

Given this one can compute the Ricci scalar:

√
hR(2) =

(

f + Z2
)− 3

2

[

− Zf
′2 + 4f2(A′

sZ
′ + ZA′′

s) + 2Z3(2A′
sf

′ + f ′′)

+2f(Z ′f ′ + 2Z3A′′
s + Z(A′

sf
′ + f ′′)

]

(D.19)

where we defined,

Z(r) =

(

dx1

dr

)−1

=
√

f(r)

√

e4As(r)f(r)

e4As(rf )f(rf )
− 1. (D.20)

In this paper, we are interested in how the Polyakov-loop correlator scales near Tc and for

large L. The latter is given by,

L = 2

∫ rf

ǫ
dx1 = 2

∫ rf

ǫ
Z−1(r)dr, (D.21)

where ǫ is some cut-off near the boundary.57 The limit T → Tc and L large corresponds to

rh ≫ rf ≫ 1. (D.22)

57We will comment on how to remove the cut-off by appropriate renormalization in the end of this

appendix. However, as we are interested in the limit rf → ∞ in this paper, the ǫ dependence can be kept,

it will not contribute to the results.
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In the limit rh ≫ 1 one can show that the blackness function can be replaced by f ≈ 1

everywhere except r = rh where it vanishes (see [28] for a derivation, that immediately

carries over here). At the same time for rf ≫ 1 the scale-factor As(rf ) → 0. Then, using

the sub-leading terms in A(r) (D.8), one finds,

Z ∼ e−κ
√
V∞/4 r (Case i); Z ∼ r−α/2 (Case ii), (D.23)

The constants κ and α are defined in (3.18) and (3.19).

In the limit rf → ∞ the dilaton Φ(rf ) diverges as in (3.16), therefore one may worry

that the last term in (D.16) contributes significantly. On the other hand, we see from (D.8)

that the A′
s factors (and similarly A′′

s)factors in (D.19) are suppressed exponentially (case

i) and with power-law (case ii) in the region r ≫ 1:

A′
s(r) ∼

{

e−κ
√
V∞ r/2, case i,

r−α, case ii,
(D.24)

and the Z factors in (D.19) are suppressed as (D.23). Using the latter in (D.21) we find,

in the region L≫ 1:

L ∼ eκ
√
V∞/4 rf (Case i); L ∼ r

−α/2+1
f (Case ii), (D.25)

Thus, we conclude that, in the regime rh → ∞, and rf ≫ 1, the dilaton contribution to

the string action (the last term in (D.16)) scales as

SΦ ∼
{

L−1, case i,

L
2−α/2
1+α/2 , case ii,

(D.26)

in the region L≫ 1.

Below, we show that — with the assumption that one can drop the dilaton contribution

in (D.16) — the string action scales linearly in L:

SG ∝ L, L≫ 1, (D.27)

where by SG we denote the on-shell contribution of the first term in (D.16) with the

assumption that the last term can be dropped. Thus, we can safely conclude that, our

assumption in the beginning of this discussion, namely that the dilaton-coupling in (D.19)

does not contribute to the string-solution in the limit (D.22) is valid in case i, and also in

case ii, unless α ≤ 1.58 In the case of α = 1 our assumption above is violated as both

SG and SΦ and one should solve the full action in (D.16). In the case α < 1 the metric

term SG is sub-dominant to SΦ and one can turn the aforementioned argument in favor

of SΦ, i.e. one can assume that SΦ is the leading contribution in the limit L ≫ 1. These

cases provide interesting examples that the Φ-coupling becomes crucial in determining

the behavior of the Polyakov loop correlator (similarly the quark-antiquark potential in

holography), however they are not of direct interest to us in this work.

58The case of BKT scaling corresponds to α = 2 and it is in the safe region.
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Thus, we can drop the last two terms in (D.16) and the solution for hab is given

by (D.18). The on-shell action then becomes a Nambu-Goto action. Given the target-space

geometry (D.17) finding the on-shell NG action is a standard exercise (see for example [55]):

SF1 =
1

2πℓ2s T

∫ rf

ǫ
dr

e2As(r)

√

1 −
(

e
4As(rf )

f(rf )

e4As(r)f(r)

)

. (D.28)

Then the action as a function of L is given by the parametric solution of (D.21) and (D.28).

We are interested in the limit (D.22) where we can replace f ≈ 1 throughout the entire

range of r, up to rf and up to the value of rf slightly smaller than rh (in the limit rh → ∞,

T → Tc. Comparing (D.21) and (D.28) and using the fact that As → 0 in the numerator

of (D.28) we conclude, (assuming α > 1 in case ii)

SF1 → 1

2πℓ2s Tc
L, as L→ ∞. (D.29)

The on-shell action of the same type of connected string solution in the TG geometry is

given by replacing the metric functions above by f = 1, As → A0
s and Φ → Φ0. The same

arguments above then directly carry over to this case.

Finally, let us discuss the renormalization of the action (D.28): We regulated the

action by inserting a cut-off at r = ǫ close to the boundary. As one removes the regulator,

ǫ → 0, the on-shell action diverges, due to infinite area of the space-time metric near the

boundary.59 One should remove the regulator by adding a counter-term action designed

to cancel the divergences. In the case of Polyakov-loop correlator in AdS, this is done by

subtracting the self-energie that corresponds to two disconnected strings hanging from ǫ

to rh [35, 36]:

Sren =
1

2πℓ2s T

∫ rh

ǫ
e2As(r)dr. (D.30)

Clearly, subtraction of Sren from SF1 in (D.28) removes the divergence at ǫ = 0. However,

as criticized in [37], this makes the counter-term action temperature dependent. More-

over, (D.30) is divergent in the limit rh → ∞, that is the limit that we are interested in.

Instead, here we propose to regulate the action by subtracting the self-energy of two quarks

of the Polyakov-loop correlator as in [55]:

Sren =
1

2πℓ2s T

∫ rf

ǫ
e2As(r)dr. (D.31)

Clearly this removes the UV divergence in (D.28) in the limit ǫ → 0 and yields a finite

result for finite L. It is also apparent from (D.31) that it diverges in the limit L→ ∞ but

this divergence is physical. The only point that we have to worry about is that, it does not

diverge faster than (D.29). This is required for the consistency of our discussion above,

where we ignored explicitly regulating the action.

59No where in the paper, we explicitly specified the form of the metric near the boundary, however we

assume that it is asymptotically AdS.
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Let us now determine precisely how it scales with L in this limit. The region L ≫ 1

corresponds to rf ≫ 1. As As → 0 in the integrand in this region, (D.31) scales linearly

in rf . One can convert rf to L by using (D.25). We consider case i first. In this case

one finds,

Siren → 1

2πℓ2s T

4

κ
√
V∞

log L, L≫ 1. (D.32)

From (3.28) one finally obtains,

Siren → 8

Vsκ
log L, L≫ 1. (D.33)

As it scales like log(L) our arguments above by neglecting the counter-term action in the

large L region is thus justified. However, we note that this term does contribute the final

result in the spin-spin correlator as it affects the sub-dominant terms that are denoted

by ellipsis in (5.71). For example, in the mean-field approximation (5.26) for a second-

order phase transition κ = 2 one finds that the coefficient in (D.33) is precisely 1. In

order to determine the exact power of the sub-leading terms in (5.71), one should take this

contribution into account in addition to possible other log L terms that may arise from

the expansion of the leading piece (D.28) and possible quantum fluctuations of the string.

In the case ii, a similar calculation shows that

Siiren ∼ L
1

1−α/2 . (D.34)

As this is always sub-dominant to the linear behavior in (D.29) for α > 0, our discussion

above by neglecting the counter-term action above is again justified.

The same calculation should be done for dilaton-coupling in (D.16). Of course the

counter-term action has the same physical origin. It comes from the dilaton-coupling in

the string solution that corresponds to two quarks in the Polyakov-loop correlator. This is

given by the dilaton-contribution for two disconnected strings hanging from ǫ to rf :

Sren,Φ = − 1

2πT

∫ rf

ǫ
(2A′

s(r)f
′(r) + 2f(r)A′′

s(r) + f ′′(r)) Φ(r)dr. (D.35)

This is obtained by calculating the world-sheet Ricci scalar R(2) in (D.16) for the dis-

connected string solution. We ask whether this cancels out the UV divergence in the

dilaton-term in (D.18) in the limit ǫ → 0. The integrand of the latter is given by Φ(r)

times (D.19). Near r ≈ 0 the function Z in (D.20) diverges, thus only the terms pro-

portional to Z3 in the square brackets in (D.19) survive. This is precisely the form that

one has in (D.35), thus one indeed see that the counter-term given in (D.35) does the

job. As it scales exactly the same way in L as (D.26), we see that, also the renormalized

dilaton-coupling is subdominant to the area term SG, hence our arguments by neglecting

the renormalization above are still justified.

D.3 The ‘t Hooft loop

Here we detail the computation of the ’t Hooft-Polyakov loop correlator which we propose

to correspond to the vortex-anti vortex pair 〈v̄(x)v(0)〉. This is represented by a D1− D̄1
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brane pair ending on the boundary at points x and 0, and wrapping the time circle. Thus

we want to compute the r.h.s. of

〈v̄(x)v(0)〉 ∝ e−SD1, (D.36)

with

SD1 = −T1

∫

dσdτe−Φ (det[hab + bab])
1
2 , (D.37)

where T1 is the D-string tension and we defined,

hab = gsµν∂aX
µ∂bX

ν , bab = Bµν∂aX
µ∂bX

ν . (D.38)

Here gsµν is the string-frame metric

ds2s = e2As(r)
(

f−1(r)dr2 + dx2
d−1 + dx2

0f(r)
)

, As(r) = A(r) +
2

d− 1
Φ(r), (D.39)

in the BH phase. In the TG phase the metric is given by the replacement f → 1 and

A→ A0 in (5.17).

We choose the gauge, σ = x0 and τ = x1. Here x1 is one of the spatial directions of

the spin-model on which the points x and 0 lie. From (D.38) and (D.39) one finds,

h00 = e2Asf ; h11 = e2As

(

1 +

(

dr

dx1

)2 1

f

)

; b10 = −b01 = b

(

dr

dx1

)

(D.40)

h10 = h01 = b00 = b11 = 0, (D.41)

where b is a constant given by the (r, x0) component of the B-field b = Br0. From (D.37)

we find the action for the D1 − D̄1 pair,

SD1 = − 2

T1T

∫ rf

ǫ
dre−Φe2As

√

f +

(

dr

dx1

)2

(1 + b2e−4As). (D.42)

The action only contains derivatives of r explicitly, thus the corresponding Hamilto-

nian should be a constant of motion. Let us define the following functions for nota-

tional simplicity:

f̃2 = e4As−2Φf, g̃2 = e4As−2Φ(1 + b2e−4As). (D.43)

Then the Lagrangian in (D.42) is

L =

√

f̃2 + ṙ2g̃2. (D.44)

The canonical momentum that corresponds to r and the Hamiltonian is given by,

pr =
dL
dṙ

=
g̃2ṙ

√

f̃2 + ṙ2g̃2

, H = pr ṙ −L = − f̃
2

L . (D.45)

We are interested in the connected D1 - D̄1 pair. This is given by a curve on the (x1, r)

plane that ends on the points60(x, ǫ) and (0, ǫ) and has a turning-point at rf , at which ṙ = 0.

60ǫ is the boundary cut-off. We shall keep it explicit here, and it can be removed by renormalizing the

D-string action by adding counterterms as in section D.2.
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We assume that the curve is symmetric around the turning point which corresponds to the

point (x/2, rf ) on the (x1, r) plane. As the Hamiltonian is conserved and independent of

x1 it can be computed at rf . Changing variable to r one has, H = −f̃(rf ). Then the

Lagrangian is given by L = f̃2(r)/f̃(rf ) and one obtains from this, the first-order e.o.m

that determines the shape of the curve:
(

dx1

dr

)−1

= ± f̃(r)

g̃(r)

1

f̃(rf )

√

f̃2(r) − f̃2(rf ). (D.46)

One chooses the plus sign for x1 ∈ (0, x/2) and the minus sign for x1 ∈ (x/2, x). Substi-

tuting this in the Lagrangian (D.44) one obtains the on-shell action,

SD1 = − 2

T1T

∫ rf

ǫ
dr

g̃(r)
√

1 − f̃2(rf )

f̃2(r)

. (D.47)

The distance L = |x| between the end-points on the boundary is given by,

L =

∫ x

0
dx1 = 2

∫ rf

ǫ
dr
g̃(r)f̃(rf )

f̃2(r)

1
√

1 − f̃2(rf )

f̃2(r)

, (D.48)

where we used (D.45). The on-shell D-string action, hence the vortex-anti-vortex correlator

in (D.36) is given by the parametric solution of (D.47) and (D.48) in favor of SD1(L).

In fact, this solution will only be valid for particular values of L less than some Lmax

both for the BH and the TG background. The reason is that, the connected D-string solution

ceases to exist beyond this value. To see this we note, first of all, that the integrand

in (D.48) is positive definite, hence L increases with increasing rf . Then, in case of the

BH, when rf = rh at which the D1 and the D̄1 falls into the horizon. This corresponds

to the maximum value of L for the connected D-string solution. At the technical level,

one can see this by observing that the integrand in (D.48) vanishes for rf = rh, hence L is

bounded by the value Lmax = L(rh). Beyond this point, the r.h.s. of (D.36) is dominated

by the exchange diagram as explained in section 5.5.

Let’s now consider the TG solution. The distance L is again given by (D.48) but this

time the metric functions are given by A = A0 and f = 1. One also has, Φ = Φ0:

L = 2

∫ rf

ǫ
dr
g̃0(r)f̃0(rf )

f̃2
0 (r)

1
√

1 − f̃2
0 (rf )

f̃2
0 (r)

, f̃2
0 = e4As,0−2Φ, g̃2

0 = e4As,0−2Φ(1 + b2e−4As,0).

(D.49)

In order to see that (D.49) is bounded from above in the entire range rf = ǫ to rf = ∞,

one divides the range into two parts (ǫ, r1) and (r1, rf ),
61 where r1 is large enough so that

we can assume that in the second range the background functions are approximately given

by their asymptotic forms:

Φ(r) ≈ Φ∞ r, A(r) ≈ −A∞ r. (D.50)

61This argument is first given in [42]. We warn the reader that there are typo errors in that reference.

Here we prefer to present the argument independently.
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Let us denote the two contributions in (D.49) from the ranges (ǫ, r1) and (r1, rf ) as L1 and

L2 respectively. One first shows that L1 is bounded from above:

L1 = 2

∫ r1

ǫ
dr
g̃0(r)

f̃0(r)

1
√

f̃2
0 (r)

f̃2
0 (rf )

− 1

= 2
f̃0(rf )

f̃0(r1)

∫ r1

ǫ
dr
g̃0(r)

f̃0(r)

1
√

f̃2
0 (r)

f̃2
0 (r1)

− f̃2
0 (rf )

f̃2
0 (r1)

< 2
f̃0(rf )

f̃0(r1)

∫ r1

ǫ
dr
g̃0(r)

f̃0(r)

1
√

f̃2
0 (r)

f̃2
0 (r1)

− 1

= 2
f̃0(rf )

f̃0(r1)
L(r1). (D.51)

In the second line we used the fact that f̃0(r) is a monotonically decreasing function.62

Therefore the only possible divergence in L can come from L2:

L2 = 2

∫ rf

r1

dr
g̃0(r)

f̃0(r)

1
√

f̃2
0 (r)

f̃2
0 (rf )

− 1

≈
√

1 + b2

Φ∞

∫ 2Φ∞(rf−r1)

0

dy

ey − 1
, (D.52)

where we used that, by assumption the background functions are given by the asymptotic

forms (D.50) in this range of r. We see that this is bounded from above. In the limit

rf → ∞ one finds,

lim
rf→∞

L2(rf ) ≈
π
√

1 + b2

Φ∞
. (D.53)

In fact, with little more effort, one can show that the r.h.s. of (D.53) is the upper bound on

L2. Thus L is bounded from above and there is a maximum value Lmax that is reached at

some point rf = rmax. It is clear from the calculation above that this point is independent

of temperature in the TG phase. Beyond this point, the connected D-string solution ceases

to exist and the vortex correlator is determined by the exchange diagram, cf. section 5.5.

As a last comment, we observe that the calculation above could be applied directly to

the BH case, just by replacing the functions f̃0 and g̃0 by f̃ and g̃. The crucial point about

the monotonicity of the function f̃ is guaranteed just like in the footnote below, given

that f is also monotonically decreasing. Thus, also in the BH geometry, one has a point

L′
max(rh) above which the connected diagram does not exist. It is an interesting question,

whether this point is before or beyond the horizon. Namely, one can ask the question

whether L′
max(rh) < L(rh) or not. If so, then the connected D-string solution would cease

to exist even before it falls into the horizon! The answer will be determined by the precise

background functions of the holographic model, however, this point does not change our

arguments in section 5.5 that only depends of existence of some Lmax.

62This is clear from the definition (D.49). The exponent is 4A0(r) + 2Φ0(r)/3 where A0 is the Einstein

frame scale factor. By assumption, A0 is a monotonically decreasing and Φ0 is a monotonically increasing

function. We also know that the combination 4As,0(r) = 4A0(r)+8Φ0(r)/3 is monotonically decreasing and

having an asymptotic minimum at r = ∞. Thus 4A0(r) + 2Φ0(r)/3 should be monotonically decreasing,

with no minimum.
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E Spectrum of bulk fluctuations

E.1 Graviton and dilaton

We first consider the spectrum of the dilaton and the graviton fluctuations. We shall carry

out the calculation with Minkowski signature for convenience. The results can easily be

translated in Euclidean time by analytic continuation. There are two independent modes

with spin-0 and spin-2. The first one is given by a mixture of the isotropic fluctuations of

the metric components h11 = h22 = · · · = hd−1,d−1 and the dilaton fluctuations δΦ. We

denote this mode as h0. The second one is is just the transverse traceless shear fluctuations

that will be denoted by h2. The equations of motion for these modes on a generic BH

background (3.6), are obtained by decomposing h0,2(r, x) = e−ipixi+iωx0
h0,2(r). They can

be found for example in [15, 56]. In the Einstein frame one obtains63

h′′0 + h′0

(

(d− 1)A′ +
f ′

f
+ 2

X ′

X

)

+ h0

(

ω2 − |~p|2
f2

− f ′

f

X ′

X

)

= 0, (E.1)

h′′2 + h′2

(

(d− 1)A′ +
f ′

f

)

+ h2

(

ω2 − |~p|2
f2

)

= 0, (E.2)

where the function X is given by X(r) = 2/((d − 1)
√
d) Φ′/A′ and it asymptotes to a

constant X → −1/
√
d in the IR region r → ∞. The analogous fluctuation equations on

the thermal gas background us given by setting f = 1 in these equations.

From (E.1) and (E.2) we see that the spin-0 and spin-2 modes become degenerate in

this far IR region, hence it suffices to consider only the latter. As argued before and shown

in [28] in the limit rh → ∞ the function f approaches to 1 and A approaches to the scale

factor of the TG solution (3.5) A → A0. Therefore, in this regime of interest we want

to solve,

h′′2 + h′2(d− 1)A′
0 + h2 (ω2 − |~p|2) = 0. (E.3)

One can easily transform this equation to a Schrodinger form by h2 = h̃2 exp(−(d−1)A/2):

− h̃′′2 + VS(r)h̃2 = (ω2 − |~p|2)h̃2, VS =
d− 1

2
A′′

0 +
(d− 1)2

4
A′

0
2
. (E.4)

The asymptotics of the function A (3.17) imply that the Schrodinger potential asymptotes

to a constant in the far IR:

VS → m2
0 + O

(

e−κ
√

V∞
2

r
)

, m2
0 =

V∞
4

(E.5)

and for the form of the subleading corrections we refer to [15].

On the black-hole background the fluctuation equation (E.2) is solved by imposing

normalizability near the boundary and incoming boundary condition (or normalizibility in

the Euclidean signature) at the horizon. Consider first the case |~p| = 0. Then one gets a

discrete spectrum of ω2 on the BH. As rh is taken to ∞, i.e. near the phase transition region

63Strictly speaking these equations are correct only when either of |~p|2 = pipi or ω2 vanish. Otherwise

there may be some more complicated mixing terms. We will keep this combination and in the end of the

computation we will be interested either of these two cases.
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T → Tc the spectrum becomes nearly continuous with the lowest lying state determined

by the asymptotic constant in (E.5). Consequently, at finite but large rh the spectrum of

states are of the form,

ω0 = m0 =

√
V∞
2

, ω1 = m0 + O
(

e−κ
√

V∞
2

rh
)

, etc. (E.6)

The constant m0 is the same as the one that appears in the derivative of the dilaton (4.4).

This is not a coincidence but required for the consistency of the theory. What we learned

is that, the gravitational fluctuations on the linear-dilaton background is always gapped

with a gap factor m0, i.e.

ω2 > m2
0, for N = Ñ = 1. (E.7)

In the actual calculation of the two-point function in section 5.4.1 and 5.4.2 we need

the Euclidean spectrum with compact time. One finds that the exchange diagram is of the

form exp(−mL) where m is always bounded as in (E.7) from below.

E.2 B-field

We consider the fluctuations around Br0 = const that we denote as δψ. The spectrum

of fluctuations are obtained from the equation of motion for the B-field d ∗ dB = 0. We

decompose δψ(r, x0) = e−ipixi+iωx
0
δΨ(r). On simply obtains ω2 = 0, hence the spectrum

of fluctuations from the point of view of d − 1 dimensions are also massless. This means

that in the exchange diagrams of section (5.4.1) and (5.4.2), the contribution from the

lowest CT − modes is massless, in accord with existence of the Goldstone mode in the

superfluid phase.

E.3 Tachyon

The tachyon action is [16] (in the string frame),

AT ∼
∫ √

gse
−2Φ

(

gµνs ∂µT∂νT − 4

ℓ2s
T 2

)

, (E.8)

where the metric and the dilaton reads,

ds2 = e2As(r)
(

f−1(r)dr2 + dx2
d−1 + dx2

0f(r)
)

, Φ = m0r, (E.9)

and m0 is defined in (4.4). We shall carry out the calculation on the black-hole, and the

thermal gas result will be obtained simply by setting f = 1.

We fluctuate T = 〈T 〉+T (r)e−ip
ixi+ωx0 in the action. We note that these fluctuations

do not mix with the dilaton fluctuations for 〈T 〉 = 0 which is indeed what we assume

throughout the paper: the only non-trivial profiles in the background are the metric and

the dilaton. It is straightforward to obtain the fluctuation equation from (E.8) and (E.9).

As we are interested in the spectrum of ω we set pi = 0:

T ′′ +

[

(d− 1)A′
s − 2m0 +

f ′

f

]

T ′ +

(

4

ℓ2s

e2As

f
+
ω2

f2

)

T = 0. (E.10)
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This can be transformed into a Schodinger form by the change of variable T = exp(−(d−
1)A/2 +m0r − 1

2 log f)T̃ with the result,

− T̃ ′′+VT T̃ =
ω2

f2
T̃ , VT =

d− 1

2
A′′
s+

(

d− 1

2
A′
s −m0 +

f ′

2f

)2

+
1

2

(

f ′′

f
− f ′2

f2

)

− 4

ℓ2s

e2As

f
.

(E.11)

Let us first consider the simpler case of the thermal gas background that is obtained

from (E.11) by setting f = 1:

VT

∣

∣

∣

∣

TG

=
d− 1

2
A′′
s +

(

d− 1

2
A′
s −m0

)2

− 4

ℓ2s
e2As . (E.12)

In the TG phase in the IR As vanishes as (D.8)

As(r) → a1e
−κm0r (E.13)

with some positive coefficient a1. The Schrodinger potential then becomes,

VT

∣

∣

∣

∣

TG

= m2
0 −

4

ℓ2s
+ a1 e

−κm0r

(

1

2
(d− 1)(κ+ 2)κm2

0 −
8

ℓ2s

)

+ O(e−2m0r). (E.14)

For a moment let us consider the pure linear-dilaton geometry. In this case the exponential

correction term in (E.14) is absent a1 = 0, and one obtains the exact answer as,

VT

∣

∣

∣

∣

LD

= m2
0 −

4

ℓ2s
=

{

1−d
6ℓ2s

bosonic
1−d
4ℓ2s

fermionic
(E.15)

where we used the no-anomaly condition (4.5). The tachyon in the fermionic case comes

from the ground state of the NS fermions and has the mass m2
T = −2/ℓ2s. We re-derived

the well-known result that the “tachyon” in dimensions 2 or less is actually a stable mode

(recalling that our total number of dimensions is d+1). This is of course a consistency check.

Coming back the issue of the spectrum, the result (E.14) indicates that the fluctuations

in the deep interior of the thermal gas geometry, in the vicinity of the phase transition

T → Tc
64 are tachyonic. Luckily we do not need this lowest mode in the calculation of the

two-point function in section 5.4.2 because the entire propagation is governed by modes

with winding mode w = 1 which are non-tachyonic.

However, we needed this mode in the calculation of the two-point function in the black-

hole phase, cf. section 5.4.2. Now let us inspect the spectrum of tachyon fluctuations on

the black-hole. This is determined by the equation (E.10). The blackness function near

the horizon behaves as

f → 4πT (rh − r), r → rh. (E.16)

Then the fluctuation equation becomes the standard form,

T ′′ − T ′(rh − r)−1 +
ω̃2

(rh − r)2
T ≈ 0, r → rh, (E.17)

64This is the only regime the world-sheet CFT becomes linear dilaton.
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where ω̃ = ω/4πT . This can be solved by changing the variable as rh − r = exp(−u) and

the solution near the horizon becomes,

T → T+e
iω̃u + T−e

−iω̃u. (E.18)

The incoming one corresponds to T+ = 0. To inspect the issue of the tachyon, we can

change to the Euclidean metric by ω → −iω and the incoming solution of the Minkowskian

BH corresponds to the normalizable solution of the Euclidean one. This means that the

Euclidean spectrum is always discrete and bounded from below. However we still have to

see whether there is a negative mode in the limit rh → ∞ (T → Tc). We recall that in this

limit the BH geometry asymptotes to the TG geometry. In particular

f(r) → 1, for all r < rh. (E.19)

Then, for any r < rh the corresponding Schodinger potential is given by (E.14) which

becomes negative in the far r region for r < rh. Near rh it becomes positive again and

finally it diverges as (rh − r)−2 as r → rh. Then existence of a negative discrete mode

crucially depends on whether the approach to the negative minimum that is given by (E.15)

is from above or below. This is determined by the sign of the coefficient of the exponential

term in (E.14). Recalling that a1 > 0, we observe that the sign is always positive for the

interesting case of κ = 2 which corresponds to a second order transition both for d− 1 = 2

and d − 1 = 3. For a third or higher order transition it is negative both for d − 1 = 2, 3.

We conclude that in the cases of interest, although there is a negative minimum in the

tachyon potential, the approach to this minimum is from above and the potential can

always be arranged (by choosing the form of the next-to-subleading terms in the dilaton

potential (3.15)) so that there is no negative discrete mode in the spectrum. The same

cannot be said for fluctuations on the thermal gas, as explained above.

It is a reasonable question to ask whether the tachyon of the linear-dilaton CFT (on

the thermal gas) can be extrapolated to the UV theory. To answer this question one has

to study the tachyon potential in the UV. This can only be done in an heuristic way. The

reason is that, in the UV we do not have an exact CFT description unlike in the IR and

the α′ corrections would renormalize the following discussion. Nevertheless, let us pretend

that there are no α′ corrections in order to see what possible behavior can arise. In this

paper we have not specified the UV geometry, but in fact we always tacitly assume that

the UV geometry is AdS. In [15] we found analytic kink solutions that flow from the UV

in the AdS and linear-dilaton in the IR. In the case of AdS the metric scale factor is

A→ − log r/ℓ+ · · · . Then we obtain,

VT ≈
(

d− 1

2
+

(d− 1)2

4
− 8ℓ2

ℓ2s

)

1

r2
, r → 0. (E.20)

This will be bounded only when the term in the bracket is positive. In the case of d−1 = 3

this gives the condition ℓ2/ℓ2s < 15/32. As mentioned above, this result is supposed to

be corrected by α′ corrections. However it is reasonable to expect that there will always

be an upper bound on ℓ/ℓs by demanding that there is no d − 1 dimensional tachyon
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in the spectrum in the UV. On the other hand, the simplest way to achieve this is to

demand that there is no tachyon to start with i.e. the spectrum in the d + 1 dimensional

theory is non-tachyonic and the tachyon of the linear-dilaton theory only arises in the IR

effective theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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